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ABSTRACT 
The properties of the ~6 Hz quasi-periodic X-ray intensity oscillations observed in the low-mass X-ray 

binary Cyg X-2 when it is on the normal spectral branch are shown to be consistent with a model in which 
photons from a central source with a fixed spectrum are Comptonized by an oscillating radial inflow. As the 
electron scattering optical depth of the flow varies, the spectrum of the escaping X-rays appears to rotate 
about a pivot energy Ep that depends mainly on the electron temperature in the flow. The temperature 
derived from the observed energy dependence of the Cyg X-2 normal branch oscillations is approximately 1 
keV, in good agreement with the estimated Compton temperature of its X-ray spectrum. The mean optical 
depth T of the Comptonizing flow is inferred to be about 10, while the change in t over an oscillation is 
estimated to be about 1; both values are in good agreement with radiation hydrodcode simulations of the 
radial flow. The effect of induced scattering is investigated and used to place an approximate lower bound on 
the volume of the Comptonizing region. We conjecture that the 6 Hz normal branch oscillations observed in 
other Z-class sources are also produced largely by oscillations in the degree of Comptonization of a central 
source. 
Subject headings: accretion, accretion disks — radiation mechanisms: Compton and inverse Compton — 

stars : neutron — X-rays : stars 

1. introduction 

The X-ray intensities of many of the most luminous low- 
mass X-ray binaries, including Cyg X-2, Seo X-l, and GX 5-1, 
have been observed to vary quasi-periodically (for reviews of 
the observations, see Lewin, van Paradijs, & van der Klis 1988 
or van der Klis 1989). These quasi-periodic oscillations (QPOs) 
are observed as peaks in power density spectra of the intensity 
time series. 

The properties of the QPOs observed in the so-called Z-class 
low-mass X-ray binaries (LMXBs) depend on the spectral state 
of the source. When a harder X-ray color (for example, the 
count rate of photons with energies between 6 keV and 20 keV 
divided by the count rate between 3 and 6 keV) is plotted 
against a softer color (for example, the 3-6 keV count rate 
divided by the 1-3 keV count rate), these sources trace out all 
or part of a t6Z”-shaped curve (see Hasinger & van der Klis 
1989). Oscillations with frequencies in the range 20-50 Hz are 
observed when sources are on the upper branch of the Z, which 
is called the horizontal branch. The power of these horizontal 
branch oscillations (HBOs) declines as a source moves from the 
horizontal branch to the middle branch of the Z, which is 
called the normal branch. Oscillations of a different type, with 
frequencies ~5-7 Hz, appear when a source reaches the 
middle of the normal branch. The peak in the power spectrum 
associated with these normal branch oscillations (NBOs) 
broadens and shifts upward slightly in frequency as the source 
reaches the lower corner of the Z and begins to move up the 
flaring branch. 

The Z-class LMXBs are thought to be binary systems in 
which a weakly magnetic neutron star accretes gas from a 
Keplerian disk fed by its low-mass companion. The HBOs are 
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widely thought to be caused by interaction of the small 
magnetosphere of the neutron star with inhomogeneities in the 
inner part of the accretion disk (Alpar & Shaham 1985; Lamb 
et al. 1985; Shibazaki & Lamb 1987). 

Recently, a radiation-hydrodynamic model of the NBOs has 
been proposed (Lamb 1989, 1991; Fortner, Lamb, & Miller 
1989, 1991) as part of a unified model of the X-ray spectra and 
rapid variability of the low-mass X-ray binaries (Lamb 1989, 
1991). In this model, the X-ray-emitting region has two or 
three important components, depending on the luminosity. 
The first is the central photon source, which includes the 
neutron star, its small magnetosphere, and the innnermost part 
of the accretion disk. The second component is a relatively hot 
(Te ~ 10-30 keV) and optically-thick compact central corona 
that envelopes the innermost disk and the magnetosphere. 
When the luminosity of the system is close to the Eddington 
critical luminosity LE, plasma leaving the inner accretion disk 
forms the third component, an approximately radial inflow 
extending from an outer radius r0 « 300 km to the compact 
central corona at rc ä 20 km. 

In the radiation-hydrodynamic model, NBOs are produced 
by oscillations in the optical depth of the radial inflow. Because 
the luminosity is close to LE, radiation forces strongly influence 
the flow. To see how oscilations in the flow arise, consider as a 
simple example the response of the radial flow to a small 
increase in the density near its outer boundary. As the density 
enhancement is advected inward, its interaction with the X-ray 
flux near the inner boundary of the radial flow increases the 
outward flux of radiation. This increase in the radiation flux in 
turn increases the outward radiation force on plasma entering 
the radial flow, impeding its entry and producing a new density 
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enhancement near the flow’s outer boundary. In this way the 
interaction between the radiation and the flow produces quasi- 
periodic oscillations in the flow, with a period comparable to 
the inflow time from the outer edge of the radial flow. As the 
density in the radial flow oscillates, so does its optical depth. 
This causes the degree of Comptonization of the radiation 
coming from the compact central corona to oscillate, produc- 
ing a quasi-periodic oscillation in the observed X-ray spec- 
trum. 

In this paper we investigate in detail the possibility that the 
NBOs are due largely to quasi-periodic oscillations in the 
degree of Comptonization suffered by X-rays coming from a 
central source. We describe the Comptonization model that we 
use, its solution, and the resulting oscillation amplitude as a 
function of X-ray energy in § 2. We discuss the change in the 
spectrum of the escaping X-rays produced by electron thermal 
motions, by the convergence of the flow, and by induced scat- 
tering, when the electron-scattering optical depth of the radial 
flow varies. We show that the relative oscillation amplitude at 
sufficiently high and low photon energies can be described 
approximately by simple analytic expressions. In § 3 we sys- 
tematically explore the sensitivity of the relative oscillation 
amplitude to the shape of the spectrum injected into the radial 
flow by the central corona and the properties of the flow. In 
§ 4, we show how the relative oscillation amplitude can be used 
to determine the properties of the Comptonizing flow. The 
relative oscillation amplitude predicted by our model is in 
excellent agreement with the X-ray spectrum and relative oscil- 
lation amplitude observed in Cyg X-2. Our results and conclu- 
sions are summarized in § 5. 

2. EFFECTS OF COMPTONIZATION 

The analysis of oscillations of the X-ray spectrum produced 
by the interaction of the outflowing radiation with the oscil- 
lating radial inflow is simplified by the fact that absorption of 
photons by the flow is negligible. Thus, the dominant process 
modifying the spectrum of the X-rays escaping through the 
flow is Comptonization. Moreover, the mean time taken by a 
photon to escape from the flow is short compared to the inflow 
time, which is also the characteristic time scale for changes in 
the electron scattering optical depth of the flow. Hence, the 
X-ray spectrum emerging from the radial flow at a given 
instant can be calculated by considering only the properties of 
the flow at that time, and the variation of the X-ray spectrum 
with time during a quasi-periodic flow oscillation can be deter- 
mined by computing the spectrum produced by the radial flow 
at successive instants during the oscillation. 

Photons leaving the compact central corona enter the radial 
flow and scatter from the electrons there many times before 
escaping. The positive and negative Doppler shifts associated 
with the thermal motions of the electrons cause the photons to 
diffuse in energy. In addition, photons systematically lose 
energy due to the recoil of stricken electrons and gain energy 
from the thermal motions of the electrons. Including only these 
effects is adequate when a dilute photon gas interacts with a 
warm, static plasma. However, in the situation of interest here 
the inflow is converging and the photon density is high, and 
hence two other effects must be included in our treatment of 
the the Comptonization process. 

First, the converging flow does work on the photon gas by 
compressing it. Hence, superposed on the other photon energy 
changes is a systematic upscattering proportional to the 
product of the compression rate and the mean time between 

collisions (Blandford & Payne 1981). Second, when the photon 
density is so high that the occupation number of photon states 
is >1, Bose statistics appreciably influence the outcomes of 
individual scattering events, causing the photons to bunch in 
the same quantum states. Although this effect is included in 
most derivations of the photon kinetic equation (see Rybicki & 
Lightman 1979; Katz 1987, p. 100), it is usually neglected in 
astrophysical applications. This considerably simplifies the cal- 
culation of Comptonized spectra, since the kinetic equation is 
then linear and hence amenable to solution by any of several 
methods, such as Green functions (see Sunyaev & Titarchuk 
1980; Colpi 1988). In many cases the photon density is suffi- 
ciently low that this approximation is justified. However, in the 
model considered here, the X-ray source is extremely luminous 
and the Comptonization volume comparatively small. As a 
result, the photon density may be high enough for induced 
scattering to affect the spectrum. We therefore include the 
effects of induced scattering in our study. 

