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ABSTRACT 
We investigate the coupling of the superfluid of a neutron star with the solid crust arising from the scat- 

tering of individual nuclei in the inner crust with dynamical vortex lines of the superfluid. Such interactions 
generate quantized Kelvin mode vortex oscillations (kelvons). We calculate the rate of kelvon production and 
the consequent drag produced on the superfluid. The coupling is sufficiently strong to permit glitch spin-up 
time scales <60 times the rotation period. Catastrophic vortex-unpinning events are therefore capable of 
producing giant glitches with rapid spin-ups on the scale observed in the Vela pulsar. 
Subject headings: stars: neutron — stars: pulsars: general 

1. INTRODUCTION 

In the inner crust of a neutron star a gas of free neutrons 
coexists with a lattice of neutron-rich nuclei. For stellar den- 
sities ~ 1012-1014 gem-3, corresponding to free neutron den- 
sities ~ 10-3-10-1 fm-3, the free neutrons are believed to pair 
and form an isotropic s-wave superfluid. In a rotating star the 
neutron superfluid rotates by forming vortex lines, singular 
regions in which the superfluidity vanishes and around which 
the superfluid circulation is tc = nh/mn, where mn is the neutron 
mass. The superfluid velocity in the neutron star is completely 
determined by the spatial arrangement of the vortex lines. 
A change in the velocity field requires a corresponding change 
in the vortex line distribution, either a distortion of the con- 
figuration of the existing lines or creation of new lines. 

Some of the peculiar variations in the rotation rates of iso- 
lated, rotation-powered pulsars are attributed to interactions 
of the normal (nonsuperfluid) parts of the stars with the 
neutron superfluid in the inner crust. Anderson & Itoh (1975) 
suggested that a pulsar glitch, the rapid spin-up of the crust of 
the star, is due to the sudden transfer of angular momentum 
from the superfluid to the solid crust. Giant glitches are rota- 
tional accelerations of order ADC/DC ~ 10-6, observed to last 
less than 2 minutes, where Qc is the observed rotation rate of 
the crust and AQC is its change (Manchester & Taylor 1977; 
Hamilton, King, & McCulloch 1989). 

A physical explanation of pulsar timing observations entails 
describing the coupling mechanism by which angular momen- 
tum is transferred between the crust and the superfluid. Among 
the several processes that contribute to this coupling 
(Feibelman 1971; Bildsten & Epstein 1989; Jones 1990), the 
most important one appears to be the excitation of waves on a 
vortex line by interaction with nuclei in the crust. As a vortex 
line moves past nuclei, the vortex-nucleus interaction bends 
and twists the vortex line and pulls the nuclei away from their 
equilibrium positions in the crystal lattice of the crust. These 
perturbations excite quantized Kelvin mode oscillations—or 
kelvons—on the vortex line and phonons in the crystal. The 
properties of kelvons are reviewed in Appendix A. Interactions 
between acoustic phonons in the crystal lattice and kelvons 

1 Also Loomis Laboratory of Physics, University of Illinois, 1110 W. Green 
Street, Urbana, IL 61801. 
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tend to bring the vortex excitations into thermal equilibrium 
with the solid crust. In this paper we focus on the generation of 
kelvons by the relative motion of a vortex line and nuclei; this 
process creates a drag on vortex lines and is one of the domi- 
nant coupling mechanisms between the superfluid and the 
crust. 

This paper is organized as follows : § 2 gives estimates of the 
vortex-nuclear interaction and the impulse on a moving vortex 
line. Section 3 presents the calculation of the drag on a vortex 
line and the rate for generating quantized vortex excitations. 
Section 4 discusses the relationship between the pinning and 
dynamics of vortex lines and the overall dynamics of the super- 
fluid. Section 5 summarizes the main results and relates them 
to observations of pulsar glitches. Appendix A describes 
vortex-line excitations as classical waves and as quantum exci- 
tations, Appendix B presents a calculation of the Fourier trans- 
form of the vortex-nucleus force, and Appendix C gives a 
classical derivation of the energy imparted to vortex excita- 
tions by a single vortex-nucleus interaction. 

2. INTERACTION BETWEEN A VORTEX LINE AND A 
NUCLEUS 

To begin the discussion of encounters between nuclei and 
vortex lines, we first treat the interaction of a single nucleus 
with a vortex line. In Epstein & Baym (1988, hereafter Paper I) 
we estimated the interaction energy Eint(s) between a nucleus 
and a vortex line as a function of their separation s. For stellar 
densities between ~7 x 1011 and 1014 g cm-3, Eint(s) can be 
approximated by 

Eint(s) = (1 + s2/R2y 1 + s2/R2 (2.1) 

plus terms independent of s. Here R is the effective nuclear 
radius, Es is the energy related to the short-range part of the 
interaction, and EL is related to the long-range repulsion; while 
El is always positive, Es can be positive or negative depending 
on density. From equation (2.1) one finds that the total force 
on the vortex line is 

^int — ^s^intC5) 

2s F 4ES El 1 
“ R2 [(I + s2/R2)5 + (1 + s2IR2)2] 

(2.2) 
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(we use the convention that upper-case F represents a total 
force, and lower-case/represents a force per unit length). Table 
1 gives values of R, Es, and EL from Paper I as functions of the 
total matter density p* (including the neutron superfluid, 
nuclei, electrons, etc.) in the inner crust. 

The values of Es in Table 1 are uncertain since a fully micro- 
scopic treatment of the short-range component of the vortex- 
nucleus interaction is not yet available. For densities above 
~ 1014 gem-3, the interaction energy derived in Paper I has a 
more complicated dependence on s than that of equation (2.2) 
because the superfluid in the nuclei undergoes a phase tran- 
sition to the normal state as the nucleus approaches a vortex 
line; for these densities we will use equation (2.2) with Es 
adjusted to give the correct maximum force. Upper limits on 
the internal heating in neutron stars due to vortex creep, 
inferred from neutron star surface temperatures, suggest that 
the values of Es estimated in Paper I may be too large 
(Shibazaki & Lamb 1989); to allow for this possibility, we will 
also consider the consequences of lower Es. Since the long- 
range interaction is largely due to hydrodynamic effects, the 
values of EL are more certain. 

