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ABSTRACT 
Comparisons are made between star-count mass functions and surface density profiles for the globular clus- 

ter M71 and multimass, tidally truncated Fokker-Planck simulations reheated by three-body binaries. The 
degree of mass segregation and the short relaxation time observed for the cluster suggest that M71 should be 
a post-core-collapse cluster. In the standard models, the tidal boundary and the degree of mass segregation 
were approximately reproducible. However, we note that the inferred tidal radius, about 10 pc, is distinctly 
less than that based on consideration of the cluster’s Galactic orbit. On the other hand, while the central 
surface density profiles are somewhat more concentrated than a King model, the post-core-collapse model 
surface density profiles are too steep to match these observations. It is shown that gravothermal oscillations 
are unlikely to affect the comparison between observations and theory except in the case of clusters with 
extreme cusps. The presence of massive stellar remnants (black holes) can flatten the post-core-collapse surface 
brightness profile, but such models fail to reproduce the observed mass segregation and also predict an unac- 
ceptably high value for the central velocity dispersion. Models in which the heating rate is artificially 
enhanced do seem to be able to reproduce the observations but, in the absence of an identified source for this 
extra heating, such models are not physically justified. Thus, it appears that this type of Fokker-Planck model, 
in which post-core-collapse expansion is driven solely by three-body binaries, is incomplete and that addi- 
tional physics, such as the effects of stellar evolution or primordial binaries, is required. 
Subject headings: celestial mechanics, stellar dynamics — globular clusters: individual (M71) — stars: statistics 

1. INTRODUCTION 

With the increasing sophistication of Fokker-Planck models 
for globular cluster evolution has come the ability to make 
specific comparisons with observations. In particular, we may 
attempt to match observed properties for a given globular 
cluster with a selected model. Several papers have recently 
attempted to match Fokker-Planck simulations with the 
surface brightness profiles of specific collapsed-core globular 
clusters. Grabhorn et al. (1991), for example, compare their 
models to surface brightness profiles and velocity dispersions 
for M15 and NGC 6624. In any comparison between models 
(where the stars are classed by mass) and observable quantities 
(where only the luminosities are known) mass-to-light ratios 
are required. In the case of the post-main-sequence stars which 
dominate a cluster’s light profile, these can be very uncertain. 
When the observable quantity is based on star counts, the 
uncertainties in the post-main-sequence mass-to-light ratios 
are less important since the numbers are dominated by less- 
evolved stars. For the same reason, surface brightness profiles 
provide a poor constraint on the mass function. Larger data 
sets, preferably based on star counts, are required in order that 
more detailed tests of the models may be performed. One sign 
of dynamical evolution is mass segregation in which transfers 
of energy between stars of different masses have resulted in a 
settling of the more massive components into the center of the 
cluster, enhancing the numbers of less massive stars in the halo. 
Tidal stripping will selectively remove the stars which venture 
farthest from the core of the cluster, specifically the least 
massive component, for clusters whose orbits take them deep 
into the Galactic potential. Lee, Fahlman, & Richer (1991, 
hereafter LFR), for example, have suggested that a flattened or 
inverted mass function in the central region is a sign of a highly 

evolved cluster. The main advantage of using such a cluster is 
that the results depend less on the initial conditions than in the 
case where little evolution has taken place. In addition, more of 
the input physics, especially the nature of the heating source 
powering the post-core-collapse evolution may be probed. 
Tests of the models using clusters other than those in deep core 
collapse will also provide information on the cluster system as 
a whole, enabling us to address questions such as survival rates 
for various sets of initial conditions and the relationship 
between the Galactic halo and the globular cluster system. 

In this paper we compare post-core-collapse Fokker-Planck 
models, driven by three-body binary heating, to the globular 
cluster M71. This cluster shows a highly flattened mass func- 
tion, inverted in the core, significant mass segregation (Richer 
& Fahlman 1989, hereafter RF89), and a peculiar surface 
density profile. The observational aspects will be discussed in 
§ 2 and the details of the Fokker-Planck models in § 3. The 
initial comparison in § 4 reveals an inconsistency between the 
observations and the models. Various attempts to resolve this 
contradiction are discussed in § 5. The conclusions of this 
paper are summarized in § 6. 

2. OBSERVATIONAL DATA 

Detailed star counts in M71 are given in RF89 and are based 
on a series of overlapping UBV CCD frames, which completely 
cover the central part of the cluster (see Richer & Fahlman 
1988). From these data, it was clear that the stars in M71 
display a significant degree of mass segregation, broadly con- 
sistent with the predictions of a King-Michie model only if a 
substantial population of low-mass stars were present in the 
cluster. Subsequent deep observations in a field located some 3' 
from the cluster center provided direct evidence of these low- 

106 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
6.

 .
10

6D
 

FOKKER-PLANCK MODELS OF M71 107 

TABLE 1 
Surface Density Profiles 

re (Pc) 

12 < F < 18 

N (pc 2) 

18 < F < 20 

N (pc 2) ± 

0.183. 
0.316. 
0.448. 
0.568. 
0.675. 
0.804. 
0.955. 
1.135. 
1.349. 
1.607. 
1.910. 
2.270. 
2.698. 
3.214. 

196. 
216. 
155. 
133. 
153. 
108. 
94.0 
70.0 
64.9 
48.3 
34.0 
25.9 
18.1 
7.69 

27. 
30. 
18. 
15. 
18. 
12. 
8.7 
6.5 
6.0 
3.3 
3.9 
3.0 
2.9 
2.34 

417. 
326. 
318. 
295. 
253. 
219. 
217. 
217. 
157. 
133. 
108. 
78.4 
51.3 
31.4 

38. 
38. 
29. 
27. 
23. 
15. 
15. 
15. 
11. 

6. 
7. 
5.4 
4.7 
4.4 

mass stars (Richer et al. 1990). The data discussed here are 
drawn from both of the above sources. 

The realization, arising from the LFR study, that M71 could 
well be in an advanced postcollapse phase of its dynamical 
evolution, prompted us to reexamine the star counts described 
in RF89 with a finer spatial grid. The point was to see just how 
well the counts fit a King model profile, particularly in the 
central parts of the cluster. The revised star counts are present- 
ed in Table 1. In this Table, re is the effective radius for the 
counts; i.e., the radius which bisects the area of the annulus in 
which the stars are counted (note that the first annulus is, in 
fact, a circle), N is the number of stars per square parsec in the 
indicated magnitude range, and the error estimate is based on 
Poisson statistics. Small completeness corrections were applied 
to the stars between V = 19 and 20 only (see RF89). A distance 
of 3.68 kpc based on the distance modulus and reddening of 
Richer & Fahlman (1988) was used in converting the angular 
dimensions of the observations to the physical dimensions of 
the models. 