2.1. Comptonization Model 
In calculating the spectrum of the X-rays emerging from the 

radial flow at a given instant, we make several simplifying 
approximations. We model the flow by an infinite medium in 
which the electron and photon densities and energy distribu- 
tions are uniform. The geometry of the radial flow and its. finite 
spatial extent are incorporated into the model by specifying the 
distribution of photon escape times, which fixes the distribu- 
tion of photon residence times in the Comptonizing region, 
and the density of the background photons, which is larger for 
smaller regions with the same photon injection rate and mean 
escape time. The effect of the radial flow’s convergence is 
treated by including an appropriate term in the photon kinetic 
equation. This term is proportional to the compression rate of 
the flow (—V • v, where v is the flow velocity) divided by the 
electron density. For simplicity, we assume that this ratio is 
independent of position, so that the effects of compression are 
the same everywhere. 

With these assumptions, the probability fcsc(E)dE that a 
photon escaping from the Comptonizing region has energy 
between E and E + dE is given by the distribution 

fcJE) = ^f(E, t) ^ (t)dt, (2.1) 

where /(£, t) is the distribution in energy of photons that have 
been in the Comptonizing flow for a time t and P(t) is the 
probability that a photon injected into the flow at time i = 0 
escapes in a time t or less; dP(t)/dt is therefore the photon 
escape rate at time t. 

The distribution in energy /now(F) of all the photons present 
in the Comptonizing flow at a given time is the sum over ages 
of the distribution in energy of photons with a given age, 
weighted by the probability that a given photon has that age, 
that is, 

fnodfi)=i \f(E, m - p(tm. (2.2) 1 Jo 
Here 

t 
1 

dp 

t -7; (t)dt 
0 dt 

(2.3) 

is the mean residence time of photons in the Comptonizing 
flow. 
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We now discuss the photon escape probability P(t) and the 
time evolution of the photon distribution /(£, t). 

2.2. Photon Escape Probability 
The probability P(t) that a photon remains in the radial 

inflow for a time t or less before escaping depends on the 
structure of the flow. As a first approximation, we adopt the 
simple expression 

P(t) = (1 - e-t/tesc)2 , (2.4) 

where £esc is the escape time. This expression resembles the 
probability for diffusive escape from the center of a uniform 
spherical scattering medium and from the center of a uniform 
slab. Use of a more accurate expression for P(t) seems 
unwarranted, given our limited current understanding of the 
structure of the radial flow (see Lamb 1991 and Fortner, Lamb, 
& Miller 1989,1991) and the other approximations inherent in 
our present treatment of Comptonization in the radial flow. 

Expression (2.4) implies that no photons escape from the 
Comptonizing flow immediately, since dP/dt = 0 at £ = 0. 
When the electron scattering optical depth of the flow is much 
greater than unity, expressions with this behavior are prefer- 
able to expressions which have dP/dt #0 at £ = 0, since 
expressions of the latter type grossly overestimate the number 
of early escapes. However, when the optical depth is less than 
or of order unity, expression (2.4) underestimates the number 
of prompt escapes. A modification of expression (2.4) that 
better describes escape from regions with low optical depths is 
given in Appendix A, although this expression is not used in 
the calculations we report here. 

We determine the escape time by requiring that the late-time 
dependence of expression (2.4) agree with the late-time depen- 
dence of the exact solution to the problem of diffusive escape 
from a uniform spherical cloud (Sunyaev & Titarchuk 1980) of 
the same optical depth as the radial flow. The result is 

where 

t = (7j I ne(r) dr (2.6) 
Jrc 

is the scattering optical depth of the flow, and 
= Kccr-r)"1 (2.7) 

is the collision time in terms of the electron density ne, the 
speed of light c, and the Thomson scattering cross section <7T. 

2.3. Evolution of the Photon Energy Distribution 
Now consider a collection of photons injected into the 

Comptonizing flow at time £ = 0 with energy distribution 
fin(E). The time development of the photon energy distribution 
/(¿, t) is governed by a Kompaneets equation (see Rybicki & 
Lightman 1979; Katz 1987, p. 100), modified to include the 
upscattering produced by the converging flow (Blandford & 
Payne 1981). This equation may be written 

(2.8) 
where 

tcdj(E,t) = Din, 

+ 4^§W+-^/ 
mec

¿J mec 

+ ^§3£(E2/) + s/flow/|. (2.9) 

Equation (2.8) is a continuity equation in energy space; the 
terms within the brackets in the definition (2.9) of the operator 
D constitute the normalized photon number flux from higher 
to lower energies. The appropriate boundary conditions on 
this flux are that it vanish as F -► 0 and as F -» oo. The system- 
atic upscattering produced by the converging flow is described 
by the term —(tc/tu)E f where 

£M = 3(V • v) ~1 . (2.10) 

Induced scattering is described by the term s/flow/, where 

Ninï 2 (he)3 

V c 
(2.11) 

in terms of the rate iVin at which photons of all energies are 
injected into the Comptonizing region and the effective volume 
V of the region. 

If, as in the radial flow, the specific heat of the electrons in 
the Comptonizing region is small compared to that of the 
photons and heating and cooling of the electrons by mecha- 
nisms other than Comptonization is negligible (Lamb 1989, 
1991), the electron temperature Te is rapidly driven to the 
Compton temperature 

P [£2/n„w(£) + mec
2sfl^(E)\dE 

kB Tc = ^^  (2.12) 
4 j EfnoJE)dE 

and remains very close to this temperature during the flow 
oscillations. 

When Te= Tc, systematic upscattering of photons by the 
electron thermal motions and systematic downscattering due 
to electron recoil are in balance. Nevertheless, the photons 
steadily gain energy from the bulk motion of the converging 
flow, via the systematic upscattering described by the compres- 
sional term in equation (2.9). The rate at which the mean 
energy <F> = J EfdE of the photon distribution increases is 

|<£>=f<E>. (2.13) 
dt tu 

As a result of this increase, the mean energy <F)esc of the 
photons escaping from the Comptonizing flow is greater than 
the mean energy <F)in of the photons injected into it by a 
factor 

<£>esc 
<£>in 

dP 

2t It 3 £ 
= “ • - —^— ä 1 + - — . (2.14) 

tu tesc 2tu £esc 2 tu 

Here the second equality assumes that the escape probability is 
given by equation (2.4) and that £esc < tu (Le., the photons are 
not trapped by the converging flow), while the final approx- 
imation is accurate when £esc £„. 

In solving for the photon energy distribution /(F, £), the 
operator D may be treated as time-independent if the compres- 
sional upscattering time £„, photon collision time £c, electron 
temperature Te, background photon distribution /flow, and 
induced scattering parameter s vary only on time scales much 
longer than the mean time for photons to escape from the 
Comptonizing flow (which is 3£esc/2 for the escape probability 
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assumed here; see eq. [2.4]). The appropriate solution to equa- 
tion (2.8) is then 

/iE, t) - e^Dfitt , (2.15) 
where/in is the injected spectrum. 

2.4. Differential Oscillation Amplitude 
As explained earlier, photons injected from the compact 

central corona into the radial flow escape in a time much 
smaller than the time scale of variations in the flow. We can 
therefore investigate the oscillation of the X-ray spectrum pro- 
duced by the oscillations in the radial flow by solving the 
time-independent Comptonization problem for the conditions 
that obtain in the flow at successive instants during the oscil- 
lations and then comparing these solutions with one another. 

As discussed further below, the electron scattering optical 
depth t of the radial flow is expected to vary significantly 
during each oscillation quasi-period. Hence, in the following 
development we use the value of t to specify the phase of the 
oscillation. In this approach, the quantities tu, tc, Te,fnow, and 
s, which specify the conditions in the Comptonizing flow, are 
regarded as functions of t. 

The number of photons escaping from the Comptonizing 
flow per unit energy per unit time at a given phase of the 
oscillation is ÑCSC(E) = Ninfesc(E). Suppose now that as the 
scattering optical depth of the flow changes by an amount At, 
the spectrum of the photons escaping from the flow changes by 
an amount AiVesc(£). Observationally, this variation appears as 
a change in the number of photons counted by a detector in a 
given range of energies ÁE during the detector integration time 
iint, which we assume is much smaller than the quasi-period of 
the oscillation. The change in the number of photons counted 
is 

AN(E) = í a(E)AÑesc(E)tint(E)dE , (2.16) 
JAE 

where the function a(E) accounts for effects such as dilution of 
the photon flux with the inverse square of the distance and 
interstellar absorption, as well as the area and quantum effi- 
ciency of the detector. 