To calculate the dynamics of a vortex line passing a nucleus, 
one needs the interaction force on the nucleus per unit length 
of vortex. Consider a Cartesian coordinate system in the rest 
frame of the vortex line with z-axis coincident with the vortex 
line. For a nucleus at (x, y, 0) we write the interaction force 
between an element of length dz of the vortex line at z and the 
nucleus in the form 

per unit length on the vortex line, 

t) = 
2(tx + Th ÿ) 

R 

4£c 
+ ■ 

_(1 + T2 + Zl)5 (1 + T2 + Zl) 
s(t)] , (2.6) 

where t = At;i/R is the dimensionless time, xb = h/R, and 
s(i)/R = (t2 + Tfr)1/2. As discussed in § 4, the force (eq. [2.6]) is 
valid as long as the relative velocity Ai? is not too small. 

3. EXCITATION OF VORTEX OSCILLATIONS 

We now consider the effects of small local displacements of 
the vortex line on its interaction with nuclei. We write the 
displacement of the line from its equilibrium position as 

e(z, t) = €x(z, t)x + ey(z, t)y . (3.1) 

With displacement (3.1), a point on {he vortex line is at posi- 
tion rv(z, t) = z + e{z, i), where z = (0, 0, z), and the vector w 
between this point and the position of the nucleus (eq. [2.5]) is 

w(z, t) = s(t) - rv(z, t) = w0(z, t) - e(z, t), (3.2) 

where w>0(z, t) = s(t) — z = Avtx + by — z. Expanding the 
interaction energy of the vortex line, Hint(t) = ¡dzV(w\ in 
powers of e, we obtain 

fini dz = Fint(s)(l)(z, s)dz , (2.3) 

where s = x+y, s = |s|, and 0(z, s) is the normalized distribu- 
tion of the interaction force along the vortex line, 

Hint(t) = ^dzlV(w)-e-\V(w) 

+ ¿(e-V)2F(H>)+ (3.3) 

</>(z, s)dz = 1 . (2.4) 

For the physical processes of interest in this paper we will not, 
in fact, need to specify the precise form of 0. 

We take the relative velocity Av of the nucleus past the 
vortex to be in the x-direction. For small energy transfers, the 
nuclear trajectory is nearly straight, 

s(f) = Avtx + by , (2.5) 

where b is the nucleus-vortex impact parameter. In addition, if 
the vortex line remains essentially straight as the nucleus 
passes, the nucleus imparts a total force (eq. [2.2]), and a force 

TABLE 1 
Vortex-Nucleus Interaction Parameters 

log/?* R Es El \ogps log nN lt 
(gem-3) (fm) (MeV) (MeV) (gem-3) (fm-3) (fm) 

11.83  5.7 2.5 0.037 11.21 -5.70 4900 
11.99  5.8 3.3 0.090 11.63 -5.62 3900 
12.18   5.9 4.2 0.16 11.90 -5.56 3300 
12.41  6.1 6.3 0.34 12.30 -5.50 2700 
12.79  6.5 7.5 0.72 12.70 -5.41 1900 
12.98  6.7 -1.3 0.94 12.89 -5.28 1400 
13.18   6.9 -7.7 1.3 13.11 -5.18 1000 
13.53  7.2 -16.4 1.4 13.48 -4.95 540 
13.89  7.3 -10.0 1.0 13.86 -4.50 190 
14.12  7.2 -7.8 0.49 14.09 -4.10 76 

where L is the total length of the vortex line. The first term in 
the expansion describes the adiabatic interaction between the 
nucleus and the vortex line with no energy transferred to the 
line. The expression linear in e is the lowest-order term in 

that transfers energy to the vortex line, and it is an 
important, and possibly the dominant, term for exciting vortex 
lines and damping vortex motion.2 This linear term represents 
a dissipative process that converts the free energy of the differ- 
ential motion between the superfluid and the nuclei in the crust 
into vortex excitations, and as shown below tends to increase 
the number of kelvons. The number of vortex excitations 
cannot, however, increase indefinitely. If the vortex excitations 
become effectively “ hotter ” than the phonons in the nuclear 
lattice, then kelvon-phonon processes preferentially destroy 
kelvons, create phonons, and heat the crust. These processes 
are treated in a subsequent paper. 

We write the first-order term in Hint(i) in terms of the inter- 
action force (eq. [2.6]) as 

e(z, t) -fijz, t), (3.4) 

with/jnt = — VF(w)W0. As described in Appendix A, the dis- 
placement e(z, t) can be expressed in terms of creation and 
annihilation operators, al and ak, for kelvons of wavenumber 
k: 

2 Jones (1990) ignores this term claiming, contrary to our arguments here, 
that it does not generate a net increase in the number of vortex excitations. 
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/ h V/2 

e(z’ °= {-^l) Ç + e"ifcZA5,c:i • (3-5) 

Here A is the (left) circular polarization unit vector for a kelvon, 

(3.6) 

ps is the superfluid mass density, and the asterisk denotes the 
complex conjugate. The frequency of a kelvon is given by 

ö>jk = 2ju 9 (3.7) 

where 

H = 7cA(k) * 
(3.8) 

The dimensionless parameter A is given by A ^ 0.116 — ln(/c£) 
for “ hollow core ” vortex lines with wavenumbers in the range 
d“1 k where dv is the spacing between vortex lines 
and £ is the size of the vortex core. In the inner crust £ ~ 10 fin, 
and the intervortex spacing is dv > 10~3 cm. The above form 
for A is thus valid for 10-10 fin-1 k 10-1 fin-1, a condi- 
tion well satisfied for the excitations of importance. 

Expressions (3.5) and (3.7) neglect the interactions among 
vortices and Coriolis effects. Tkachenko (1965,1966,1969) (see 
also Baym & Chandler 1983; Chandler & Baym 1986) exam- 
ined the oscillations of superfluids including the effects of the 
vortex lattice and showed that the elasticity of the vortex 
lattice produce collective oscillations (Tkachenko modes) with 
frequencies up to approximately the superfluid rotation rate. 
Neutron star rotation frequencies, below ~104 s-1, are negli- 
gible compared to the relevant kelvon frequency, cok~ 1017 

s-1, corresponding to /c~10~3 fin-1; see equation (3.20) 
below. Thus vortex interactions and Coriolis terms can be 
ignored here. 

