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Abstract. Acoustic sounding of the Sun reveals that the variation
of angular velocity with latitude is independent of depth in the
convection zone. By contrast, deep within the radiative zone,
the rotation appears to be rigid. The transition between the two
rotation laws occurs in a thin, unresolved layer that we here call
the tachocline. This paper is an examination of the structure and
previous evolution of this layer. We assume that the stress exerted
by the convection zone is prescribed, much as oceanographers
take the wind stress on the sea surface as given. We conclude that
the helioseismic observations are best rationalized by a scenario
in which, after an initial adjustment or spindown period, the
subconvective rotation settles into a quasisteady state with a
turbulent boundary layer. In the tachocline, the advection of
angular momentum is controlled by horizontal turbulence. If
this turbulence is intense enough, the tachocline is thin and is
unresolved.
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1. Introduction

The breaking of hydrostatic equilibrium by stellar rotation and
the consequent internal circulation are still not well understood.
The difficulties are particularly severe when there are extensive
convection zones in the star, for then we have only crude means
of describing the internal fluid stresses that shape these flows, and
the internal rotation law cannot be reliably deduced. However,
in the solar case, improved observations of solar surface oscilla-
tions, in combination with the study of normal modes, permit a
sounding of the interior flows (Brown et al. 1989; Goode et al.
1991). It has been found that the latitudinal differential rotation
of the solar surface prevails throughout the convection zone with
little radius dependence.

Below the convection zone, the equatorial and polar rotation
rates appear to approach a common value in a radial increment
too small to be resolved as yet (Goode et al. 1991). This near
discontinuity in rotation velocity may power dynamos and af-
fect the large scale circulation and local mixing. It is therefore
worthwhile to seek a theoretical rationalization of this velocity
boundary layer, which we call the solar tachocline by analogy
with the oceanic thermocline. The tachocline lies below the con-
vection zone, just as the thermocline lies below the mixed layer
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in the ocean, although the relative depths of the corresponding
layers differ in the two cases (Pedlosky 1990).

In this paper, we describe the flow within the tachocline.!
After listing our simplifying assumptions in §2, we describe the
initial adjustment processes under the influence of an imposed
wind stress at the top of the radiative interior, first adiabatically in
§3, then radiatively in §4. In §5, we seek a stationary state in which
strong horizontal turbulence prevents the vertical spreading of
the tachocline.

2. The formulation of the problem
2.1. Basic equations

We begin by writing the equations of motion with respect to a
differentially rotating frame with angular velocity Q(r,t), where
r = |r| is the radial coordinate and r is the absolute position. For
the absolute velocity we have Q x r + ¥V where V is the local
velocity in the differentially rotating frame. In the frame with this
Q the equations governing the motions for the radiative interior
of a star are the conservation of mass

o
L4v-(r) =0,

2.1
o 21)
the conservation of momentum

a—V+(V~V)V+2s2>< V+Qxr
Pl 22
=—VP —pVO + V- 7|,
and the conservation of heat (or entropy)

oS
pTEt— +pTV - VS =V-uVT). 2.3)

Here Q = 0Q/0t + udQ/or is the substantial derivative of Q,
where u is the radial component of velocity. Conventional nota-
tion has been employed for the density, p, the pressure, P, the
temperature, T and the specific entropy, S; | 7 || represents the
viscous (or turbulent) stress tensor, y the thermal conductivity
and @ the gravitational potential. Since we shall deal with layers
! When the existence of such a layer was first adumbrated, the
term tachycline was proposed (Spiegel 1972). Here we defer to
the terminological sensibilities of D.O. Gough and modify that
neologism.
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that are far from the stellar core, the generation of nuclear energy
has been ignored and @ is prescribed. In this first exploration,
we also ignore the effects of a magnetic field.

2.2. Assumptions

We seek solutions under the following enumerated conditions:

1) The flow field is axisymmetric with respect to the rotation axis.
Thus, V = V(r,0,t) where 6 is /2 minus the latitude.

2) The oblateness due to the centrifugal force is negligible in the
figure of the Sun, so that the level surfaces of the hydrostatic ref-
erence state can be treated as spheres. This approximation filters
out the Eddington-Sweet circulation. The omission may be com-
pensated by the inclusion of a suitable thermal forcing term in
the heat equation (Zahn 1992). Like the Euler force Q X r in
the equation of motion, this effect is responsible for producing
weak meridional currents. Both of these secondary flows will be
ignored in this work. Consequently, the reference state will be of
uniform rotation.

3) The flow occurs on such long time scales that the acoustic modes
may be filtered out of the circulation problem. This is the heart of
the anelastic approximation in which we neglect the acoustic ana-
logue of the displacement current, dp/dt. The density variation
enters the problem, of course, but only through the stratification
by way of the equation of state.