The numbers presented here differ slightly from tnose of 
RF89 for three reasons. (1) The photometry from the long and 
short exposures was combined in a different way. Here, the 
photometry lists from the short frames were truncated at 
F = 19.0 prior to merging with the corresponding lists from 
the long exposure frames. This avoids the need to consider 
completeness corrections in the short-exposure frames. (2) The 
overlap between fields was handled differently. For this study 
we trimmed the frames to provide a seamless fit with no 
overlap. This avoids the need to consider joint completeness 
criteria in the overlap area. (3) The adopted center of the 
cluster is different. In RF89 the cluster center was determined 
by the centroid of smoothed isopleths obtained from the raw 
star counts. The center turned out to be located 1'.'2 E and 5'.T 
N of the center adopted by Cudworth (1985), which, for conve- 
nience, was located on a particular star. Cudworth’s central 
star, in turn, is located 7" W and 2" N of the center determined 
by Shawl & White (1986), which was based on the large scale 
symmetry of the integrated light. For this study, we 
redetermined the center by finding the centroid of all the stars 
in the range V = 12.0-19.0, and within a radius of about L5 of 
the cluster center. Starting with the RF89 center, we iterated 
until a self-consistent center was found. The center adopted 
here is 5'.'0 W and 1'.'4 N of the Shawl-White center. It should 

be noted that the center at this position is defined by the total 
number of stars and is not coincident with the centroid of the 
light emitted by the stars. Our result is, we believe, a better 
estimate of the center of mass for the cluster. In practice, the 
surface density profiles obtained around the Shawl-White . 
center do not differ significantly from the results given in 
Table 1. 

The surface density profiles (SDPs) are plotted in Figure la. 
In Figure lb the data are shown together with curves from an 
isotropic, multimass King model. The input mass function for 
the model was taken from RF89 and includes a bin at 0.1 M0 
which contains 50% of the total stellar mass. The model shown 
has a central potential of W0 = 4.0 and the scale radius, rs = 
L88 (2.01 pc) and vertical normalization were determined by a 
fit to the counts for stars with 18 < F < 20. Evidently, the 
model fit for this bin is quite acceptable. However, the counts 
of the brighter stars, 12 < F < 18, show a much higher degree 
of central concentration than expected from the model. This 
behavior is typical of a range of models which differ only in Wq. 
The upper points in Figure 1 are the total counts (offset verti- 
cally by 0.5 dex for clarity), also overlaid with the correspond- 
ing model curve in Figure lb. The central deviation from the 
King model, due to the brighter stars, is still evident, but, 
clearly, the departure is small. The result of this comparison is 
then inconclusive; there is no evidence for a strong density 
cusp at the center of M71, but nevertheless, the King models 
cannot account for the detailed central behavior of the SDPs. 

The stellar mass functions (MFs) relevant to this study are 
shown in Figure 2. The one labeled “core” is based on the 
RF89 star counts, but a new, oxygen enhanced, mass- 
luminosity relationship of D. A. VandenBerg (private commu- 
nication; see Richer et al. 1990) has been used. The second 
mass function was determined from the deep luminosity func- 
tion obtained in the 3' field mentioned above and is described 
in Richer et al. (1990). The mean radius of this field lies at the 
same distance from the center of the cluster as the outermost 
point on the SDPs in Figure 1. A calculation of the surface 
densities in this field for the two mass ranges used in the SDPs 
gives good agreement with the earlier observation. 

As noted by RF89, M71 shows clear signs of mass segrega- 
tion. The two mass functions shown in Figure 2 highlight this. 
For stars more massive than 0.6 M0 the core MF is inverted 
while the outer MF is flat. The outer field has a steep increase 
in number per unit mass as the mass per object decreases from 
0.5 Mq. The core MF is much flatter over the more limited 
range observed. Both MFs show much more detail than is 
expected from a simple combination of power laws, and it 
should not be expected that exact fits to the observations can 
be made without some fine-tuning of the IMF. Our objective 
here will be to fit the shapes of the SDPs and the general trends 
of the MFs. In particular, the drop off* in the SDPs beyond 1 pc 
will give the tidal radius and the gradually sloped interiors will 
be used in determining the evolutionary phase. The degree of 
mass segregation will also play an important role in deciding 
what time of the model best fits the observations. 

3. NUMERICAL MODELS 

The numerical models employed in this study are based on 
the isotropic, orbit-averaged form of the Fokker-Planck equa- 
tion using techniques introduced by Cohn (1980). The actual 
code used is a descendant of Cohn’s but has been extensively 
modified and added to by a number of people in the past 
decade. A brief review of the methodology and background 
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Fig. 1.—(a) The surface density profiles for the two most luminous mass classes observed in M71. The filled circles are for stars in the mass interval 
0.85 < M/Mq < 0.89, while the open circles are for stars in the mass interval 0.71 < M/M0 < 0.85. These are based on the star counts of RF89 but newly calculated 
on a finer grid of annuli. The crosses are the sum of the counts over both intervals displaced upward by 0.5 dex for clarity, (b) The same data as in (a) shown with an 
isotropic, multimass King model. The radial and density scales were fitted to the less luminous mass class. The more luminous class shows a higher degree of 
concentration than expected in the model. 

Fig. 2.—Mass functions observed for M71. The filled circles are from RF89 
for the inner 3.66 pc of the cluster (core field). The open circles are from Richer 
et al. (1990) for a rectangular field with mean distance of 3.2 pc (3' field). 

assumptions is therefore in order. As in the original models, the 
distribution function is held to be a function of the total energy 
per unit mass and to evolve with time subject to equation (6) of 
Cohn (1980). For the multimass case, individual distribution 
functions are used for each mass class, and the diffusion and 
advection coefficients depend on the mass bin involved. The 
coefficients used are taken from LFR. In this technique, it is 
assumed that the cluster is spherically symmetric and that the 
time scale of the dynamical evolution is much longer than the 
orbital time of stars within the cluster. Following this 
approach, all quantities are calculated on an orbit-averaged 
basis since individual stars travel through the region of the 
cluster accessible to them several times before they are signifi- 
cantly affected by two-body relaxation. In addition, it is 
assumed that, unlike the form of the Fokker-Planck equation 
used in Cohn (1979), the velocity distribution is isotropic so 
that the distribution function is independent of angular 
momentum. A two-step, operator splitting technique is used in 
numerically solving the coupled equations. First, the distribu- 
tion function is evolved forward in time using the Fokker- 
Planck equation, while the potential is held fixed. At this point 
the potential, as found by solving Poisson’s equation, is no 
longer consistent with the distribution function. The second 
step is thus to recalculate the potential subject to the constraint 
that the distribution function remain a constant function of the 
orbit-averaged radial action q (see eq. [4] of Cohn 1980), an 
adiabatic invariant for small changes in the potential. 