Substituting expression (3.5) for e in the Hamiltonian (3.4), 
we find 

1/2 \L
dz Ç take‘k^ -fjz, t) 

+ a|e-*zA*-/i„t(z,i)]. (3.9) 

The net number of kelvons of wavevector k created in a 
vortex line as a nucleus passes is the difference in the number 
created by the al term and the number annihilated by the ak 
term in equation (3.9). If the initial state contains nk kelvons of 
wavenumber k, first-order perturbation theory gives the prob- 
ability that a kelvon of wavenumber k is created in collision as 

Hfc->/!*+ 1 h2 
r 

dteimt\nk + 11 | nfe> 

= í^l/+(fc’Ú,fc)|2’ (3-10) 

and the probability that a kelvon is annihilated as 

,3-n) 

where 

, (3.12) 

and/+(k, cok) is its spacetime Fourier transform.3 

With each interaction the number of kelvons of wavenumber 
k thus increases by 

= 1 \f+(k, mk) |2 , (3.13) 
hps kL 

independent of the initial occupation number. The total energy 
transferred to the vortex line per scattering is 

EsUb) = E hoh Ank = Ç k21 f+(k, cok) |2 , (3.14) 

which in the continuum limit, L -> oo, becomes 

EscM(b) = P" I f+(k, cok)\
2k2 dk . (3.15) 4npsKp 

In Appendix C we obtain this result alternatively by solving 
the classical equations for exciting vortex oscillations. 

The power dissipated per length of vortex line due to scat- 
tering with nuclei of number nN per unit volume is 

Pd = nNAv EscliU(b)db, (3.16) 
J- 00 

where b is the impact parameter. Using the Fourier transform 
/+(k, cok) given by equation (B14) in Appendix B, we numeri- 
cally evaluate integral (3.16) to obtain 

pd=psK(Mll2v3J2 , (3.17) 

where 

~ 9'9(yyi/3(£| + 0J5EsEl + a27£¿)2/3 (3-18) 

is a characteristic velocity for the vortex dynamics (see § 4). 
Table 2 gives computed values of v* in the inner crust for two 
sets of values of the short-range interaction energy Es : the full 
value of £s given in Table 1 and this value reduced by a factor 
of 10. The physical parameters in equation (3.18) are taken 
from Negele & Vautherin (1973) and Paper I. The logarithmic 
factor, A, in the definition (3.8) of p is evaluated at k*(v*) (see 
eq. [3.20]). The (Ai;)1/2 dependence in the dissipation rate is 

3 We use the following normalization conventions for the Fourier trans- 
forms : 

f00 dœ f00 

A(t) = — e~ia>tA(co), A{œ) = dtelC0tA(t) 
J-00 271 J-00 

1 fL/2 

B{z) = - X eikzB(k), B(k) = dze-ikzB(z) , 
L k J — L/2 

where the vortex line is of length L and we use periodic boundary conditions at 
±L/2. The summation is over k = Inn/L, n = 0, ±1, ±2,  
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TABLE 2 
Parameters for the Vortex Dynamics 

Full Es Reduced Es 

log/)» logt), log Vg logt;» logt)B log »„ta log/c»(t)»)/At)V2 

(gem-3) (ems-1) (cm s-1) (ems-1) (ems-1) (cm s-1) (fm A) 

11.83  8.55 5.15 7.14 5.15 4.25 -2.01 
11.99  8.16 5.20 6.80 5.20 4.43 -2.08 
12.18   7.97 5.28 6.63 5.28 4.58 -2.10 
12.41  7.69 5.32 6.39 5.32 4.76 -2.14 
12.79  7.29 5.43 6.08 5.43 5.06 -2.19 
12.98  5.88 7.20 5.33 6.20 5.36 -2.29 
13.18   6.82 8.20 5.27 7.20 5.60 -2.24 
13.53  6.94 8.23 5.40 7.23 6.11 -2.24 
13.89  6.41 7.72 4.86 6.72 6.94 -2.28 
14.12  6.24 7.58 4.74 6.58 7.62 -2.28 

readily understood by looking at expressions (3.16) and (3.14). 
The dissipation rate is proportional to Ai; times £scatt, and £scatt 

is proportional to the product of the characteristic frequency a> 
that is excited, the effective bandwidth Ak ce œ112, and the 
square of the matrix element. Taking the characteristic fre- 
quency to be co ~ Av/R, where R is the effective nuclear radius, 
and the matrix element to be oc 1/At;, as in equation (B2), one 
has pd oc (At>)1/2. 

The above derivation assumes that each interaction between 
a vortex line and a nucleus is distinct and that the excitations 
from each interaction add incoherently on average. If the char- 
acteristic wavelength of excitations is comparable to the dis- 
tance li between two points that are being plucked at one time, 
one cannot treat the two interactions as independent. To esti- 
mate /¿ we assume that all nuclei that lie within a distance ~ R 
of a vortex line interact with the line. If the vortex line is of 
length L, the number of nuclei interacting with the line at any 
instant is iV ~ nR2LnN, and 

lt = 
L 
N 

1 
nR2nN 

(3.19) 

limits of small and large k the rate (eq. [3.23]) is 

(K 
dt 

= 0.974 
nN & 

h Avps k 

f(£| + 1.91£s£t + 2.00££) 

Hf 
10.16[ exp 

k <4 k* 

k$> k* (3.24) 

where k*(Av) is defined in equation (3.20). In the inner crust of 
a neutron star k*(Av) ^ 6 x 10~3 At;^2 fm-1, where At;7 = 
Ai;/(107 cm s-1). The two expressions (3.24) are shown as 
dashed lines in Figure 1. The production rate dnk/dt is nearly 
flat for k <£ k* and decreases rapidly at k > 3k*. An expression 
that approximates the proper behavior is 

dn, ^ (dnÁ f 1 + 4.456(k/k*)2 } 
dt ~\dt J0\l + exp [10(k/k* - 2.6)]J ’ { J 

where (dnk/dt)0 is the k k* limit given in equation (3.24). The 
solid curve in Figure 1 shows this approximate expression. The 
coefficient of (k/k*)2 is chosen so that the power deposited per 

For a given velocity difference Av the characteristic wavenum- 
ber for the excitation spectrum is 

k*(At;) = (2p Av/hR) 1/2 (3.20) 

and a necessary condition for the excitations from different 
encounters to be independent is that 

or equivalently, 

lik^Av) 1 , 

A hR 

Av>v^=Wr 

(3.21) 

(3.22) 

Table 2 shows values of vmin at several densities in the inner 
crust. 