4) Terms quadratic in fluctuations of thermodynamic quantities
from their mean states may be safely neglected. This too is nor-
mally considered as part of the anelastic approximation. Thus,
we neglect the variations of the specific heat at constant pressure,
Cp, of the radiative conductivity y and of the turbulent viscosity,
for which we assume different values, vy and vy, appropriate to
the vertical and horizontal components of the viscous stress ten-
sor. In the same way, except for a brief discussion in Appendix
B, we neglect variations in the mean molecular weight of the
medium. This leaves us with a perfect gas with a linear equation
of state.

5) The Rossby number, which measures the ratio of the Coriolis ac-
celeration to the advective term, is small. Quantitatively (Pedlosky
1979; Busse 1981) this means that

r AQ
o= () () <.

where AQ is the differential rotation imposed by the convection
zone and h is the vertical scale of variation of the flow. This
assumption, which can be verified a posteriori, implies that the
dynamics is linear to good approximation. By the same token, a
small Rossby number means that we can neglect the acceleration
compared to the Coriolis force, at least, if we are interested in
long time behavior.

6) The tachocline is very thin: h < r. Hence the scale height of
any function describing the structure of the layer will be of order
h. This allows the neglect of the vertical velocity, when compared
with the horizontal velocity in the meridional plane. Failure of
this approximation at the poles and the equator produces some
slight problems, but they may be ignored in a first discussion.

7) The flow is geostrophic. This is a familiar condition of geo-
physical flows, that perhaps we should call heliostrophy. This
condition requires that, below the convection zone, the turbulent
viscous forces are much less important than the Coriolis forces.
For this to be true the Ekman numbers

(2.4)
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where h is the thickness of the tachocline, must be small. In many
geophysical and laboratory problems, this approximation has to
be compensated by the introduction of Ekman boundary layers.
In the solar case, the convection zone takes over the role played
by Ekman layers of the oceanic analogue (Bretherton & Spiegel
1968; Sakurai 1970).

Because of condition 1), which rules out a zonal pressure
gradient, geostrophic balance can hold only in the latitudinal
direction. Hence, in the zonal (azimuthal) direction, the Coriolis
force can be balanced only by viscous and inertial forces. This is
consistent with condition 7) on account of condition 6).

2.3. Reduced equations

If we mix the equations of §2.1 with the assumptions listed in §2.2
and stir vigorously, we find that a number of terms evaporate.
To view the results at their best, we express them in spherical
coordinates (r, 0, ¢). Each dependent variable is separated into a
mean value on the sphere plus a perturbation. Thus, the temper-
ature is T(r,t) + T(r,0,1) with [ T(0)sin0d0 = 0. Then the
linearized version of the equation of state is

|~
Sl

" (2.6)

o)

We express the velocity field as V = (u, v, Q sin 0) where 9
is the differential rotation with respect to the rotation Q of the
reference state. We can further simplify the look of the equations
by introducing a stream function for the meridional flow:

oY oY
2 _9F ; YT
rpu=——, rpsinfv o 2.7
with x = cos 0.
Equations (2.1)—(2.3) are then distilled down to
10P | T
~ 1P
— = — 2.
2QrxQ = — =, 2.9)
pr2(1 —x?) o0 +20Qx o
ot or
~ ~ (2.10)
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The two first equations express the hydrostatic and geo-
strophic balances, widely adopted in geophysical fluid dynamics
(Pedlosky 1990). The third and fourth equations describe the ad-
vection and diffusion of angular momentum and heat. The stabil-
ity of the temperature stratification is measured by the buoyancy
frequency N? = (g/Hp)(Va. — V) (with the usual notation for
the pressure scale-height Hp and for the logarithmic temperature
gradients V= 01n T /0 1n P). Since the turbulent stresses may be
anisotropic we have both horizontal and vertical diffusion terms
in (2.10) by contrast with (2.11), where the diffusion is radiative
and isotropic.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992A%26A...265..106S

BS.

FTOO2A8A - 765. T

108
2.4. Boundary conditions

To study the evolution of the differential rotation described by
these equations, we shall assume that the dependence on latitude
at r = ry, is imposed from above by the convection zone. This
means that we are not allowing for the feedback of the flows in the
radiative zone on the overlying convective zone. In the solar case,
this imposed latitude variation is determined from observations.
The rotation law is generally expressed as a polynomial in x =
cos 0, so the first boundary condition may be written as
Qe = Q+ Q(ro, x) = Qp(1 — ax® — bx%), (2.12)
Q) being the equatorial rate and Q the reference rotation.

The helioseismic observations are still not precise enough
to yield a firm rotation law. But from the data of Libbrecht
(1989), Goode et al. (1991) have improved the spatial resolution
to Ar/Re =~ 0.1. Allowing for a vanishingly thin tachocline, they
derived the following rotation law at the base of the convection
zone:

Qe _ 462 643> —73x* nHz |
2n

(2.13)
which we shall adopt in our models.

