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ABSTRACT 

In a recent series of papers we have developed and tested algorithms for quantitatively measuring the topol- 
ogy of large-scale structure of the universe. In this paper, we apply our two-dimensional algorithm to 
observed sky maps and numerical simulations. We find that when topology is studied on smoothing scales 
larger than the correlation length, the topology is approximately in agreement with the random phase formula 
for the two-dimensional genus-threshold density relation, G2(v) oc ve v ^2. Some samples show small meatball 
shifts” similar to those seen in corresponding three-dimensional observational samples and similar to those 
produced by biasing in cold dark matter simulations. The observational results are thus consistent with the 
standard model in which the structure in the universe today has grown from small fluctuations caused by 
random quantum noise in the early universe. In all cases (both observations and simulations), the two- 
dimensional results are in good agreement with the three-dimensional results. 
Subject headings: galaxies: clustering — large-scale structure of the universe 

1. INTRODUCTION 

Gott, Melott, & Dickinson (1986, hereafter GMD) pointed 
out that it is possible to quantitatively measure the topology of 
large-scale structure of the universe, and they suggested an 
algorithm for doing this. In a recent series of papers we have 
extended this approach. (See Hamilton, Gott, & Weinberg 
1986, hereafter HGW; Weinberg, Gott, & Melott 1987; 
Melott, Weinberg, & Gott 1988; Gott, Weinberg, & Melott 
1987, for detailed discussions.) In the three-dimensional case, 
Gott et al. (1989) have demonstrated that at scales significantly 
larger than the correlation length of galaxies, the topology is 
spongelike, consistent with the random quantum noise sce- 
nario while at scales comparable to the correlation length, they 
find slight meatball shifts which are also observed in biased 
CDM models. 

Melott et al. (1989, hereafter MCHGW) have pointed out 
that topological information can also be derived from two- 
dimensional density fields. Gott et al. (1990) have applied this 
approach to microwave background fluctuations. 

In this paper, we apply this technique to observational two- 
dimensional angular galaxy catalogs and demonstrate that the 
results are consistent with the standard model, and in good 
agreement with the three-dimensional results. The UGC and 
ESO catalogs we analyze here are particularly important 
because they cover regions (and to similar depths) for which we 
have three-dimensional data (Gott et al. 1989, and Gott 1991) 
and thus we can show that the three- and two-dimensional 
methods give consistent results in these regions. This allows 
one to use the two-dimensional methods with confidence on 
other data sets. The two-dimensional techniques for analyzing 
sky maps developed here can be used in the future on much 
deeper data sets like the Maddox et al. (1990) two million 

1 Postal address: Theoretical Astrophysics 130-33, Caltech, Pasadena, CA 
91125. 

galaxy sample for which complete reshift data is not yet avail- 
able, thus allowing one to investigate the topology statistically 
over very large volumes of space. 

In § 2 we briefly describe our methods. In § 3 we present the 
observational and simulation results. In § 4 we discuss these 
results further and summarize our conclusions. 

2. METHOD 

Our principal tool has been the genus-threshold relation. In 
this section we briefly review relevant results, with emphasis on 
the two-dimensional techniques. 

In three-dimensions, we use a Gaussian convolution to turn 
a discrete galaxy distribution into a smooth density field. We 
then study isodensity contour surfaces by measuring the genus 
of these surfaces as a function of contour threshold densities. 
For a simulation with periodic boundary conditions or a 
sample drawn from a large universe, an appropriate definition 
of the three-dimensional genus is 

G3 = (number of holes) - (number of isolated regions) , (1) 

where holes mean holes like a donut has. According to the 
Gauss-Bonnet theorem the genus as defined in equation (1) is 
proportional to the integral of the Gaussian curvature K = 
(r i r2)-1 over the contour surfaces 

G3 = 
[KdA 

4n 
(2) 

where r1 and r2 are the two principal radii of curvature. For a 
Gaussian random field, the average genus per unit volume is 
(HGW; see also Adler 1981 and Bardeen, Steinhardt, & Turner 
1986) 

1 
93 ~(2ñf 

3/2 
(1 — v2)e -v2/2 (3) 

26 
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where v is the threshold density in units of standard deviations 
from the mean and </c2> is the square of the wave number k 
averaged over the smoothed power spectrum. The curve is 
symmetric in v and its shape is the same for all random phase 
distributions (note: a symmetric genus curve does not neces- 
sarily imply the distribution itself is Gaussian. However, it does 
indicate that it is a distribution which could have grown from 
Gaussian initial conditions by gravitational instability). 