The rate at which vortex excitations are generated along the 
total length of a given line is 

CÚ 

Ö O 
o 2 
o 

tí o > 
(L> « 
00 o kJ 

-2 

^7 = nN AvL Í Ank db = n"AvR f | f+(k, œk)\
2 dxb , 

dt J-oo hpsK 

(3.23) 

with Tb = b/R. Using the transform (B14) we find that in the 

-1 -.5 0 .5 1 
Log k/k* 

Fig. 1.—Spectrum of vortex excitations generated by a vortex line inter- 
acting with a nucleus, (ôn/ôt)/(dn/ôt)0, is shown as a function of k/k*. Dashed 
lines show the limiting forms of the kelvon excitation rate (e.g. [3.24]), and the 
solid line gives the approximate expression (eq. [3.25]). For this figure we take 
Es El. 
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unit length, 

Pd = hcoi 
dnk dk 
dt 2n 

(3.26) 

evaluated with equation (3.25) agrees with equation (3.17) for 
I I ^ \elI which is generally the interesting limit. 

4. VORTEX DYNAMICS AND DISSIPATION 

The crust rotation rates in pulsars are observed generally to 
decrease. To the extent that the vortex distribution is frozen 
into the crust, the superfluid is unable to slow down with the 
crust; this freezing allows the differential velocity between the 
crust and the superfluid to grow. If there were no forces 
pinning vortex lines to the crust, the lines would move with the 
same velocity as the superfluid. However, when a vortex line is 
pinned to the crust, the superfluid streams past the line, 
producing a Magnus force per unit length of vortex line : 

/m X (»„ - 05) > (4.1) 
where k, whose magnitude is tc, is aligned with the vortex line; 
vv — vs is the relative velocity of the vortex line with respect to 
the superfluid. A sufficiently large Magnus force breaks the 
pinning bonds and enables the vortex lines to move in the star. 
The characteristic relative velocity, vB, at which vortex lines 
break free is found by equating the magnitude of the Magnus 
force with the maximum pinning force per unit length; this 
balance is approximately given by 

PsKVß-^T1, (4.2) dP 
where Fmax is the maximum pinning force per site and dp is the 
minimum distance between pinning sites on a given line. At a 
smaller Magnus force the line may still break free if it has 
enough excitation energy to overcome the potential barriers of 
the pinning bonds (Alpar et al. 1984; Link & Epstein 1991). 

In the inner crust of neutron stars, vortex lines pin on nuclei 
or in the interstices between nuclei, depending on the local 
stellar density. In the high-density (>1013 gem-3) part of the 
inner crust, the vortex-nucleus interaction is attractive, and the 
lines strongly pin on nuclei. At lower densities the interaction is 
repulsive; the vortex lines tend to avoid nuclei and can weakly 
pin to the spaces between the nuclei. We refer to these two 
density regimes as the nuclear pinning and interstitial pinning 
regions, respectively (Paper I; Link & Epstein 1991). 

Table 2 lists vB for several densities in the inner crust of a 
neutron star, for the full and reduced values of Es. In the 
nuclear pinning region Fmax and thus vB are proportional to Es 
(to within possible dependence of the length scale of the inter- 
action on Es, which we ignore here; see Link & Epstein 1991 
for a more complete discussion). In the interstitial pinning 
region vB is effectively independent of Es. The abrupt change in 
vB near a stellar density ~8 x 1012 g cm-3 marks the tran- 
sition from the interstitial pinning region to the nuclear 
pinning region. Most models of the dynamical evolution of the 
superfluid in the inner crust of a neutron star predict that the 
relative velocity At? of the unpinned or free vortex lines is ~vB. 
For velocities of this order, the condition (3.22) that the nuclear 
scatterings are largely independent is satisfied except at the 
highest densities (see Table 2). 

One promising explanation for giant glitches in pulsars 
invokes catastrophic unpinning of vortex lines in some region of 
the inner crust (Anderson & Itoh 1975). In this model the 

vortex lines remain pinned until the velocity difference Avs 

between the superfluid and crust builds up to near its 
maximum value vB. At some instant, a small fraction Ofree of 
the vortex lines in the inner crust are assumed to unpin by an 
unspecified process. After unpinning, the free vortex lines 
migrate outward as they transfer angular momentum from the 
superfluid to the solid crust. 

The rate at which the glitch instability grows and the spin-up 
time scale for a glitch are determined by the mechanisms that 
transfer angular momentum from the superfluid to the solid 
crust. The importance of understanding the physics of the 
transfer time scale was underscored by the recent determi- 
nation by Hamilton et al. (1989) (also see Flanagan 1989,1990; 
McCulloch et al. 1990) that the spin-up time scale for a glitch 
in the Vela pulsar did not exceed 2 minutes. We now turn to a 
description of these coupling processes. First we discuss vortex 
motion and superfluid dynamics. After that we relate the 
superfluid dynamics to the dissipative mechanism derived in 
the previous section and consider the global behavior of the 
superfluid in the star. 

An unpinned segment of a vortex line moves according to 
the dynamical equation 

/m +/other = 0 , (4.3) 
where/other are all the forces, other than the Magnus force, that 
act on the line. If there are no other forces, the vortex line is 
swept along with the superfluid, and no angular momentum is 
exchanged between the superfluid and the crust. Only when 
there are azimuthal forces on a vortex line, which apply 
torques to the crust and to the superfluid, does a vortex line 
move in the radial direction and change the angular momen- 
tum of the superfluid and hence that of the crust. 

