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ABSTRACT 
We used a three-dimensional smooth-particle hydrodynamics (SPH) code with 7000 particles to simulate 30 

collisions between lower main-sequence (MS) stars whose masses differ by a factor of 5. We also simulated 
encounters with point-mass intruders to understand better how the finite radius of the intruder affects the 
dynamics. The two MS stars become gravitationally bound in a physical collision if their relative velocity, F, 
at infinity is less than a critical (dissipation) velocity, Vd. We find that Vd decreases from 1000 km s-1 in a 
head-on collision to 150 km s_1 in a grazing one. If the less massive star is replaced by a point mass (e.g., a 
white dwarf), Vd remains the same for grazing collisions and tidal encounters, but it drops to ~ 600 km s “1 in 
head-on collisions. If F > the lower mass ms star, which is the denser of the two, passes through the more 
massive MS star and escapes without becoming gravitationally bound to it. In collisions between two main- 
sequence stars, Vd increases with F due to increased shock dissipation. In collisions between a point mass and 
a main-sequence star, Vd decreases as F increases. The only dissipation in these cases is by gravitationally 
induced oscillations that decrease in importance as F increases. If the two MS stars coalesce in a physical 
collision, the denser (lower mass) MS star settles to the center of the other one. The violent mixing of the 
more massive star during the encounter and the settling of the low-mass star to its center should reset the 
nuclear clock of the coalesced star, so it contracts to the (helium-rich) MS. The fraction of the stellar mass lost 
in these collisions is much less than that lost in collisions between stars of equal mass and density. In particu- 
lar, grazing collisions do not produce the large mass loss and accretion disks that characterize collisions 
between equal-mass stars. We find that tidal captures of binary stars in globular clusters can only occur in 
encounters in which the closest approach of the two stars to their center of mass is less than 2.0 times the sum 
of their radii. Coalescence of two MS stars in a globular cluster is more probable than their forming a binary 
by tidal capture. Tidal capture is not possible if the impact velocity at infinity exceeds 150 km s-1. Even at 
zero impact velocity, the coalesced star acquires a kick velocity of up to 4.5 km s-1 by asymmetric jetting 
during the collision. This velocity is not enough to eject the coalesced star from a globular cluster, but it 
largely compensates for the dynamical cooling resulting from the coalescence of the two stars. The coalescence 
of stars in globular clusters does not speed up the dynamical collapse of the core of the cluster. 
Subject headings: celestial mechanics, stellar dynamics — globular clusters: general — hydrodynamics — 

methods : numerical 

1. INTRODUCTION 

Collisions between main-sequence (MS) stars are important 
in the cores of globular clusters (Hills & Day 1976) and in 
galactic nuclei. In the two earlier papers in this series we have 
the results of collisions between equal-mass MS stars (Benz & 
Hills 1987, hereafter Paper I) and between white dwarfs (Benz, 
Hills, & Thielemann 1989, hereafter Paper II). These papers 
list references to earlier work on stellar collisions and to the 
basic characteristics of the SPH code used in these simulations. 
Collisions with giant stars have been studied by Davies, Benz, 
& Hills (1991). 

In this paper, we investigate collisions and close encounters 
between unequal-mass MS stars. We also simulate collisions 
between point-mass intruders (white dwarfs) and MS stars to 
understand better how the physics of the encounters depends 
on the finite radius of the smaller MS star. 

1 Now at Steward Observatory, University of Arizona, Tucson, AZ 85721. 

The masses of the two stars differ by a factor of 5, which 
should represent cases in which the two stars differ significantly 
in mass. We treat each preencounter star as a polytrope of 
index n = 1.5, which is a good approximation for the lower MS 
stars that dominate both globular clusters and galactic nuclei 
where most physical collisions occur. 

The fusion of hydrogen to helium in the cores of MS stars 
supports their luminosity. Because the rate of energy pro- 
duction by this mechanism increases rapidly with increasing 
temperature, the mean temperature in the cores of MS stars 
increases slowly with increasing MS mass despite the huge 
increase in MS luminosity. If there were no increase in tem- 
perature, the virial theorem would require the radius of a MS 
star to be proportional to its mass. In our simulations, with the 
more massive star having a mass and radius of unity, the less 
massive star has a mass and radius of 0.2 and 0.2532, respec- 
tively. If the more massive star has a solar mass and radius, the 
other star has the radius of a MS star with a mass of 0.2 M0. 
The lower mass MS star is 12.3 times more dense than the 
more massive one. 
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Our collisions between MS stars differ significantly from the 
collisions of the “stars” given in Cleary & Monaghan (1990), 
who give the polytropes the same specific entropy, which 
results in the more massive object being denser, which is 
exactly opposite to the mass-density behavior of MS stars. 

In § 2 we describe the assumptions and numerical tech- 
niques used in our calculations. In § 3 we describe the initial 
conditions, and in § 4 we give the results. 

metrize the smoothing length, = (/i¿ + hj)/2, rather than the 
kernel (Hernquist & Katz 1989) to compute particle-particle 
interactions. 

Finally, we use the hierarchical binary tree to determine the 
gravitational potential and force that has been described in 
Benz et al. (1990). 

3. INITIAL CONDITIONS 

2. ASSUMPTIONS AND NUMERICAL TECHNIQUES 

Our calculations ignore radiation transport, which is a rea- 
sonable simplification. All shocks except those in the outer 
atmosphere (which the code does not model) occur in optically 
thick regions where heat transport is on a diffusion time scale, 
which much exceeds the shock crossing time. We also ignore 
complications such as magnetic fields and consider the two 
colliding stars as an isolated system. 

As in our previous paper on equal-mass MS star collisions 
(Paper I), we neglect nuclear energy release because the time 
during which the temperature exceeds hydrogen ignition 
threshold is too short for any significant generation of energy. 

The evolution of the system is described by the three- 
dimensional hydrodynamics conservation equations. To solve 
this system of equations we use, as in Paper I and II, the 
Smoothed Particle Hydrodynamics (SPH) method. This 
method has been described extensively in the literature (for 
example, Benz 1990) as have a number of tests to check its 
ability to reproduce analytical and experimental results (see, 
for example, Monaghan 1985; Benz 1988, and references 
therein). Here, we shall only point out the slight modifications 
made to the now “ standard ” versions of SPH. 