A related observable that is less sensitive to the com- 
plications represented by a(E) is the relative oscillation ampli- 
tude 

í a(E)AÑesc(E)tint(E)dE 
y(E) = -p , (2.17) 

a(E)0esc(E)tint(E)>dE 
JAE 

where now the angle brackets indicate an average over an 
NBO period. If AE is small enough that a(E% AiVesc(£), and 
tini(E) vary little over the range of integration, then 

y(E) « £(£)At , (2.18) 
where 

«£) = £ln[JVin/esc(E)] (2.19) 

is the differential relative oscillation amplitude. For concise- 
ness, we shall henceforth refer to Ç(E) simply as the differential 
amplitude. In equation (2.19), 

f00 dP 
/esc = Jo e^Dfn — (t)dt (2.20) 

is the energy distribution of the photons escaping from the 
Comptonizing flow (see eqs. [2.1] and [2.15]); the Compton 
time ic, photon injection spectrum /in, escape probability P(t), 
and evolution operator D generally all vary with t. 

2.5. T reatment of Photon Injection 
In general, the differential amplitude Ç(E) will have contribu- 

tions from changes in the photon flux Ñinfin(E) from the 
central corona as well as from changes in the properties of the 
Comptonizing flow. Unfortunately, however, the X-ray emis- 
sion from the neutron star, its magnetosphere, the inner part of 
the accretion disk, and the compact central corona is poorly 
understood at present, so that a convincing calculation of the 
change in Ñinfin(E) during an oscillation of the inflow is not 
currently possible. 

Given our lack of knowledge of the variation in Ñinfin(E) 
during an oscillation, we could allow it to vary arbitrarily 
during the oscillation. We would almost certainly be able to 
replicate the observed variation of the X-ray spectrum during 
the NBOs using such an approach, but the inferred variation 
would not be unique, the Comptonizing flow would be almost 
superfluous, and we would learn little or nothing of interest 
from the exercise. 

Hence, in the calculations that follow we shall assume 
instead that the relative variation in Ñinfin(E) during NBOs 
can be neglected, and see how far this approximation can take 
us toward understanding the variation in the X-ray spectrum. 
In fact, this assumption is not wholly implausible. We expect 
photons to be produced near the neutron star by processes 
such as cyclotron emission and bremsstrahlung, and then to be 
partially Comptonized by the hot electrons in the central 
corona. If the relative variations in the photon production rate, 
electron temperature, optical depth, and other properties of the 
central corona during an oscillation are comparable to the 
relative variation in the mass flux entering the central corona, 
then the relative variation in Ñinfin(E) during NBOs will 
indeed be much smaller than the relative variation in/esc(£). 

If the observed variation in the X-ray spectrum during 
NBOs can be accurately reproduced with Ñinfin(E) held con- 
stant, this will suggest that the observed variation is due largely 
to oscillations in the properties of the Comptonizing flow 
outside the central corona. If, on the other hand, the observed 
variation in the X-ray spectrum cannot be reproduced by such 
a model, the radiation-hydrodynamic model of NBOs might 
still be valid, but changes in Ñinfin(E) during the oscillations 
would have to be included. In fact, our models with Ñinfin(E) 
held constant are remarkably successful in accounting for the 
available data on the variation of the X-ray spectrum during 
NBOs, as we discuss in § 4. These data are therefore consistent 
with oscillating Comptonization by the radial flow. 

Assuming that the change in Ñinfin(E) is small during an 
oscillation, the differential amplitude may be written 

¿in[/eSc(£)] 
dt 

(2.21) 
Nin fin(E) 

where we have explicitly indicated that in taking the derivative 
with respect to t, Ñinfin(E) is to be held constant. Henceforth 
we shall assume that t(E) is given by this approximation. 

Consider now the spectrum fin(E) of the photons injected 
into the Comptonizing radial flow by the compact central 
corona. Moderate-luminosity LMXBs typically have power- 
law spectra, exponentially cut off at energies ~ 10-30 keV (see 
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White, Stella, & Parmar 1988; Schulz, Hasinger, & Triimper 
1989). In the unified model (Lamb 1989; 1991), these spectra 
are produced by unsaturated Comptonization of photons from 
the neutron star, magnetosphere, and inner disk by hot elec- 
trons in the compact central corona. Unsaturated Comp- 
tonization generates a stable power-law X-ray spectrum with a 
spectral index ~ 1-2 for a wide range of electron temperatures 
and source luminosities (Katz 1976; Shapiro, Lightman, and 
Eardley 1976). In the unified model, the spectrum produced by 
the central corona of a Z source when the source is near the 
middle of the normal branch is expected to be similar to the 
spectrum of a moderate-luminosity LMXB, except that Com- 
ptonization in the central corona may have begun to saturate. 
Also, the spectrum is expected to be cut off at low energies by 
self-absorption. 

As we show in § 3, the differential oscillation amplitude is 
relatively insensitive to the detailed shape of the spectrum pro- 
duced by the central corona. Hence, in the present work we 
shall assume that the spectrum of the photons injected into the 
Comptonizing radial flow by the central corona can be 
described adequately by a power law truncated below the low- 
energy cutoff £low and exponentially cut off at£c, that is, 

fin(E) oc0(£- Elow)E-« exp (~E/EC), (2.22) 

where 0(E) is the unit step function. We shall generally con- 
sider relatively flat power laws, with indices a ~ 1-2. 

2.6. Contributions to the Differential Amplitude 
According to the unified model, when a Z source is on the 

normal branch, its luminosity L is within 10% of the Edding- 
ton critical luminosity LE (Lamb 1989, 1991). In this situation 
it is convenient to specify the luminosity by its relative close- 
ness to Le, which is described by the small parameter e = 1 
- l/le. 

In the radiation-hydrodynamic model of the NBOs, the 
change in /esc(E) during an oscillation is due to changes in the 
escape time, upscattering time, induced scattering, and electron 
temperature as the optical depth of the radial flow oscillates. 
Simulations of nearly critical radial flows (e 1) show that 
relatively small changes in the mass accretion rate | AM | « 
eM M produce relatively large changes in the optical depth 
of the flow (see, e.g.. Fig. 2 of Fortner, Lamb, & Miller 1989). 
Typically, At/t is at least as large as Ae/e (in accordance with 
expectations formed from studies of time-independent flows; 
see Miller 1990 and Park & Miller 1991). 

In order to estimate the relative importance of the various 
effects of the Comptonizing flow in determining the oscillation 
amplitude, we now investigate the dependence of iesc/ic, tc/tu, s, 
and Te on t. 

Variation in escape time.—The integral in equation (2.20) for 
/esc(E) is cut off after a time æ iesc by the escape rate dP/dt in the 
integrand. Hence, for injection spectra that are, like the spec- 
trum (2.22), relatively flat, the change in/esc(E) produced by the 
exponential operator in equation (2.20) is ~ e(tesc/tc)D ~ ey at 
energies E <> kB Te, where y = 4(kB TJme c2){tQJtc) is the 
Compton y-parameter, and ~exp (yE/kBTe) at energies E > 
kBTe. 

The magnitude of the relative variation Aln/esc in the X-ray 
spectrum produced by the variation in the escape time over an 
oscillation period is therefore ^ | Ay | ~ y | At/t | > y | Ae/e |. 
The relative variation in the X-ray spectrum due to this effect 
alone is therefore much greater than the relative change in the 

luminosity. In fact, variation of the escape time is usually the 
dominant cause of the variation in the X-ray spectrum. 

Variation in upscattering by the converging flow.—The 
dependence of tc/tu on the optical depth t of the Comp- 
tonizing flow can be estimated in two different ways, which 
(necessarily) lead to the same result. As a first approach, recall 
that tu æ r/v, where v is the inward radial velocity. In order to 
determine the behavior of v, use the continuity equation and 
the results of radiation-hydrocode simulations of nearly critical 
radial flows (Fortner, Lamb, & Miller 1989,1991), which show 
that the radial mass flux remains nearly constant during the 
flow oscillations (the relative change in the mass flux is found 
to be < I Ae I < e). Thus, the inward radial velocity is t; « 
l/ner

2 and hence tu oc ner*. Now tc oc l/ne9 and hence we con- 
clude that tjtu oc 1/ttg r3 oc 1/t2. 