We consider a viscous drag between the vortex line and the 
crust of the form 

/other “»/drag = ~rj At , (4.4) 

where 77 is a drag coefficient and Av is the relative velocity of 
the vortex line through the crust. The power dissipated per 
length of vortex line by this drag is 

Pi = “/drag • At> = t](Av)2 . (4.5) 
Substituting equation (4.4) in the dynamical equation (4.3), one 
sees that the vortex motion is governed by the equation 

k x (vv — vs) = tan Qd Av , (4.6) 

where k = k/k, 

tan 6d = — , (4.7) 
PsK 

and 6d is the dissipation angle. As one sees from the azimuthal 
component of equation (4.6), the trajectory of a vortex line in a 
frame comoving with the crust is at an angle 6d with respect to 
the superfluid velocity, that is, the radial component of the 
vortex velocity is 

vr = Av sin 6d . (4.8) 

The fact that the radial velocity is bounded by the magni- 
tude of the velocity of the vortex line with respect to the crust 
can be understood by a simple geometric argument. A vortex 
reacts only to nuclei that are closer than ~R, the effective 
nuclear radius, and each interaction can at most deflect a 
segment of length lt a distance ~R in the radial direction. 
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The maximum radial velocity iv,max due to these interactions 
is proportional to the product of the frequency of vortex-nucleus 
encounters and the maximum radial deflection. As a free 
vortex line of length L moves through the crystal lattice with a 
relative velocity Av, it strongly interacts with ñ = Ñ/L ^ 
2RAvnN nuclei per unit length and time. The length of the 
vortex line segment deflected by each interaction cannot 
exceed lh the mean spacing between interacting nuclei along 
the vortex line, given by equation (3.19). The maximum value 
of the mean radial velocity is thus 

«r, max - ^ ~ At) . (4.9) 
The dynamical equation (4.6) also implies that vr varies with 

lag between the velocities of the crust and superfluid, Avs = 
I vs - vc I, as 

v, = j At>s sin 26d . (4.10) 

The lag velocity At? between the vortex and the solid crust 
depends on Avs as 

At; = At;s cos 6d . (4.11) 

In the absence of dissipation, 6d = 0 and At; = At;s. 
To estimate 9d in terms of the dissipative processes discussed 

in § 3, we equate the dissipated powers (4.5) and (3.17) to 
obtain 

cos = [1 + (vJAv)3^~1/2 . (4.12) 

This estimate for 9d is only valid as long as At; is not too small. 
Indeed, naively using equation (4.12) in equation (4.11), one 
finds 

At;s = [(At;)2 + t;^/At;]1/2 , (4.13) 

which implies that Avs as a function of At; has a minimum value 
2-1/3iV The problem is that the approximations leading to 
equation (4.12) break down for At; too small, and hence 9d too 
large. A complete treatment of the vortex dissipation for low 
velocities needs to include the effects of the vortex-nucleus 
interactions on the kelvon dispersion relation, as well as multi- 
ple excitation and collective processes. These topics will be 
treated elsewhere. The effect of such processes is to produce an 
upper limit to the dissipation angle 0d>max. Then for Av$> v*, 
equation (4.13) holds, while for Av one has 

Av = cos 6dtnmxAvs . (4.14) 

The derivation of equation (4.12) is based on two assump- 
tions: that separate encounters of a given vortex line with 
different nuclei are independent, and thus Av vmin (eq. 
[3.22]), and that the vortex lines and nuclei are not greatly 
perturbed by their interactions, as underlies equation (2.5). 
This latter assumption does not hold for very small differential 
velocities for which the dissipation angle and the drag force 
become very large. To see how this lower limit on Av comes 
about, consider the magnitude of the distortion of a vortex line 
due to nuclear interactions. From the dynamic equations (4.1) 
and (4.3), we see that the magnitude of the perturbation of the 
vortex velocity is ôvv ~ (fnty/ps k where </int> is the inter- 
action force averaged over the segment of line that is per- 
turbed. The net distortion of the line is thus ôsv ~ Svv(tint), 
where <iint> ~ b/Av is the characteristic time scale for the 
impulse; therefore 

ösc </int> 
b pskAv 

(4.15) 

A necessary condition for the derivation of equation (4.12) to 
be valid is that the vortex displacement ôsv be small compared 
to the impact parameter b. This condition implies that Av > 
(fnt)/ps k ~ ôvv. Since the net radial velocity vr of the vortex 
line has to be less than the perturbed velocity ôvv, the deriva- 
tion of equation (4.12) holds only for At; > vr and thus <0 
or equivalently Av$> v*. 

In Figure 2 we show the dependence of the radial velocity vr 
on the superfluid lag velocity Ai;s obtained by taking 9d from 
equations (4.11) and (4.12), but bounded from above by the 
illustrative value, 9d max = 0.7. 

We consider now the global motion of the superfluid in the 
star. The angular velocity of the superfluid Qs(r) at a cylindrical 
radius r from the rotation axis is proportional to the mean 
density of vortex lines within this radius. If a fraction <I>free of 
the vortex lines is not pinned to the crust and is free to move 
radially with velocity vr, then the average superfluid rotation 
slows at a rate given by 

&s = Ñv= 2ty<i>free 

ÍV Nv r 
(4.16) 

where Nv is the number of vortices interior to cylindrical radius 
r. The angular momentum lost by the superfluid is transferred 
to the crust, and the angular velocity of the crust increases 
according to 

ÙsIs + ÙcIc=0, (4.17) 

where Is is the moment of inertia of the superfluid and Ic is the 
moment of inertia of the crust plus that of the components that 
are strongly coupled to the crust. Since the liquid core of the 
star dynamically couples to the crust on short time scales 
(Alpar, Langer, & Sauls 1984; Alpar & Sauls 1988), Ic is nearly 
the moment of inertia of the entire star, and Is/Ic ~ 10 ~2. The 
spin-up time scale tsu is AQC/Í2C, where AQC is the angular 
velocity change of the crust of a neutron star during the 
spin-up phase of a pulsar glitch. Using equations (4.10), (4.16), 
(4.17), and writing Avs = (Qs — Qc)r, we find 

Li, 
FAQ, 

Is&s ^c^free 
[Qs sin 20d] ' (4.18) 

The numerator of the fraction is the amount of angular 
momentum imparted to the crust, and the denominator is the 
maximum angular momentum available to be extracted from 
the superfluid when a fraction <I>free of the vortex lines move 

Log(Avs/v*) 
Fig. 2.—Radial velocity of a vortex line as a function of the relative velocity 

of the superfluid and the crust. Maximum dissipation angle is taken for the 
figure to be 0.7. 
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outward. The first term in equation (4.18) is thus less than 
unity, so that 

1 
tsa ~ Í2S sin 20d ‘ 

(4.19) 

We expect the initial value of Qs — Qc to be comparable to the 
maximum value vB/R*, where R* is the stellar radius. 