The finite extent of the Lagrangian particles is determined 
by a smoothing function (or kernel) containing a characteristic 
length scale h. This length scale is roughly analogous to a 
zoning scale in conventional finite difference methods. In this 
paper we use the kernel called W4 in Monaghan & Lattanzio 
(1985) which is based on B-splines rather than the exponential 
kernel used in Paper I. The smoothing length h was allowed to 
change both in time and space according to the following evo- 
lution equation solved in parallel to the hydrodynamics equa- 
tions (Benz 1990): 

dh 
dt 

= - h\ • v . 
3 

(2.1) 

This provides a smooth variation of h consistent with the SPH 
technique and ensures that the number of interacting neigh- 
bors with any given particle remains roughly constant. 

The time integration in our code is done using a second- 
order Runge-Kutta-Fehlberg integrator. As discussed by Benz 
(1990), this method, although requiring two force evaluations 
per time step, is at least as fast as the commonly used leap-frog 
scheme (Hernquist & Katz 1989) with time steps limited by the 
Courant-Friedrichs-Lewy condition. It has the additional 
advantage to be simpler since all quantities (velocities, posi- 
tions, etc.) are defined at the same time. This is especially 
important when additional evolution equations (magnetic 
field, etc.) have to be solved simultaneously to second order as 
well. Furthermore, each particle is integrated with its own time 
step determined from the requirement that the truncation error 
estimate remains less than a preset tolerance. 

Local conservation of linear momentum is achieved by 
proper symmetrization of the forces. In our code, we sym- 

The two stars are modeled as polytropes of index n = 1.5, 
which approximates lower MS stars. There are initially 3500 
fluid particles in each star. We treat the dynamics analytically 
as a two-body problem until the separation of the two stars is 
three times the sum of their radii where fully hydrodynamic 
calculations begin. 

If the separation of the two stars is the sum of their radii and 
the more massive one has a solar mass and radius, then the 
escape velocity is 

2G(M t + M2)11/2 

. (Ri+Ri) J 
= 604 km s 1 . (3.1) 

We made simulations at many impact parameters for colli- 
sion velocities at infinity, V, such that V/Vesc = 0, 0.496, and 
0.993, and 1.489, which correspond to F = 0, 300, 600, and 900 
km s-1, if the more massive star has a solar mass and radius. 
We have run collisions at zero impact parameters out to 
V/Vesc = 4.96or F = 3000kms"1. 

Paper I showed that the results of a collision between two 
stars are nearly independent of F if F Fesc. Fesc « 600 km 
s-1 for MS stars, so the results for 0 km s“1 should model 
collisions in globular clusters, in which colliding stars have 
F = 10-15 km s"1. The velocity dispersion in galactic nuclei, 
including the Galactic Center, is typically 150-300 km s_1, so 
the two lowest values of F used in our simulations should 
bracket the collisional velocities expected in galactic nuclei. 
The “ collapse ” of a galactic nucleus, in analogy to a globular 
cluster core “ collapse,” can raise the collision velocities signifi- 
cantly above 300 km s-1. High-velocity collisions also occur 
near black holes in AGNs (Hills 1978). Our high-velocity colli- 
sions simulate the collisions expected in evolved galactic 
nuclei. 

4. RESULTS 

We describe the results of the individual collisions in this 
section. Table 1 gives the principal quantitative results. 

Column (1) of Table 1 gives F, the impact velocity at infinity, 
in km s_1 as scaled to the particular case in which Ml and R1 
have solar values. Column (2) gives Rmin, the projected 
minimum separation (periastron distance) of the two stars in 
the encounter if they were point masses. Rmin is given in units of 
the sum of the stellar radii, + R2 • We calculate Rmin ana- 
lytically from the preencounter orbital angular momentum 
and kinetic energy. Rmin is related to the impact parameter p 
and the impact velocity at infinity, F, by the equation 
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TABLE 1 
Main-Sequence versus Main-Sequence Encounters: Masses 5/1 

V 
(km s“1) 

(1) 

Rmin 
(R, + R2) 

(2) 

AM12 
(M, + M2) 

(3) 
(AM12) 

(4) 
N (km s A) 
(5) (6) 

(km s ^ 
(7) 

0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 
0 . 

300 . 
300 . 
300 . 
300 . 
300 . 
600 . 
600 . 
600 . 
600 . 
900 . 
900 . 
900 . 
900 . 
900 . 
975 . 

1200 . 
1971 . 
3000 . 

0.000 
0.159 
0.250 
0.399 
0.500 
0.638 
0.757 
1.00 
1.2 
1.4 
1.6 
1.8 
0.0 
0.25 
0.399 
0.65 
0.75 
0.0 
0.25 
0.40 
0.50 
0.0 
0.10 
0.125 
0.2 
0.53 
0.0 
0.0 
0.0 
0.0 

0.0082 
0.0124 
0.0178 
0.0256 
0.0214 
0.0167 
0.0206 
0 
0 
0 
0 
0 
0.0078 
0.0238 
0.0290 
0.0048 
0.0020 
0.0201 
0.0561 
0.0261 
0.0182 
0.0903 
0.0751 
0.0712 
0.0772 
0.0278 
0.0975 
0.1496 
0.4444 
1.0 

0.898 
0.935 
0.888 
0.871 
0.864 
0.808 
0.796 
0 
0 
0 
0 
0 
0.836 
0.912 
0.921 
0.788 
0.840 
0.806 
0.909 
0.904 
0.852 
0.946 
0.948 
0.954 
0.894 
0.853 
0.951 
0.969 
0.955 
0.833 

-465.0 
-338.9 
-240.6 
-153.1 
-99.3 
-58.8 
-30.6 
-9.4 

-540.9 
-55.0 
197.4 

-448.0 
59.7 

331.2 
-258.3 
-134.1 

265.4 
336.9 
681.5 

-65.3 
463.3 

1165.3 

465.0 
338.9 
240.6 
153.1 
99.3 
58.8 
30.6 

9.4 

618.5 
305 
225.9 

748.8 
597.0 
500.3 
936.3 
909.9 
860.0 
834.6 
587.8 
977 

1107 
1590 

a Encounter not followed to final coalescence. 

where 

ac 
G(Ml + M2) 

V2 (4.3) 

is the “accretion” radius that parameterizes gravitational 
focusing. Here t^sc is the escape velocity given by equation (3.1) 
if Rmin = (i^1 + R2). We emphasize that the periastron dis- 
tance, Rmin, is the projected closest approach distance as given 
by the two-body problem. If the two stars physically collide, 
the actual closest approach of the center of mass of the two 
stars will not be exactly equal to this value due to two com- 
peting effects. As the dense, low-mass star plunges through the 
other one, it feels a progressively weaker gravitational pull 
toward the center of the massive star, which would not occur if 
the two stars were point masses. On the other hand, friction 
increases considerably as the impactor penetrates deeper into 
the target star. We found that, in general, the closest approach 
is slightly smaller than the one predicted by the two-body 
problem. 