A second boundary condition expresses the continuity of the
temperature perturbation, T. In turn, this implies the continuity
of aﬁ/ Or, as can be seen by eliminating P between (2.8) and (2.9).
Since the observations indicate that the differential rotation varies
little in the deep convection zone, we may take dQ(r, x,t)/dr = 0.

Furthermore, the solutions must vanish well outside the
boundary layer. We formulate these conditions in this way:

oQ(r, x, 1)
or
and ﬁ(r, x,t) >0 forr—0.

Q(r,x, 1) = Qe(x,1) — Q, =0 atr=r

(2.14)

The reference rotation Q is thus identified as the rotation of the
deep interior.

3. Adiabatic adjustment

The real initial conditions for our problem are not known and are
probably too complicated to deal with in any case. We begin our
calculations with a fully formed, differentially rotating convection
zone at t = 0 exerting stress on the subjacent radiative interior
across their mutual interface at r = ry. After a quick adjustment
which takes a dynamical time of order Q~!, the subconvective
layers settle into a quasi-stationary stage, which then evolves
much more slowly under the combined action of radiative diffu-
sion and viscous torque as in the conventional solar spindown
problem (Spiegel 1972).

The initial stage is rapid and adiabatic. It may be studied
by neglecting the dissipative terms in (2.10) and (2.11). On elim-
inating ¥ between these equations, and integrating in time, we
establish the following relation between the differential rotation
and the vertical variation of the temperature perturbation (with
x = cosf):

0 1—x2\ A o (gor* T
2 0 = 9 _ L
pr 0x [( x )Q] 2Q(3r(N2 T )"
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Fig. 1. Horizontal eigenfunctions, defined by (3.4), for the adiabatic and
radiative regimes.

Elimination of Q and T /T using (2.8) and (2.9) yields
2 (@)22@ __ 0 (1=x*0P
or N or | ox x2  ox )

This equation is separable in r and x, and we look for
solutions of the form

(32)

Pir,x) =Y Pilr) filv) . (33)
The horizontal eigenfunctions f;(x) obey

d [1—x*df )

a( 2 E)+/1f—0, (34)

and they are fully determined by the requirement that they be
regular at the poles x + 1.

This equation is of the Sturm-Liouville type; it becomes the
spheroidal wave equation when v1—x2df/dx = x2S}, where
the S, is the spheroidal wave function of the first kind of order .
Hence the eigenfunctions form a complete orthogonal set, when
we include the constant function fo (with 42 = 0). The first even
eigenfunctions are depicted in fig. 1. (See Appendix A for further
discussion of the eigenfunctions.)

The modes of vertical structure satisfy

d [/20\? ,dP, .
5[(F) VE]-“I*

If there were no radiative or turbulent diffusion, the solution of
(3.5) might serve to crudely describe a tachocline, with thickness
or vertical scale height

=3 (%)

(3.5)

(3.6)

where A, = 3.542 is the smallest eigenvalue of (3.4). This length
scale appears in stratified spin-down theory (Holton 1965). In
the present Sun, hy &~ 500km; however, at earlier phases of its
evolution, when the Sun was rotating much faster, the adia-
batic adjustment layer penetrated well into the radiative interior,
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imposing a state of differential rotation similar to that in the con-
vection zone. The thickness of this layer is the depth range over
which the rotation overpowers stratification to locally establish a
Taylor-Proudman regime (Greenspan 1968). Since the rotation of
such an adiabatic tachocline cannot fulfill both boundary condi-
tions (2.14) at r = ry, we must either allow it to feed back onto the
rotation of the convection zone or introduce a boundary layer.
As those boundary conditions would involve dissipative mecha-
nisms, such a study blends naturally into that of the following
section.

4. Radiative spreading

Under the influence of radiative diffusion alone, the transition
layer between the convection zone and the radiative interior
thickens with time. We consider here the case where the horizontal
diffusion of momentum is negligible, as it is when the flow is stable
and the viscosity is due to microscopic interactions. Then, in § 5,
we discuss what happens when the flow becomes unstable and
the turbulent viscosity modifies the spreading of the transition
layer.

The thin-layer approximation allows us to neglect the second
term on the right of (2.10), provided that vy /vy < (ro/h)?, h
being the thickness of the tachocline. If the turbulent stresses are
not extremely anisotropic, this is a safe assumption. We use it for
now and give it up in the next section.

The first consequence of ignoring possible strong anisotropy
is that the diffusion terms that remain in (2.10) and (2.11) do
not involve any derivatives with respect to x = cos 6. Therefore
the horizontal eigenfunctions f;(x) introduced above can be used
again to separate the variables r and x.