Several additional processes have been added to Cohn’s 
bedrock code. These are heating due to the formation and 
destruction of three-body binaries; tidal stripping by a con- 
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slant external potential; and a spectrum of stellar masses. The 
binary heating mechanism is included to reverse the course of 
core collapse and to power the post-core-collapse evolution. 
The problem has three dimensions, and since it is convenient to 
do the calculations in a dimensionless form, three scaling 
parameters are available. The inclusion of binary heating 
requires that the total mass of the cluster be specified in order 
that the relative sizes of the heating and diffusion coefficients 
be correct and it is useful to choose the units such that G = 1. 
Thus the only free scaling parameter for the dimensionless 
models is the length scale. The choice of length scale affects the 
time and velocity scales when comparing the models to obser- 
vations. 

The numerical technique used in calculating the heating 
rates is that described by Lee (1987) and extended to multiple 
masses by LFR. The binary stars that heat the cluster are not 
represented by a distribution function but are treated in a 
purely statistical manner since very few are expected to be 
present in the cluster at any given time. The form used here is 
not the same as that used by Murphy, Cohn, & Hut (1990) but 
is more consistent with the assumptions made both in that 
paper and in LFR. The differences between the two approaches 
are discussed in the Appendix. The effects of tidal stripping 
were applied following the prescription of Lee & Ostriker 
(1987). The density of stars in the distribution function at ener- 
gies below a cutoff corresponding to the tidal boundary is 
reduced following an exponential law with time constant 
depending on the energy. Note that the form for the stripping 
rate given in Lee & Ostriker (1987) is off by a factor of 4tc2 and 
that of LFR is correct. 

It is common in papers reporting Fokker-Planck calcu- 
lations that the initial form of the model be taken to be 
Plummer’s model. However, since we wished to investigate the 
effects of initial concentration on the simulation, the initial 
model has been taken to be a King (1966) model with a given 
value for the central potential parameter, W0, and scale radius, 
with all species having the same initial velocity dispersion. 
Since it is expected that after the initial gas cloud fragments 
into stars violent relaxation will take place (Elson, Hut, & 
Inagaki 1987), leaving stars of all masses with the same velocity 
dispersions, such an initial model is reasonable. 

Apart from some noted exceptions, in all the models dis- 
cussed here, the main sequence was represented by 10 mass 
classes covering stars with masses ranging between 0.16 and 
0.89 M0. The low-mass cutoff was somewhat arbitrary in that 
it was the low-mass limit to the VandenBerg isochrone used. 
The Richer et al. (1990) mass function of M71 is still rising 
sharply at 0.2 M0, and we note that the mass function of NGC 
6397 has now been observed down to 0.12 M0 (Fahlman et al. 
1989), indicating that even lower mass stars are present in 
globular clusters. The model mass function could be extended 
to even lower masses, but mass segregation makes them unim- 
portant to the dynamics of the core of the model. One model, 
to be discussed in § 5.2, which was calculated with an addi- 
tional low-mass bin that extended the low-mass cutoff to 0.1 
M0, supports this. The mass bins for the higher mass stars 
were chosen to be the same as the observational bins for the 
core MF. In addition, three bins were used to represent a 
distribution of white dwarf stars with masses from 0.9 to 1.14 
M0. The three white dwarf bins were of equal width, and an 
equal number of stars was put in each, making up a predeter- 
mined number fraction of the stars in the cluster. The main- 
sequence stars were distributed as a superposition of two 

power laws. Recent observations have clearly shown that 
observed mass functions for many globular clusters are poorly 
represented by single power laws, showing a change in slope 
near 0.4 M0 (Richer et al. 1990). This behavior is seen in the 
mass functions of M71. In view of these observations, a com- 
bination of two power laws, while still an approximation, may 
be closer to the truth than a single power law. Undoubtedly, 
the true shape of the IMF is yet more complicated. 

Once a set of mass bins has been decided on, a model run is 
characterized by eight parameters: the slopes of the two 
power-law mass functions; their relative proportions; and the 
number fraction of white dwarfs (these four specify the IMF); 
the central potential parameter W0 of the King model, which 
gives the initial distribution function; the initial tidal radius, 
which gives the scaling; the total mass, which sets the rate 
constant for the binary heating; and the tidal stripping time 
scale. Since the relative time scales are independent of the 
length scale, the tidal radius need not be specified initially and 
may be varied afterward to improve the fit to observations. The 
tidal stripping time scale was set equal to the orbital period of 
the model in the spherical external potential. In the dimension- 
less units of the model, this provides the almost instantaneous 
removal of unbound stars. Consideration of the numerical 
code as we first received it from H. M. Lee indicated that the 
transformation to dimensionless form required for consistency 
with the Fokker-Planck formalism used had not been done. 
For the models described in Lee & Ostriker (1987), this leads to 
an underestimate of the tidal stripping rate by a factor of 173. 
Faster tidal stripping and more rapid disruption by the Galac- 
tic tidal field are to be expected than that inferred from Lee & 
Ostriker. These changes were incorporated in LFR. 

During each run, the full description of the status of the 
model was periodically saved for later analysis. For each of 
these times the process of observation was simulated with the 
density distributions being projected and the number of stars 
over appropriate regions (corresponding to the observed CCD 
fields) integrated. Since the observations have been corrected 
for the effects of incompleteness and field contamination, these 
effects were not applied to the models. The SDPs were com- 
pared to annular sums over the same annuli as were used for 
the observations. The model core MF was integrated over a 
circular area of radius 3.66 pc. The model outer MF was inte- 
grated over a rectangular area with the same dimensions and 
position as that used by Richer et al. (1990). The areas covered 
by the two MFs overlap to a certain extent, but the core MF is 
dominated by the higher density of stars in the core of the 
cluster. 