For vB > v* we obtain the spin-up time scale using equation 
(4.12) in equation (4.19), 

t su <(Vh*)!2 
~ 2QS 

(4.20) 

For smaller vB the maximum dissipation angle is reached, and 

isu^(^)“1. (4.21) 
Among the entries in Table 2 the largest value of vB/v* is ~85 
corresponding to an upper limit on the spin-up time scale of 
iSu ^ 60P, where P is the rotation period. 

5. THE 1988 DECEMBER 24 GLITCH IN THE VELA PULSAR 

Only one giant pulsar glitch has been observed during the 
spin-up phase, the 1988 December 24 glitch of the Vela pulsar 
(Hamilton et al. 1989; McCulloch et al. 1990; Flanagan 1989, 
1990). The change in the angular velocity of the crust was 
AQ ^ 1.3 x 10_4s-1, and the spin-up time was observed to be 
less than 2 minutes. Previously published superfluid dissi- 
pation processes (Feibelman 1971; Bildsten & Epstein 1989; 
Jones 1990) give spin-up time scales much greater than 2 
minutes. The spin-up time scale for the nuclear scattering 
process considered here is < 5 s for the Vela pulsar, more than 
adequate for explaining the required rate of angular momen- 
tum transfer from the superfluid to the crust. However, within 
the catastrophic unpinning model for glitches, the instability 
that forces many vortex lines to unpin rapidly remains an 
important unanswered question. 

The total number of pinned vortex lines in the Vela pulsar 
is ~1015, and a fraction Ofree of these unpin during a giant 
glitch. A lower limit on <I>free can be obtained by considering 
the angular momentum Ic AQC transferred from the superfluid 
to the crust during a glitch. Since the maximum amount of 
angular momentum that the superfluid can lose is ~/sd>free | 
— Qc I, equating angular momentum loss and gain gives 

Ofree ^ h ^c/h I ~ I* To obtain a numerical estimate we 
take I Qs — Qc I ^ vB/R* which gives 

^free £ 10‘ 102/, 
AQ, R+ 

106 cm/VlO7 cm s 

(5.1) 

The ratio depends sensitively on the equation of state. For 
a 1.4 M0 star the “ stiff” Pandharipande & Smith (1975) equa- 
tion of state gives Is/Ic ~ 0.2 for the nuclear pinning region and 
~0.003 for the interstitial pinning region. For the “soft” 
Baym, Pethick, & Sutherland (1971) equation of state IJIC is 
~ 0.005 for the nuclear pinning region and ~10-4 for the 
interstitial pinning region. If a giant glitch originates in the 
nuclear pinning region of the inner crust where vB ~ 107 cm 
s-1, only a very small fraction, of order 10 ~3, of the vortex 
lines need to be involved. On the other hand, if the glitch 
originates in the interstitial pinning region, where vB ~ 105 cm 
s-1, then ~0.3 of the vortex lines in this region would have to 
unpin catastrophically for a star with a stiff equation of state, 
and a giant glitch would not be possible if the equation of state 
were much softer. 

This work was carried out under the auspices of the Depart- 
ment of Energy and supported in part by NSF grant DMR 
88-18713. We have had useful discussions with Ali Alpar, 
David Pines, Mai Ruderman, and Noriaki Shibazaki about the 
observational consequences of large pinning strengths, and 
with Edouard Sonin about limits onfdrag. 

APPENDIX A 

VORTEX EXCITATIONS 

Consider a vortex line segment of length L oriented along the z-axis of a Cartesian coordinate system. Let the vortex line have a 
small displacement e(z, t) given by equation (3.1), and a perturbation in its velocity vv(z, t) = de(z, t)/dt. We take the unperturbed 
vortex line to be at rest in the superfluid and neglect vortex-vortex interactions and Coriolis effects. For a tensile force Td2e(z9 t)/dz2» 
the dynamical equation of the line (cf. eqs. [4.1] and [4.3]) becomes 

psK x fe(z, t) d2e(z, t) 
dt + dz2 

where ps is the superfluid mass density and k = (nh/mn)z. 
We define complex coordinates e+ and €_ by 

€+(z, i) = * e(z, t), € _(z, t) = À • e(z, t), 

where A is the complex unit polarization vector (3.6). The displacement of the vortex line is thus 

(Al) 

(A2) 

e(z, t) = [e+(z, t)À + e_(z, i)A*] . 

In terms of e±(z, t) the dynamic equation (Al) is 

de±(z, t) d2e+(z, t) 
dt - dz2 - 

(A3) 

(A4) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

2A
pJ

. 
. .

38
7.

 .
27

6E
 

VORTEX DRAG AND GLITCH TIME SCALE 283 No. 1, 1992 

In (k, ^-coordinates equation (A4) is 

de±(fc, t) 
dt 

± i(oke±(k, t) = 0 , (A5) 

where 

and 

Tk2 hk2 

PSK 2ju (A6) 

fi = psKh/2T. (A7) 

Coriolis effects would add a term 2QS to the frequency (A6), where Qs is the superfluid rotational velocity. 
In (/c, (w)-coordinates (A4) is 

(œ + (ok)€±(k, (ó) — 0 . (A8) 

Equations (A5) and (A8) are actually more general than (A4) because in the latter T can be a function of k; hereafter, when working 
in k-space we consider T and p to depend on k. From equation (A8) we see that the eigenfrequencies of the lines are cok for e+(k, co) 
and —cok for €_(k, co). These two modes, simply complex conjugates of each other, represent only one independent solution. Since 
the dynamical equation is only first order in the time derivative, it has only one solution, the well-known vortex wave (Thomson 
1880; Fetter 1967); the displacement e(z, t) rotates in the clockwise direction relative to k, whereas the fluid circulates around the 
vortex line in the opposite direction. 

For perturbations of wavenumber k, the tension is 

T = Ps*2 

2 
A(k), (A9) 

which gives 

P = 
™n 

nA(k) * (A10) 

The factor A depends logarithmically on the wavenumber k. If the vortex lines are widely spaced compared to the radius of the 
vortex core £, and if k£ <4 1, then (Thomson 1880; Fetter 1967) 

Tk = Ps* 
An 

(fl-lnkQ , (All) 

where a ^ 0.116 for a vortex line with a hollow core. This form for the tension yields a vanishing group velocity atk = fc0 ^ 0.68/£; 
the classical vortex wave theory is valid only for k k0. 

