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Abstract. We present theoretical methods of lightcurve inversion
that can be used in photomorphography, i.e., determination of the
three-dimensional shape and/or the light-scattering behaviour of
the surface of a body from disk-integrated photometry. These
methods can be applied to atmosphereless bodies — mainly
asteroids and planetary satellites — in the solar system. With no
loss of generality, the objects of our study are referred to as
asteroids in this paper.

The inversion comprises three steps. First, a function (or
functions) containing information about both the shape and the
albedo variegation of an asteroid is determined. This step is
feasible provided the surface is strictly convex and provided a
sufficient number of lightcurves are available at different observ-
ing geometries and at nonzero phase angles. Also, the functional
form of the surface light-scattering law must be known and it must
be of a suitable type. This inversion problem is mathematically
ill-posed; i.e., small errors in the data may have large effects on the
results. Also, the number and range of the observing geometries
have a significant effect on the inversion.

In the second step, separate expressions for the inverse of the
Gaussian curvature and the albedo distribution are derived from
the information obtained in the first step. This is possible if the
functional form of the scattering law as a function of albedo is
known and it is of a suitable form (a necessary but not sufficient
requirement for this is nonlinearity in albedo). In the third step,
the non-trivial problem of determining the radius vector of the
surface from the Gaussian curvature is solved by using iterative
optimization procedures developed by us.
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1. Introduction

The lightcurve of a rotating asteroid is determined by the
asteroid’s shape, light-scattering behaviour, and the observing
geometry. The goal of photometric morphography (or photomor-
phography) of asteroids is to express these dependencies in such a
way that a solution for the inverse problem can be sought.

Send offprint requests to: M. Kaasalainen (University of Oxford)

The first analysis of the inverse problem was offered by Russell
(1906). As he pointed out, it is, of course, “quite impossible to
determine the shape of the asteroid” if we consider the problem in
its most general form, i.e., with no restrictions on the parameters.
Russell primarily studied the opposition situation with geometric
scattering (the observed brightness of a geometrically scattering
surface is directly proportional to the projected area of the surface
in the direction of the observer): if only zero solar phase angle
lightcurves are available, an infinite variety of shapes or surface
albedo distributions will account for the observed lightcurves even
with restrictions on the parameters. Russell’s conclusions were thus
rather pessimistic, but this was because of the very limited choice
of the observing geometry and because of the somewhat restrictive
mathematical methods Russell used.

However, as we shall show, if the problem is studied with
nonzero phase angles (or at opposition, provided the scattering is
nongeometric) and certain reasonable assumptions are made,
there are methods for obtaining a solution.

After Russell, not much work was done on the subject. One
recent approach is that of Ostro & Connelly (1984, 1988). This
method produces a two-dimensional “convex profile” of an
asteroid and does not employ lightcurve measurements at many
different observing geometries, whereas our aim here is to use as
many geometries as possible to obtain a directly comprehensible
model of an asteroid. Some studies of the direct problem have
been made in order to investigate mainly qualitatively the effects
that various shape and surface properties have on lightcurves;
interesting relationships are presented e.g. in Cellino et al. (1989)
and Karttunen & Bowell (1989).

A very important matter in all inverse problems is to study the
effect of the quantity and the quality of the observational data on
the solution. Our purpose is to pay close attention to this often
rather improperly treated matter in our studies.

In Sect. 2, we pose the problem in exact terms and discuss some
assumptions that have to be used. We formulate the direct
problem by expressing mathematically how the observed bright-
ness of an asteroid depends on the light-scattering behaviour and
the shape of the asteroid and on the observing geometry. In
Sect. 3, we discuss some general properties of the inverse problem
before formulating the inversion methods at opposition and at
general observing geometries in Sects. 4 and 5. In Sect. 6, we
introduce the essential principles of our methods for obtaining the
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shape of a surface from the inverse of its Gaussian curvature. In
Sect. 7, we present two numerical simulations to illustrate and
discuss the practical implementation of our techniques. In the next
paper, we study more closely the role of the a priori assumptions
used in inversion, and we investigate the effects of various
properties of observational data on the inversion in order to give a
realistic estimate of the goodness of the solution in different cases;
we shall also apply our techniques to real lightcurve data. In
Sect. 8, we present our conclusions and discuss some future work
and applications.

For understanding the main points of this treatment, Sects. 3,
5.2, and 6 are not necessary and can be skipped on a first reading.

2. Posing the problem

First, we assume that the observing geometry is known; i.e., that
the positions of the Sun and Earth relative to the asteroid (these
are easily calculated) and the asteroid’s pole position or a good
first approximation to it are known. We also assume relaxed
rotation — that the asteroid is not precessing — and that the
absolute rotational phase of the asteroid can be computed for any
moment. Thus the sidereal rotation period of the asteroid must be
known. Solving for the pole position is a nontrivial problem: we
refer mainly to the method of Lumme et al. (1990) because of its
model independence and its “separability”” from rotation period
and shape/albedo problems. There are, of course, several other
methods (for a summary, see Magnusson et al. 1989). Accurate
determination of the rotation period is also a difficult task (see,
e.g., Karttunen & Muinonen 1991), but it is vital for photomor-
phography. This is because photomorphographic methods make
use of a large number of lightcurves obtained at different
observing geometries; yet asteroids may typically make hundreds
of revolutions between apparitions, thus inducing large errors in
the absolute rotational phase if the sidereal rotation period is not
very accurately known.

In theory, the pole position/period/shape/albedo problems
should be solved simultaneously to obtain the highest accuracy.
As we shall show, the shape/albedo part of the inverse problem
may, using reasonable assumptions, be considered linear (the
integrated brightness of an asteroid is a linear functional of
functions describing the surface features). On the other hand, the
rotation period/pole position part of the problem is nonlinear. In
practice, this gives rise to a simultaneous solution of the joint
inverse problem. First, approximation values for the nonlinear
parameters (pole direction/rotation period) are determined and
then the inversion methods for the linear part, described in this
paper, are applied using a series of small deviations from the
previously determined values of the nonlinear part, so that the
solution that gives the best fit in this series can be chosen.

In studying the problem of lightcurve inversion many different
geometrical configurations have to be used; thus we use several
different coordinate systems, described in Appendix A. Coordi-
nate systems C1-C3 describe the Sun-Earth-asteroid geometry
and coordinate system C4 describes the surface of the asteroid (in
parametrizing a surface, two variables are needed). In this
connection, we state the most important restriction imposed on
the properties of the asteroid in this paper: that the surface of the
asteroid is assumed to be strictly convex (mathematically, this is
also called an ovaloid surface); in other words, convex without
planar sections. On such a surface there is one and only one point
corresponding to a given surface normal direction. This assump-
tion is necessary, because only in this case can the integration
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limits of the integral describing the asteroid’s brightness be written
as constants, which is essential for the inversion.

2.1. Light-scattering law

Firstly, we need an expression giving the observed light flux F,,

from a surface element of area do on the asteroid when the flux

incident on the element is F,. This is written as
F in .

Fobs= r—2 S(Il,#o,% P)daa

@2.1)

where r is the distance between the Earth and the element and
S (u, fo , o; P) is the scattering law for the element. The cosines of
the angles between the surface normal and the directions of the
Earth and Sun are denoted, respectively, by x and x,, and « is the
solar phase angle. The physical parameters in the scattering law
are represented by the set P. These parameters may depend on the
location on the surface. In practice, the most important physical
parameter — at least in the lightcurve inversion — is the single
scattering albedo w, , because in many scattering laws the effects it
produces are indistinguishable from those of body shape. How-
ever, as we shall show, if the scattering law is of a suitable form,
these effects are separable.