4. STANDARD MODELS 

Figure 3 shows the results of a typical run which will be 
referred to as the “standard run.” The initial model was a 
W0 = 4 King model with total mass 3 x 105 M0 and the IMF 
given in Table 2. The initial tidal radius was taken to be 21.6 
pc. The IMF consisted of two power laws with slopes 0.5 and 
5.0 (where the Salpeter value is 1.35), with a number ratio of 
1:5 and 1% by number distributed equally across the three 
white dwarf bins. The steep slope of 5 was required in order to 
match the low mass end of the observed IMF in the 3' field. 
Other choices for the IMF are discussed in § 5.2. In Figure 3 
the observations as discussed in § 2 are shown with their 
associated error bars. The model profiles are shown at four 
times. The dot-dash line shows the initial model, the thick line, 
the model at the reversal of core collapse, and during the post- 
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solid line), and when the mass is 3.5% of its initial value (dashed line). 

collapse phase, the thin solid and dashed lines are for when the 
model has 10% and 3.5%, respectively, of its initial mass. The 
standard model best fits the outer SDPs (beyond ~ 1 pc) when 
the mass is 0.1 Minitial (thin solid line). The main problem in 
comparing the model to the observations is readily apparent in 
that the model SDPs at small radii are much steeper than those 

TABLE 2 
Initial Mass Function 

Mass (M0) Number Fraction Mass Fraction 

0.181  0.7118 0.5455 
0.247  0.1403 0.1465 
0.312  0.0488 0.0643 
0.398  0.0390 0.0657 
6.506  0.0162 0.0347 
0.589  0.0102 0.0255 
0.665  0.0085 0.0238 
0.743  0.0073 0.0228 
0.816  0.0052 0.0181 
0.869  0.0027 0.0100 
0.940  0.0033 0.0132 
1.020  0.0033 0.0144 
1.100  0.0033 0.0155 

observed. The slope of the power-law section of the SDP does 
not flatten significantly during the entire post-core-collapse 
evolution. This behavior is common to all the models run with 
the exception of some of the special models to be discussed 
below. The model does not reproduce the detailed structure of 
the MFs, but the degree of mass segregation is similar to, 
although somewhat smaller than, that observed. A detailed 
match should not be expected until the SDP problem is 
resolved. 

The tidal radius was chosen to give a good fit to the outer 
section of the SDP at the time in the evolution of the model 
that the model MFs had similar numbers as the observed MFs. 
The fits to the outer SDPs are not perfect; that observed for the 
more massive stars appears to be falling more quickly than the 
model profile. However, the model does give an estimate for 
the current tidal radius for M71 of about 10 pc. Since the 
length scale is a free parameter in the model, the SDP for the 
more massive stars was fit to the outermost seven data points 
to refine the estimate. The best fit gives a tidal radius of 9 pc. In 
the model, the tidal cutoff is applied in energy and is not 
instantaneous (the stripping rate is zero for stars with energies 
equal to that of the tidal limit), and so there will always be a 
population of unbound stars beyond the halo of the model. 
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Thus, unlike tidal radii based on King models, the tidal radii 
discussed here are not the distance at which the density goes to 
zero. For our models the zero-density radius is half again as 
large as the tidal radius. In the case of our standard model, the 
zero-density is 16 pc (14 pc if a detailed fit, as described above, 
is done). For the distance used here, the Kukarkin & Kireeva 
(1979) determination of the tidal radius of M71 is 15 pc. This is 
comparable with the zero-density radii based on the Fokker- 
Planck models. 

The tidal radius estimated from the standard models seems 
quite robust. As will be discussed below, better fits to the SDPs 
(including the inner regions) were achieved using modifications 
to the standard model. The model with black holes discussed 
in § 5.2, and shown in Fig. 7, when fitted to the entire SDP of 
the more massive stars gives a tidal radius of 5.6 pc and a 
zero-density radius of 9 pc. The model with extra heating in 
§ 5.3 (Fig. 9) gives radii of 9.3 pc and 14 pc (without fitting, 
r0 = 1 pc) and 7 pc and 10 pc (best fit, r0 = 0.8 pc) for the tidal 
and zero-density radii respectively. 

A second set of estimates for the tidal radius of M71 are 
those based on the space velocity and distance modulus of 
Cudworth (1985). Given an assumed Galactic potential, the 
orbit of M71 within that potential can be calculated and the 
expected tidal radius computed. Ninkovic (1987) derives a tidal 
radius of 28-34 pc (depending on the Galactic potential used) 
for a tidal cutoif based on the perigalactic distance of the 
cluster’s orbit. Allen & Martos (1988) estimate the tidal radius 
to be 25.2 pc using a similar technique but their own derivation 
of a Galactic potential. Both these studies and that of Kukar- 
kin & Kireeva use the formula of King (1962) for the tidal 
radius and should be comparable with our zero-density radii. 
It has been argued (see, e.g., Keenan 1981 and Innanen, Harris, 
& Webbink 1983) that limiting radii based on this formula 
overestimates the true value by a factor of 3/2. Since similar 
assumptions regarding the nature of the tidal boundary have 
been made in all the estimates being considered here, we need 
not be concerned with such numerical factors. The problem is 
to understand why the estimates of the tidal radius based on 
the orbit of M71 are so much larger than those inferred from 
the distribution of stars in the cluster. Allen & Martos note 
that on theoretical grounds alone there is an uncertainty of at 
least a factor of 2 in their estimates of the tidal radii and the 
range of values given by Ninkovic indicate a similar uncer- 
tainty. On the other hand, none of the other clusters looked at 
by Allen & Martos have theoretical tidal radii as far off the 
observed value as is that of M71. Whether this is telling us that 
there is something genuinely different about M71 or not is 
unclear. 

If M71 is in a post-core-collapse state, then the observed 
SDP shows too little central concentration compared with the 
standard models. Based on just the appearance of the surface 
brightness profile, and this has been the standard criterion, 
M71 is not considered to be a post-core-collapse cluster by 
Djorgovski & King (1986). Their determination is apparently 
based on the profile of Kron, Hewitt, & Wassermann (1984) in 
which the inner 0!7 were unusable for this purpose. Such an 
assumption was also made in RF89 and a reasonable fit to 
multimass King models was demonstrated. While the more 
detailed analysis of the RF89 data discussed above in § 2 sug- 
gests a small deviation from a King model profile, the signifi- 
cance of the result is uncertain. In any case, a “ normal ” King 
model profile does not necessarily say anything about the 
dynamical state of a cluster, although it is generally assumed 

that such a cluster is in a state well before core collapse. For 
M71 there are other observations which suggest a different 
story. 