The energy of a perturbation in a vortex line is 

m-2 

'Lj 2 

-LU 

de(z, t) 
dz 

dz 

= — Ç Tk2[€x(k, t)ex( — k, i) + ey(k, t)ey(-k, t)] 

= ¿1 ™2|e(M)|2. (A 12) 

Vortex wave excitations are, in fact, quantized; in this paper we refer to quantized vortex oscillations as kelvons. To derive the 
properties of kelvons, we first express E(t) as a Hamiltonian H(qk, pk), where qk and pk are conjugate coordinates and momenta. With 
the definitions 

qk^(^)ll2€x{K i), 
-(¥)‘V 

-k, t) 

the energy (A 12) can be written as a Hamiltonian 

so that Hamilton’s equations, 

= I Z (0k(qkq.k + pkp-k), k 

dH 
äT = ’ oqk 

(A 13) 

(A 14) 

(A 15) 
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give the equations of motion (A5). Quantum mechanically the operators qk and pk as operators obey the commutation relations 

[fc ZV] = ihôKk, . (A 16) 

We now introduce kelvon creation and annihilation operators, ¿4 and ak. 

ak = ÍQ-k ~ iPki ? ak = 

These operators satisfy the Bose commutation relations : 

IX, 4'] = ¿M' > X, aA = [4, 4'] = o . (A18) 

Inversion of equation (A 17) gives 

qk = ^ + Pk = iJ^[ak-a-k}- (A19) 

Substituting these relations into the Hamiltonian (A14) formally yields H = '£jk ficok(al ak + j). Since the Hamiltonian only describes 
excitations above the ground state of the system, not the ground state itself, we drop the zero-point term, and have 

H = 'L hoh 4 ak . (A20) 
k 

Since al ak is the number operator with eigenvalues nk = 0,1,2,..., the energy levels for a mode of wavenumber k are nk hcok. 
Using the definitions of the conjugate coordinates and the creation and annihilation operators (A13) and (A17), we express the 

vortex displacement (A3) as 

/ h V/2 

e(z, t) =    X [ake
ikzÀ + al e~ikz^ . (A21) 

\PsKLJ k 

From equation (A21) we find that the mean square amplitude of a kelvon of wavevector k is 

<e£> = 2h/ps kL = 2mjnps L . (A22) 

For neutron star values, L ~ 106 cm andps ~ 1013 g cm-3, the root mean square amplitude is ~ 3 x 10“22 cm. 
From equation (A21) we find the equal time commutation relations 

[ex(z), ex(z )] = Ley(z), e,(z')] = 0 , [ex(z), e,(z')] = — . (A23) 
PsK 

The failure of ex and ey to commute arises from the implicit assumption that the vortex lines have no inertial mass. In the presence of 
an inertial mass, p* per unit length, the lines also have a high-frequency mode, co* ^ (T/p*)1,2k, which is not included in the sum 
(A21) over normal modes (Baym & Chandler 1983). With this mode taken into account, all components of the vortex displacement 
commute at equal times. In effect, in writing equation (A21) we are averaging over the high-frequency cycloidal motion; the 
time-averaged displacements obey nonzero commutation relations. The situation is entirely analogous to the quantum mechanics of 
guiding center coordinates in the motion of a charged particle in a large magnetic field (Baym & Epstein 1992). 

The angular momentum of a kelvon can be found by considering a vortex in a cylinder of superfluid of radius Rc and length L. Let 
the unperturbed vortex be aligned with the cylinder and offset from the axis by r0. The position of points along the excited vortex 
are given by 

V2ft 
X + ip-k] . JA17) 

rv(z, t) = i-o + e(z> t). 

The component of the angular momentum along the cylinder axis of the fluid in the cylinder is 

r fi/2 (*Rc 
Jz = dz d2rps(r x v)z = ps I (Inrv^rdr dz . 

J J — L/2 Jo 

Since the circulation 27rn;0 in the integrand is a step function, fc©(r — rv), we have 

='fi 
CX2 - rD(z, t)2]dz . 

(A24) 

(A25) 

(A26) 

We substitute equations (A21) and (A24) into this, expression and separate the results into a term J0 that gives the contribution from 
the straight vortex line, and a term AJ that contains the contributions from the oscillatory perturbations. The angular momentum 
term for the straight vortex is 

•/o = 2 
[R?-(r0 + e0)2], (A27) 
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where e0 is the k = 0 perturbation of the line. The perturbation e0 is simply a translation of the vortex, determined by global energy 
and momentum conservation, and is not a kelvon excitation. The component AJ has terms linear and quadratic in ek. Upon 
integrating over z the linear terms vanish, leaving 

AJ = - ^ í I e(z, t) - e012 dz -► - ft ^ a| , (A28) 
2 J k*o 

where we again drop the zero-point term. As we see, each kelvon carries an angular momentum — ft. 
When a kelvon is generated, the vortex line must undergo a uniform displacement e0 in order to conserve energy and angular 

momentum globally. In the creation of a kelvon of wavenumber k, the kinetic energy of the superfluid decreases by jk C2S, where is 
the angular momentum transferred from the superfluid to the crust of a neutron star in the creation of the kelvon, and ils is the 
angular velocity of the superfluid in the neighborhood of the vortex line. The energy of the crust increases byjk Qc, where fi(. is the 
angular velocity of the crust. The net loss in rotational kinetic energy goes into the kelvon excitation : hmk = jk(Qs — fic), so that 

hah 
ns - a/ 

(A29) 

The characteristic kelvon frequency in neutron stars, mk ~ 1017 s_ 1 is many orders of greater than the macroscopic rotation rates 
Qs or Qc. The angular momentum change jk induced by the generation of a kelvon is thus huge compared to the angular momentum 
— ft associated with the oscillations of the vortex line; most of the change results from the small shift, e0, of the mean position of the 
vortex line. To estimate the magnitude of €0, we equate the term linear in e0 in the angular momentum (A27) with to find 

_ <4> (£k 
60 2r0 Í2S —O/ 

where is the mean square amplitude of a kelvon (eq. [A22]). For characteristic neutron star values, r0 ~ L 
ps ~ 1013 g cm" 3, the ratio of the k = 0 displacement to the root mean square kelvon displacement is 

(A30) 

106 cm and 

e0 ^ 10-28 œk 
Qs-iV 

(A31) 

This displacement is extremely small, but the sum of these small shifts produces the net radial velocity of a vortex line given by 
equation (4.10). 