In what follows, we shall for the sake of clarity use the albedo
@, to represent any physical parameter in the scattering law. The
addition of any other physical parameters to the scattering law is
straightforward in the formalism we use.

In its most general form the scattering law should be written as
S (@, po>% @o; u,v), the coordinates (u,v) parametrizing the
surface, so that the locational dependence on the surface is not
necessarily coupled to the physical parameters. However, we shall
show that to uniquely determine a function describing the shape,
this coupling must at least partially obtain, so in practice we may
write S =S (&, Ko, % @y (4, 0)) .

The scattering law may also be written as

S (1, o % @o) = f o R(, o, 0 @), (2.2)

where the effect of the reflection coefficient R is separated from
that of the attitude of the surface element with respect to the Sun
and the Earth. Since F,, and r are always known, they can be
eliminated from the lightcurve (or, equivalently, the lightcurve
can be normalized to some values of F;, and r). Thus the
observational quantity is the scattering cross-section or (norma-
lized) brightness L of the surface element:

L=S(upo,x mo)da. 23)

The construction of a physically consistent scattering law is a
demanding task. The problems involved include, among other
things, modelling the scattering properties of single regolith
particles and using the theory of radiative transfer in connection
with multiple scattering. In practice, certain approximations must
be made. In photomorphography, the general functional form of
the scattering law is assumed known. This, of course, is one
possible source of error in the inversion. Examples of some
applicable scattering laws (or hypotheses) are the Lommel-
Seeliger law (which gives geometric scattering at opposition),
Lambert’s law, Hapke’s law and the Lumme-Bowell law (see, e.g.,
Bowell et al. 1989; and Lumme et al. 1980).

The scattering law describes the microscopic structure of the
surface statistically. Small craters may also be included in this
description in a statistical manner. The convexity assumption
means convexity on a global scale. As some simulations (Kart-

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992A%26A...259..318K

rIYY2AGA T TZ507 TILBR!

320

tunen 1989; Karttunen & Bowell 1989) have shown, very local
““non-statistical”” deviations from convexity, such as larger craters,
often make no significant contributions to lightcurves and are thus
not real obstacles for inversion under the convexity assumption.

2.2. Integrated brightness

Consider a surface in any system of parametric coordinates that
define it uniquely, the coordinates being u, v. Denote

or 0
J(u,v)=%xa—l’],

2.4
where r (4, v) is the radius vector of the surface. The vector J (u, v)
is parallel to the surface normal n(u,v) at the point (u, v).

In the previous section, we defined the observed (normalized)
brightness of a surface element. The integrated brightness consists
then of the summed brightnesses of all the illuminated and
observable elements:

L(E,Ey,r,S)= || St o> @wo)|J (u,v)| dudv 2.5)
S+
integrated over the part S, of the surface for which u, uy, = 0.

In the inverse problem, information on S and r is sought using
the integral Eq. (2.5), when some sets of values for L are known
(from lightcurves obtained at various positions). In evaluating the
integral, we can use two geometrically consistent coordinate
systems for the variables u, v:

1. Spherical coordinates in the asteroid’s reference frame, the
z-axis being the rotation axis. In the inverse problem, an
expression for J [and thus for n(u, v)] in this system enables the
shape to be easily constructed. However, the integration limits
become very complex and approximations deriving from, e.g., a
triaxial ellipsoid have to be used, a procedure that is not suitable
for irregular shapes. Therefore, this coordinate system is not
suitable for the inversion, although it can be used in the direct
calculation of lightcurves when the shape is known.

2. A spherical coordinate system for the surface normal in
which a point on the surface is defined by the polar spherical
coordinates (3, y) of the direction of the surface normal. Since the
surface is strictly convex, this mapping (also called the Gaussian
image) from the surface onto a unit sphere is unique. In this case
we need to know the function

PACR2)
Another expression for this is 1/K (9, w), where K is the Gaussian
curvature. Using normal coordinates, the quantity G sin 9 gives
the area of a surface element at the point (9, y), and thus the
function G is called the Gaussian surface density. In shape/pattern
recognition in computer science G is also called the extended
Gaussian image (Horn 1984), which term we prefer to use in the
discrete case concerning the areas and normal directions of the
faces of a polyhedron. This coordinate system enables us to obtain
an expression for G (9, y) relatively easily, because the integration
limits can always be made constant by rotating the coordinate
system. The Gaussian surface density defines a strictly convex
surface unambiguously, but the problem of constructing the shape
from G (8, y) is nontrivial. This parametrization allows construc-
tion of a function uniquely describing the surface assuming only
that the surface is convex.

Using normal coordinates (9, ), the integral (2.5) can now be
written as

L(E, EO,r, S) = jjS(ﬂ,#O’a;wO) G(‘g’ W) sm.9d9dt// (27)
S+

The integration region S, is that part of the surface where the
angle between the line of sight and the surface outward normal
and the angle between the direction of the Sun and the outward
normal are both between the limits [— %, %]. Thus, in the Gaussian
image, the integration zone is the intersection of two hemispheres
whose polar directions lie in the directions of the Sun and the
Earth.

3. General considerations

3.1. The inverse problem

The integral equation (2.7) is a Fredholm equation of the first kind,
and serves as a typical example of an ill-posed inverse problem.
The ill-posed nature of the problem arises from the smoothing
behaviour of the integral: variationsin body shape (or G ) are mapped
onto relatively smaller variations in the lightcurve L. From this it
follows that uncertainties in the lightcurve data are projected onto
larger variations in the evaluated G. More precisely, the integral
(2.7) as an operator is compact, so the inverse operation is
unbounded. The source function, i.e., the function obtained by
inversion from a function describing the data, can be discon-
tinuous even though the data function is continuous. This is a
mathematical situation often encountered in problems of invert-
ing remotely sensed data. Such problems are common in natural
sciences, especially in astronomy and geophysics (for some
astronomical examples, see Craig & Brown 1986).

The ill-posed nature of the problem becomes very manifest
when the integral (2.7) is written discretely in linear form

L=Ag, 3.1)

where the components of the vector L are observed brightnesses,
the components of the vector g are discrete average values of the
Gaussian surface density on small surface patches on the Gaussian
unit sphere, and the matrix 4 corresponds to the integration
operation. The chosen inversion solution could be the one for
which the norm || L — Ag| describing the misfit is smallest (a
least-squares fit when the norm is Euclidean). There are, however,
lots of quite different solutions for which the misfit value is well
below the observational uncertainty, and thus there is no way of
determining the correct solution without using some a priori
constraints and/or information. The very essence of solving ill-
posed problems lies in the use of a priori assumptions. To stabilize
the solutions in such problems, various regularization schemes
using physical a priori knowledge (or assumptions) can be used.
Since regularization methods are very commonly used, they are
described at length in many sources (a good, compact introduc-
tion is Craig & Brown 1986). In what follows, we shall pay
attention to the stability of our inversion schemes. Where a
stabilizing method is needed, our choice of a suitable regulari-
zation method is the so-called statistical inversion (e.g. Menke
1984), based on Bayesian estimation theory. This scheme is very
advantageous in the sense that it gives the inversion solution in the
form of a so-called a posteriori distribution; i.e., it provides an
estimate of the goodness of the solution. We shall describe this
method in our next paper concerning lightcurve inversion.