Column (3) of Table 1 gives the fraction of the total mass, 
(Mi -l- M2), that is lost from the two-star system while column 
(4) gives the fraction of this ejected mass that originated in Star 
1, the more massive one. We computed this mass loss in the 
same manner as in Paper I. Column (5) gives the number of 
stars remaining after the encounter. If iV = 0, the stars have 
totally broken apart. If AT = 1, the final system is a coalesced 
object or a binary. An asterisk in this column means that we 
were not able to follow the two stars to final coalescence (it 

would have required too much computer time), but the stars 
lost enough energy in the initial encounter to become gravita- 
tionally bound to each other, so they must eventually either 
coalesce or form a binary. If iV = 2 the two stars remain 
unbound to each other after the encounter. The last two 
columns, which parameterize the energy dissipation in the col- 
lision are discussed below in § 4.2. 

4.1. Descriptions of Typical Encounters 
As in Papers I and II, we can only summarize a small frac- 

tion of the tremendous detail shown in these simulations. We 
shall show the results of a few representative encounters using 
some of the visual tools we utilize in our analysis. 

4.1.1. Head-on Collision 

Figure 1 gives snapshots of the stars during a head-on colli- 
sion at parabolic velocity, F = 0. The plot shows the velocity 
vectors of the fluid particles in the collision plane during the 
encounter. The dimensionless system time, t, given in the plots 
can be converted to physical units by multiplying it by the 
factor 

t = JMo)(Rq/Rî)
1/2'] s , (4.4) 

which is basically the dynamical time of the system. Figure 2 
shows the total specific energies of the two-star system as a 
function of the system time. The uppermost curve in Figure 2 
gives the thermal energy, which increases sharply at the time of 
physical contact. The next curve gives the large-scale kinetic 
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Fig. 1.—Velocity vectors of fluid particles at various times (system time t = 3.54, 3.87, 4.22, 5.19, 6.46, and 8.25) during a parabolic encounter at zero impact 
parameter. The two colliding lower MS stars differ by a factor of 5 in mass. The lower mass one is the smaller and denser of the two. The unit of system time is given 
by eq. (4.4). 
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Fig. 2.—Total specific energies as a function of time for the encounter given 
in Fig. 1. The upper curve gives the thermal energy, which increases at the time 
of physical contact of the two stars. The next curve gives the large-scale kinetic 
energy which increases initially as the two stars fall toward each other due to 
their mutual gravitational attraction. The third curve is the total system 
energy. The final curve gives the gravitational potential energy. 

/ 
\ / \ / 

\ / 

energy, which initially increases as the two objects fall toward 
each other by their mutual gravitational attraction and then 
goes to zero as the two stars fuse into one. The third curve 
gives the total energy, which remains constant to a fraction of a 
percent during the encounter. The fourth curve gives the gravi- 
tational potential energy. 

We notice in Figures lb-id, the formation of a bow shock as 
the smaller star plows through the more massive one. The 
low-mass star remains gravitationally self-bound as it passes 
through the more massive, lower density star. It is compressed 
by the added pressure it feels as it travels through the more 
massive star. The maximum pressure, which occurs at the 
center of the lower mass star, is more than twice as large when 
this star is passing through the center of the more massive star 
as it was when the low-mass star first entered it. 

The smaller, denser star punches a hole in the more massive, 
lower density one. The collapse of this hole generates a shock 
resulting in a high-entropy wake behind the low-mass star. As 
Figures Ic-ld show, the shock in turn produces a jet that 
squirts out of the low-density star at the point where the 
intruder first entered it. This jet is the primary mass loss 
mechanism. The remaining mass loss occurs when the intruder 
breaks out the other side of the low-density star. In Figures 
le-1/ the intruder reenters the more massive star and settles to 
its center after a few oscillations. In its first passage through the 
massive star, the low-mass star both increased the entropy of 
the more massive star enough and decreased its own velocity 
relative to it enough that it did not produce a significant shock 
in subsequent passages through it. This allowed a turbulent 
wake to form, as shown by the vortices that appear behind the 
reentering intruder. These vortices very efficiently mix the 
more massive star. 

At higher collision velocities, the general behavior is similar 
except the collisions are more violent and the mass loss is 
greater. In these higher velocity collisions, the low-density, 
more massive star becomes strongly elongated in the direction 
of passage of the low-mass star through it. This elongation 
significantly increases, i.e., makes less negative, the gravita- 
tional potential energy of the star and decreases its gravita- 

tional binding energy. At sufficiently high velocities, the hole 
produced by the lower mass star does not fill in until after this 
intruder has completely penetrated the lower density, more 
massive star. In collisions at high velocities and low impact 
parameters, the low-density star is well mixed after the encoun- 
ter even if the low-mass star does not coalesce with it. This 
mixing is due to currents set up in the star as the hole produced 
by the intruder fills in. 

At high enough velocities the two stars are destroyed in 
low-impact-parameter collisions. The more massive one is 
destroyed at a lower impact velocity than the less massive one. 
The more massive star is destroyed by the gravitational pertur- 
bations of the low-mass star and by the ram heating it pro- 
duces in passing through it. The low-mass, denser star is only 
destroyed by the ram heating it feels in passing through the 
more massive star. At F = 2000 km s“1, the two-star system 
loses 44% of its mass with over 95% of the loss coming from 
the more massive star. At F = 3000 km s-1, both stars are 
destroyed. At this velocity, the low-mass star passes through 
the more massive one largely in one piece, although a wake of 
debris from it lines the hole it generates in the more massive 
star. After escaping the more massive star, the low-mass star 
expands freely to become an unbound cloud. The ram heating 
it felt in going through the more massive star and its loss of 
mass is enough to make it gravitationally unbound. 

4.1.2. Grazing Collision 

Figure 3 shows the time variations in the various specific 
energies for a grazing collision at parabolic speed in which the 
projected closest approach of the two objects is Rmin = 
0.157(R1 + R2)- The four specific energies are given in the same 
order as in Figure 2. Figure 4 shows fluid particles in the star at 
various critical times during the encounter. The first five frames 
show the fluid particles that are located within a slice centered 
on the orbit plane of the two stars. The last frame shows fluid 
particles in a slice centered on a plane perpendicular to the 
orbit plane after the low-mass star has settled near the center of 
the more massive one. 