We may expand P,5,T and u as

8060, = > Flr) filx) ,

i>0

@.1)

where g stands for any of these dependent variables. Likewise,
the stream function W of the meridional flow becomes

¥ =Z\¥'i(r,t) A filx) dx'.

i>0

4.2)

For the differential rotation, similar manipulations lead to an
expansion of the form

xQ =0, t)d];ix) .

4.3)

i>0

Note that these eigenfunctions allow only a differential rotation
O which vanishes at the equator, since (1/x?)df;/dx must be
regular at x = 0 according to (3.4).

On dropping the index i, we transform (2.8)—(2.11) into the
following system

16P T

0 = ——;W+g? (4.4)
—-2QQ¢%p = P (4.5)
00 2009 10 Q
2, “ne  Lmmers - — 4=
Poc " Zor T P (”V” ar) “8
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After a transient phase, which lasts about a thermal relaxation
time, h?pCp /y, the evolution slows down and a balance is struck
between advection and buoyancy in the heat equation. Then the
time derivative in (4.7) may be neglected, as can be verified in the
results of this section. With this simplification, the elimination
of the perturbations of the thermodynamical variables yields an
expression for the stream function in terms of the differential
rotation:

- _ 20g 0| 0 r2PT£pr2§
T~ NGy or |%or\ Tpg or P :

4.8)

In using this formula we locate the base of the convection zone at
the depth where the convective heat flux first becomes negligible.
Because of penetrative convection, this occurs where N2 is strictly
positive (Zahn 1991), so no small denominators arise.

We then find an equation for the evolution of the differential
rotation alone:

@ 42 1 o f g o[ 3 (rPTopr0
ot 22 pr2or | N2CpT or Lor pg or P
10 00
—r—25<pVVr W) -——0

If the thickness of the transition layer is less than the scale
heights of the background quantities, we may approximate this
equation by

2Q 20N\? (1r\2 0*Q 20
are(v) G) e
where k = y/pC,. The middle term is formally like the so-
called hyperviscosity term of computational fluid dynamics and
it operates in concert with the ordinary viscous term to spread
the effects of the imposed shear radially.

We now apply the boundary conditions (2.14) to impose the
value of (~1(r0). Thus, we integrate (4.3), expressed as in (2.13), and
project the result onto the horizontal basis functions normalized
so that f;(0) = 1. The coefficents in (4.3), scaled by Q, are then
expressed by

4.9)

=0, (4.10)

0 = Qo) __, I} —bIf with
o (4.11)
1 .
Ik = l f—l (xk_ ﬁT) fidx
l k f_ll(fi)z dx

where the integration constants have been chosen so that I(’)‘ =0,
in order to enforce Qp = 0. Note that the coefficients Q; scale
with the normalization adopted for the eigenfunctions f;. On
imposing the observed rotation law (2.13) as boundary condition,
we calculate

0,=10210"2, Q,=22107, Qs =—4810"°, ... ;

s

and we see that the first mode (i = 2) dominates.

Now, folllowing an initial, rapid adiabatic response on the
dynamical time-scale (~ Q~!) across a depth hy = 2Qro/A,N (§3),
there is the subsequent, much slower, thermal relaxation when the
flow evolves according to (4.9). Then, depending on the intensity
of the turbulence, we shall have either (a) negligible turbulent
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viscosity, when the flow is essentially inviscid, or (b) significant
turbulent diffusion of momentum controlling the further evolu-
tion of the flow. We consider case (a) here and a version of (b)
in the next section.

If the spreading is laminar, we may ignore the viscous term
in (4.9) or (4.10). We can look for a similarity solution of the
resulting equation with the region of influence of the convection
zone spreading like the 1/4 power of time:

£\ /4
h=r (—) ,
tgs

where tgs is a local Eddington-Sweet time given by

(N 2 ré
tes = (29) K
Such a regime is familiar in the stratified spin-down problem (e.g.
Sakurai 1970; Spiegel 1972). In the Sun, tzg = 2.2 10!! years and
ro = 480,000 km; thus & ~ 200,000 km after 4.6 10° yrs.

To be more precise, we define a scaled depth, measured from
the top boundary, by z = (ro —r)/r, and a nondimensional time,
T = t/tgs so that (4.10) is made non-dimensional:

4.12)

00,

Q| 16
ot

2o 0. (4.13)

This equation has similarity solutions of the form

Q@0 =00ZE©. & = Vigg, @.14)
where y(&) = dZ(&)/d¢ satisfies
4y" — ¢y =0. (4.15)

Of the three independent solutions of (4.15), only two, which are
complex conjugate, remain finite for ¢ — co. We may combine
them into a real function, which behaves as

y =0 ¢'exp (—%q&) cos (?q&) with ¢’ = (%) : . (4.16)

for large &, where prime denotes differentiation.