It is worthwhile to look into the form of the scattering law a
little more closely here. As stated earlier, there may be locational
dependence (explicit dependence on the variables parametrizing
the surface) in the scattering law as well, e.g., in the form of albedo
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variegation. If this dependence is complicated, so that the
scattering law is a nonlinear functional of location-dependent
functions, the inversion is very difficult to perform. If the
scattering law is a linear functional of location-dependent func-
tions, a feasible inversion procedure can be developed. Expressed
in another way, the integral equation (2.7) can now be written

L=Mp, (3.2)

where the matrix M is formed from the location-independent part
of the scattering law and the vector p may contain several vectors
representing functions that depend on the location on the surface.
The Gaussian surface density is included in the vector p. As we
shall show below, it is possible to separate the Gaussian surface
density uniquely from the other location-dependent functions in
the cases where the locational dependence in the scattering law,
rather than being independent of the physical parameters, is at
least partially coupled.

3.2. Representation of a function as a Laplace series

In theory, the solution of the inverse problem may be sought using
the discrete form (3.1). In this case, however, hundreds or
thousands of unknown variables must be used. Of course,
instability of the solution is thereby increased, necessitating the
use of suitable regularization schemes where, e.g., the expected
smoothness of the solution is used as a constraint.

Another way of expressing a function to be determined is to
represent it as a functional series, the coefficients of which are now
the unknown variables. In theory, such a series is infinite, but the
number of variables can be greatly reduced if the series is supposed
to converge rapidly so that it can be truncated. Using suitable
functions, this can often be expected in physically realistic
situations. In fact, this assumption is in itself a rather powerful
regularization method, corresponding to the aforementioned
smoothness constraint. We shall show that its application can lead
to a stable solution of the inverse problem if we have at our
disposal a large number of lightcurves measured at various
observing geometries.

The use of the coefficients of a functional series produces one
practical difficulty in this case. The function obtained in inversion
(e.g., the Gaussian surface density or the albedo distribution)
should normally be everywhere positive by definition; however,
there usually are no simple ways of describing this restriction in
the function coefficient space in order to incorporate it in the
inversion formalism. Thus the positivity of the solution must be
checked separately after the coefficients have been obtained. If the
solution turns out to be substantially negative somewhere, one
must use more or less intuition in re-regularizing the solution to be
positive or in concluding whether the surface is substantially
nonconvex.

Before investigating the form of a suitable functional series
more closely, let us consider the integral (2.7) generally. Because
the integration zone is simply an intersection of two hemispheres,
the integration limits can be transformed into constants using a
suitable rotation of the coordinate system. These rotations are
described in detail in the sections below concerning the opposition
situation and the general situation. We parametrize a rotation
using the Euler angles described in Appendix B. After rotating a
coordinate system, the functions in the integrand of (2.7) must be
transformed accordingly, in such a way that their values will
remain unchanged. Thus, when a vector x is transformed as

(3.3)

x—x'; x' = Rx,

S &) =1(x),

f@=fR""'x),
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where Ris the operator (matrix) performing the rotation, the value
of a scalar function fin a point in space must remain unchanged.
Thus

(3.4)

where f'(x’') is the function in the new coordinate system. This
form can always be obtained from any arbitrary function f by
using

(3.5

fulfilling the condition (3.4). In inversion, however, use of (3.5)
usually leads to very complicated functions in the integrand of
(2.7), so analytical integration becomes impossible. In this case,
the problem can be posed as in (3.1) or (3.2), the matrix operator
now being computed by numerical integration and the unknowns
being the coefficients of a functional series.

The aforementioned inversion scheme is quite implementable
and requires no specific properties of the chosen functional series.
However, it is advantageous to consider the choice of the
functional series further. Since we are operating on the unit sphere
of the Gaussian image, a spherical harmonics series (also called a
Laplace series) is a very natural choice. Spherical harmonics have
the remarkable property of transforming as a finite-sized linear
combination of themselves under rotations of the coordinate
system, as shown in Appendix B. This transformation thus
separates the parameters describing the rotation from the vari-
ables of a function, which is a very useful property in inversion,
allowing further analytical inspection of the integral (2.7).

4. The opposition situation revisited

In this section, we represent Russell’s (1906) main results using a
more modern mathematical formalism. This formalism is then
extended in the next section to include observing geometries at
non-zero phase angles.

The integral (2.7) can now be written as

LE,;r)= (| S(wmy) G, p)sin3dddy. 4.1
nzo

In the coordinate system C1, the direction of the Earth (and the
Sun) is expressed using coordinates (6, ). Let us now perform a
rotation such that the new z-axis will lie in the direction of the
Earth. The directions of the new x- and y-axes are irrelevant here.
Using Euler angles (Appendix B), this rotation is R (0, 8, ¢). Now
1=, and after rotation

pH=cos9. (4.2)

The scattering law is denoted by S (u; @,). If there is dependence
on the location on the surface in the scattering law in the simple
form

S (@0 (9, ¥)) = So (1) P(3,w) (4.3)

(e.g., albedo in Russell’s text), we write the product of the
Gaussian surface density G (9, w) and the function P as a Laplace
series

© 1

1=0 m=-1

4.9

If P is a constant, then b,,, are the coefficients of the Laplace series
describing the Gaussian surface density. Since the series is real-
valued, only the coefficients b,,,,m =0 are of interest, the other
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coefficients being completely determined by these. The new form
So (3, w) [or here S; (9)] of the function S, in the rotated system is
obtained using (4.2).

If P is an operator transforming a function in any arbitrary
rotation R(y, 8, a), we have

1
Pr(.f.0) X" (9, 9) = ;_l Y (8, v) DR (0, B,) 4.5)

(for a description of D}, see Appendix B), so the integral (4.1)
becomes

2n n/2

7

m

Y™ (9, w) sin9d9dy

n/2
=20Y by | YO0, w) Shy(9)
Im 0

- D5,,(0,6,9) sin 9d9. 4.6)
Because Y (9, w) = P,(cos 9), we obtain, using (B9),
L(O’ ¢) = znlzkl blm Ylm (0, ¢)’ (47)
where
n/2
ki= [ S(9) P,(cos9) sin9 d9. 4.8)
0

Since scattering laws in opposition are typically proportional to
terms of the form u”", we derive for this case a general expression
for the coefficients k;.

Assume the opposition form S, of a scattering law to be
So =", n an integer. Equation (4.8) can now be written

1
k= | x" P,(x) dx. 4.9)
0
Using the recursion relations
Q@I+1) Pi(x)=Pi1 ()= Pi-1 () (4.10)
and
(+D) Py ()=QlI+1) xP(x)—IP,_, (x) 4.11)

and integrating by parts, one arrives at a recursion relation

m___ " n=1)
ki “l+n+1k§‘1 (4.12)
for values n> 0,/> 0. The starting values are

1

(n) _
kS o 4.13)
and for odd /
K =(—1)¢-Dr2 =t (4.14)

d+nl
while for even /> 0 k{”) vanishes, as can easily be calculated. If nis
not an integer, k{ can be computed from the series representation

w21 .
w U @i—2 1
=Y D o= =2 a1

4.15)

As can be seen from the relation (4.12), e.g., for geometric
scattering [S(u) = a 4] the value of k; is zero for each odd /> 1,

whereas for Lambert scattering [S (1) = b 4] the value of k; is zero
for each even /> 2. Thus, in these cases, the observed lightcurves
depend on, and thus contain information on, only a part of the
unknown coefficients b,,,. In other words, the inverse solution is
urtique only if the scattering law consists of terms containing both
even and odd exponents for u.