As a second approach, consider the compressional work 
done on the escaping photons by the radial inflow. This work 
is proportional to the mass flux in the radial flow, which is 
expected to be a fraction ar < 0.2 of the total mass flux 
(Fortner, Lamb, & Miller 1989, 1991), and increases the mean 
energy of the escaping photons by a factor « 1/(1 — ar). 
However, in the flow model being considered, only about half 
of this increase occurs outside the compact central corona, 
which has a radius rc « 2R, where R is the radius of the 
neutron star; the other half occurs inside the central corona. 
Thus, the work done by the flow in the Comptonizing region 
being considered here increases the mean energy of the escap- 
ing photons by a factor <E>esc/<E>in » 1/(1 — 0.5<xr) » 1 
+ 0.5ar. This increase remains approximately constant during 

the oscillations, since—as noted above—the radial mass flux 
remains nearly constant. Comparing this result with expres- 
sion (2.14), we conclude that iesc/iM » ar/3, independent of t. If 
now t > 1, equation (2.5) implies 

In writing the second equality we have assumed ar » 0.2. 
Variation in the electron temperature.—The dependence of 

the electron temperature Te on the optical depth t of the 
Comptomizing flow is more difficult to estimate than the 
dependence of the compression rate on t, since Te reflects 
changes in the energy distribution /fIow of the photons within 
the flow (see eq. [2.12]). Nevertheless, we can estimate simply 
the change in the Compton temperature Tc (and hence the 
change in Te, which closely tracks Tc) when y 1 or y > 1. 
These estimates show that the change in Tc is small in both 
these regimes. 

The Compton temperature is a functional of/flow, which 
in turn is determined largely by the value of y. From the defini- 
tion (2.12) of the Compton temperature we expect AlnT^ ^ 
Aln/fiow, where Aln/flow is evaluated at an energy near kB Te. 
Using the chain rule, we can write 

*,_/• _ {dln/flow din Tc , 31n/flow^A 
âln/"“æ Uítt ~¡r+-ï^r 

(2.24) 

where we have used the fact that Te closely tracks Tc to set the 
total derivative of Te with respect to the optical depth equal to 
the total derivative of Tc with respect to the optical depth. 

Now the changes in/flow with respect to Te and t are, like the 
changes in /esc, caused largely by the change in y. Therefore 
(d InfnoJd In Te) ~ y and d InfnoJdx ~ y/T for energies near 
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kB Te. Equation (2.24) therefore implies 

A ln/now ~ + ^)y At . (2.25) 

This expression shows that if y is small, the relative change in 
f{low9 and hence in Tc, caused by the change in t is also small. 
Thus, the change in the observed spectrum is due primarily to 
the change in y with Te held constant, i.e., to the change in t. If 
on the other hand y is large, the relative change in/flow is again 
small, because the Comptonization process has saturated, 
producing a thermal equilibrium spectrum. Expression (2.25) 
then confirms that the relative change in Tc, and hence in Te, is 
small, and that the change in the observed spectrum is again 
due primarily to the change in y with Te held constant. We 
therefore expect only a small change in Te during the flow 
oscillations. 

In § 3, we show by numerical solution of the Kompaneets 
equation that the differential amplitude that results when Te is 
allowed to follow the Compton temperature 7^ as t varies is 
very similar to the differential amplitude that results when Te is 
held fixed, for the physical conditions that we consider. There- 
fore, although we could in principle solve for the change in Te 
with t, in practice we shall usually neglect it. 

Variation in the effects of induced scattering.—The term in 
the operator D that describes the effects of induced scattering is 
proportional to the photon distribution /flow in the Comp- 
tonizing flow and the induced scattering strength s. The 
induced scattering strength s is proportional to the photon 
density in the Comptonizing medium and we therefore expect 
sect. We estimate 

sä 3x10 9(mec
2)2T| 

1038 ergs 

-2 

(2.26) 

where rCompt = (3F/47r)1/3 is the effective radius of the Comp- 
tonizing region. 

It is difficult to determine the induced scattering strength 
accurately, due mainly to lack of knowledge of rCompt. The 
effective radius of the Comptonizing region cannot be smaller 
than the radius rc(»2 x 106 km) of the compact central 
corona. From expression (2.26), we therefore conclude that 

s < 10“8 (mec
2)2x . (2.27) 

The induced scattering strength will be close to this upper 
bound if the effective radius of the Comptonizing region is only 
slightly larger than the radius rc of the compact central corona, 
as will be true if most of the optical depth in the radial flow is 
at small radii. 

2.7. Limiting Forms of the Differential Amplitude 
When the degree of Comptonization is modest, we can 

obtain approximate analytical expressions for the differential 
amplitude £(£) at low and high photon energies. These approx- 
imations are helpful in developing intuition about the oscil- 
lation amplitude and in interpreting our numerical solutions. 
We therefore introduce them before describing the numerical 
method that we use to solve for/esc(£) and fnow(E). 

Differential amplitude at low photon energies.—Assume that 
P(t) is given by equation (2.4). Then the formal solution of 

equation (2.20) is 

For relatively flat photon injection spectra, like those described 
by expression (2.22), (tesc/tc)D is ~max (y, yE/kBTe). Thus, if 
y <0 and E <^kB TJy, the right side of equation (2.20) may be 
expanded in powers of (tesc/tc)D, with the result 

/esc(£) « [1 + !(íescAc)£]/i„(£) • (2.29) 
In this lowest order approximation,/flow in the operator D may 
be replaced by /in. 

Expression (2.29) is useful for estimating the oscillation 
amplitude and for assessing the importance of compressional 
upscattering and induced scattering at low photon energies. 
When the latter two effects are weak, the operator D describes 
the flow of photons with energies E^> kBTe toward lower ener- 
gies and the flow of photons with energies E <^kBTe toward 
higher energies. Thus, the operator in square brackets in equa- 
tion (2.29) “ squeezes ” a flat injected spectrum toward a peaked 
thermal distribution. As a result, the differential oscillation 
amplitude £(E) is negative at high energies, positive at the 
intermediate energies toward which photons flow to form the 
thermal peak, and negative at low energies. The differential 
amplitude therefore has two nodes, one on each side of the 
nascent thermal peak. At energies E <^kBTe, (tcsc/tc)D ~ y and 
hence 

m~l°cTeT. (2.30) 
T 

Thus, in this energy range the differential amplitude increases 
with increasing t. 

Induced scattering tends to pull photons toward energies 
where the photon quantum occupation number is high. If 
induced scattering is strong enough, photons will collect in a 
secondary peak near the low-energy cutoff as well as in the 
thermal peak, producing an additional node in Ç(E) at an 
energy just above Elow. 

Differential amplitude at high photon energies.—The approx- 
imation (2.29) for/esc relies on the fact that when y < 1, Comp- 
tonization has a relatively mild effect on the spectrum at low 
energies. As a result, the low-energy spectrum of the escaping 
photons differs only slightly from the low-energy spectrum of 
the injected photons. The effect of Comptonization on the 
spectrum at higher energies is much greater, and hence a differ- 
ent approach is required to develop an approximate solution. 

At energies E $> kBTe, the change in the photon distribution 
function is due largely to the effects of electron recoil ; thermal 
broadening and upscattering proceed two slowly to have much 
effect on the spectrum. If electron recoil were the only process 
changing the photon energy distribution, the distribution 
would be 

f(E, t) ä (2.31) 

at i < tc(me c2/E) and zero at later times (see, e.g., Sunyaev & 
Titarchuk 1980). Here 

£o = 
1 l 
E mec

2 (2.32) 

In reality,/(£, t) is very small (~ exp [ — E/kB TJ) but nonzero 
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even at late times, due to the upward diffusion of photons from 
low energies (see Appendix B). Expression (2.31) shows that 
when electron recoil is the dominant effect and we are con- 
cerned only with energies that are large compared to both 
mec

2ic/iesc and kB Te, the integral (2.1) for the energy distribu- 
tion of the escaping photons is dominated by contributions 
from times 0 < £ < £c(mec

2/£) £esc. We may therefore 
approximate P(t) in the integrand by expanding it in powers of 
í/íesc. 

Whenever unscattered photons make a negligible contribu- 
tion to the radiation flux leaving the Comptonizing flow, we 
may use an escape probability that satisfies [dP/dt]t=0 = 0. 
For any such escape probability, the first nonvanishing term in 
an expansion in powers of £ is 

d2P 
[7(£, 

t = 0 Jo 
£)£ dt oc ( ^-£- 

The resulting differential amplitude at high energies is 

i(£)=--ln{^ 

(2.33) 

(2.34) 

which is negative and independent of energy. More import- 
antly, it is independent of the injected spectrum. In § 3 we 
display differential amplitudes computed numerically for a 
variety of input spectra; all flatten toward the limit (2.34) at 
high photon energies. 