The present half-mass relaxation time of M71 is in the lower 
quartile of the observed distribution (see Fig. 8-2 of Binney & 
Tremaine 1987). The formula usually used for evaluating the 
half-mass relaxation time is that of Spitzer & Hart (1971): 

trh = 0.1381 
Mri 3\ 1/2 1 

min A (1) 

where M is the total mass, rh, the half-mass radius, m, a mean 
mass, and In A, the usual Coulomb logarithm. If we use the 
observations of RF89, then, based on their discussion in § VI, 
we are seeing 95% of the light of the cluster and, further, if we 
assume that the mass-to-light ratio is constant with radius in 
the cluster (which is not the case due to mass segregation), then 
the half-mass radius is at 1.6 pc. Assuming that we are, in fact, 
seeing only half the mass of the cluster (the rest being too faint 
to see), then the total mass should be about 2 x 104 M0. This 
give a mass-to-light ratio of M/L = 1.2 in solar units. By way 
of comparison, Ninkovic (1987) adopted the mean M/L of 1.7 
Mq/Lq by Illingworth (1975) and derived a mass of 3 x 104 

M0. The mean mass of the stars counted by RF89 is m = 0.626 
Mq. For the RF89 values, trh = 1.1 x 108 yr. A similar esti- 
mate for the best-fitting model, when the model mass is 10% of 
the initial mass, where M = 3 x 104 M0, rh = 2.1 pc and 
m = 0.52 Mq, yields trh = 2.1 x 108 yr. Since equation (1) was 
originally derived for the case of relaxation where there are 
only stars of one mass present, it may be that a formula more 
appropriate to the multimass case will give a different result. 
Spitzer (1987), after giving the general form for a relaxation 
time in his equation (2-16), 

t;3 

t =    (2) r 1.22n(4nG2<rn)2 In A) ’ 

comments that if a system is near equipartition, a relaxation 
time for a multimass situation can be calculated using this 
equation if an appropriate mean mass and velocity dispersion 
are used. For the latter, he suggests using the mean kinetic 
energy per star divided by the mean mass. For a half-mass 
relaxation time, take n to be the mean density of stars within 
the half-mass radius and the mean kinetic energy to be the 
total kinetic energy, T, divided by the total number of stars. 
Then, 

trh = 0.546 - 
3/2 r3 rh 

MJ Nh G
2<m>2 In A ’ 

(3) 

where Nh is the total number of stars within rh. This form can 
be used only with models, where the total kinetic energy can be 
determined explicitly. For the standard model, which does 
approach equipartition in its inner regions at the late time 
under consideration, equation (3) gives trh = 3.3 x 108 yr. 
These various estimates are consistent with a short relaxation 
time scale for M71. Multimass Fokker-Planck models have 
clearly shown that a pre-core-collapse cluster should reach 
core collapse after only a few half-mass relaxation times when 
a wide mass spectrum is present (see, e.g., Murphy & Cohn 
1988). In fact, the standard model reached core collapse in only 
2.9 of its initial half-mass relaxation times. One further 
comment on the model time scales. The amount of model time 
required for the standard model to evolve to the state which 
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best fits the observations is about 30 Gyr, within a factor of 2 of 
the age of the stars in the cluster. It is difficult to predict on the 
basis of the input parameters whether a model as satisfactory 
as the standard model shown is possible on a more appropriate 
time scale, but at this point we do not regard the factor of two 
as a significant problem. 

The Fokker-Planck simulations show that a pre-core- 
collapse model has a low degree of mass segregation and a 
fairly flat central SDP but will reach core collapse in only a few 
relaxation times. On the other hand, post-core-collapse 
models have very steep central SDPs and a high degree of mass 
segregation. The observed situation in M71 is that of a rela- 
tively flat SDP and strong mass segregation. We have two 
options. If, on the basis of the SDPs, we conclude that M71 is a 
pre-core-collapse cluster, then we are seeing the cluster at a 
special epoch, when it is on the verge of core collapse. Further, 
the mass segregation is unexplained unless we postulate that 
some of the mass segregation reflects initial conditions. 
However, the age of the stellar population of M71, like most of 
the Galactic globular clusters, is about 15 Gyr, so with its short 
relaxation time, a great deal of dynamical evolution must have 
already taken place, erasing the initial conditions. Attempts to 
find a pre-core-collapse model which fitted the observations 
were fruitless since, by the time sufficient mass segregation had 
taken place, the SDPs were already too steep. In order to 
consider M71 a pre-core-collapse cluster, we are forced to the 
conclusion that either we do not understand properly the time 
scales involved in two-body relaxation or we have failed to 
include some necessary physical processes. 

The second option is to accept the mass segregation as indi- 
cating that M71 is a post-core-collapse cluster. In this case, 
since the cluster is expanding, the short relaxation time is not a 
problem. The agreement between the model and the observa- 
tions can be taken as support for this option. The relatively flat 
observed SDPs, however, argue against M71’s being post- 
core-collapse. In order to reconcile the observed and model 
SDPs in this case, additional physical processes are probably 
also required. Based on the models we see that no matter what 
we conclude about the evolutionary status of M71, there is a 
contradiction. Hence, if we are drawing the correct conclusions 
from the models and they are being properly applied, the 
observations are then telling us that there is something wrong 
with those models. 

5. MODIFIED MODELS 

In this section we will examine three possible adjustments to 
the standard model in attempting to resolve the contradictions 
between the Fokker-Planck models and the observations of 
M71. 

5.1. Gravothermal Oscillations 
The simplest thing to try is to modify the parameters con- 

trolling the numerical simulation. The nature of the behavior 
of a Fokker-Planck model is dependent on the size of the time 
step chosen. Cohn, Hut, & Wise (1989) have shown that as the 
time step length is decreased, the model goes from a smooth 
evolution into a chaotic state characterized by extreme fluctua- 
tions in central density. These gravothermal oscillations 
(GTOs) affect only the very central regions of the model, and it 
is as yet unclear whether they occur in real systems. Perhaps, 
then, we are observing M71 at the low density extreme of a 
GTO, and it is for this reason that the central cusp in the SDP 
is absent. Goodman (1987) showed that, in theory, GTOs will 

happen when the number of members of the cluster is suffi- 
ciently large. (See also Murphy et al. 1990 for discussion of 
gravothermal oscillations in multimass models and Cohn et al. 
1991 for the chaotic nature of the oscillations.) If the cluster 
observations are sufficiently removed from the center of the 
cluster, or have insufficient spatial resolution to isolate the 
core, then the data should not depend significantly on the 
existence and amplitude of GTOs. All of the models described 
above have been calculated with a time step large enough to 
suppress the GTOs. In order to test the assumption that global 
properties are independent of GTOs, one run was restarted 
from several places with much smaller time steps and the 
results compared. 