If there are sufficiently many lightcurves obtained at different
aspect angles 6 (most preferably in equally spaced intervals, thus
making use of the discrete Fourier orthogonality), a two-
dimensional Fourier series representing the data can be construc-
ted. This series can readily be transformed into a Laplace series

L@O,9)= thzm (0, 9) (4.16)

using the orthogonality relation (B6) of spherical harmonics. As
was noted in connection with (4.8), odd harmonics / > 1 are absent
in the lightcurve in the case of geometric scattering. The unknown
coefficients b,,, can be directly obtained from Eq. (4.7):

_ hlm
bin = 2k,

This, of course, requires that the integrals k; be non-zero. Thus
when the scattering is geometric the unknown Laplace series (4.4)
cannot be uniquely determined. In any case, in order to determine
the Gaussian surface density, the scattering law has to be known
explicitly.

The values of the coefficients &, at increasing values of /
provide a clear manifestation of the principal source of instability
in the inversion. As can be seen from Egs. (4.12)—(4.14), the values
of k; decrease rapidly with increasing /, which means that the larger
the degree / of a coefficient b,,,, the less it contributes to the
integrated brightness: thus, information of the high-degree com-
ponents of the shape is easily drowned in the noise. In other words,
Eq. (4.17) shows that in inversion the errors in b,,,, induced by the
errors in the observed coefficients 4,,,, are rapidly amplified with
increasing /, thus causing instability if the series is not truncated
early.

If the scattering law is of a more complicated form, such as

@.17)

where the constants a, are unknown, we have
2 by Y. ay ki = by, 4.19)

in which &} are computed for each S, as in (4.8). In this case there
are not enough equations to solve uniquely for the ratios of the
constants a,. Therefore one cannot determine a location-
dependent function uniquely using opposition observations
alone, if the scattering law is constructed from more than one
scattering law so that the relative contributions of such laws are
unknown.

Thus the opposition observations alone do not provide very
good data for inversion. From observations and theoretical
models we know that for dark objects the scattering is usually very
nearly geometric at opposition, which precludes unambiguous
inversion. Even if scattering were not geometric and were
otherwise suitable, the scattering law would have to be known
exactly.

However, as Russell noted, it is possible to draw some general
conclusions on the nature of the asteroid by inspecting the
observational Laplace series (4.16). Because all spherical har-
monics ¥} with odd / change sign upon inversion of space (this
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corresponds to viewing from the opposite direction), we know that
if there are non-zero coefficients 4,,, in the series (4.16) when [ is
odd, then

— the surface is not convex: scattering may be geometric, in
which case there has to be albedo variegation, or non-geometric,
in which case albedo variegation is not necessary;

— the surface is strictly convex: scattering is necessarily non-
geometric if there are non-zero coefficients for which /> 1,/ odd.

We also know that those A, for which /=1 can be induced
only by non-convex shape or albedo variegation. This is because
the projected areas of a closed surface in opposite directions are
always equal; it can then directly be seen that the coefficients of
degree /=1 of a Laplace series of a Gaussian surface density are
always zero. It should be noted, however, that the coefficients 4, ,
are merely a positive indicator: the absence of these coefficients is
in principle not sufficient to indicate the absence of albedo
variegation, nor can one deduce much about the albedo distri-
bution using these coefficients. Intuitionally, one might suppose
that if the coefficients vanish, the light-variations are more
probably caused by shape rather than by albedo distribution.

5. General observing geometry

Consider the integral (2.7) in the general observing geometry,
where the direction of the Earth is given by the coordinates (6, ¢)
and the direction of the Sun by (y, &) (obliquity and phase angle) in
the coordinate system C2. In the coordinate system C3 these
directions are given by («, d, ¢, k). Let us now perform a rotation
of the coordinate system such that the new y-axis will lie in the
direction of the Earth, and the Sun will lie in the xy-plane an angle
o away from the y-axis measured in the positive rotation direction.

Using general relations of spherical trigonometry we obtain

p=siny sin 9 ¢
and
Uo=sin(y—a) sinJ. (5.2)

Let us assume the scattering law to be of the form S (y, 1y, @); the
possible location-dependencies will be investigated later. The
rotational transformation S’ (9, w,«) can be written using (5.1)
and (5.2). The Gaussian surface density is expressed as a Laplace
series

Now the integral (2.7) can be written in the form
L(E,Ey,r)=[ [Fr G(3,¥) S’ (3, y,a) sin3dIdy, 5.4
a 0

where Fy represents an operator transforming a function in the
rotation. As is readily seen, the rotation can be performed as two
successive rotations using the coordinate system C2. First the
rotation R(0,0—%,¢) is performed and then the rotation
R(0,y, —3%), so that

T T
FR=PR (097)3_5) PR(0>0—53 ¢>9

where Py is an operator transforming a function in the rotation
parametrized by the given Euler angles. Thus the integral (5.4) can
be written as

(5.5)
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L(a’ y’ 0’ ¢) = lzglm kZ’ dlf:lr:l' (y)
- (0-5) e 1,0, 56)
where
Ip()=| j S" (8, w,0) Y¥(9,w)sin9dIdy, 5.7
a 0

and d¥,, are described in Appendix B.

Using the coordinate system C3, the rotation is simply
R (x, &, 0), so the integral (5.4) can also be written as
L(tk,80)=Y gim 2.dP, () e™*e™ I, (0). (5.8)

Im m’

Equations (5.6)—(5.8) provide a manifestation of the same
property that we discussed in conjunction with (4.17): the higher
the degree / of a coefficient g,,,, the less it contributes to the total
brightness. This phenomenon gives rise to possible instability in
inversion, and therefore the noise in the observations largely
decides the truncation point of the Laplace series obtained in
inversion. Usually, the series describing the Gaussian surface
density has to be truncated early. This is not necessarily a problem
in obtaining an estimate for the global shape, since with “well-
behaved” surfaces the series can often be expected to converge
quite rapidly.

Note that if the angles « and y are fixed, the integrated
brightness can, of course, be expressed as a Laplace series in § and
@, but in this case (5.6) is not such a series. This means that the
method for the opposition situation, based on the orthogonality
property of spherical harmonics, cannot be generalized for use in
this special case. However, we shall show that a three-dimensional
generalization of this method is possible when the phase angle « is
fixed.

5.1. Inversion

There are several possible inversion methods for the data obtained
at nonzero phase angles. One method is to construct sets of
simultaneous linear equations in the same manner as was discus-
sed in connection with Egs. (3.1), (3.2), and (3.5), the unknowns
being the coefficients of a Laplace series.

Another possibility is to use the Fourier series expansions of
the observed lightcurves. Equations (5.6) and (5.8) are Fourier
series of the angles ¢ or d when all the other observational angles
are taken to be constants, thus describing lightcurves in some
observational geometries. We can write this in the form

L (¢) = Zglm klm eim(o ’ (59)
Im

where k,,, includes the integral (5.7) and the functions of all the
observational angles other than ¢ (or ). If the observed light-
curves are written as

N
L= Y, c,e",
n=—-N

(5.10)

N being the largest order included, we obtain sets of simultaneous
linear equations of the form

(5.11)
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for each order m, when the Laplace series is truncated at some
chosen highest degree L. The stability properties of these sets of
equations are as discussed earlier.