2.8. Numerical Computation of Photon Distributions 
To determine the differential amplitude for arbitrary photon 

energies and degrees of Comptonization, we first solve equa- 
tion (2.1) for fesc(E) and then compute din [/^(E)]/^ numeri- 
cally. 

Suppose first that induced scattering can be neglected. It is 
convenient to introduce the family of functions 

fß(E) = f Í7(£, t)e~^dt, (2.35) 
tc Jo 

where /? is a constant. If the escape probability is given by 
equation (2.4), then 

LsÂE) = 2fßJE) -f2ßJE), (2.36) 

where 

ßesc = tjt'sc ■ (2-37) 
The functions fß(E) satisfy the linear ordinary differential equa- 
tion 

DLfß-]=ß(fß-fn)- (2.38) 

Thus, calculation of /esc requires the solution of two linear 
ordinary differential equations, one for/^esc and one for /2^esc. 
We solve these equations numerically using multiple shooting, 
a method that is well suited to stiff equations of this kind, since 
the integration of the equation is performed piecewise over 
many small intervals. Multiple shooting is the straightforward 
extension of the technique of shooting to an intermediate point 
(see Press et al 1986, p. 586) to the case of multiple interme- 
diate points. 

Now suppose induced scattering is important. The operator 
D now depends on the distribution/flow of the photons in the 
Comptonizing flow. We therefore solve for/esc by iteration. We 
first assume /flow = /in and use this estimate of/flow to obtain an 

initial expression for D. Next, we use this expression for D to 
obtain approximate solutions for the auxiliary functions fß and 
f2ß. We then use these functions to generate an improved esti- 
mate for/flow, using the expression (compare eq. [2.36]) 

/no„(E) = lfßJE) - y2ßJE) - (2.39) 

Finally, this estimate of/flow is used to generate an improved 
estimate of D, and the procedure is iterated until /flow and D 
converge. 

3. DEPENDENCES OF THE OSCILLATION AMPLITUDE 

In this section we investigate the dependence of the oscil- 
lation amplitude on the spectrum of the injected photons, on 
the mean optical depth, temperature, and volume of the Comp- 
tonizing radial flow, and on the upscattering caused by the 
convergence of the flow. We do this by computing the finite 
relative oscillation amplitude 

tf(E) EE 2 JjJE, T) -LsJE, T - 1) 
J'JE, T) +/esc(£, t - 1) ] 

(3.1) 

for different injection spectra and different properties of the 
Comptonizing flow. Henceforth, for conciseness we shall refer 
to Ç f(E) simply as the finite amplitude. 

In investigating the dependence of the finite amplitude on 
the shape of the injected spectrum and the properties of the 
Comptonizing flow, we generally choose parameter values that 
are characteristic of Cyg X-2, one of the best studied Z sources. 
Thus, except when we are exploring the effects of variations in 
the electron temperature Te, we set Te equal to IkeV, the 
apparent Compton temperature of the Cyg X-2 X-ray spec- 
trum (see § 4). Similarly, except when we are studying the 
dependence of the finite amplitude on the mean optical depth t 
of the Comptonizing flow, we set t = 10, which is close to the 
mean optical depth indicated by the unified model (Lamb 
1989, 1991; Fortner, Lamb, & Miller 1989, 1991). For these 
“ standard ” choices of Te and t, the injected spectrum is moder- 
ately Comptonized (y = 0.27). Finally, we neglect the effects of 
induced scattering and compression-driven upscattering, 
except when we explicitly investigate them. 

3.1. Dependence on the Injected Spectrum 
The form (2.22) that we have adopted for the injected photon 

spectrum fin(E) depends on three parameters : the spectral index 
a, the exponential cutoff energy Ec, and the energy £low below 
which the spectrum is truncated. Consider first the dependence 
of the finite amplitude on a and Ec, for £low fixed at 0.1 keV. 
Figure 1 shows the relative amplitude for two choices of the 
spectral index (a = 1.0, 1.5) and two choices of the exponential 
cutoff energy (Ec = 5 keV, 10 keV). The most prominent 
feature in the relative amplitude is the node at the energy Ep, 
which we define as the highest energy root of £/(£). This node 
arises from the tendency of the X-ray spectrum to rotate locally 
about the pivot energy Ep as the optical depth of the Com- 
ptonizing flow varies, as shown in Figure 2. The finite ampli- 
tude at low energies (E <>2 keV) is smaller when the injected 
spectrum is flatter. 

The pivot energy is determined by competition between the 
downscattering of high-energy photons described by equation 
(2.31) and the diffusion of photons described by equation (2.29). 
Although the rate of downscattering generally depends on the 
shape of the injected spectrum at high energies, it is fairly 
insensitive to Ec for moderate values of y (recall that y « 0.3 for 
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Energy (keV) 
Fig. 1.—Absolute magnitude of the finite oscillation amplitudes produced 

by four different photon injection spectra/in(£), showing the node at the spec- 
trum pivot energy Ep&l keV and the insensitivity of the oscillation amplitude 
to the shape of the injection spectrum. The injected spectra were power laws 
with spectral indices a = 1.0 and 1.5 and exponential cutoff energies Ec = 5 
and 10 keV; all four were truncated below 0.1 keV. The electron temperature 
in the Comptonizing region was fixed at 1 keV, while the mean optical depth of 
the region was fixed at 10; induced scattering and upscattering by the converg- 
ing flow were both neglected. The oscillation amplitude depends on a only at 
low energies and is almost independent of Ec. 

the electron temperature and mean optical depth assumed 
here). The rate of upward diffusion also depends on the shape 
of the injected spectrum, but at moderate energies it is insensi- 
tive to the power-law index a. The pivot energy is therefore 
more sensitive to Ec than to a, but depends only weakly even 
on Ec, increasing slightly as Ec increases from 5 to 10 keV. 

Fig. 2.—Photon number spectra for two slightly different optical depths 
-10, illustrating the apparent rotation of the spectrum about the pivot energy 
E when the optical depth of the Comptonizing region varies. Other properties 
of the Comptonizing region are the same as in Fig. 1. The two spectra corre- 
spond to two different phases in the oscillation of the radial flow. 

The dependence of the finite amplitude on the low-energy 
cutoff of the injected spectrum is illustrated in Figure 3. Here 
and in the remainder of this section we consider injected 
spectra with a = 1.5 and £c = 10 keV. As the photon distribu- 
tion evolves toward its asymptotic form (see Appendix B), 
photons with energies just above £low diffuse to energies below 
£low. Hence Çf(E) is negative at energies just above £low. Since 
Çf(E) is positive at energies ~ Te, this implies that Çf(E) has a 
node at an energy between £low and Te. Increasing Elow moves 
this node upward in energy. For the electron temperature and 
mean optical depth assumed in Figure 3, Comptonization is 
moderate and hence the value of Flow has a significant effect on 
Çf(E) only when Flow is relatively high (~0.5 keV) and then 
only at low energies (<2 keV, for the injected spectra 
considered). Throughout the rest of this section we therefore 
consider only injected spectra with £low = 0.1 keV. 

3.2. Dependence on the Properties of the Comptonizing Flow 
The main difference between the finite amplitudes produced 

by Comptonizing flows with different mean optical depths is 
the relative size of the NBO amplitude at high and low ener- 
gies, as shown by Figure 4. The relative amplitude at high 
energies becomes somewhat smaller with increasing t, in 
accordance with equation (2.34), whereas the relative ampli- 
tude at low and moderate energies increases, in accordance 
with equation (2.30). The pivot energy Ep decreases with 
increasing t, although not dramatically. 