The time variation in the large-scale kinetic energy, which is 
the second curve from the top in Figure 3, provides a good 

.4 

.2 

0 

-.2 

-.4 

-.6 

-.8 

-1 
0 10 20 30 40 50 60 70 80 90 

time (code units) 
Fig. 3.—The change in the specific energies as a function of time for a 

parabolic encounter in which the closest approach is Rmin = 0.757(1^! + R2). 
The order of the specific energies is the same as in Fig. 3. 
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FIG. 4.—The first five frames (a-e) show the positions of fluid particles in the orbit plane at various times (system times t = 4.99, 36.6, 55.9, 62.0, and 66.8) during 

the encounter given in Fig. 3. The last frame (/) shows fluid particles in a plane perpendicular to the orbit plane at a time (t = 85) after the low-mass star has settled 
near the core of the more massive one. 

summary of what happened during the encounter. During the 
first collision, which Figure 4a shows, the stars lose enough 
kinetic energy to become gravitationally bound in a short- 
period binary orbit. Figure 4b shows the two stars near their 
greatest separation in this orbit. Near time i = 55, the stars 
collide again as Figure 4c shows. The energy fed into the more 
massive star during the first collision causes it to be larger at 
the second collision, which, consequently, is more violent. After 
the second collision, the stars are in a more tightly bound orbit, 
with their greatest separation occurring near the time shown in 
Figure 4d. We see that the low-mass, dense star has accreted an 
atmosphere of gas that originated in the more massive star. 
There is also a tongue of gas connecting these two stars during 
this orbit. The next collision, which Figure 4e shows, is even 
more violent. Figure 3 shows that the two objects go into 

another bound orbit. Plots of the fluid particles show that the 
low-mass star orbits inside the more massive one during this 
stage. Unlike the case for equal-mass stars (Paper I), the 
merging stars do not form a spiral pattern. The low-mass star 
rapidly spirals to the center of the more massive star. It is near 
the center by time i = 85. 

Figure 3 shows that the postcoalescence kinetic energy 
approaches 0.05 units rather than zero, as it did for the 
head-on collision shown in Figure 2. This terminal kinetic 
energy is the rotational energy of the coalesced star after the 
encounter. It is ~ 13% of the final thermal energy, whose time- 
dependent behavior is given by the top curve in Figure 3. 
Figure 4/ shows the fluid particles in a plane perpendicular to 
the orbit plane after the low-mass star has settled to the center 
of the more massive one. We see a distinct flattening of the 
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star toward the rotational plane, but it has no accretion disk. 
Accretion disks are produced in grazing collisions between 
equal-mass MS stars (Paper I) and between white dwarfs 
(Paper II). The high degree of flattening shown in Figure 4/ 
suggests that the star is on the verge of forming a Roche cusp, 
so it may be near rotational instability. We expect an encoun- 
ter at a slightly larger Rmin or one with a slightly more massive 
secondary star to produce a rotationally unstable, coalesced 
star. 

Jetting in oblique shocks at these impacts produces the mass 
loss during this encounter. There were three distinct episodes 
of mass loss corresponding to the three impacts shown in 
Figure 4. The mass loss at each of the first two impacts was 
0.5% while the mass loss in the final impact was 1% for a total 
system mass loss of 2%. 

4.1.3. Common Characteristics of Collisions 

In both simulations discussed in this section, the denser, 
low-mass star eventually settles to the center of the less dense, 
more massive one. All our simulations leading to a single, 
coalesced star ended with the lower mass star at the center. 
These mergers thoroughly mix the massive star, so, in particu- 
lar, the helium accumulated in its core by hydrogen fusion 
should be mixed throughout it. The amount of nuclear burning 
that has occurred in the less massive star is nearly negligible if 
its age is comparable to that of the more massive one. After a 
Kelvin time the coalesced object should be on the main 
sequence, but with a helium-rich envelope and a core having 
the chemical abundance of a zero-age main-sequence (ZAMS) 
star in the stellar system. This object should be observed in the 
region of the H-R diagram occupied by the blue stragglers in 
globular clusters, as predicted by Hills & Day (1976). 

This settling of the low-mass star to the center of the more 
massive one is very different behavior from that found by 
Cleary & Monaghan (1990) in their simulations of collision 
between equal-entropy “ stars.” The more massive of these two 
“ stars ” is denser than the less massive one. Their “ stars ” do 
not obey the mass-density behavior of MS stars. In collisions 
between Cleary and Monaghan “ stars,” the more massive one 
tidally disrupts the less massive one, so their collisions produce 
much more mass loss than occurs in collisions between MS 
stars. Collisions between Cleary & Monaghan “stars” more 
closely resemble collisions between white dwarfs (Paper II) 
than between MS stars. 

4.2. Energy Loss 
Column (6) of Table 1 gives Vf, the (effective) velocity at 

infinity of the two stars after their first collision. We found Vf 
for those encounters in which the stars either pass near each 
other and suffer a loss in relative kinetic energy due to tidal 
dissipation or the small, dense star physically collides with the 
more massive one but is able to pass through it and comes out 
its other side. Here Vj- is gotten by energy conservation from 
the separation, s, of the center of mass of the two stars at a time 
t after the lower mass one has passed by or through the more 
massive one and from the relative velocity, Vs, of the two stars 
at this separation. Here 

Vj = Vj - 2G(Mls
s+ Mls), (4.5) 

where Mls and M2s are the masses of the two stars at time t. 
If Vj is positive, the two stars remain unbound and have 

terminal velocity Vf at infinity. If Vj is negative, the stars have 

become gravitationally bound, so they must eventually either 
coalesce into one star or form a binary. To distinguish these 
bound cases, we have let Vf = — [abs (F^)]1/2 for them in 
Table 1. If no asterisk occurs in column (5) of the table, we 
followed these bound objects to final coalescence. An asterisk 
means that we could not follow the long-period binary to 
either final coalescence or the circularization of the binary 
orbit. 