A two-dimensional genus is defined as 

G2 = (number of isolated high-density regions) 

— (number of isolated low-density regions) . (4) 

[The two-dimensional equivalent of eq. (1) would be G2 = 
(number of holes) — (number of isolated regions), but since 
an isolated low-density region is a hole in the high-density 
region, we have G2 = (number of isolated low-density 
regions) — (number of isolated high-density regions), G2 is thus 
equal to the three-dimensional genus a two-dimensional slab 
of finite thickness would have if the high-density regions were 
solid and the low-density regions were empty space. Then we 
simply change the sign of G2 (purely a sign convention) so that 
eq. (4) is obtained. This sign convention avoids a minus sign in 
eq. (6) below. See MCHGW for details.] 

The genus of isodensity contours in a two-dimensional 
density distribution can be measured from a two-dimensional 
analog of the Gauss-Bonnett theorem (Gott et al. 1990) 

^2 
§Cds 

2n (5) 

where the line integral follows a contour and C is the curvature 
of the line, negative or positive depending on whether a low- or 
high-density region is enclosed. Equations (4) and (5) provide a 
simple way to characterize and measure the topology of two- 
dimensional distributions, by measuring the turning angles 
taken by the contour at pixel vertices in a discretized version of 
the density field in exact analogy with the three-dimensional 
procedure of GMD. 

The genus per unit area of a two-dimensional Gaussian 
random field is (MCHGW; see also Coles 1988 and Gott et al. 
1990 for related two-dimensional topology measures) 

i </c2> 
02 (Inf1 2 

ve — v2/2 (6) 

In principle when we know the power spectrum P3(/c) of a 
three-dimensional sample, we can calculate the two- 
dimensional power spectrum P2(k) of the two-dimensional 
density field of a slice constructed from the three-dimensional 
field. For a Poisson or white noise density distribution, 

(7) 

where 2* is the two-dimensional smoothing length with a 
Gaussian window function W(r) ce e r2¡kl2 ' Simple analytic 
expressions exist for P3(/c) oc kn only in the limit where the 
smoothing length is much greater than or much less than, the 
slice half-thickness z0 (MCHGW). For z0 (thin slice) 

n 3 

A? 

(-3 <n< -1) 

(n> -1). 
(8) 

(9) 

and for 2* z0 (thick slice) 

1° <k2> = in + 2 

CW~ 
For sky maps, where we are seeing galaxies in projection, the 
thick slice approximation is useful. 

(-3 <n< -2) 

(n > -2) . 

3. ANALYSIS AND RESULTS 

In dealing with sky maps we shall use the techniques devel- 
oped by Gott et al. (1990) for measuring the topology of micro- 
wave background fluctuations. First we smooth the galaxy 
distribution in the observed samples with a Gaussian smooth- 
ing function, W(r) oc e~r2/x2, where r is the angular distance on 
the celestial sphere and À is the angular smoothing length. The 
size of pixels used to define the density field is chosen so that 
À >2.5 pixels. In this case, no corrections for finite pixel size 
need to be applied (HGW). After we find the smoothed density 
distribution, we use the methods outlined in MCHGW and 
Gott et al. (1990) to calculate the genus. We then apply the 
statistical bootstrap procedure used by Gott et al. (1989) in 
their three-dimensional genus analysis to estimate errors in the 
measured genus. 