As may be seen in Figure 4, where the dotted line gives the 
evolution of the long time step run and the solid line that of the 
restarted runs with gravothermal oscillations, the global 
properties are, as expected, unaffected by the behavior of the 
core. The central values of density and velocity dispersion 
shown in Figure 4 are unphysical in the sense that they are 
evaluated from a statistical distribution at a radius corre- 
sponding to the presence of one star interior to it in projected 
density. Figure 5 shows a more realistic evaluation of these 
quantities, and the half-brightness radius with respect to the 
central density, by calculating averages over the inner 0.0178 
pc (1" at the distance of M71). The amplitude of the oscillations 
is much reduced, and the extreme excursions to high central 
densities are cut off by the limited spatial resolution. In Figure 
6 we compare the model SDP at the extremes of its range for 
the earliest GTO run. For comparison, when the models of 
Murphy et al. (1990) reach their maximum expansion, the 
central flattening of the SDP only reaches out to 0.02 pc, about 
1" at the distance of M71. Certainly, over the radial region 
considered here, such small variations would be difficult to 
detect observationally and in any event are much too small to 
reduce the slope of the SDPs sufficiently to make them consis- 
tent with the observations. For most ground-based studies, 
gravothermal oscillations are less important in evaluating the 
SDPs of globular clusters. Recent HST results, which have 
resolved the core of M15 (Lauer et al. 1991), indicate that the 
effects of GTOs will have to be considered in these extreme 
cases. 

5.2. Modified IMFs 
We ran a series of models with a range of IMF slopes in an 

attempt to match the observed MFs. Some had one bin of 1.4 
M0 to represent the white dwarfs as opposed to the three, 
lower mass, white dwarf bins discussed above. Various slopes 
and combinations of slopes were tried ranging from — 1 to 5. 
The relative proportions of degenerate and main-sequence 
stars was varied as well. We also ran a model similar to the 
standard one which had an extra low mass bin extending the 
mass function down to 0.1 M0. This bin contained 58% of the 
cluster’s mass and 80% of its stars, but the evolution of the core 
was not very different from the standard run. The main differ- 
ence was that the model evolved somewhat faster, reaching 
core collapse in only 80% of the time required for the model 
without the extra, low-mass stars. In none of these cases was 
the power-law slope of the central part of the SDP small 
enough to be similar to that observed. From these tests we 
conclude that varying our basic IMF is not adequate. 

Larson (1984) constructed two-component models based on 
simple assumptions regarding the form of the density and 
velocity dispersion profiles. Based on these, he could get fits to 
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log r (pc) 
Fig. 6.—Surface density profiles for the bright stars at the two extremes of 

central density for the earliest set of oscillations in Fig. 4. The dashed line is the 
first minimum, and the solid line is the subsequent maximum. The difference 
would only be visible in the inner 2" at the distance of M71. 

the surface brightness profiles of several clusters by assuming a 
substantial fraction of dark, massive objects. His models indi- 
cated masses large enough that black holes were required. It is 
well established that a massive dark component, which will 
predominate in the core of the cluster due to mass segregation, 

will reduce the power-law slopes observed for less massive 
stars. The ratio of slopes is approximately proportional to the 
ratio of the masses of the stars given that the more massive 
class in fact dominates (see, for example, Chernoff & Weinberg 
1990). To see if this would help resolve the M71 contradiction, 
we constructed a model with 3% of the initial mass in 2.5 M0 
“black holes.”1 Figure 7 shows the model at a late time when 
only 8% of the initial mass of 6 x 105 M0 remained and some 
40% of the current cluster mass was in the form of black holes. 

For the more massive stars, the fit to the surface density 
profile is very good. The problem with this model lies in the 
degree of mass segregation between species and with radius. As 
can be seen in Figure 7 the shapes of the two model SDPs are 
nearly identical while Figure 1 shows that the SDP of the more 
massive stars is noticeably steeper than that of those less 
massive. This lack of mass segregation may be seen more 
clearly in the MFs. The model MFs are almost the same, 
allowing for the difference in absolute density, while the mor- 
phology of the observed MFs are quite different from each 
other. This case may seem somewhat extreme, but when we 
reduced the fraction of black holes the slope of the inner SDP 
became too steep very quickly while the degree of mass segre- 
gation was still insufficient to match the observations. 
Reducing the mass of the heavy component allows an 
increased degree of mass segregation but the mass ratio 
between the heavy component and the visible stars is then too 
small to provide sufficient flattening. 

1 No relativistic effects or destruction of stars by these massive objects were 
included in the model, so it is not quite accurate to refer to them as black holes. 
These effects might in fact be significant for cluster evolution but are beyond 
the scope of this paper. 

(d 
B 

ÖjO 
o 

log Jl (JLq) 

FIG. 7.—Comparison between the observations and model values for the run involving 3% by number of 2.5 M0 black holes. Symbols for the data are as in Figs. 
1 and 2. The curves shown are for the time when the model best fits the surface density profile for the more massive stars {filled dots). 
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Fig. 8.—Line-of-sight velocity dispersion for the giants in the black hole 
model of Fig. 7. The point shows the measured value of Pryor (1990). 

A furtfíer problem with the “ black hole ” hypothesis arises 
when the kinematics of the cluster star is considered. Pryor 
(1990) has measured the velocities of 79 members of M71 and 
gets a velocity dispersion of 2.15 ± 0.17 km s-1 at a mean 
radius of 1.5 pc. In our model, at the best-fitting time, the 
central velocity dispersion for this mass class is 8.2 km s-1 

dropping to 2 km s-1 only at 4.5 pc as shown in Fig. 8. This 
observation appears to rule out the presence of a substantial, 
massive, dark component in the cluster. 

5.3. Heating 
The reheating source in these models is due to the statistical 

formation and destruction of three-body binaries. Following 
the discussion of Cohn et al. (1989), who adopt a heating rate 
based on the work of Hut (1985), we assumed that the amount 
of energy generated per binary formed was some 100 times the 
binding energy of the binary. If a more vigorous energy source 
is available to reverse core collapse, then shallower sloped 
SDPs are possible. We therefore ran a series of models with 
heating constants at various multiples of the standard one 
ranging from 10 to 106 times the energy input per binary. 

As the heating rate was increased, the depth of core collapse 
decreased. Each model was checked against the observations 

Fig. 9.—Comparison between the observations and model values for the run with the coefficient for binary heating set to 106 times that assumed in the standard 
model. The curves shown are for times when the mass is 7% (solid), 6% (long dashed), and 5% (short dashed) of the initial mass. 
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line). 

and only in the most extreme case, with a heating rate 106 

times the standard value, was a good fit achieved. Figure 9 
shows the results of this run. Both the SDPs are fitted well—if 
anything, the model SDPs are now insufficiently steep— 
although the model SDP for the less massive stars has some- 
what too many stars at all radii. This can be accounted for with 
a slightly different IMF. The MFs, on the other hand, are not 
fitted as well, there being less mass segregation between the 
two fields than that observed. 