The last column of Table 1 gives the dissipation velocity, Vd, 
which parameterizes the kinetic energy lost in the first collision 
(if there are several) between the two stars. An approach veloc- 
ity, Vd, at infinity would give the two stars a kinetic energy in 
their center of mass coordinates equal to that lost in the colli- 
sion. This velocity is determined from F, the approach velocity 
at infinity, and from Vf, the postencounter velocity at infinity 
by the equation 

vj = (V2 - Vj) = V2 , 2G(Mls + M2s) 
K? + - (4.6) 

Figure 5 shows Vd, the effective loss of velocity due to energy 
dissipation in the first collision between the stars, plotted as a 
function of the projected closest approach distance, Rmin. We 
note that Vd varies smoothly from encounters at Rmin > 
(#! + R2), where all energy dissipation is tidal to physical 
collisions at zero impact parameter, where energy dissipation is 
due both to ram heating and to the production of oscillations 
in the larger star. There is no change in the slope of Vd versus 
Rmin at Rmin = (Æi + R2% which implies that energy dissipation 
in grazing physical collisions is still largely tidal 
(gravitationally induced oscillations) rather than due to shock 
heating. The mass of a star is highly concentrated toward its 
center, so as the intruder penetrates deeper into the more 
massive star it can tidally disturb regions closer to its center 
which contain most of its mass. 

is at a maximum if the intruder passes through the center 
of the more massive star. If the impact velocity, V, of the 

Fig. 5.—The maximum (dissipation) velocity at infinity at which the two 
stars become gravitationally bound plotted as a function of the projected 
closest-approach distance for various impact velocities of the intruder at infin- 
ity. One star has 0.2 the mass of the MS star. In some encounters the low-mass 
intruder is another MS star while in others it is a point-mass object (e.g., a 
white dwarf). The results for the collisions with the point-mass intruder are 
joined with a line to identify them. The other points correspond to collisions 
between two MS stars. 
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intruder is just enough to allow it to pass through the center of 
the more massive star and come out its other side, we find that 
Vd is nearly 1.6Fesc (which corresponds to 1000 km s_1 if 
and Ri have solar values); i.e., for two MS stars to become 
gravitational bound after a collision at zero impact parameter 
requires that V < 1.6Fesc. Vd drops to ~0.25Fesc (150 km s-1) 
for grazing physical collisions. In the tidal-capture regime we 
find that Vd drops to 0.02J^sc (10 km s_1) for Rmin = l.S(R1 
+ R2). However, numerical errors result in a small variation of 

the total energy of the system, AE. Assuming that all the error 
goes into kinetic energy, we can estimate the uncertainty on the 
velocity to be AVj = 2AE/fi where /x is the reduced mass of the 
system. Typical numbers obtained for AE lead to an uncer- 
tainty in the dissipation velocity of the order of 10 km s~1. This 
number although negligible for close encounters is nevertheless 
too large to allow for an accurate determination of the critical 
capture radius. We shall later show in this paper that it is likely 
that Vd drops to 10 km s-1 at (R1 + R2) = 2.0. We note from 
the figure that the results are not very sensitive to F, the preen- 
counter velocity of the intruder, if F < J^sc. If the intruder 
penetrates the more massive star and comes out its other side, 
the energy dissipated is largely independent of the preencoun- 
ter velocity if F < Fesc. 

If all the kinetic energy available in an encounter went to 
reduce the gravitational self-binding energy of both stars, they 
would be destroyed if F/Fesc > 1.7, which corresponds to 
F > 1040 km s"1 for = M0. If the kinetic energy only 
reduced the binding energy of the more massive star, it would 
be destroyed if F/J^sc > 1.6 (F > 970 km s_1). However, the 
lowest impact velocity at which we observed the stars to be 
destroyed was at F/Fesc « 5 (F = 3000 km s-1). The kinetic 
energy available in this collision is almost an order of magni- 
tude greater than the minimum needed for disruption of both 
stars. That the destruction of both stars only occurs at such 
high velocities show the poor dynamical coupling between 
them due to their large differences in density and radius. 

It is interesting that the maximum velocity Vd at which the 
two MS stars can still coalesce in a head-on collision is only 
slightly less than the critical velocity at which the kinetic 
energy available in the encounter becomes comparable to the 
gravitational self-binding energy of the more massive star. This 
may be no coincidence but may be due to much of the energy 
dissipation even at zero impact parameter being in oscillations 
set up in the massive star. The energy fed into these oscillations 
cannot exceed the binding energy of the star, so the energy loss 
due to tidal dissipation must saturate before the available 
kinetic energy became comparable to the gravitational binding 
energy. As we noted earlier, the most massive star becomes 
very highly elongated in collisions at high velocities near zero 
impact parameter, so the amplitudes of the oscillations cannot 
be much larger. For F > Vesc9 the massive, low-density star is 
much larger after the collision, which indicates that the energy 
fed into it is a large fraction of its initial binding energy. 

4.2.1. Point-Mass Intruder 

To study the relative contribution of ram dissipation and 
gravitationally induced perturbations (tidal dissipation) in 
reducing the kinetic energy, we simulated several encounters in 
which the intruder is a point object with 0.2 the mass of the MS 
star. Table 2 shows the values of Vd found in these simulations. 
In the table, Rmin is given both in units of (Rx + R2) = 
1.2532#!, the sum of the radii of the two main-sequence stars 
and in units of R^ We plot the results in Figure 5. 

TABLE 2 
Main-Sequence versus Point-Mass 

Encounters: Masses 5/1 

^ Ämin 'd 
(kms-1) (Ä! +-R2) O^i) (kms-1) 

0   0.6 0.75 332.6 
0  0.8 1.0 216.8 
0  1.2 1.5 100.3 
0   1.6 2.0 35.3 
0  2.0 2.5 10.0 

600   0.0 0.0 637.6 
1200   0.0 0.0 467.2 
1971.2   0.0 0.0 327.3 
2980   0 0.0 237.6 

Tables 1 and 2 and Figure 5 show that Vd is nearly the same 
in encounters with either a pointlike intruder or a MS star of 
the same mass if RmiJ(Ri 4- R2) > 0.6. This indicates both that 
energy dissipation in these more distant encounters is due to 
tidal dissipation, gravitationally induced oscillations, and not 
to ram pressure and that nearly all the dissipation occurs in the 
larger star. Tidal dissipation is negligible in the denser, lower 
mass star. We note that for the point-mass intruder Vd drops to 
10 km s"1 at Rmin/(#i + #2) = 2.0, which is much closer to 
that expected from extrapolating Vd from its value at smaller 
values of Rmin than is the value Rmin/(Ri + R2) =1.8 found for 
the two MS stars. We believe that the value of 2.0 found with 
the point-mass intruder is the more likely than 1.8. More evi- 
dence to support this point will be given later in this paper. 

Unlike the case for grazing collisions, there is a difference in 
Vd between MS and point-mass intruders for Rmin = 0. The 
minimum Vd for a MS star going through the center of the 
more massive star and comining out its other side is ~940 km 
s_1 (observed for F = 900 km s-1). The corresponding Vd for 
the point mass (white dwarf) is 640 km s~1 (observed for 
F = 600 km s"1), which is the lowest value of F for which we 
observed the point mass coming out the back side of the MS 
star. A point mass, e.g., a white dwarf, cannot be captured by a 
MS star if its impact velocity exceeds 640 km s- L 

Point-mass intruders with Rmin = 0 remained inside the MS 
star and eventually settled to its center for F = 0 and 300 km 
s-1. For F < Fesc æ 600 km s“1, the point-mass intruder ac- 
cretes a substantial amount of mass in its passage through the 
MS star. The presence of this atmosphere around the point 
mass greatly increases the dissipation as the intruder moves 
through the more massive star. For F > 600 km s-1, the ac- 
creted mass becomes negligible and the additional ram dissi- 
pation vanishes, so the only remaining dissipation is due to 
gravitationally induced oscillations. 