The pivot energy is much more sensitive to the electron 
temperature than to the mean optical depth, as Figure 5 makes 
clear. As noted earlier, the competition between diffusion due 
to the thermal motions of the electrons and downscattering 
due to electron recoil is the most important determinant of Ep. 
Hence, higher electron temperatures produce higher pivot 

Energy (keV) 
Fig. 3.—Finite oscillation amplitudes for three values of the energy £low 

below which the spectrum of injected photons is truncated, illustrating the 
weak dependence on Flow, except when Slow is £0.5 keV. All three injected 
spectra have a = 1.5 and Ec = 10 keV; the properties of the Comptonizing 
region are the same as in Fig. 1. When Comptonization of the injected spec- 
trum is moderate (y < 1), diffusion of photons downward in energy from £low 
creates a node in the oscillation amplitude just above Eloyv (see text). This node 
does not significantly affect the oscillation amplitude above 1 keV unless the 
truncation energy of the injected spectrum is >0.5 keV. 
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Fig. 4.—Finite oscillation amplitudes produced by Comptonizing flows 

with different mean optical depths, illustrating the weak dependence of the 
pivot energy on the optical depth of the flow. Other properties of the Comp- 
tonizing flows are the same as in Fig. 1. The truncation energy, spectral index, 
and exponential cutoff energy of the injected spectrum are 0.1 keV, 1.5, and 10 
keV, respectively. The oscillation amplitude at high energies decreases slightly 
as T increases, whereas the amplitude at low and moderate energies increases 
significantly. 

energies. The sensitive dependence of the pivot energy on the 
electron temperature makes the pivot energy a good diagnos- 
tic of the electron temperature in the Comptonizing flow. 

The effect of induced scattering on the finite amplitude is 
illustrated by the three amplitudes plotted in Figure 6. These 
amplitudes correspond to no induced scattering (s = 0), a mod- 
erate amount of induced scattering (s = 10~9(mec

2)2T), and a 

Energy (keV) 
Fig. 5.—Finite oscillation amplitudes for three values of the electron tem- 

perature Te in the Comptonizing flow, illustrating the sensitive dependence of 
the pivot energy on Te. Other properties of the flow are the same as in Fig. 1 
while the injected spectrum is the same as in Fig. 4. The sensitive dependence of 
the pivot energy on Te makes Ep a good diagnostic of the electron temperature 
in the Comptonizing flow. 

Energy (keV) 
Fig. 6.—Finite oscillation amplitudes for three induced scattering 

strengths, showing the additional node that appears in the amplitude at low 
energies when induced scattering is moderately strong. The value of the 
induced scattering strength s is zero for the case without induced scattering, 
10-9[mec

2]2T for the weaker-induced-scattering case, and 3 x 10_9[mec
2]2T 

for the stronger-induced-scattering case. Other properties of the flow are the 
same as in Fig. 1, while the injected spectrum is the same as in Fig. 4. The effect 
of induced scattering is greater at lower energies because the photon mode 
occupation numbers are larger there. 

large amount of induced scattering (s = 3 x 10_9(mec
2)2T). 

For moderately Comptonizing flows,/flow(£) is similar to fin(E) 
and falls with increasing energy for the injected spectra that we 
consider here. For such/flow(£), induced scattering tends to pull 
photons toward low energies, where the photon mode 
occupation numbers are high, but inhibits the flow of photons 
to energies below the truncation energy Elow of the injected 
spectrum. This creates a peak in the spectrum of the escaping 
X-rays just above £low and a node in the finite amplitude (in 
addition to the nodes associated with the nascent Wien 
maximum) just above the peak. The node immediately below 
Ep in energy is forced closer to Ep, since the loss of photons at 
low energies from thermal upscattering into the incipient Wien 
peak is augmented by the induced motion of photons toward 
the low-energy cutoff. A high truncation energy can also have 
this effect (see Fig. 3) since photons drain by diffusion to ener- 
gies below £low, but does not produce a peak in the X-ray 
spectrum just above £low. Thus, if the low-energy portion of the 
spectrum could be observed, it would be simple to distinguish 
between a second node produced by the low-energy turnover 
of the injected spectrum (which we have modeled by truncating 
the spectrum at £low) and a second node produced by relatively 
strong induced scattering. 

Although it is possible in principle to estimate the volume of 
the Comptonizing flow by measuring the X-ray spectrum and 
the relative NBO amplitude at low energies, in practice inter- 
stellar absorption at energies below ~ 1 keY is so great for the 
distant Z sources that such data will probably be difficult or 
impossible to obtain in the foreseeable future. We must there- 
fore content ourselves with placing limits on the volume of the 
Comptonizing flow using data at higher energies (see § 4). 

Consider now the effect of upscattering by the converging 
flow on the finite amplitude. Figure 7 compares finite ampli- 
tudes computed with and without this upscattering, for 
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Energy (keV) 
Fig. 7.—Finite oscillation amplitudes computed with and without upscat- 

tering by the converging flow, illustrating the small effect of this upscattering 
for the flow model assumed here. For the case with compressional upscatter- 
ing, tjtu = 0.2/t2. Other properties of the flow are the same as in Fig. 1, while 
the injected spectrum is the same as in Fig. 4. Because the rate of compres- 
sional upscattering is octesc/tu, it is independent of the optical depth of the flow. 
The X-ray spectrum therefore changes little as the optical depth of the flow 
oscillates, leaving the oscillation amplitude almost unaffected by the upscatter- 
ing. 

Comptonizing regions that are otherwise the same and injected 
spectra that are identical. In general, although upscattering by 
the converging flow changes the X-ray spectrum, it has little 
effect on the relative amplitude. The reason is that in the flow 
model considered here, the rate of this upscattering is oc 
(íeSc/íc)(íc/íM) and is therefore independent of the optical depth 
of the flow. As a result, the spectrum of the escaping radiation 
is nearly fully modified by interaction with the converging flow 
even when the optical depth is small. The X-ray spectrum 
therefore changes little as the optical depth of the flow oscil- 
lates, leaving the finite amplitude almost unaffected by the 
upscattering. 

Finally, we investigate the effect on the finite amplitude of 
the slight oscillation in the Compton temperature Tc of the 
radiation within the radial flow that occurs as the optical depth 
of the flow oscillates. For example, if the injected spectrum has 
£low = 0.1 keV, a = 1.5, and Ec = 10 keV, Tc decreases from 
1.07 keV to 1.03 keV as t increases from 9 to 10. The oscillation 
in Tc causes the electron temperature in the flow to oscillate by 
a small amount. Figure 8 compares the finite amplitude 
obtained when the electron temperature in the flow is allowed 
to follow oscillations in the Compton temperature with the 
amplitude obtained when the electron temperature is kept 
fixed at 1.05 keV. The differences between the two amplitudes 
are small. 

4. APPLICATION TO NORMAL BRANCH OSCILLATIONS 

In the unified model of X-ray emission from neutron stars in 
LMXBs, X-ray photons coming from the neutron star, its small 
magnetosphere, and the innermost part of the accretion disk 
are Comptonized by a small, relatively hot central corona that 
envelopes the inner disk and magnetosphere (Lamb 1989, 
1991), producing the horizontal branch spectra of the Z 
sources. When the luminosity approaches the Eddington criti- 

cal luminosity, the radiation coming from the central corona is 
further Comptonized by a cool, approximately radial inflow 
from the inner disk (Lamb 1989, 1991; Fortner, Lamb, & 
Miller 1989,1991), producing the normal branch spectra of the 
Z sources. 

Detailed computations of radiative transfer through static 
scattering envelopes have shown that Comptonization models 
can accurately reproduce the observed X-ray spectra of a 
variety of LMXBs, when the spectrum of the central photon 
sources is treated as adjustable (see, e.g., Ponman, Foster, & 
Ross 1990). Although such models provide valuable informa- 
tion about physical conditions in the outer Comptonizing 
region, their success and the physical conditions inferred from 
them depend on the spectrum assumed for the radiation 
coming from the central source. Our lack of knowledge con- 
cerning this spectrum is therefore a major source of uncertainty 
in these models. 

The results presented in the previous section show that the 
relative change in the X-ray spectrum that occurs when the 
optical depth of the Comptonizing flow changes by a small 
amount is fairly insensitive to the spectrum assumed for the 
radiation coming from the central source, at least if that spec- 
trum is qualitatively similar to the spectra observed in LMXBs 
and the properties of the Comptonizing flow are similar to 
those expected in the unified model. On the other hand, the 
relative change in the X-ray spectrum is fairly sensitive to the 
properties of the Comptonizing flow. This has two important 
implications. First, we can test the hypothesis that the NBOs 
are caused largely by oscillations in the optical depth of a 
Comptonizing flow, even though we do not yet have a detailed 
physical model of the central radiation source. Second, if the 
hypothesis that the NBOs are produced largely by oscillations 
in the degree of Comptonization is successful, we can infer the 
properties of the Comptonizing flow with relatively high con- 
fidence. 