In order to discuss the degree of mass segregation more 
quantitatively, we define a segregation measure, S, as the 
logarithm of the ratio of two mass functions. In this case we 
consider the segregation measure of the 3' field with respect to 
the core field, but similar quantities could be defined for 
changes in the mass function with time (e.g., with respect to an 
IMF) or with space (e.g., with respect to a global mass function 
or a central mass function). Figure 10 shows the segregation 
measure Sr = log [iVM(3WM(core)], where NM is the number 
of stars per unit mass, for the observations and the three 
models shown in Figures 3, 7, and 9. From this diagram it is 
clear that the models with black holes and extra heating show 
insufficient mass segregation. The standard model compares 
much better with the observations, but even it may show insuf- 
ficient mass segregation with respect to the observations. In 
each model where the segregation measure was calculated it 
was found to be a smooth, monotonie function of mass. Fea- 
tures such as the dip near 0.5 M0 have never been seen. Con- 
sidering the errors, this may not be a serious shortcoming. 
Figure 11 shows the projected velocity dispersion for the same 
times as Figure 9 together with the observed velocity disper- 
sion of Pryor (1990). The model dispersions are consistent with 
the observation. 

If the amount of heating driving the reexpansion of the 
cluster is the solution to the dilemma presented by M71, then 

log r (pc) 
Fig. 11.—Line-of-sight velocity dispersion for the giants for the same 

model as in Fig. 9. The curves shown are for the same times as in that figure. 
The point is the measurement of Pryor (1990). 

there is a further problem in identifying the source of the extra 
heating. In these experiments the amount of heating has been 
parameterized in terms of the proportion of energy released by 
each binary formed. An energy release of 108 times the binding 
energy of the binary is an unphysical expectation. Even if we 
do not depend on the dynamical formation of binaries—for 
example if the presence of primordial binaries is important— 
the large amount of energy released per binary appears unrea- 
sonable. 

However, it is important to note that the total energy rel- 
eased in the enhanced heating model is, in fact, slightly less 
than that released in the standard model. This result is illus- 
trated in Figure 12, where the cumulative energy production is 

Fig. 12.—Cumulative energy production (in model units) vs. time for the 
standard model {solid) and the enhanced heating model {dashed). Despite the 
differences in the rate of energy production with time, the total energy produc- 
ed in the cluster is about the same in both models. 
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plotted for the two models. In the standard model, the energy 
input is distributed as a short, sharp burst at core collapse 
followed by a long, lower level tail. This is easily understood 
because the binary heating essentially tracks the cube of the 
central density. As the standard model undergoes its deep core 
collapse, the heating rate rises very sharply, causing the cluster 
to quickly re-expand, thereby turning off the heating source. 
On the other hand, the model in which the energy released per 
binary has been enhanced does not suffer a deep core collapse, 
and the energy driving the reexpansion is distributed much 
more uniformly in time. The conclusion that may be drawn 
from this observation is that a continuous source of energy in a 
globular cluster will prevent a deep core collapse from taking 
place while still allowing for dynamical evolution. The cluster 
will still suffer from mass segregation, as some contraction of 
the core will take place, but the core densities will not reach the 
extremes expected in those models which require very high 
central densities to be achieved before enough energy can be 
released to reverse the contraction. 

5.4. Energy Sources 
The experiments with extra heating have led to a possible 

solution of the problem presented in M71. If we can include an 
energy source to supply the energy being transferred from the 
core to the halo, thus preventing extreme core collapse, while 
still allowing progress towards equipartition of energy and 
hence mass segregation, then a reasonable fit to clusters such 
as M71 may be possible. Arguments based on relaxation time 
scales such as those discussed above cannot then be used to 
determine the dynamical state of a cluster since two-body 
relaxation is no longer the only process occurring. The key to 
resolving the contradiction this way is to allow sufficient mass 
segregation, as observed, while preventing severe core collapse. 
What then are the candidates for additional energy sources? 

Evidence is accumulating for the presence of primordial 
binary stars in globular clusters (Pryor et al. 1989). Gao et al. 
(1990) have run Fokker-Planck simulations which explicitly 
include a population of initial binaries along with one mass 
class of single stars. In these models the time to initial core 
collapse increases as the fraction of binaries increases. When 
20% of the initial model is in binary stars, core collapse is 
delayed to 100 initial half-mass relaxation times. The effects of 
a population of primordial binaries on mass segregation 
cannot be estimated from the Gao et al. models. Much would 
depend on the mass distribution of the initial binary popu- 
lation. Goodman & Hut (1989), on theoretical grounds, 
suggest that, depending on the initial abundance of binaries 
and their rate of destruction, the presence of primordial 
binaries would result in a relatively large core and hence a 
SDP which does not show a cusp. On the other hand, such a 
core is likely to consist mostly of binaries. Core collapse in the 
models of Gao et al. terminates when the mass segregation 
between the binaries and singles is complete, again with a core 
dominated by binaries. The high binary fraction expected in 
the core is thus a testable prediction of this scenario. The pre- 
sence of a large number of blue stragglers in the core of M71 
(Richer & Fahlman 1988) is suggestive, but the overall binary 
frequency in the cluster center remains unknown. 

A second, and unquestionably significant, energy source is 
that due to stellar evolution. Chernoff & Weinberg (1990) 
discuss an extensive series of pre-core-collapse models which 
include stellar evolution in addition to a tidal boundary condi- 
tion. With their initial conditions, models which do not start 
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out sufficiently concentrated are disrupted due to stellar evolu- 
tion before any dynamical evolution takes place. A steep IMF 
having only a small number of massive stars aids in holding the 
cluster together against the heating effects of stellar mass loss. 
The applicability of these models to real clusters is problematic 
in that the mass function only includes stars more massive than 
0.4 M0 • The deep mass functions presented for several clusters 
by Richer et al. (1990) clearly show the presence of a large 
number of stars with masses below this limit. In the case of 
NGC 6397 the mass function approaches the hydrogen- 
burning limit without any sign of turning over (Fahlman et al. 
1989). The effect of including an extended low-mass tail to the 
IMF should have similar stabilizing effects as using a steeper 
IMF slope. Applegate (1986) used simple models to show that 
clusters will be supported against core collapse so long as the 
stellar evolution time scale of the most massive remaining 
species is several relaxation times. Since the relaxation time is 
increased by the effects of mass loss, core collapse may be 
postponed indefinitely for a sufficiently flat IMF. It is possible 
that in some clusters, depending on the details of their struc- 
ture, this will serve to support the cluster against collapse while 
still allowing mass segregation to take place. Unfortunately, 
the models presented by Chernoff & Weinberg (1990) do not 
appear to show such a case of a cluster temporarily held 
between core collapse and evaporation and it may require fine 
tuning to produce one. A cluster wherein this epoch ended 
shortly before the present would now appear to be approach- 
ing core collapse. This scenario will need to be modeled in 
detail to see if the solution to the problem of M71 lies here. 