The difference between the energy dissipation at a given F 
for the point mass and the finite-size star is purely due to the 
added dissipation due to ram pressure for the stellar intruder. 
Figure 6 shows Vd plotted as a function of F for both the MS 
and point-mass intruders for collisions at zero impact param- 
eter. For the MS star intruder, there is a nearly linear increase 
in Vd with F due to ram heating. The data in Figure 6 are well 
fitted by the following relationship 

Fd = 0.61 F + 390 km s "1 . (4.7) 

For the point-mass intruder, there is no ram heating for 
impact velocities F > Fesc, so the dissipation is purely due to 
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Fig. 6.—Dissipation velocities at zero impact parameter as function of 

initial impact velocity at infinity. The upper curve is for a collision between two 
MS stars differing in mass by a factor of 5 and lower curve is between a 
point-mass object having a mass 0.2 that of the MS star. 

gravitationally induced oscillations. This energy dissipation 
decreases with increasing velocity. This is not surprising. The 
point mass traverses the same path independently of V. The 
length of time it spends traversing the path, e.g., the amount of 
time it spends inside the MS star, is inversely proportional to V 
ifV> Fesc, so the gravitational perturbations and the energy 
dissipated decrease as V increases. The fitting equation 

t'' = 640k”S"(6ÖÖ^)"°“ (4'8) 

gives the relationship between Vd and V for a point mass going 
through the center of the more massive object. We note that 
the two curves in Figure 7 converge near Vd æ Vesc = 600 km 
s-1 at F æ 500 kms-1. 

4.3. Coalescence 
At low pre-encounter impact velocities, F, the two colliding 

main-sequence stars eventually coalescence into one if the radii 

Fig. 7.—The maximum value of the projected closest approach distance at 
which an encounter would lead to the formation of a single coalesced star. This 
is plotted as a function of the velocity at infinity given in units of the escape 
velocity when the two objects are in physical contact. 

of the two stars overlap at closest approach. As F increases, 
there is a decrease in the maximum closest approach, JRfUSion, 
for which coalescence can occur. ÆfUsion for a given F is the 
value of Æmin given in Figure 6 at which Vd= V. We show the 
resulting dependence of Rmin on F in Figure 7. The figure also 
shows ^fUSion f°r collisions between equal-mass stars as gotten 
from Figure 5 of Benz & Hills (1987). The values of Rfusion from 
Benz & Hills (1987) are not as accurate as those determined in 
the current paper. In the earlier paper we used only 500 par- 
ticles per star and found Æfusion by taking the average of the 
minimum value of Rmin, where two stars were observed to 
remain after the encounter and maximum value of Rmin where 
fusion into one object was observed. 

Our two colliding main-sequence stars do not coalesce even 
in a zero-impact-parameter collision, if F/Fesc > 1.6. Colgate 
(1967) first predicted that at a sufficiently large velocity a low- 
mass MS star can pass through a more massive one without 
coalescence. An analytic estimate by Sanders (1970) predicted, 
for the ratio of MS masses used in our simulations, that 
coalescence does not occur if F/Fesc > 3 or about twice the F 
found by our full three-dimensional hydrodynamic calcu- 
lations. Some of this difference may be due to our using a 
polytrope of index n = 1.5 while Sanders used n = 3, which is 
more centrally condensed. The principal deficiency of the 
analytic model may be its failure to allow for the compression 
of the low-mass star as it passes through the more massive one. 
The compression reduces the effective radius and cross section 
of the low-mass star as it passes through the denser parts of the 
more massive star. 

The data in Figure 7 shows that Kfusion, the minimum value 
of Rmin needed for coalescence of our two unequal-mass MS 
stars, is related remarkably well to the impact velocity by the 
linear equation, 

D •^fusion 
Ri + R2 

= 0.984 - 0.598 (4.9) 

For F/Fesc < 1.4, Äfusion for collisions between equal-mass 
stars is within 20% of the value given by equation (4.9), so this 
equation may predict Rfusion as a function of F to this level of 
accuracy for all MS stars. The differences in RfUSi0n between the 
two curves shown in Figure 7 may primarily be due to RfUsion 
being less well determined for the equal-mass stars. That R{uSi0n 
for equal-mass stars falls off more slowly for F/Fesc > 1.4 is due 
to jetting in the strong shocks in near head-on collisions. The 
shocks are much stronger for equal-mass stars because their 
equal densities do not allow one star to penetrate the other. 
The jet velocities can be considerably larger than the impact 
velocity at infinity, so the unjetted material in the stars may 
lose enough energy to remain gravitationally bound. As Figure 
11 of Benz & Hills (1987) shows, the cross section for mass loss 
in collisions between equal-mass MS stars exceeds that for 
coalescence if F/Fesc > 1.6. If F/Fesc > 1.6, or F > 1000 km 
s-1, collisions between equal-mass MS stars tend to produce a 
breakdown of the stars into gas rather than their coalescence 
into more massive objects. 

In summary, it appears that in collisions between two lower 
MS stars, irrespective of their relative masses, coalescence 
is not important for F/Fesc > 1.6, but the stars tend to be 
broken apart. In particular, we do not expect the classical 
diffusion cusps around massive black holes in galactic nuclei to 
have many stars with mean orbital velocities greater than 
2-1/2(1.6Fesc) = LlFesc = 700 km s"1. Any stars with much 
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higher orbital velocities found orbiting these black holes are 
likely to be the product of exchange collisions between the 
black hole and binary stars (Hills 1988). 

We have not simulated enough encounters between point- 
mass objects and MS stars to produce a plot for such encoun- 
ters corresponding to Figure 7. However, we see in Figure 5 
that Vd for these collisions is the same as for collisions between 
two MS stars if Rmin > (Xó^ + R2) = 0.75#!. At Rmin = 
0.75^!, Vd = 350 km s-1, and then it goes up to its maximum 
of = 640 km s~1 at Rmin = 0. These results show that Rfllsion 

and the corresponding cross sections for coalescence in colli- 
sions between a point-mass intruder and a MS star is the same 
as between two MS stars if F < 350 km s-1 and then drops to 
zero for V = 640 km s_1. In globular clusters and most galac- 
tic nuclei V is low enough that the coalescence cross sections 
are identical. 