3.1. UGC Catalog 
The UGC sample (Nilson 1973) covers the declination range 

north of <5 = —2?5 and includes galaxies with angular diam- 
eters D > V. We use an angular smoothing length of 5° and a 
corresponding pixel size of 2°. We then select 6449 galaxies 
with b > 29°, ö > —2°. 5 and D > 1'. The active survey region 
area A is 2.52 steradians. The mean angular separation 
between galaxies is d & 1?13. The angular correlation length 
60, the place where w(0o) = 1, is 60 « 0?32 (Lahav, Nemiroff, & 
Prian 1990, hereafter LNP). The mean depth of the survey is 
about D* æ 70/i_1 Mpc (Hudson 1990). The three-dimensional 
correlation length for galaxies is r0 æ 6/i-1 Mpc [^(r0) = 1], 
with a corresponding angular scale 6* = r0/D* = 4?9. The 
quantity 6* is always greater than 60 because projections add a 
random background which lowers the amplitude of the density 
fluctuations and thus suppresses the w(0J below unity. For a 
model with random phase initial conditions we expect approx- 
imately random phase results today in three-dimensions pro- 
viding we smooth on scales larger than r0 (Gott et al. 1989), 
because we are looking at fluctuations that are still basically in 
the linear regime. Thus in a two-dimensional study we might 
expect to obtain approximately random phase results provid- 
ing we choose 2 > max (d, 6*) = 4?9. Thus we have adopted 
2 = 5° to satisfy these constraints and yet provide the 
maximum number of resolution elements in the map. Also 
2 ~ 5° corresponds roughly to a physical scale of Mpc 
which is approximately the smoothing length we used in our 
three-dimensional analysis (Gott et al. 1989) so that we may 
easily compare the two-dimensional and the three-dimensional 
results. 

Figure 1 shows the median (thick solid line), 16% low (dashed 
line), and 16% high (thin solid line) density contours by area 
fraction, the galaxies are plotted in a Lambert azimuthal equal 
area projection centered on the galactic pole. The density con- 
tours trace the structures very well. The 16% high contour 
traces the most prominent features—the Virgo cluster, and 
background Coma supercluster and the Ursa Major cluster. 
The median contour nicely encloses the supergalactic plane. 
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Fig. 1.—Contour plot for UGC catalog (<5 > —2°.5,b> 29°). The galaxies 
are plotted in a Lambert azimuthal equal area projection centered on the 
galactic pole. The thick solid line is the median density contour (v = 0), the thin 
solid line is the 16% high-density contour (v = 1), the dashed line is the 16% 
low density contour (v = — 1) by area fraction. All the contour curves in this 
paper will be plotted in similar fashion. The smoothing length is 2 = 5°. 

We compute the raw genus curve by simply taking the raw 
data and assuming exactly average density beyond the obser- 
vation region. Next we use statistical bootstrap technique 
which was discussed extensively in Gott et al. (1989) to calcu- 
late the mean genus values and corresponding errors. As can 
be seen in Figure 2. The genus curve shown is approximately 
random phase but shows a small shift to the left (a meatball 
shift)—note that the median density contour (v = 0) has a 
genus significantly above zero. Having the genus curve shifted 
slightly to the left (meatball shift) indicates a slight prominence 
of isolated clusters over isolated voids and in this sample is 
provided by the prominence of the large Virgo cluster, Coma 
supercluster complex. 

The UGC sample covers approximately the same region as 
the three-dimensional CfA sample (Huchra et al. 1983). Gott et 
al. (1989) found that the genus curve for the CfA sample is 
approximately random phase with a slight meatball shift. 
Ryden et al. (1989) also arrived at the same result using the 
one-dimensional level-crossing statistics. Thus the three-, two-, 
and one-dimensional methods applied to the same region 
give consistent results. 