The solution depends on two constants, y, and the phase
at the origin of ¢. These are fixed by the boundary conditions,
Z0) =1 and Z'(0) = y(0) = 0. We have integrated (4.15)
numerically, and found that the solution has its first node at
¢ = 3.260. In the present Sun this corresponds to z = 0.536, or
about 270,000 km below the convection zone. This gives us some
idea of how far the spreading has gone, but it also shows that it
is too deep for (4.10) to be applicable.

A more accurate treatment requires the integration of the
p.de. (49) with allowance for the variation of the mean rota-
tion rate and for the evolution of the stellar structure. We have
performed this integration for an unchanging mean Sun, to cap-
ture the effects of departures from the thin-layer approximation
produced by density stratification and sphericity. We find, not
surprisingly, that the penetration of the tachocline is less rapid
than predicted above: z = 0.375 or 180,000 km below the con-
vection zone. Since this estimate has not allowed for a higher
rotation rate of the early Sun, it is too small because f dt/tgs is
larger than t/tgg, with the current value put in. We can make an
estimate of this difference.

If the form of the spatial rotation law is assumed constant
and the magnetic torque of the solar wind scales with a power of
the surface rotation, Q varies like (¢ +¢.)™ (Spiegel 1968). If ¢. is
neglected, the best fit to the data gives n = 1/2 (Skumanich 1972).
With this value we get an increase in fot dt/tgs by a factor 8 over
the value obtained with contant Q, if the equatorial rotation of
the early Sun is taken as 100 kms™! typical for very young stars
of that mass. (For n > 1/2, the correction factor would be even
larger.) The transition layer thickness determined above should
therefore be scaled by approximately 8!/4, so that if the spreading
began in the early Sun, it has now reached to 300,000 km below
the convection zone. A more precise estimate would be hard to
obtain without more knowledge of the initial internal motions.

The picture is that if the differential rotation in the convec-
tion zone was set up early, the effects will have spread quite
deeply, in the case of a laminar adjustment process. As long as
the slowing down rate of the solar rotation is not too great, this
tracking of the surface motions by the interior flows works rea-
sonably well. However, this simple theory does not explain why
helioseismology reveals a thin tachocline. We thus have to seek a
process which prevents the indefinite spreading of the influence
of the convection zone. One possibility might be the inhibition
of circulation by a gradient of molecular weight (Mestel 1953),
which might arise if helium drifts down from the convective zone.
We find that this does not work (see Appendix B). By contrast,
a mechanism that at first glance seems to enhance the spreading
rate, turbulent viscosity, is the one that we propose to explain the
existence and the nature of the tachocline.

5. The turbulent tachocline

We have conluded that, without turbulent viscosity, the effects of
the wind stress exerted on the radiative interior by the convection
zone will have penetrated at least half way to the solar center.
It might be thought that the inclusion of turbulent stresses in
the interior flow will only enhance the spreading rate. That is
the conclusion suggested by the equations of §4 but, in that sec-
tion, we assumed at the outset that the horizontal turbulence was
not much more intense than the vertical turbulence. The situa-
tion is drastically altered when we allow a suitably anisotropic
turbulence; in particular, (4.6) no longer holds.

In this section, we explore the consequences of assuming
that the horizontal turbulence transports angular momentum so
effectively that in (2.10) the second term on the right is dominant.
When

(5.1)

where h is the thickness of the tachocline, we may neglect the
first term in (2.10). This limit becomes relevant when the sta-
ble stratification in the subconvective flow produces the strong
anisotropy familiar in geostrophic turbulence (Rhines 1979). As
in many such studies, we shall not go into the details of the linear
and nonlinear instability mechanisms that may produce the tur-
bulence, except to remark that it is to be expected on account of
the large Reynolds number of the horizontal shear (Zahn 1975).

For the purposes of understanding why there is a tachocline,
we discuss the limiting case when (2.10) becomes

prz(l—xz)a—Q -I-ZQxa—lP =p% [vH(l—xz)2 6_9] .

ot or 0x (52)
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In this limit, the horizontal transport of angular momentum by
turbulence will be more important than the vertical transport.
However, the horizontal transport of heat by turbulence remains
smaller than the vertical radiative transport when we are below
the region of penetrative convection. Though the effective Prandtl
number vg/x may well be larger than unity, it is appreciably
less than (ro/h)2. Hence we neglect as before the net horizontal
transport of heat in (2.11).

The important change that occurs when we adopt (5.2) is that,
after a brief adjustment, the time derivative becomes unimportant
and the remaining two terms can achieve a balance. This permits
us to find a solution accounting for the observed tachocline, with
suitable values of the parameters. Of course, the full solutions
are now more difficult to come by since, with (2.10) replaced by
(5.2), the new system (2.8)—(2.11) is not separable in r and x, but
the sacrifice is well worthwhile. So we go straight to steady case.
adopting the fiction that the solar rotation is independent of time
now that the mean rotation rate is slowing down at a modest
rate.