The impact parameter, pc corresponding to the critical 
closest approach distance, Riusion = Rmin, can be gotten from 
equation (4.2). The corresponding coalescence cross section, a, 
is then 

^0 
TtPc ^-^fusion \ 

<T0 ^(Ri + R2)2 \ ^fusion/ 

^fusion T , (Rl + ^Y^escV 
(R, + R2)2 L V fusion AVj 

(4.10) 

This equation gives the cross section in units of the geometric 
cross section, <t0 = ^(Ri + R2)2. 

In the limit where the stellar velocity dispersion is much less 
than the escape velocity from the surface of the colliding stars 
(which is the case for collisions among MS stars in globular 
clusters and is a good approximation for the stars in the Galac- 
tic center), equation (4.10) reduces to 

^L = ( ^fusion Y ^escY 
<7o Ul + RlA v ) 

(4.11) 

This limit is appropriate for collisions among MS stars in 
globular clusters and is a good approximation for collisions 
among stars in galactic nuclei. We note that the cross section is 
proportional to RfUsion instead of to RfUSion. This is a property 
of collisions in the limit where gravitational focusing domi- 
nates (Hills & Day 1976). In this limit RfUSion = (Rx + R2), so 
the coalescence cross section becomes 

i V ^ 2/ esc ac = Jt(Ki + R2) 

The number of collisions per unit volume and time is 

dn 
dt 

«1^2 r, 

(4.12) 

(4.13) 

where n1 and n2 are the space densities of the two species of 
colliding stars. The rate coefficient for collisions among them 
in the limit where V Fesc and Rfusion = Ri + R2 (Benz & 
Hills 1987) is given by 

T = <<7, F> = niR, + R2y 3\1/2 
( VL 
\<F2>1/2 (4.14) 

if their velocity dispersions are independent of their mass. Here 
<F2) is the mean-squared velocity dispersion in the system. 
This equation must be integrated over the volume of the 
system to find the total collisions per unit time. 

4.4. Tidal Dissipation and Tidal Binaries 
Fabian, Pringle, & Rees (1975) first noted the potential 

importance of tidally captured binaries in globular clusters. 
Press & Teukolsky (1977) and more recently Lee & Ostriker 
(1986) made analytic estimates of the effectiveness of the tidal 
capture mechanism by assuming linear perturbations. 

In a globular cluster, where the impact velocity is typically 
10-15 km s-1, Figure 5 shows that tidal captures do not occur 
if Rmin/(Ri + R2) > 2.0 for cases where the intruder (either 
point-mass or MS star) has 0.2 the mass of the target MS star. 
In those stellar systems where the escape velocity, Fesc, of the 
two stars at separation Rmin is much greater than the velocity 
dispersion, such as in globular clusters, gravitational focusing 
is important and the cross section for producing a closest 
approach with separation Rmin or less is proportional to Rmin 

(eq. [4.11]; Hills & Day 1976; Benz & Hills 1987) instead of to 
R2

in, as in billiard-ball collisions. In globular clusters coales- 
cence of the two stars into one occurs if RmiJ(R1 + R2) < 1, so 
tidal capture only occurs for these stars if Rmin/(Ri + R2) lies 
between 1 and 2. Here the cross section for forming a binary by 
tidal capture is no larger than that for physical coalescence. As 
the impact velocity V increases, there is a decrease in the cross 
section for forming a tidal binary. For F > 0.25 Fesc = 150 km 
s"1, the tidal dissipation is not large enough to allow tidal 
capture of MS stars. The velocity dispersion is higher than this 
in the Galactic bulge and in galactic nuclei, so colliding stars in 
these systems can coalesce or disrupt but not form tidal 
binaries. 

4.4.1. Point-Mass Intruder 

We found earlier that ram dissipation is not important in 
grazing collisions and that nearly all tidal dissipation in these 
collisions occurs in the more massive of the two MS stars. This 
result suggests that we can replace the less massive MS star by 
a point mass in studying tidal dissipation in grazing and fly-by 
encounters. We simulated several encounters in which the 
intruder is a point object with a mass M2 = 0.2, 0.5, and 1 
times the mass, Mx of the target star. Table 2 gives the results 
for intruder mass 0.2Mi while Table 3 gives them for the more 
massive intruders. In Table 3, Rmin is given in units of Rx, the 
radius of the target main-sequence star. 

We find from the data in Tables 2 and 3 that the tidal 
dissipation velocity, Vd for a given closest approach distance 
Rmin is directly proportional to the mass, M2 of the intruder. 
This dependence is evident in Figure 8 where we plot 
logxo [Id(Afi/M2)] as a function of Rmin. The plot is nearly a 
straight line. The spurious point in the figure is the one for 
M2 = 0.2Mx and Rmin/(Ri + Ri) = 1-8, which we noted earlier 

TABLE 3 
Main-Sequence versus Point-Mass 

Encounters 

v Rmin K 
Mi/M2 (km s x) (Rj) (km s x) 

2  0.0 1.63 163.0 
2  0.0 1.96 91.3 
2  0.0 2.28 44.6 
2  0.0 2.60 21.2 
1  0.0 2.0 148.5 
1  0.0 2.4 68.3 
1  0.0 2.8 28.6 
1  0.0 3.2 23.2 
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Fig. 8.—The log10 of the dissipation velocities for tidal capture of binaries 
in nonphysical collisions. 

to be too low due to numerical errors. From this figure we find 
that in a tidal encounter between a MS star of mass M1 and 
radius R1 and a compact object of mass M2, 1^ is related to 
Rmin by the equation 

. (4.15) 

The term in the first square brackets is nearly unity for MS 
stars. The approximations made in the analytic models suggest 
that Vd oc R~il, which our full three-dimensional simulation 
shows to be only approximately true. The exponential given in 
equation (4.15) is clearly a better fit to the data than the analy- 
tic power law. In globular clusters, tidal capture occurs if 1^ < 
10 km s-1, which requires by equation (4.15) that the closest 
approach distance be given by 

Emin < EüM = 3.28 + 0.45 In ( — ) + 0.22 In 
Ri Ri \Mj 

(4.16) 

The right-hand side of this equation is fairly insensitive to 
the functional parameters since all of them appear inside the 
two In terms, so the capture radius is quite sharply defined. For 
a point mass (e.g., white dwarf) encountering a MS star of the 
same mass, the tidal capture radius is Rtid¡íi = 3.281^, so the 
probability of forming a tidal binary is about twice that the 
physical coalescence. If two MS stars of equal mass and radius 
encounter each other, the energy dissipated should be twice 
that given by an encounter between a point mass and a MS 
star. In this case, Vd is 2