3.2. ESO Catalog 
ESO sample (Lauberts 1982) covers the sky with ô < —17?5. 

6650 galaxies are selected with b< —29°, <5 < —17?5 and 
D > T. The active survey region area A is 1.79 steradians. The 
mean angular separation between galaxies is d = 0?93 and the 
angular correlation length is 60 = 0?23 (LNP). The mean depth 
of the ESO sample is D* « 80/z-1 Mpc (Hudson 1990). The 
three-dimensional correlation length for galaxies is r0 « 6/i_1 

Mpc. So 0* = r0/D* « 4?3. Thus for the standard model we 
might expect to find approximately random phase results pro- 
vided that À > max (d, 0*) = 4?3. The difference between the 
values of d, 90, and D* for the UGC and ESO samples is in 
accord with claims that the ESO sample is about 15% deeper 
(e.g., Lahav, Rowan-Robinson, & Lynden-Bell 1988; Lynden- 
Bell, Lahav, & Burstein 1989). The ESO sample is deeper than 

-4 -2 0 2 4 

V 
Fig. 2.—Genus curve for the UGC catalog (<5 > — 2?5, b> 29°) plotted 

with the best-fit random phase theoretical curve g2{v) oc ve~v2/2. The open 
squares are obtained from simply taking the raw data and assuming exactly 
average density in the universe beyond the observation survey region. The 
mean values (shown as filled circles), and the error bars are computed from the 
statistical bootstrap technique. In 15 statistical bootstrap runs we take the 
observed galaxies and throw them back in a Poisson fashion at their original 
positions (cf. Gott et al. 1989), and in the region exterior to the sample we put a 
Poisson distribution of galaxies with the average density. Not only do the 
bootstrap runs allow us to compute error bars due to sampling, but the means 
are less subject to boundary effects resulting from picking a single uniform 
external density. All the genus curves in this paper will be plotted in similar 
fashion unless explicitly stated; A = 5°. 

the UGC sample because it was done on a higher sensitivity 
film (so the ESO angular diameter limit of 1' is thus not equiva- 
lent to the UGC angular diameter limit of 1'), and therefore it 
has a different selection function. In Figure 3 we show the 
median, 16% low and 16% high-density contours. It is obvious 
that the density distribution of the ESO catalog is smoother 
than the UGC catalog. The corresponding genus curve shown 
in Figure 4 is approximately random phase—note the median 
density contour (v = 0) has a genus that is consistent with zero. 

Fig. 3.—Contour plot for the ESO catalog (<5 < —17?5,6 < —29°); 2 = 5° 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
5.

 . 
.2

6G
 

No. 1, 1992 TOPOLOGY OF LARGE SCALE STRUCTURE. V. 29 

v 
Fig. 4.—Genus curve for the ESO catalog (<5 < —17?5, b < —29°); A = 5° 

Thus the ESO survey region appears to be more nearly 
random phase than the UGC region. A three-dimensional 
topology study (cf. Gott 1991) of the Southern Sky Redshift 
Survey (SSRS), out to a distance of 50/t-1 Mpc, drawn from 
the ESO survey, shows a rather accurately random phase 
three-dimensional genus curve, with a smoothing length of 
À = 6.5/i_1 Mpc. This smoothing length corresponds well to 
our effective smoothing length oî À = 7h~1 Mpc when we use 
2 = 5° in our 80/t-1 Mpc deep sample. (For further discussion 
of the three-dimensional topology of the SSRS sample at other 
smoothing lengths, some of which show slight meatball shifts, 
see Park et al. 1991.) Thus again the three- and two- 
dimensional results are in good agreement. 

The UGC sample shows a meatball shift because of the 
prominence of the Virgo cluster and Coma supercluster in the 
sample. Note that the “ Great Attractor ” region (see, e.g., Fig. 8 
of Lynden-Bell et al. 1988) is not included in our ESO sample 
since we restricted the sample to h < —29°. Gott et al. (1990) 
showed that for three-dimensional samples of this general size 
the biased CDM model simulations produced three- 
dimensional genus curves which were either random phase or 
showed slight meatball shifts. An analysis by Park & Gott 
(1991) and Park (1990b) shows that the slight meatball shifts 
seen in the biased CDM model at the present epoch are largely 
due to a nonlinear interaction of statistical biasing in the 
galaxy distribution with gravitational evolution. In the next 
section we will compare our two-dimensional results with 
simulations. 