The stationary flow can be expanded in separable solutions,
though a different set of horizontal eigenfunctions now appear.
As before we write

g(r,0) = D &) Fi(x), (53)

where x = cos 6 and g stands for any of the dependent variables
P,p, T and u. The stream function is again given by

¥ =) ¥ / Fi(x)dx', (5.4)
2% |
and the rotation rate by
5 g dFi)
xQ = ZQi(r) o (5.5)

Again, we have an equation for the new horizontal eigenfunc-
tions, F;(x), of fourth order this time. When vy is independent of
latitude, the eigenfunction equation is

d |1d d (1dF
I {;a [(1 _xz)za (Ed_x)] } —(w)*'Fi = 0.

As with the function f(x) introduced in § 3, we require that F(x)
be regular at the poles x = +1. One easily verifies that these
eigenfunctions form an orthogonal set, and that (u;)* > 0. The
functions of lowest order turn out to be the Legendre polynomials
of degree n < 2; the first even eigenfunctions are displayed in
fig. 2. (See Appendix A for more details.)

(5.6)

5.1. The interior rotation

A thin tachocline acts like a boundary layer in imposing the
rotation (2.12) upon the radiative interior. We thus gain a certain
flexiblity by comparison to the previous case since the interior
rotation Q is no longer required to be identical to the equatorial
rate Q. For (1/x) dF;/dx does not vanish at the equator (x = 0),
fori>2. _

Once more, we derive the modal amplitudes Q;(ry) from the
rotation law prevailing in the convection zone by integrating (5.5)

111
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Fig.2. Horizontal eigenfunctions, defined by (5.6), for the turbulent
tachocline.

and projecting onto the eigenfunctions, with 9 expressed as in
(2.12). The result is

Qi=9;§20) ~( _Q%)I,?—al;‘—blf, (5.7)
the I* being defined as in (4.11b):
Lok 1
x* — ) F;dx
I;k _ % f—l ( k+1) . (58)

S dx
In particular, for F, = P, = (3x? — 1)/2, we get

1’<=—2
27 k+1D)(k+3)

Note also that I? = 0 for i > 2, owing to the orthogonality
property.

Since (1/x)dF,/dx is constant, ﬁz(r) is a mode with no
differential rotation, according to (5.5). In a sense, this is a mode
associated with the global rotation, which we allowed at the
outset to depend on r. Even though we have dropped that r-
dependence, we must absorb this mode into the mean rotation,
since otherwise it would be subject to an uncompensated viscous
torque. On requiring that Q, = 0, we obtain for the value of the
interior rotation

Q\ _ ali+bIS 3 5
(1_9_0)_ 7 70t

(5.9)
When a and b are of the same sign, as they are in the Sun,
the interior rotation rate is intermediate between the polar and
equatorial rates at the base of the convection zone. Moreover,
since (3/7)'/? is rather close to (5/21)!/4, the interior rotation is
approximately that of the convection zone at the latitude 42°,
whose sine is the mean of those two values (cf. Adams 1979).
The relation (5.9) still holds when vy is a function of latitude,
because P, remains a solution of the o.d.e. which then replaces
(5.6).
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With the rotation law derived by Goode et al. (1991), one
obtains the following value for the interior rotation:
Q Qo

=0.903

—2; E = 417 nHz.

This value is compatible with those inferred from the helioseismic
observations by various procedures.

The modal amplitudes Q;/Qy = Q; = —al} — bIf take the
values (see 5.7)

Qs = —4.66107%, Qg = —509107% Qg =1.51107%

Again, the gravest mode (here i = 4) dominates.

\
\
|
1

| 1 L

Fig. 3. The turbulent tachocline, whose thickness has been set here arbi-
trarily to 50,000 km (the actual value depends on the horizontal com-
ponent vy of the turbulent viscosity). The continuous lines show the
contours of the angular velocity. Below, the interior rotation is nearly
uniform, and its angular velocity equals that of the base of the convection
zone at the latitude of approximately 42°.