Suppose that the oscillating Comptonization model is able 

Energy (keV) 
Fig. 8.—Finite oscillation amplitudes obtained when the electron tem- 

perature in the Comptomizing flow is allowed to adjust to the Compton 
temperature and when the electron temperature is kept fixed, showing that the 
differences between the two amplitudes are small. Other properties of the flow 
are the same as in Fig. 1, while the injected spectrum is the same as in Fig. 4. 
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to adequately describe the observed relative oscillation ampli- 
tude yohs{E) with the spectrum of the central source held fixed. 
Then the results of § 3 show that three important properties of 
the Comptonizing flow can be immediately read off from the 
properties of yohs(E). First, the relative change in the optical 
depth of the Comptonizing flow, At/t, is fixed by the magni- 
tude of yobs(E) at high energies (see eqs. [2.18] and [2.34]). 
Second, the temperature Te of the electrons in the Comp- 
tonizing flow is determined by the position of the highest- 
energy node in yobs(£), which coincides with the spectrum pivot 
energy Ep and is sensitive to Te. Third, the magnitude of yobs(E) 
at energies below Ep depends primarily on Ay, which is pro- 
portional to T^tAt (see eqs. [2.18] and [2.30]). Hence, from 
measurements of yobs(E) we can in principle determine (1) the 
mean optical depth t of the Comptonizing flow, (2) the varia- 
tion At of the optical depth during the NBO, and (3) the elec- 
tron temperature Te in the Comptonizing flow. With these 
parameters determined, the validity of the oscillating Comp- 
tonization model can be checked by a detailed comparison of 
the relative NBO amplitude y(E) predicted by the model with 
yobs(E). 

A further test of the model can be made if one compares the 
electron temperature Te inferred by fitting y(E) to yobs{E) with 
the Compton temperature T'c obtained from approximating 
the photon spectrum /flow(E) within the Comptonizing flow by 
the observed photon spectrum fobs(E) and using expression 
(2.12). The agreement between the inferred electron tem- 
perature and T' may not be exact, since this approximation 
neglects the difference between /flow(£) and fobs(E) =fesc(E). 
Also, for most Z sources few measurements of the spectrum in 
the soft X-ray band are available and the amount of interstellar 
absorption is uncertain. Thus some assumptions about the 
spectrum of the source below 2 keV are necessary in order to 
compute T'c (although T' is not particularly sensitive to the 
spectrum below 1 keV). Nevertheless, a gross discrepancy 
between Te and T'c would be a problem for the model. 

We now apply the procedure just described to observations 
of Cyg X-2, one of the best-studied Z sources. Figure 9 shows 
the relative amplitude of the Cyg X-2 NBO in the energy range 
1-19 keV as measured by Mitsuda (1988) using the Ginga satel- 
lite. The horizontal bars indicate the energy bins used in plot- 
ting the data. The crosses show the rms variation in the 
number of counts in each energy bin divided by the mean 
number of counts during a sequence of 8 ms integration times. 
The vertical bars indicate 90% confidence intervals. The 
counts in the highest and lowest energy bins are thought to be 
dominated respectively by the lowest and highest energy 
photons within these bins, because the detector response 
increases rapidly with energy in the lowest bin and falls rapidly 
with energy in the highest bin. 

Also shown in Figure 9 is the relative variation in the 
number of counts predicted by the oscillating Comptonization 
model with Te = 1.0 keV, t = 10, and At = 0.9. The basis for 
these parameter choices is described below. The injected spec- 
trum is of the form (2.22) with Elow = 0.1 keV, a = 1.5, and 
Ec = 10 keV. This injected spectrum is similar to the spectra 
observed in lower luminosity LMXBs and thought to arise in 
the compact central corona expected in the unified model (see 
§ 2). The Compton temperature of the injected spectrum is ä 1 
keV. 

We now discuss the constraints on the Comptonizing flow 
parameters implied by the Cyg X-2 countrate variations shown 
in Figure 9. Although the amount of interstellar absorption 

Energy (keV) 
Fig. 9.—Comparison of the relative NBO amplitude in Cyg X-2 observed 

by Mitsuda (1988) with the relative NBO amplitude predicted by the oscil- 
lating Comptonization model. The oscillating flow has Te = 1.0 keV, t = 10, 
and At = 0.9, and the injected spectrum is the same as in Fig. 4. The horizontal 
bars indicate the energy bins used in plotting the data. The crosses show the 
rms variation in the number of counts in each energy bin divided by the mean 
number of counts during a sequence of 8 ms integrations. The vertical bars 
indicate 90% confidence intervals. The predicted variation is in excellent agree- 
ment with the observed variation. 

and the response of the detector do not affect the relative NBO 
amplitude at a given energy, they do affect the averaging that 
must be done to predict the relative countrate variation that 
will be observed in energy bins of finite width. We have not 
taken these effects into account. Moreover, our model of the 
Comptonizing radial flow is highly simplified. Therefore, we 
confine ourselves to conclusions that follow from comparing 
the qualitative features of the countrate variations predicted by 
the model with the observed countrate variations. 

Even with these qualifications, the countrate variations 
observed in Cyg X-2 place remarkably narrow limits on the 
properties of the Comptonizing radial flow. Consider first the 
electron temperature. Figure 9 shows that the relative count- 
rate variation is lowest near 6 keV. Other data indicate that the 
phase of the variation changes by ~ 180° in the energy range 
4.5-8 keV (see Mitsuda 1988), the same range in which the 
observed relative countrate variation is lowest. This behavior 
is expected in the Comptonizing flow model, which predicts 
that the countrate oscillations will be a minimum near the 
pivot energy Ep and that the phase of the oscillations above Ep 
will differ by 180° from the phase of the oscillations below Ep, if 
one neglects the phase shifts ^(iesc/^osc)180° caused by the 
longer escape time of the more highly Comptonized photons 
(Lamb 1989, 1991). The observations therefore indicate that 
the pivot energy lies between 4.5 and 8 keV. 

As shown in § 3, the pivot energy predicted by the Comp- 
tonizing flow model depends primarily on the electron tem- 
perature but also depends weakly on the mean optical depth of 
the flow. If we assume that the mean optical depth is ~ 10, as 
suggested by preliminary models of normal branch X-ray 
spectra (see Lamb 1989, 1991), our Comptonization calcu- 
lations show that the electron temperature in the flow must be 
between 0.5 and 1.1 keV in order for the pivot energy to lie in 
the range 4.5-8 keV. However, electron temperatures in the 
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range 0.5-0.7 keV give predicted countrate variations in the 
two highest-energy bins shown in Figure 9 that are larger than 
the observed countrate variations. The Comptonizing flow 
model is consistent with the countrate variations observed at 
all energies if the electron temperature in the flow is in the 
range 0.8-1.1 keV. 

This estimate of the electron temperature in the flow is in 
striking agreement with our best estimate of the Compton tem- 
perature of the Cyg X-2 normal branch X-ray spectrum, which 
we made by extending the spectral fits published by Schulz et 
al. (1989) to lower X-ray energies and truncating the spectrum 
at £low. For any Elow <> 1 keV, we find Tc « 1.0 ± 0.2 keV, 
where the stated uncertainty in T'c reflects our estimate of the 
uncertainty in the shape of the X-ray spectrum below 2 keV. 

The mean optical depth t of the Comptonizing flow is only 
weakly constrained by current measurements of the relative 
NBO amplitude, since these measurements do not extend to 
energies high enough to allow a direct determination of At/t. 
However, if the high-energy cutoff is at ~ 5 keV when Cyg X-2 
is on the normal branch, as reported by Schulz et al. (1989), 
and this cutoff is produced by Compton degradation of a 
power-law spectrum from the central corona, as suggested by 
preliminary spectral modeling (see Lamb 1989, 1991), then the 
mean optical depth is ~ 10. Time-dependent radiation- 
hydrocode simulations of the normal branch oscillations also 
indicate that the mean optical depth of the radial flow is ~ 10 
(Fortner, Lamb, & Miller 1989,1991). 

The inferred variation in the optical depth of the Comp- 
tonizing flow depends on the electron temperature and the 
mean optical depth of the flow. For electron temperatures in 
the range 0.8-1.1 keV and mean optical depths in the range 
6-15, the inferred optical depth variation is in the range 0.7- 
1.6, with the largest variations inferred for the smallest mean 
optical depths. This accords with equation (2.30), which pre- 
dicts that the relative NBO amplitude at energies below Ep 
should be roughly proporational to T^tAt. Variations of this 
size in the optical depth of the Comptonizing flow agree with 
the results of time-dependent simulations of the normal branch 
oscillations (Fortner, Lamb, & Miller 1989, 1991). For t = 10 
and Te= 1 keV, we find that the rms variation At ä 0.9. Figure 
9 shows the relative NBO amplitude predicted by the oscil- 
lating Comptonization model for this choice of parameters. 
The predicted variation is in excellent agreement with the 
observed NBO amplitude, indicating that the model is suc- 
cessful for this source. 