1/2 times larger than that for a point- 
mass intruder. Equation (4.15) can be modified to give Vd for 
this case by replacing 1520 km s_ 1 by 2150 km s_ 1. To modify 
equation (4.16) for this case requires that the factor 3.28 be 
replaced by 3.44; e.g., for encounters between two equal- 
mass MS stars, the tidal capture radius is Ætidal = 3.441^ = 
1.72 (R1 + R2) if equal tidal dissipation occurs in each star 
instead of Rtidal = 32SR1 if the tidal dissipation occurs in only 
one object. Ætidal increases only 5% if the dissipation doubles. 
Equation (4.16) should well define the capture radius for lower 

MS stars. If the two interacting lower MS stars differ even 
slightly in mass, they differ by a much larger factor in density 
which results in most of the dissipation occurring in the larger, 
more massive, lower density star of radius R1? so equation 
(4.16) is applicable. 

The value of Ätidal = 3.44^ = 1.72(1^! + R2) for the tidal 
capture radius of two MS stars of equal mass and radius is 
smaller than that estimated from analytic work, although the 
analytic estimates of Rtid¡ll have been steadily decreasing with 
time. Because two equally massive MS stars will coalesce into 
one object if Rmin < (Ri + R2) (Benz & Hills 1987), the prob- 
ability that such stars form a binary by tidal capture is only 
72% the probability of their coalescence into one star (as the 
cross section is proportional to Rmin in the limit where gravita- 
tional focusing dominates, as eq. [4.11] shows). The conditions 
are a little more favorable for binary capture if the stars are of 
unequal mass. If they differ by a factor of 5 in mass, we saw 
earlier that Ætidal = 2.561*! = 2.05(1*! + R2). Here, the prob- 
abilities of coalescence and tidal capture are comparable. 

After the binary orbits circularize, conservation of orbital 
angular momentum results in their semimajor axes being ab « 
2Rmin = 2-4(l*i + 1*2) if we ignore the spin angular momenta 
of the two star. We saw that about one tidal binary forms for 
every coalesced stars. The stars in a tidal binary have much 
longer nuclear-burning lifetimes than a coalesced star with 
their combined mass, so a binary tends to live longer after its 
formation than a coalesced star of the same mass. The ratio of 
the number of coalesced stars (a subset of the blue stragglers 
when the coalesced mass exceeds the mass of the stars at the 
turnoff point) to the number of tidally captured binaries may 
be used to place constraints on the maximum space densities of 
stars reached during the “collapse” phase of “postcollapse” 
globular clusters and the time that has elapsed since the 
“ collapsed ” state. 

4.5. Mass Loss 
Table 1 and Figure 9 show the fraction of mass lost from the 

two-body system as a function of impact velocity in zero- 
impact-parameter encounters. For F/Fesc > 1, the mass loss 
increases nearly exponentially from ~2% to total breakup of 
both stars at F ä 5Fesc = 3000 km s~ L 

Fig. 9.—The fraction of the mass lost from the system as function of impact 
velocity at zero impact parameter. The velocity is given in units of the escape 
velocity of the objects when they are in physical contact. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



HYDRODYNAMICAL SIMULATIONS OF COLLIDING STARS 557 

PQ UD 
LO 

: No. 2, 1992 
00 

Fig. 10.—The fraction of the mass lost from the system at a function of the 
projected closest approach distance for various values of the impact velocity. 
The projected closest approach distance is given in units of the radii of the two 
stars while the velocities are given in units of the escape velocity at physical 
contact of the two stars. 

Figure 10 shows the fraction of mass lost from the two-star 
system plotted as a function of Rmin/(Ri + R2) for the various 
values of the impact velocity V. For equal-mass stars (Benz & 
Hills 1987), the mass loss for V Fesc is at a maximum for 
grazing collisions due to the gravitational torquing of each star 
by the other and to the large amount of angular momentum in 
the coalesced objects. This mechanism is not important in col- 
lisions between our unequal-mass stars. For collisions between 
these stars, jetting in oblique shocks is responsible for the mass 
loss. These shocks tend to be very weak in grazing collisions. 

We may use the procedure given in Paper I to compute the 
mass-loss cross sections from the data given in Figure 10. The 
results are given in Table 4. The mass-loss cross section <tml is 
given in units of the geometric cross section, a0 = 71(1^ + R2)2> 
in column (2) and in terms of the coalescence cross section, 
^fusion* in column (4). The mass-loss cross section is defined 
such that the rate of mass loss per unit volume due to collisions 
between two species of MS stars of mass Mi and M2 with 

TABLE 4 
Mass-Loss and Coalescence Cross Sections 

^ _ ^ML ^fusion ^ML 
(km S_1) (<70) (i70) (^fusion) 

-0  0.016(Kesc/F)2 WKJV)2 0.0161 
300  0.0625 3.165 0.0198 
600  0.0331 0.529 0.0626 
900  0.0309 0.055 0.562 

space densities n1 and n2 is given by the equation 

+ M2)n1n2<crML F> . (4.17) 

4.5. Kick Velocity of Coalesced Object 
The asymmetric jetting of ejected material in the collision of 

the two stars acts as a rocket that propels the coalesced star 
away from the center of mass of the original two-body system. 
This kick velocity is primarily of concern in globular clusters, 
which have low escape velocities. We find for the case where 
the impact velocity F = 0 at infinity that the kick velocity is 4.4 
km s-1 and 4.7 km s-1 for Rmin/(Ri + R2) = 0.25 and 0.50, 
respectively. 

A kick velocity of = 4.5 km s-1, is not large enough to 
eject the coalesced star from the core of a globular cluster, but 
it significantly reduces the dynamical “ cooling ” that otherwise 
occurs when two stars coalesce into one. The relative velocity 
at infinity in a globular cluster is typically V — 10-15 km s-1. 
The kinetic energy associated with this velocity, Ec = 0.5 
[(M1M2)/(M1 + M2)]F

2, would be lost to the globular cluster 
in the coalescence of these two stars. The kick velocity intro- 
duces a kinetic energy to the cluster of Ek = 0.5 (Mi + MJF*. 
For M2 = 0.2Mî9 F = 12 km s-1 and Vk = 4.5 km = Ec, 
so the coalescence of the stars produces no net dynamical 
cooling in the cluster. Coalescence does not seem capable of 
significantly accelerating the collapse of the core of a stellar 
cluster. 
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