If there are enough data to form a higher-dimensional
functional series (to a sufficient accuracy), the situation is
somewhat different. Assume that we have been able to form from
observations a three-dimensional Fourier series for a fixed phase
angle in the coordinate system C3; i.e., we know the observed
brightness in the form L = L(k,¢, ).

Looking at Eq. (5.8), we find it to be a functional series of the
elements of the rotation matrices D%, (x, &, §). These elements (see
Appendix B) are orthogonal and they form a complete set in the
space of their arguments; i.e., a function of the Euler angles can be
expanded as a series of these elements. Thus the observations at a
given phase angle can be written as

L(x,6,0)= Y. Chm D, (k,0).

Imm’

(5.12)

For a strictly convex surface this follows, of course, directly from
(5.8) but, as mentioned above, it holds true generally as well.
Using the orthogonality relation (B14), the observed function
L (k,¢,0) can be transformed into series (5.12), so the coefficients
cho are
2r n 2nm

cﬁn’mz(ern’m)_l j I I Dr(rf’);n (K,B,(S)
0 00
- L(x,&,0) sinedddedx, (5.13)

where the normalization constant N, is given by (B15). Com-
paring (5.8) with (5.12), we obtain

!
_ Cn'm

Jim 1. (5.14)
Thus, with one value of the phase angle «, we obtain a maximum of
2141 equations for each g,,,. Therefore this scheme is quite
different from the methods using sets of equations: in this case we
obtain separate equations for each unknown coefficient instead of
having to fit all the coefficients simultaneously to best describe the
data. As discussed earlier, such fitting requires regularization
methods. In the case of separate equations, however, the un-
certainty of an unknown coefficient depends directly on the
uncertainty of the corresponding observational coefficient. The
instability properties related to (5.14) are as discussed in conjunc-
tion with (4.17).

If the integral I, vanishes for some indices, we have fewer
than 2/4+1 equations. In the cases of Lommel-Seeliger and
Lambert scattering, for example, [, vanishes for odd [+ m/,
which results from the parity properties of the associated Leg-
endre polynomials. Also, using the definition of the associated
Legendre polynomials obtained by differentiation of the Legendre
polynomials, and integrating by parts, one can show that for
Lommel-Seeliger scattering all the integrals I, I5,, ... vanish; for
Lambert scattering the same applies for the integrals ., I5, . .-
and I,,,Ig,, ...

If an observed coefficient ¢, ,, is nonzero even though the
corresponding 1,,,. is zero, the assumed scattering law is incorrect
or the surface is nonconvex. As in the opposition situation, the
coefficients c/,, can be induced only by nonconvexities or by
location-dependence of the scattering law.

The analysis of the general situation differs from that of the
opposition situation in that it is possible to have several equations
for an unknown coefficient rather than just one. These equations
can now be used to separate unknown parameters in the scattering

law from the Gaussian surface density. Assume the scattering law
to be of the form

S(uaﬂOaa)=Zan(a) Sn(uaﬂ09a)9 (5'15)
n

where the functions S, are known or assumed, and the coefficients

a, are unknown. Now Eq. (5.14) is written as

glmzanllnm’ = dn’ma (516)

n
where I, are computed for each S, as in (5.7). Thus, with a
sufficient number of equations, the factors g,,, a, can be obtained.
From these the ratios of the coefficients a, — the values of these
coefficients up to a common constant — can be obtained. Of
course, this common constant is unimportant, since multiplying
the Gaussian surface density or the scattering law by a constant
corresponds to scaling the size or the brightness of the surface
uniformly. It should be noted, however, that if the coefficients a,
depend on the phase angle o, the common constant will become an
unknown function of a, so the equations will have to be solved
using a fixed value of «.

Since the coefficients a, are now known, the coefficients g,,, can
be computed as well. A sufficient number of equations is obtained
when / is large enough. This naturally means that there have to be
nonzero coefficients c.,.,, at the chosen value /; i.e., the surface has
to be sufficiently complicated if the coefficients a, depend on the
phase angle. If a, are taken to be constants, observations at several
phase angles can be used.

Thus, if the functions S, in the scattering law are known, their
relative contributions and the Gaussian surface density can be
obtained from the observational data. In practice, the Gaussian
surface density often appears in realistic scattering laws in the
form of a product with the albedo @, , since the effects of these two
functions on the observed brightness are of a similar nature. In this
case, we obtain the product Gw, in the inversion, and the
separation of the two functions is impossible. In the next section
we shall show that if the functional form of the scattering law is in
a suitable way more complicated than the aforementioned linearly
albedo-dependent form, the Gaussian surface density can be
uniquely determined. The possibility of such discrimination is
because the surface of an asteroid is almost certainly covered by
small regolith particles whose collective scattering properties
differ from those of a consolidated, smooth surface. Therefore, the
scattering law need not always be linear in albedo, as in the case of
a “painted” surface in which “paint” markings determine albedo
and the dependence is thus linear, as in Russell’s paper. The
greater the value of the single scattering albedo, the greater the
effects of multiple scattering between the surface particles, and
thus the larger the deviation from the linear albedo dependence.

5.2. Discriminating albedo variegation

Consider now a scattering law of the form

S, to» %@ (9, ) =f (2 W (3, ¥) Y. a, S, (& o, 0),  (5.17)

the coefficients a, and the albedo @, being unknown. This law is
otherwise the same as (5.15), except that it has been multiplied by a
function dependent on the location on the surface. At least one of
the coefficients a, must be independent of the phase angle . Let a,
be such a coefficient. Let us write

GOy fla@(9,y) = lezm VA (5.18)
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. at a fixed phase angle o;. The equations of the previous section
apply also here when b,,, replaces g,,,, so the ratios a,/a, and thus
the function a, G (3, ) f(0;; @, (9, w)) are obtained. In practice,
at least two coefficients a, have to be independent of the phase
angle, so from the ratios of all the coefficients a, obtained at
several phase angles the o-independent coefficients can be
deduced.

If the aforementioned function has been obtained for several
values o, of the phase angle, we find functions

_ floy; o (8, )
) = ao B

If the functional form f(o;w,) is now known, the functions
@, (9, w) can be determined from (5.19) if the form of the function
fis suitable (necessarily not merely linear in albedo). Thus we need
two phase angles to solve for the albedo distribution in the ideal
case.

Consider the fictitious example

(5.19)

f(o@y) =wo(1+w, cosa). (5.20)

The albedo distribution @, can be determined using (5.19) with the
result

Fu (8, ) —1
cosa, — F (3, w) cosay,

@o (3, )= (521
After @, has been computed, the Gaussian surface density can be
obtained by substituting w, back into the function f.

The other “albedo-separable”” form of the scattering law is

S(:u, Mo, % Wo (‘9’ W)) = Z Pn (070 (‘9’ '//)) Sn (,U, Ho>s OC) . (522)
The Lumme-Bowell law, for example, can be written in this form,
and the resulting functions P, (w,) are suitable for separation. Let
us now write

G(8,y) P, (@o(8,w) =Y b X" (3, 0). (5.23)
Im

Now we obtain, as with Eq. (5.16),

2Bt e = - (5.24)

As before, the coefficients b}, are the solutions of sets of
simultaneous linear equations. Now, however, there is a maxi-
mum of 2/+1 equations that can be used to find the coefficients

Im using one phase angle. With the lowest values of / this is not
enough to define the coefficients uniquely. Therefore the observa-
tions made at a single phase angle can be explained by infinitely
many different combinations of the functions G P,. Thus more
than one phase angle must be used in the inversion, and the
functions P, have to be independent of the phase angle. If they are
of the form P, (a, 9, i), a unique solution is impossible.