5.5. Beyond Fokker-Planck Models 
Until now all the proposed solutions to the dilemma posed 

by M71 have been within the framework of present-day 
Fokker-Planck models. The assumptions underlying the orbit- 
averaged Fokker-Planck equation prevent us from including 
any effects occurring on time scales shorter than the dynamical 
time scale or those which operate in a non-spherically sym- 
metric manner. Based on the space velocity of Cudworth 
(1985), Ninkovic (1987) finds that M71’s orbit lies in the disk of 
the galaxy with an inclination of 172°. With such an orbit, it is 
subject to many effects not included, or includable in these 
models such as tidal shocks due to disk passages, bulge pass- 
ages, and interactions with giant molecular clouds. Tidal 
shocks due to disk passages, for example, which are usually 
treated in an impulse approximation, violate both assump- 
tions. We have treated the tidal stripping surface here as spher- 
ical, a necessary simplification. In reality however, the surface 
is more complicated. Preferential stripping of stars on low 
angular momentum orbits may cause the velocity dispersion to 
be anisotropic. If physical processes such as these are needed to 
resolve the problems discussed here, then another approach, 
such as full AT-body calculations (McMillan, Hut, & Makino 
1990 show the beginnings of such an approach), will be 
required. 

6. SUMMARY 

Our attempt to use an orbit-averaged Fokker-Planck code 
which includes a mass spectrum, simple tidal stripping, and a 
statistical treatment of a three-body binary heating source to 
find a model which matches the observed SDPs and MFs for 
M71 has uncovered a contradiction. The presence of a high 
degree of mass segregation and an apparently short relaxation 
time suggest that M71 is a highly evolved cluster. Any model 
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with such characteristics is either suffering core collapse or is in 
the post-core-collapse phase of its evolution. These same 
models, however, also have steep, power-law SDPs in their 
central regions. This contradicts the observed SDPs for M71 
which are only somewhat more concentrated than a King 
model, certainly not the steep power laws predicted. It was 
found that while modifying the IMF does not help in solving 
the problem, a large increase in the heating rate can give 
models approximating the observations. It is suggested then 
that additional heat sources, which are not necessarily depen- 
dent on the high central densities reached at core collapse, are 
present in globular clusters and support them against core 
collapse. Under this interpretation, clusters such as M71 are 

Vol. 386 

not in fact post-core-collapse systems, while still showing 
dynamical evolution. As well, it may be that processes which 
cannot be included in the orbit-averaged Fokker-Planck for- 
mulation are important in the evolution of globular clusters. In 
either case, the problem of M71 demonstrates that a Fokker- 
Planck code of the type used here is inadequate for modeling 
all globular clusters. The most promising line of inquiry is to 
include changes in the mass spectrum due to stellar evolution, 
a point we will return to in a future paper. 
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APPENDIX 

THE THREE-BODY HEATING TERM 

With respect to the choice of form for the three-body heating term, there are two expressions in use based on suggestions by D. 
Heggie and P. Hut. The first is that of Murphy, Cohn, & Hut (1990, hereafter MCH), and the second is that of LFR, which is used 
here. Both groups use the same form for the Fokker-Planck equation and their computer codes are both descendants of the original 
code of Cohn (1980). In these, the distribution functions are functions of energy per unit mass. The heating rate is given by the rate at 
which binaries are created in the given conditions of the cluster, multiplied by the energy contributed to the cluster by each binary. 
The total heating rate is then to be distributed to each species in proportion to their relative densities, i.e., 

Ei (Al) 

The details differ in the two cases and will be dealt with in turn. 
LFR start with a heating rate per unit volume, assuming that the energy released per binary is proportional to the density- 

weighted, central velocity dispersion In their formulation 

fL 
total clg 5^2( X>¡m¡í,¡ (A2) 

We require a heating rate per unit mass to be dimensionally consistent with the Fokker-Planck equation, so we divide £t
L
otal by p, 

the total density, and orbit-average the result to give the heating coefficient. If we designate the sum in equation (A2) by SL then the 
heating coefficient is 

Hl(E) = l6n2CL G5Vç [2(#-) - £)] 1/2 (A3) 

for all species. The total change in energy for each species is given by 

f<HO) 
AEf = mi I dE 

= 16n2CL G5 

= 16ji2ClG
5 

= 4kClG
s 

JXO) 
fi 

0 Jo 

V'm‘io 

-1(E) c3 
[2(</> — E)]1/2 — r2 dr dE 

P 
1(0) o3 f<Mr) ¿T. o 1 

r 
f&^-E^dEdr 

(•0-1 

’•I 

= 4n — £u>tai r2 dr 
Jo P 

Sl — r2 dr 

W2 dr 

as desired. 

(A4) 
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MCH use a heating rate per particle of the form 

È M 
total 

MCH use a heating coefficient for species i of the form 

cmg
5 

Inf1 (A5) 

HfiE) = l6n2CMG‘- 
.£ m 

¡/¡(E) i r^ 
vJÁE)] Jo 

HE) 
[2((¡) — E)~\ll2Sl¡r2dr , (A6) 

where SM is the sum in equation (A5). Note that as written here and in MCH, is dimensionally inconsistent with the 
Fokker-Planck equation, because of an extra dimension of mass. We may calculate the total heating for each species, as above: 

(>(0) 
f= I Hf^dE 

i>(0) / mf\ f^"1(r) 

= 16ít2CMG5 Jo [2(0 — £)]1/2Smr2drdE 

— 167i2Cx/iG
5mi 

J>-1(0) r<Hr) 

0 Jo 
ff 

E mifi 
[2(<^ — £)]1/2 dEdr (A7) 

which, clearly does not reduce to an expression involving the total energy rate weighted by the density fractions. MCH state that 
“ each species receives an amount of energy in its energy bin, E, according to the orbit average of equation (3) [eq. (A5) above], per 
unit time, multiplied by its fractional density” as in equation (Al). Since the orbit average of equation (A5) (eq. [A6] apart from the 
weighting factor involving m, is now in energy space, MCH cannot simply multiply it by the fractional densities, since these are in 
radial coordinates, and, hence, are forced into the approximation of using the fractional distribution function instead. 

A comparison between the models of MCH and similar models calculated here indicates that the difference in the adopted 
expressions for the heating rate has no apparent effect on the results. Due to mass segregation, the core is dominated by the most 
massive stars and in the single species limit the two expressions are equivalent. In view of the consistency argument, and the reduced 
requirements for data storage and computational time, the formalism adopted here for calculating the heating coefficient, i.e., 
equation (A3), is to be preferred. 
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