5.2. Tachocline thickness

As in writing (4.4)-(4.7), we drop the index i and have the
analogous system

1P T
oo +g7, (5.10)
-2QQr%p = P, (5.11)
20 0¥ ~
FW = pPVH N (512)
N> T o 1 o[ ,oT
T e .13

We then obtain the equation for the modal functions ﬁi(r),

a2 1 9 g 0 ,0 ([T 0 L~ ~

W v o {—Nchm [X’ ar\pgar’ )| g TO=0
(5.14)

whose fourth-order differential operator resembles that of (4.9).
Again, we may simplify the problem by treating the tachocline
as a boundary layer in which the rapidly varying quantity is Q.
Then, just below r = ry,

2002 k (r)' 0 ~
(7\’—> ;(;) E.T-'_Q—'O‘

We restore the modal index i (i > 4), and introduce the
vertical coordinate

_ ro—r . _ 20\ % 44
c_#,-( - ) with d—ro(]—v—> (VH) . (516)

(5.15)

to cast (5.15) in non-dimensional form

d*Qy; ~
d—C4— +4Q, = 0

(5.17)

The solution that behaves well in the deep interior and satisfies

the boundary conditions (2.14), Q; = Q;Q and dQ;/d{ = 0 at

{=0,1is

Q) = 2 QV2 exp(—{) cos({ —n/4). (5.18)
We may thus conclude that if the horizontal eddy-diffusivity

vy is large enough, the spread of the tachocline will be limited

to a thickness fixed by the first zero of the lowest mode, which is
located at { = 3n/4, that is

3n 3n QN2 [\ 4
(@) @)
4y 24 N vy

where s = 4.933 is the smallest non-zero eigenvalue of (5.6). The
horizontal turbulence then enforces a stationary state, in which
the advection of angular momentum is balanced by the Reynolds
stresses acting on the horizontal shear. Such a stationary solution
is displayed in fig. 3, where we have arbitrarily set A = 50,000
km.

The thickness of the tachocline is approximately 20, 000 ot
km, in the present Sun, where ¢ is the effective Prandtl number
o = vy/x. In neglecting the net horizontal transport of heat,
we have implicitly assumed that ¢ < (ro/h)?, a condition which
is satisfied provided h/rq Z Q/N. As we come to the limit of
validity for this approximation, the tachocline thickness reduces
to about the scale height of the adiabatic adjustment layer (cf.
3.6) in the present Sun.

We should add that if the condition on ¢ were violated,
we would need to include the turbulent diffusion of heat, which
would then be competive with the radiative diffusivity. In that
case, we should consider the region as part of the convection
zone. Though a situation like this may have arisen briefly in the
early evolution of the solar rotation, we may safely regard the
tachocline as the present frontier of the radiative zone.

(5.19)
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6. Discussion

By necessity, we have ignored the initial stages of solar rota-
tion and turbulence and have assumed that the present interior
rotation is not very sensitive to the initial conditions. So we
have taken as our starting conditions a rigid interior subject to a
“wind stress” imposed by the differential rotation in the overlying
convection zone. The wind on the interface between the radia-
tive core and the convective zone is taken from helioseismology.
We have not allowed for feedback from the radiative flow onto
motion in the convective zone. We have also assumed that this
idealized initial state occurs after the era of rapid spindown so
that the temporal variations of solar rotation could be left out
of account.

The first effect seen when the surface differential rotation law
is imposed on the convective-radiative interface is a spreading
of the differential rotation into the solar interior by radiatively
controlled circulation. In the regime where the behavior is con-
trolled by radiative diffusion, the lowest order mode, f,(cos6),
dominates the latitude variation. This horizontal eigenfunction
has the property that the rotation rate does not vary with depth
on the equator; in other words, the interior rotation is equal to
the equatorial rotation of the convection zone. At higher latitude,
the spreading in time, with h =& ro(t/tgs)"/*, would by now extend
over half way into the center of the Sun if we take proper account
of its rotational history.

The radiative spreading does not produce the sharp transition
layer between the convective and radiative zones detected in the
recent inversions of helioseismic data (Brown et al. 1989; Goode
et al. 1991). Their spatial resolution has improved to 1/10 of the
solar radius, and the observed tachocline appears more shallow
than that. The implication is that a stationary layer has been
formed that changes in step with the continuing spin down, with
the large scale advection of angular momentum balanced by
horizontal turbulent stresses.

Support for this picture comes from its prediction of
an interior rotation that is intermediate between the polar
and equatorial rates within the convection zone, in agreement
with the present interpretations of helioseismic observations.
The turbulent tachocline is the seat of a permanent circula-
tion whose stream function is dominated by the lowest mode,
¥, oc exp(—{) cos(—{) Fa(x), with { = pa(ro — r)/ro. This means
that the vertical velocity decreases monotonically from { = 0 to
its first zero at { = /2, and that the circulation has an octopo-
lar configuration, with two cells emerging from the convection
zone in each hemisphere. When future observations allow the
resolution of the tachocline, we can use its observed thickness to
estimate the horizontal component of the eddy diffusivity.

Through such considerations, the tachocline may play a piv-
otal role in the problem of the mixing of lithium. The horizontal
turbulence, which prevents the spread of the layer, should also
significantly affect the lithium transport (Chaboyer & Zahn 1992).
This and related matters are discussed elsewhere (Zahn 1992).