Using all the m’-values and a sufficient number of phase angles
the functions G (3, v) P, (w, (3, w)) can thus be obtained. As with
(5.16), the ratios of the functions P, can now be computed, and one
function dependent on the location will be left unknown. If we
denote

P, (@, (3, v))
Py (@ (3, y))’
we shall be able to determine the functions 2, and the product
GP,.

To determine the Gaussian surface density G, the forms of the
function P; and another function P, as functions of albedo @,

P8y = (5.25)
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must be known, and they have to be suitable, as were the forms
f(a;m,) in connection with (5.19). In the same manner as in the
case of (5.19), the albedo distribution @, can be found using the
ratio (5.25), and thus the functions P; and G can be determined.
Other functions P, max then be of the “direct” form P, (9, y), but,
as already shown, at least some part of the location dependence in
the scattering law must be introduced by means of physical
parameters.

The separation methods presented here may also be implemen-
ted in the inversion methods using sets of simultaneous equations;
for the determination of all the functions involved, there must be a
sufficient number of equations (i.e., observations at different
geometries).

The choice of the functions S, and the functional forms P, (w,)
is best made by using the existing physical scattering models and
physically probable functional forms. In this, a sort of “iterative
guessing” is likely to be used: the set of functions providing the
most consistent solutions is chosen. The simplest model might be a
combination of the Lommel-Seeliger and Lambert laws, whose
relative contributions and the product of the albedo variegation
and the Gaussian surface density would be obtained in the
inversion. With a large number of observed light curves, the
separation of the albedo variegation could be pursued by using
more complicated scattering laws.

6. Shape construction from the Gaussian surface density

As can be seen from Eq. (2.4) and (2.6) or from Appendix C, the
analytical expressions between the radius vector and the Gaussian
surface density of a surface lead to nonlinear partial differential
equations that cannot generally be solved. Also, it has been known
for some time that in a strictly convex case the Gaussian surface
density uniquely determines the surface (Minkowski 1903; Niren-
berg 1953), but unfortunately the proof'is not directly suitable for
constructing the shape when G is known. Thus, indirect numerical
methods must be used instead. Hitherto, a proper numerical
solution of the problem has been unknown.

We have developed two methods for approximating the
solution. Both use Minkowski’s proof of the uniqueness between a
strictly convex surface and its Gaussian surface density. Minkow-
ski (1903) showed that the so-called mixed volume, constructed
from G and the support function, a function uniquely describing a
surface, reaches its minimum when the support function and the
Gaussian surface density correspond to the same surface. Thus the
problem can be represented as a constrained minimization
problem to be iteratively solved. Constrained minimization is a
problem often encountered in various situations; our methods for
implementation are partly based on common procedures (see, e.g.,
Gill et al. 1981), although they are specifically tailored to the
problem at hand.

In what follows, we describe the theoretical principles of the
two surface reconstruction methods. The actual algorithms and
detailed discussion will be presented elsewhere. First, we describe
the concepts of support function and mixed volume, central to
Minkowski’s minimization theorem.

Let n(%, )= (sinYcosy, sindsiny, cos9)T be the unit
outward normal and r (9, ) the radius vector of the surface. The
inner product n - r is called the support function g of the surface:

@) =n( ) rS ). (6.1)

Thus ¢ (9, y) is the distance, measured from the origin, of the
tangent plane on the surface at point (9, w). The radius vector of a
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surface is uniquely obtainable from the support function as shown
in Appendix C.

The mixed volume ¥ (R, S) of two strictly convex bodies R and
S is defined here as

2rn n

V(R S)= 3 g .([QR(Q, ¥) Gs(9,y) sin§didy, (6.2)

where the indices of the functions refer to the corresponding bod-
ies. Originally, Minkowski’s concept of mixed volume involved
three bodies (one support function and two Gaussian surface
densities), but for illustrating the surface reconstruction method,
only two bodies are needed. Using Eq. (6.7), introduced later in
this section, it can directly be seen that the mixed volume is
translation invariant; i.e., the origin for the support function can
be arbitrarily chosen. It is also straightforward to see that the
volume of a body Sis ¥ (S, S), and, if we denote the unit sphere by
U, the surface area of Sis 3 I7(U, S).

Now let the volume of R in (6.2) be 1 (or some other positive
constant). Minkowski (1903) has shown, that ¥ (R, S) reaches its
minimum exactly when R is homothetic with S; i.e., 0x (3, ¥)
describes (up to a scaling factor and translation) the same body as
Gy (9, w). Thus, by solving a constrained minimization problem to
recover the support function, the surface corresponding to a
known G can be reconstructed.

Mathematically, both of our surface reconstruction methods
can be represented in a discrete form as procedures minimizing the
inner product {x, g> of vectors in R"-space, g being known from
the Gaussian surface density and x being the unknown vector
representing the support function. The discretization of a con-
tinuous function into a vector is done either by using the
coefficients of a truncated Laplace series or by using a polyhedron
approximating a continuous surface. The minimization procedure
is subject to the condition V' (x) = 1, V being the volume computed
from x. In practice, the equivalent procedure of maximizing ¥V (x)
while staying on the hyperplane (x, g> = constant is computation-
ally more efficient.

In the first of our methods, which we call the method of the
generating function, the support function is expressed as a
truncated Laplace series, whose coefficients we then solve. The
truncation point is the same as that of the Laplace series describing
the Gaussian surface density. The coefficients of degree 1 can be
ignored, since they represent only a translation. In this case (6.2) is
written as

V(R,S)=Y o) afy), (6.3)
Im
where
1 2n n
af =5 [ [Gs(9,w) Y"(3,p) sin 9 43 dy, (6.4)
0 0

and the coefficients o{X are numerically solved for by minimizing
(6.3) iteratively. We cannot state a strict proof of convergence of
iteration, but some mathematical considerations give a good
reason to expect that the method usually yields a good approxi-
mation. The simulations we have performed also support this
expectation. The method of the generating function is in practice
very useful, both because it is very fast to implement and because
the result is given in a practical form as coefficients of a Laplace
series.

In the second method, which we call the polyhedron method,
the Gaussian surface density is discretized so that the areas and

outward normals of the facets of a polyhedron approximating the
shape are known. Previously, there have been some studies along
the same lines concerning the problem of reconstructing a
polyhedron from its extended Gaussian image (Little 1983),
although these studies have not been formulated rigorously. The
mixed volume in the discrete case, corresponding to Eq. (6.2), is
written as

6.5)

J

~ 1 2
PRS)=3 L 4P A9,

where A4;is the area of a facet and /; is its rectangular distance from
the origin. We now search for the set of distances /{*’ of the facets,
measured from the origin, minimizing (6.5) with the same
constraints as mentioned in connection with (6.2).

The discretized G naturally has to describe a convex poly-
hedron. This means that if the unit outward normal of a facet
multiplied by the area of the facet is denoted by the vector a;, the
equation

Z a;= 0 (66)
j=1

must hold true. In the continuous case,

[fGmndo=0, (6.7)
S2

where n is the unit outward normal, S? denotes the unit sphere of
the Gaussian image, and do its surface differential. This results
from the geometrical requirement, mentioned in the end of Sect. 4,
that the projected areas of a surface, viewed from opposite
directions, be equal.