3.3. Simulations 
In order to understand the topology of observed distribution 

of galaxies shown by our two-dimensional genus curves, we 
make comparisons with simulated skies with similar selection 
effects. We randomly choose an observer’s location and his 
“ North Pole,” and make a redshift catalog of “ galaxies.” In 
these surveys we use a selection function from the Southern 
Sky Redshift Survey (SSRS), whose diameter limit is L26 (Park 
et al. 1991), scaled so as to match the T diameter limit of the 
ESO sample we are simulating, i.e., the selection function ps(r) 
as defined in Gott et al. (1989) is drawn from the known selec- 
tion function of SSRS ps,SsRs(r) by the equation ps(r) = 

v 
Fig. 5.—Genus curve for the white noise simulation plotted with best-fit 

random phase theoretical curve {solid line). The mean values are shown as filled 
circles; A = 5°. 

Ps,ssRs(rß 26). Furthermore, the selection function is truncated 
at the distance of 301.Ih*1 Mpc which is the size of the simula- 
tion cubes. We use a sky coverage corresponding to that of the 
UGC catalog to give us a larger active survey region. 

First we consider a toy model where galaxies are distributed 
randomly in three-dimensional space. For a Poisson field 
smoothed with a Gaussian window function the expected 
genus per steradian is, from equations (6) and (7) 

1 
92 - (2tc)3/2A2 ve — v2/2 (10) 

which gives 02 = 5.1 at v = 1 with a smoothing length 2 = 5°. 
This theoretical value is in excellent agreement with the genus 
per steradian at v = 1 of the best-fit random phase genus curve 
shown as a solid curve in Figure 5. The measured genus curve 
is also very close to the random phase curve. This justifies our 

Fig. 6.—Contour plot for a biased CDM simulation; A = 5° 
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v 
Fig. la 

V 
Fig. le 

Fig. 7.—(a)-(c) Genus curves for three biased CDM simulations; k = 5°. 
Fig. 7a shows the genus curve for the sample shown in Fig. 6. 

choice of the smoothing length A > max (d, 0O, 6*), i.e., the 
smoothed density field is recovered without discreteness effects. 

We next study simulated skies of “ galaxies ” which are gravi- 
tationally evolved from an initially random Gaussian distribu- 
tion. We locate an observer randomly in each of three Q = 1 
CDM simulations of Park (1990a) and observe the biased 
“galaxy” particles as described in Park (1990a). The biased 
particles are allocated as sites of galaxy formation in the begin- 
ning of the simulations and evolved with massive CDM par- 
ticles. This standard biasing scheme has been extensively 
studied in Park (1991). One of the simulated skies mimicking 
the ESO catalog in depth but with the larger sky coverage of 
the UGC catalog is shown in Figure 6. The catalogs from the 
simulations are treated in the same way as the observations: 15 
bootstrap replacement runs are made to estimate the uncer- 
tainty in the genus. Figure 7 shows the results for the three 
catalogs. The genus curves are all approximately random 
phase but one of the three (Fig. lb) shows a slight meatball 

v 
Fig. lb 

shift. So again the simulations and the observations are 
consistent—we have two observational samples: one is 
random phase and one shows a slight meatball shift; we have 
three simulations: two are random phase and one shows a 
slight meatball shift. Gott et al. (1989) found that in the three- 
dimensional case, for observational samples of this size CDM 
models were either random phase or showed small meatball 
shifts. So again the two- and three-dimensional results are in 
good agreement. 

4. DISCUSSION 

In addition to evaluating whether or not the topology is 
random phase, we can also use our two-dimensional genus 
curves coupled with the thick slice approximation to estimate 
the effective index of the power spectrum rceff. 

From equations (6) and (9), we find that genus amplitude per 
steradian 

1 <fc2> 1 (neff + 2) 
(27t)3/2 2 (27t)3/2 U2 ' 1 J 

Therefore 

nef{ = 2AX2{2nf12 - 2 . (12) 

We find the amplitude A by using best least-squares fitting 
curve (g2 = Ave-v2/2). Then we calculate the effective power 
index by using equation (12). 