APPENDIX B 

FOURIER TRANSFORM /+(/c, œk) 

The transform of the force component f+(k, t) given by equations (2.6) and (3.12) is 

f+(k, co*) = ^ J (t + hb) 
4Ec Jcokt dt r <t>(z, 

J — co 
t)e ,k: dz, 

1(1 + T2 + T2)5 T (1 + T2 + T2)2J 

where r = Avt/R and here we write (j) as an explicit function of t. We change the integration variable to t so that/, (k. a>k) becomes 

(Bl) 

+ T*2)5 (1 + T2 + 
t) exp 

iœk Rt 
Aî; 

\dT . (B2) 

The function <£(z, i) defines how the force fint is distributed along the vortex line. As we show below, the exact form of /(z, t) is 
unimportant because the range over which Fint acts is small compared to the wavelengths of the modes that are excited; in effect, </> 
can be approximated by a delta function: </>(z, t) —> <5(z), or <j)(k, t) —> 1. To illustrate how the range of <f> enters into the computation of 
£Scatt, we take / to have the simple form 

<t>(z, t) = exp \-w2l, 
W^n 

where W(r) is the characteristic range of /(z, t). The transform <f>{k. t) is 

and/+(k, cok) is 

/+(k,m*) = ^||_jT + ÍT6
)[¡ 

(/)(k, t) = exp 

4E* 

k2W‘ 

(1 +Z2+ T2)5 ' (1 + T2 + T2)2 exp 
iwkR 

Av 
k2W: 

Idt. 

(B3) 

(B4) 

(B5) 
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If W(t) does not grow too quickly for | t | -► oo in the upper-half of the complex r-plane, then we can solve equation (B5) by 
contour integration. We proceed by defining integrals fa(k, œk) and fb(k, cok) : 

fa(k, mk) = J 
-oo (1 + T2 + Tfc) 

1 

exp 

exp 

icovR 
Av 

icokR 
Av 

4 

k2W2\ 

^r) 
\dr . 

(B6) 

(B7) 
(1 + T2 + T*2) 

The transform/+(fc, cok) can be obtained by differentiating the integrals/Jfc, a>k) andfb(k, ojk) with respect tor,, and adding the results 
together with the appropriate weights. The integrands oifa(k, mk) and/#, cok) have poles atr = ±i(l + t^)1/2. Evaluating/#, wk) 
and/#, o>k) with contour integrals closed in the upper half-plane gives 

fn\- I fc2R2 ( y n/I+^í w2 

2R1 

and 

fb{k, cak) = c::n r k2R2 (hjrT7b wfes 
L 2 V »¿vR 2R2 

where IVres is W(t) evaluated at the pole in the upper half-plane, IVres = W[i(l + t¿)1/2]. 
When t ~ Tb the length scale W(t) is of the order of the nucleus-vortex separation, 

and 

W(t) - R(t2 + T2)1/2 

W2 ^ -R2 rr res — 

(B8) 

(B9) 

(BIO) 

(Bll) 

With this estimate we see that the second term in the parentheses in equations (B8) and (B9) is negligible compared to the first if 

tiAvR<ah. (B12) 

This condition corresponds to 

Av < 1.7 x 109l 
R 

3 J\7fm 
cm s (B13) 

Since the maximum values of Av expected in a neutron star are of the order of t>B < 108 cm s "1 (see Table 2), the contribution of the 
B^es is not very important. We do not retain this term in the following, a step equivalent to taking /(r, i) ~ <5(z). 

The transform/+(/c, a>k) is now obtained by differentiating fjk, cok) and /#, <ok) with respect to Th and creating the appropriate 
sum of these results. Using MACSYMA we obtain 

m , _,2 JJÏs 
/#, mk) = — exp ( — K2Tb) [105t, + \5K2(Tb + lzb Tb) + l5(Tb + 3ts T

2) 
Av ' ^ ^ (48T9 

+ 2K6(3Tb + 5zb Tb) + K\Tl + zb Tby\ + f| 0* + K2(T2 + zb Tt)]J , 

where Tb = (l + zb)
1/2, K = k/k* = (cok R/Av)1'2, and k# = (2/u Av/hR)1'2. 

(B14) 

APPENDIX C 

CLASSICAL DERIVATION OF THE VORTEX-NUCLEUS INTERACTION 

The dynamical equation for the vortex perturbation (Al) including the interaction force (2.6) is 

8e(z, t) d2e(z, t) 
PSK X ■ + T ■ +/int(z. t) = 0 . 8t ' 8z2 

This equation can be written in terms of the complex amplitudes e± and/+ given by equations (A2) and (3.12): 

8e±(z, t) 82e±(z, t) 
±ipsK 

8t 
■+T 

8z2 +/±(z. i) = 0 . 

Fourier transforming the equation for e+ one has 

(psK(û — k2T)e+(k, co) - f+(k, m) . 

(Cl) 

(C2) 

(C3) 
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Then Fourier transforming in time and using the definition (A6) for cok we obtain 

¥(k, co)e~l(0t dco 
e.(M)=^r¿í 

PsK J-00 (®- ' — + irj) 2n 

Here we introduce an infinitesimal imaginary term irj to ensure causality. In terms off+(k, t') we obtain 

e+(m)=—r r 
Ps* J-oo J- 

f+(k, dco 
— — — dt . 

3 ico — cok + irj] 2n 

Closing the contour of the co-integral in the upper (for t < t') and lower (for t > tf) half-planes, one has 

€+(k, t) = — e-iœkt 

Vs* 

Long after the vortex-nucleus interaction, we can let i -► oo so that 

f+(k, t')ei0‘kt' dt'. 

(C4) 

(C5) 

(C6) 

lim€+(/c, Oe'““ = : f+{k, wk). 
(-►oo 

(C7) 

Evaluating e (k. t) gives e_(fc, t) = e* (fc, t) so that the energy (eq. [A12]) deposited in perturbations of the line by a single scattering 
is 

Æscattfrf,) = lim TT Z Tk21 e(k, t) I2 = - z Z k2\f+(k, cok) \2 (C8) 

in agreement with equation (3.14). 
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