The agreement between the electron temperature predicted 
by the oscillating Comptonization model and the estimated 
Compton temperature of the Cyg X-2 X-ray spectrum, when 
combined with the qualitative agreement between the count- 
rate oscillations predicted by the model and the observed 
countrate oscillations, provides strong support for the idea 
that the NBOs observed in Cyg X-2 are caused largely by 
oscillations in the optical depth of a Comptonizing flow sur- 
rounding the central radiation source. 

The oscillating Comptonization model predicts that the 
relative amplitude should asymptotically approach the value 
—4(At/t) at energies well above 10 keV (see eq. [2.34]). Thus, 
measurements of the relative oscillation amplitude at these 
energies would provide another check on the validity of the 
model. 

It is difficult to determine the effective radius rCompt of the 
Comptonizing flow from current measurements of the relative 
NBO amplitude, because these measurements do not extend to 

sufficiently low X-ray energies. However, the measurements 
made at the lowest energies to which the Ginga LAC detectors 
respond, combined with the results of § 3, do provide a rough 
lower bound on Rcompt* 

First consider the additional node that appears in the rela- 
tive NBO amplitude when induced scattering is important. 
Figure 6 shows that if Elow = 0.1 keV and s = 0, which corre- 
sponds to an infinite effective radius, this node is at an energy 
well below 1 keV. If instead s> 10~8(mec

2)2, which corre- 
sponds to an effective radius rCompt <8 x 106 cm, the node 
moves to energies greater than ~ 1 keV. The node would move 
to even higher energies if the spectrum actually turns over just 
below 1 keV, rather than at 0.1 keV, since photons would then 
diffuse rapidly to low energies. There is no evidence in the Cyg 
X-2 data of a second node in the relative NBO amplitude 
below the node associated with the pivot energy Ep (see Fig. 9), 
and hence we conclude that the effective radius of the Comp- 
tonizing region is >8 x 106cm. 

We can obtain another bound on rCompt, because the 
Compton temperature Tc increases with increasing s, all other 
things being equal (see eq. [2.12]). If the power-law behavior of 
the Cyg X-2 X-ray spectrum extends to energies as small as 0.1 
keV, the bound on the Compton temperature derived from the 
value of the pivot energy (Tc < 1.1 keV) implies s < 
10~8(mec

2)2 and hence again rCompt > 8 x 106 cm. If instead 
the spectrum turns over at a higher energy, the lower bound on 
rCompt increases. Although these bounds on rCompt are necessar- 
ily tentative, they are nevertheless tantalizing. 

Finally, it is interesting to ask if the variation in the Cyg X-2 
X-ray spectrum during a normal branch quasi-periodic oscil- 
lation corresponds to small motions up and down the normal 
branch, since if this were true it would suggest that the physical 
process responsible for the NBO is similar to the physical 
process that causes Cyg X-2 to move up and down the normal 
branch. Answering this question requires accurate differencing 
of the X-ray spectra observed at different points on the normal 
branch. The only spectral fits that are currently available are 
those of Schulz et al. (1989), which probably do not reproduce 
the observed spectra accurately enough to answer this question 
definitively. We note nevertheless that differencing of these 
spectra suggests that the pivot energy associated with motion 
along the normal branch is ä 3 keV, somewhat lower than the 
pivot energy indicated by the Ginga NBO data. If this differ- 
ence in pivot energies is real, the spectral changes that cause 
Cyg X-2 to move down the normal branch probably involve 
some softening of the emission from the central source as well 
as Comptonization of this emission by the radial flow. 

5. SUMMARY AND CONCLUSIONS 

We have investigated further the radiation-hydrodynamic 
model of NBOs in Z sources. In this model, the NBOs are 
produced by quasi-periodic oscillations in the optical depth of 
a radial inflow from the inner part of the accretion disk to a 
compact central corona surrounding the neutron star magne- 
tosphere. The optical depth oscillations cause oscillating 
Comptonization of X-rays coming from the central corona. 

We have developed a quantitative model of the Comp- 
tonizing radial flow that includes the upscattering and diffu- 
sion caused by electron thermal motions, the upscattering 
produced by the convergence of the flow, the downscattering 
due to electron recoil, and the effects of induced scattering. 
Using this model, we have investigated the dependence of the 
NBO amplitude on the shape of the X-ray spectrum coming 
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from the central corona as well as the temperature and mean 
optical depth of the radial flow, and its optical depth variation. 

We find that the properties of the relative NBO amplitude 
depend only weakly on the shape of the X-ray spectrum 
emitted by the central corona, but are sensitive to the proper- 
ties of the Comptonizing flow, particularly its temperature. As 
a result, it is possible to test the hypothesis that the NBOs are 
caused largely by oscillations in the optical depth of a Comp- 
tonizing flow, even though we do not yet have a detailed physi- 
cal model of the central radiation source. Moreover, if the 
oscillating Comptonization hypothesis is successful, one can 
infer the properties of the Comptonizing flow with relatively 
high confidence. 

We have shown that one can read off the electron tem- 
perature, mean optical depth, and optical depth variation from 
the basic features of the oscillation amplitude. The detailed 
shape of the oscillation amplitude as a function of energy then 
provides a test of the validity of the model. According to the 
model, the electron temperature inferred from the oscillation 
amplitude should be similar to the Compton temperature of 
the observed X-ray spectrum. Thus, the validity of the model 
can be tested further by comparing these two temperatures. 

We have compared the predictions of our Comptonization 
model with the observed properties of the 6 Hz normal branch 
spectral oscillations in Cyg X-2, one of the best-studied Z 
sources. This comparison strongly suggests that these oscil- 
lations are indeed produced by oscillations in the optical depth 
of a Comptonizing flow surrounding a central photon source. 
We find that the Comptonizing flow model is consistent with 

the countrate variations at all energies if the electron tem- 
perature in the flow is the range 0.8-1.1 keV. This estimate of 
the electron temperature in the flow is in excellent agreement 
with our best estimate of the Compton temperature of the Cyg 
X-2 normal branch X-ray spectrum. The inferred optical depth 
of the Comptonizing flow is ~ 10 while the inferred variation 
of the optical depth is ~1. Our investigation of the effects of 
induced scattering on the X-ray spectrum suggests that the 
effective radius of the Comptonizing flow is > 8 x 106 cm. 

Normal-branch quasi-periodic oscillations that are qualitat- 
ively similar to the oscillations seen in Cyg X-2 have been 
reported in GX 5 — 1 by G. Hasinger (1989, private 
communication) and K. Mitsuda (1989). We speculate that 
these oscillations and the 6 Hz normal branch quasi-periodic 
oscillations observed in the Z sources generally are due largely 
to oscillations in the optical depth of a Comptonizing flow that 
surrounds the central photon source. 
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APPENDIX A 

ESCAPE PROBABILITY AT LOW OPTICAL DEPTHS 

The prescription (2.4) for the escape probability may be modified to crudely account for photons which escape without scattering 
by using 

P(t) = (1 - 0(1 - e-,/iesc)2 + e~'®(t/tesc), (Al) 

where 0 is the unit step function (0[x] = 1 if x > 0,0[x] = 0 otherwise). 

APPENDIX B 

ASYMPTOTIC PHOTON DISTRIBUTIONS 

Suppose that the photon distribution evolves in time according to the modified Kompaneets equation (2.8) with the electron 
temperature Te held fixed. As t -► oo, the distribution will approach the asymptotic distribution 

Co + (s/b) 
Í 

z(alb)-4e-Zlbdz 

where 

tu mec 

h-b»7* b = r , 

(Bl) 

(B2) 

(B3) 
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and the constant c0 is chosen to ensure thatis correctly normalized, that is 

1 
fJE)dE=l . (B5) 

The distribution f^iE) is stationary (DC/^] = 0) and satisfies zero-flux boundary conditions at £ -► 0 and £ -► oo. 
When induced scattering and upscattering by the converging flow are unimportant (s = 0 and [ic/ij = 0), the distribution (Bl) 

becomes the Wien spectrum, 

/wien(^) — 
1 

2kBTe 
exp (~E/kBTe). (B6) 

In the Comptonization model considered in this paper, the converging flow causes systematic upscattering of the photons while 
the interaction of the electrons with the photons keeps the electron temperature close to the Compton temperature. The asymptotic 
limit described above then cannot be obtained, since the upscattering produces a distribution with an ever-increasing Compton 
temperature and hence the photon distribution continues to evolve indefinitely. 
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