Similarly, we note the possibility that the tachocline is impli-
cated in solar magnetic activity. This is in line with the currently
favored idea that the seat of solar activity is in a layer near
the bottom of the tachocline (Stenflo 1990, and other papers in
the same volume). In this picture, motions overshooting from
above would carry magnetic fields from the convection zone into
the tachocline, to be stretched there into toroidal fields whence
they would erupt again at the surface as sunspots (e.g. Spiegel &

113

Weiss 1980). As the observational resolution improves, we should
be able to improve our understanding of these issues.
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Appendix A: Properties of the tachocline functions

A.l. Horizontal eigenfunctions in the laminar regimes

In the tachocline, all fields are expanded in horizontal eigen-
functions which satisfy

d (l—xzdf,« (3.4

20 _
ix —)+(/1i)f,~—0,

x2  dx

with x = cos 6. That equation is similar to the Legendre equation;
here also the solutions must be regular at x = +1, and therefore

1
/ fi(x)dx = 0.
-1

This means that the constant function is an eigenfunction, for
Ao = 0, as required both by the linearization we have performed
and by the continuity equation.

Equation (3.4) has been integrated numerically by a shooting
method to yield the even eigenfunctions. We took the boundary
condition f (1) = (—1), and the eigenvalue / was iterated until
f'(0) = 0. The first three even solutions are displayed in fig. 1;
note their very flat profile around x = 0, due to the vanishing f”.
(To calculate the integrals appearing in (4.11), the eigenfunctions
were normalized at the equator: f,(0) = 1.)

The eigenvalues and the nodes were found at the following
locations:

Ao = 0.000;

Ay = 3.542; x = +0.697;

A4 = 6.688; x = +0.533, +0.932;

s = 9.830; x = +0.447, +0.825, +0.970;

Ag = 12.1071; x = £0.393, +0.742, +0.904, +0.983.

There is excellent agreement with the asymptotic theory, which
for large eigenvalue predicts

do = g+kn, k=1,23,...
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A.2. Horizontal eigenfunctions in the turbulent regime

It is the horizontal viscosity which dominates in this regime,
and the horizontal eigenfunctions Fj(x) obey the fourth-order
equation:

d(1d »od (1dF, o
a{;a[(1—x)a(;a)}}—(#i)ﬂ—0~

With the classical method of multiplying by F; and integrating by
parts, one checks that the eigenfunctions are orthogonal, provided
they have different eigenvalues.

A curious property of this equation is that it is obeyed by
any second degree polynomial in x, with x; = 0. Among these
degenerate solutions, only the Legendre polynomials form an
orthogonal sequence, and therefore we conclude that Fi(x) =
Pi(x) fori=0, 1 and 2.

The other eigenvalues u* are strictly positive, since they verify

! d (1dr\]’ !
2 i — ()4 N2
/_1 [(I”x)dx <§ dx)] dx = () /_I(F') dx.

Equation (5.6) has been integrated likewise by a shooting
method to yield the even eigenfunctions. We took the boundary
condition Fy(1) = (—1)*, and the trial values of F'(1) and u* were
interated until F'(0) = F”(0) = 0. The first three even solutions
are displayed in fig. 2; they are less steep near the poles x = +1
than the functions f(x).

The eigenvalues and the nodes were found at the following
locations:

1o = 0.000;

tr = 0.000; x = +0.577,

s =4.933; x = +0.374, +0.877;

us = 7.680; x = +0.296, +0.728, +0.949;

ug = 10.356; x = +0.249, +0.624, +0.853, +0.972.

(5.6)

Appendix B: Effect of a molecular weight gradient

The laminar spreading of the adjustment process proceeds
through the radiative diffusion of buoyancy in the stable lay-
ers. At first sight, it looks as if a strongly stable molecular weight
gradient would slow down this process, as we mentioned at the
end of §4. Such a gradient of molecular weight might occur
below the solar convection zone, because helium spreads down-
ward through gravitational settling and thermal diffusion (Profitt
& Michaud 1991).

With the gradient dlnu/dInr in the problem, we need to
consider the perturbation of molecular weight. This quantity
may be developed in the eigenfunctions f(x), and its expansion
coefficient obeys an equation similar to that of the temperature

perturbation:
o du ¥ _
% T dr ot 0. (B.1)

We have omitted the diffusion term, since the molecular diffusivity
is of the same order as the viscosity, which we have neglected.

This molecular weight perturbation reacts on the buoyancy,
and thus the hydrostatic equation becomes

10P T
_ _lop I_H B.2
0 par+g(T “), (B2)
instead of (4.4).
In the thin layer limit, the modified system reduces to
ov 2002 /r9\2 *P g diny ¥
(%) (3) G oz qi ar =0 B

This equation is similar to (4.10); since the helium abundance
increases with depth, dInu/dInr is negative, and the additional
term is of diffusive nature.
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