A discretization fulfilling condition (6.6) is

a;=[[G(n) ndo (6.8)
Uj

integrated over a portion U; of the unit sphere. When the U; are
suitably chosen, the polyhedron approximates the original sur-
face. Our iteration procedure demonstrably converges towards
the correct solution, so the larger the number of facets, the better
the approximation. Also, according to the Brunn-Minkowski
theorem (see, e.g., Griilnbaum 1967), the set of the distances
{I®|V(R,R) 2 1} in R" is convex, so a local minimum of (6.5) is
the global minimum, which is advantageous in solving the
minimization problem: the minimum to be determined is the only
minimum.

It is an important fact that the radius vector r of the surface
depends continuously on the Gaussian surface density, so small
errors in G, in the sense of L? norm (square integration norm),
remain small in the evaluated r. The numerical examples we have
computed show this clearly. Thus the problem of inferring the
shape from the Gaussian surface density does not produce
stability problems, in contrast to the problem of deducing the
Gaussian surface density from the lightcurves. In fact, errors that
are no longer very small in G may still correspond to practically
negligible errors in the evaluated shape. Because of this property,
shape determination is in a way more stable than the determina-
tion of the albedo distribution. Thus it is “safer” to assume that
light-variations are caused mainly by the shape rather than by the
albedo distribution, if such an assumption has to be made.
However, as explained in Sect.4, coefficients of degree 1 in a
Laplace series obtained by inversion can be explained only by
albedo variation or non-convex shape.
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7. Numerical simulations

In this section we briefly describe some simulations with synthetic
observational data. In the next paper we shall study the properties
related to practical observations more closely. Our test object here
is a strictly convex body without albedo variegation, shown as
viewed from three mutually perpendicular directions in Fig. 1. The
direction of the rotation axis is pointing upwards in the plane of
the paper in Figs. 1a and b; in Fig. 1c the body is viewed from
directly above so that the viewing directions corresponding to
Figs. 1a and b are, respectively, directly below and on the right-
hand side of Fig. 1c.

In Figs. 1a and b the solar phase angle is 60°, the illumination
direction being perpendicular to the rotation axis; in Fig. 1c the
illumination direction is the same as in Fig. 1a. For purposes of
illustration, the scattering law in the images is the Lommel-
Seeliger law. The boundary curve representing the shadowed part
of the limb, which would be seen if the phase angle were zero, is
separately drawn. The “contours” on the surfaces appear because
of the resolution of the images: the surfaces were drawn by
computing points, typically a few degrees apart from each other,
on a grid on the Gaussian unit sphere. Thus, along a “contour”,
the latitude or longitude of the direction of the surface normal is
constant. Because of the viewing/illumination geometries, in
Figs. 1a and b the longitudinal lines are seen more clearly than the
latitudinal lines, whereas in Fig. 1c the latitudinal lines appear
more distinctly. If, e.g., the phase angle in Fig. 1a or b were 12°
larger, the terminator would be the longitudinal contour next to
the terminator illustrated.

Lightcurves produced by the model in various observing
geometries can easily be computed using Eqgs. (5.6) or (5.8) (the
Gaussian surface density of the object is explicitly known). The
scattering law chosen was a combination of Lambert’s law and the
Lommel-Seliger law such that the ratio of the former to the latter
(we call this the L/LS ratio) was 0.2. A moderate amount of noise
(about two percent on average) was added to the lightcurves. The
exact Laplace series of the Gaussian surface density of this object
contains terms to the 10th degree.

Two inversion techniques were used. One method was based
on the orthogonality property of the elements of the rotation
matrices of spherical harmonics, as explained in Sect. S: Egs.
(5.13), (5.14), etc. The fixed phase angle was chosen to be 14°. The
first few coefficients of the three-dimensional Fourier series
describing L (k, ¢, ) were approximated by using 16 lightcurves
obtained at different well distributed observation geometries
(equally spaced intervals covering the x- and e-ranges). The
Laplace series describing the Gaussian surface density solution
was then truncated at order 3 and degree 3 because the Fourier
series naturally gave no information on terms of higher degree.
The L/LS ratio of the scattering law used in inversion was 0.4, thus
being slightly different from the ratio used in creating the
lightcurves. The method used in obtaining the shape from the

Gaussian surface density was the method of the generating.

function (see Sect. 6). The shape solution is shown in Fig. 2, the
viewing/illumination directions being the same as in Fig. 1.

The other method was based on sets of Egs. (5.11) that can be
used when the Fourier coefficients of each lightcurve are known.
[One could, of course, use the single brightness values as described
in the beginning of Sect. 5.1. However, the form (5.11) is much
more compact, since it divides a large set of equations into smaller
sets.] In this case a data set of “real” observing geometries was
used. This set consisted of 12 lightcurves whose observing
geometries were the same as those of 39 Laetitia described in

327

Fig. 1a—c. The model used to produce synthetic lightcurves, shown as viewed
from three mutually perpendicular directions. The shadowed part of the limb is
also shown. The direction of the rotation axis is pointing upwards in the plane of
the paper in a and b; in ¢ the body is viewed from directly above such that the
viewing directions corresponding to a and b are, respectively, directly below and
on the right-hand side of c. In a and b the solar phase angle is 60°, the
illumination direction being perpendicular to the rotation axis; in ¢ the
illumination direction is the same as in a
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Fig. 2a—c. The shape solution obtained from 16 lightcurves at well distributed
observing geometries at solar phase angle 14° and using the “orthogonality
method”. The viewing/illumination directions are as in Fig. 1

Lumme et al. (1990); the direction of the rotation axis was chosen
to be the pole solution presented in that paper. With no a priori
knowledge, the solutions for the higher-degree coefficients of sets
of equations of this kind tend, in particular, to be unstable, as is
common in ill-posed problems. The stabilizing scheme was chosen
to be the method of statistical inversion. The a priori assumption
used imposed no great limitations; it simply restricted the ranges
of the unknown coefficients to correspond to a rapidly converging
Laplace series. The Laplace series of the solution was truncated at
degree 4 and order 4, and the L/LS ratio used in inversion was 0.3.
The shape solution is shown in Fig. 3, the viewing/illumination
directions corresponding to those in Figs. 1 and 2.

Figures 2 and 3 rather well reproduce the coarse-scale global
shape of the initial object of Fig. 1. The surface of the object in
Fig. 2 appears to be the smoothest of the surfaces in the figures.
This is because its corresponding Laplace series of G obtained in
inversion is everywhere positive (as a proper G should be) while it
contains terms only to the third degree: a short series of this kind
describes a very smooth surface. The surface in Fig. 3, in contrast,
contains some local less smooth features such as the “‘ridge” or
““crease” seen in Figs. 3b and c. It is important to note that this is
also a result of the truncation of the Laplace series describing the
Gaussian surface density. In this case, the solution for G has
negative values at some points, which, of course, is erroneous.
However, reconstruction of the shape is not precluded because the
error is sufficiently small. Thus Fig.3 contains some local
“details” that are merely side effects of the inversion method; the
actual result of inversion is the global structure on a rather large
scale, because the number of lightcurves used in inversion is rather
small.

To quantify the goodness of fit we use two estimators to
compare the initial surface with the reproduced surface. The first
estimator Ag gives the average relative error of the support
function when the volume of the initial body is normalized to that
of the reproduced body and the centers of mass of the two bodies
are translated to coincide. Thus

1 j"" IQin_'QaggI da,

Ao=—
¢ 4n S2? Qin

(71.1)

where g;, and g,,,, are, respectively, the inital and the approximate
support functions and do is the surface differential on the
Gaussian unit sphere S2.