For the white noise sample, we find neff = 0.08 which is in 
good agreement with the theoretical value {n = 0). 

For the UGC and ESO catalogs, we find neff = —1.1 and 
neff = —0.81, respectively. Most of the uncertainty in measur- 
ing neff comes from the difference in the two samples. Thus, the 
observed power index at this smoothing scale is roughly neff ä 
—0.96 + 0.15. For the three evolved CDM simulations, shown 
in Figures la-lc matched in depth to the ESO survey, we find 
neff = —0.80, —0.72, and —0.80, respectively, in good agree- 
ment with the value of the ESO observational sample. Since 
the ESO sample is somewhat deeper than the UGC sample, 
with the 2 = 5° smoothing length, we are looking at somewhat 
larger scales (approximately 77i_1 Mpc instead of 6f*-1 Mpc), 
and with a CDM power spectrum neff slowly increases with 
increasing scale. From our three-dimensional theoretical for- 
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mulae, for the CDM model (Q = 1, h = 0.5) we find ne{{ = 
—1.02 at a smoothing scale of 6/i_1 Mpc increasing to neff = 
—0.92 at a smoothing scale of 7/i-1 Mpc. These values are 
quite consistent with the results obtained from the UGC and 
ESO catalogs, respectively. 

In conclusion, we have applied our two-dimensional topol- 
ogy measuring algorithm to two important catalogs of galaxies 
and to numerical simulations. We find that in general the 
topology is approximately in agreement with the random 
phase formula G2(v) oc ve~v2/2. This is consistent with the stan- 
dard model where structure forms out of initial quantum fluc- 
tuations. 

When the topology is studied on scale 2 = 5°, we find the 
UGC catalog has a small meatball shift, which agrees with the 
three-dimensional genus curve for the three-dimensional CfA 
sample which covers the same area with similar effective 
smoothing length (Gott et al. 1989). The ESO sample is more 
nearly random phase, which also agrees with the three- 
dimensional result for the SSRS which covers the same area (cf. 
Gott 1991) with 2 = 6.5/i-1 Mpc corresponding well to the 
effective 2 = 7/i-1 Mpc smoothing length in our 2 = 5° ESO 
sample. Thus in each sample the results obtained in two- 
dimensions are consistent to those from three-dimensional 
studies in the same regions. The fact that we find distributions 
that are either random phase or show slight meatball shifts is 
just what we find from biased CDM simulations. Using the 
amplitudes of the genus curves we can estimate the effective 
index of the power spectrum at the smoothing length scale. We 
find neff æ — 1 for the observations (cf. Gott & Rees 1975), 

31 

again quite close to that produced by biased CDM simula- 
tions. As in the three-dimensional case the overall success of 
the standard biased CDM model is good. 

The biased standard CDM model with Q = 1, a gravita- 
tional instability model, has shown a distribution of galaxies as 
complex as presented by the universe itself. CDM models with 
Q = 0.4 are similar (cf. Gott 1982) but have more power on 
large scales in better agreement with the Maddox et al. (1990) 
angular covariance function data, and produce great walls that 
are as spectacular if not more so than the Q = 1 model (Park 
1990a). The fact that the standard CDM model produces the 
observed large scale features well is remarkable since it has 
relatively low large-scale power. This is encouraging not only 
for itself but for the entire class of gravitational instability 
models [including, for example, texture seeded models (Park, 
Spergel, & Turok 1991) and extended inflation models (La, 
Steinhardt, & Bertschinger 1989)], a class of models which 
produce no gross distortions in the cosmic microwave back- 
ground spectrum in agreement with the recent CO BE FIR AS 
result (Mather et al. 1990). In the future, deeper observational 
data on the large-scale structure of the universe and extensive 
statistical tests of numerical simulations should enable us to 
narrow our choices. 

We wish to acknowledge support from NSF grant AST 90- 
20506 and NASA grant NAGW-765. O. L. acknowledges NSF 
grant number AST-8802533 and Fellowships of St. Catharine’s 
College and SERC. 
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