The second estimator A, g is the standard deviation of the first
and is computed from

1 — 2 1/2
Mo=( g5 ] (Cez el o) 00|,

The two estimators are not symmetric with respect to the support
functions used. Therefore, with Ag and A,g the initial surface
relative to which the estimators were computed must also be
defined. In what follows, we use the phrase “B compared to 4” to
denote that the support functions g;, and g,,,, are related to 4 and
B, respectively. In practice, the difference resulting from the choice
of the support function, relative to which the values are computed,
is usually negligible.

Comparing the computed shape in Fig. 2 to that of the model
in Fig. 1 we have Ag =0.016, A,¢ = 0.009; for Fig. 3 the corre-
sponding values are Ag = 0.023, A,¢ = 0.013. To establish a scale
for these values, we note that when the triaxial ellipsoid best
describing the lightcurves produced by the initial shape in Fig. 1
(the axes of the ellipsoid are 0.7, 1.0, and 1.2) is compared to this
shape in the same manner as above, we obtain Ag =0.040 and

(7.2)
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Fig. 3a—c. The shape solution obtained from 12 lightcurves at the input
observing geometries and using sets of equations solved by statistical inversion.
The viewing/illumination directions correspond to those in Figs. 1 and 2
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A,0=0.026. If a sphere is compared to this ellipsoid, the values
Ag =0.12and A, ¢ = 0.08 are obtained. If a sphere is compared to
a more elongated ellipsoid (axes 0.5, 1.0, and 1.5), we have
Ag=0.22 and A, 9 =0.15. Thus the results of inversion can also
quantitatively be seen to be somewhat better than the best
ellipsoid fit.

8. Conclusions and discussion

We have studied the photomorphography problem in detail, and
we have derived theoretical inversion methods that can produce
more information from lightcurves than Russell’s (1906) results
might lead one to believe. The key factor is naturally the number
of lightcurves obtained at different observing geometries. In
practice, the method of rotation matrices described in Sect. 5
requires more lightcurves for consistent implementation than the
methods using sets of equations, such as (5.11), combined with
statistical inversion. With these methods it is always possible to
obtain a solution even with only a few lightcurves, but if the
amount of observational data is not sufficient, the solution
obtained may be very uncertain especially for the higher-order
coefficients. However, numerical simulations show that Laplace
series describing “well-behaved” surfaces often converge rapidly,
allowing truncation of the series at an early stage.

From various simulations that we have performed it would
seem that using at least, say, ten well-distributed lightcurves, a
reasonable large-scale estimation of the shape is often possible. We
estimate that for a shape solution that can more reliably be
expected to be near the correct one, there should preferably be at
least about twenty different lightcurves. It should also be noted
that because lightcurves measured at nonzero solar phase angles
are necessary for our analysis, there should be lightcurve obser-
vations as far away from opposition geometry as possible. In
the next paper, we shall study the effect of solar phase angle on
the obtainable information more closely.

To obtain information on a scattering law of the form (5.17) or
(5.22) and to properly separate the effects of albedo variegation
from those of shape, the number of lightcurves must be many
times larger. Therefore, at least with the existing data, one must
decide whether the function obtained as a solution describes
albedo or shape features. There are some indirect indicators: as
mentioned in Sect. 4, certain coefficients obtained in inversion
indicate albedo variegation. Also infrared lightcurves can indicate
albedo variegation when compared to lightcurves in visible light,
because a thermal-radiation lightcurve behaves differently from
that measured in visible light in the face of albedo variegation
(Magnusson et al. 1989).

Sufficiently accurate determination of the observing geometry
is also an important factor. The pole position of the asteroid can
often be determined to an accuracy of 20° or so. In our next paper
concerning photomorphography we shall show that inaccuracies
within this limit probably do not produce significant errors at least
in the coefficients of the first few degrees of the Laplace series
describing the Gaussian surface density. Thus the shape solution is
rather insensitive to small errors in the pole position. We shall also
show —and this is intuitively quite clear — that the sidereal rotation
period of the asteroid must be very precisely known, if it is to be
used in computing the absolute rotational phases. Typically, the
period must be known to an accuracy of one tenth of a second to
make a useful determination of the rotational phases of the
observations in lightcurves obtained over many years. Such an
accuracy is probably seldom obtainable a priori. One possibility is
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to use photometric features or other properties of lightcurves to
adjust the location of each lightcurve in rotational phase. Another
method, as mentioned in Sect. 2, is to make use of a series of small
deviations from a previously determined period to choose the
period that gives the best fit in the photomorphographic analysis.

At present, there are few asteroids that have been well enough
observed. Suitable candidates for photomorphographic analysis
are, for example, 39 Laetitia and 16 Psyche. There are also some
asteroids for which sufficient lightcurves can be attained if their
next few apparitions are properly observed; it might be worth-
while to look through asteroid lightcurve data collected so far
and search for useful candidates of which additional observations
could be made. Even though lightcurve data for a given asteroid
are insufficient for shape determination, they may perhaps be used
in conjunction with the inversion methods we have shown to
obtain a more accurate value of the asteroid’s rotation period or
pole position.
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Appendix A: coordinate systems

We describe here the four coordinate systems used in the text. The
systems C2 and C3 are not coordinate systems in the usual sense
of describing points in space; they are used to describe entire
observing geometries with four variables.

System C1

We use the following notations in the C1 Cartesian coordinate
system fixed to the asteroid, the z-axis being the rotation axis
(Fig. A1).

E = a unit vector toward the observer (Earth),
E, = a unit vector toward the Sun,
n = surface outward normal, a unit vector,
u=E-n,
Uo==E;-n,
cosa=E-E,;.

A
z
Rotation axis
n E (Earth
N ( )
| _ Eo (Sun)
_\'f l l
(Asteroid's ! > vy
surface) ~ - '\ |
~ I =
AN
N
be X

The spherical polar coordinate pairs representing the directions
of the Sun and the Earth are (6,,¢,) and (6, p). The ranges of
the angles are

0§0, 90§ﬂ:
0=<¢, po<2m.
0sa=sm

System C2

This system consists of two coupled spherical coordinate systems,
the first of which defines the direction of the Earth, asin C1. The
polar axis of the second system lies in the direction of the Earth,
and the direction of the Sun is defined by the spherical polar
coordinates (a, y) of this system (Fig. A2), o being the polar angle.
The longitudinal angle y is the obliquity, its zero longitude being
the semicircle formed by the great circle going through the
direction of the Earth and through the direction of (§, ¢ + %) in
C1. In other words, the obliquity is, with opposite sign, the
complement of the angle between the half-plane defined by the line
of sight and the spin vector and that defined by the line of sight and
the Sun. Using general relations of spherical trigonometry, we
have

sin , sin (g, — @)

cosy= sin o

’

coso=cosf cosy + sin f sin G, cos(py— @) . A1)

The ranges of the variables are as above, with —t<y=<m.
The quadrant of y is chosen using the sign of siny, given by the
sign of cos 8, — cosa cos @ (this is equal to siny sina sin§).

System C3

This system is derived from the system C1 by rotation. The angles
0, ¢ and «x are the Euler angles (Appendix B) used in transforming
the coordinate system C1 into a system in which the y-axis lies in
the direction of the Earth and the direction of the Sun lies in the
xy-plane at an angle o to the direction of the Earth, measured in
the positive rotation direction.

Although this system is rather abstract, the variables «, J, ¢ and
x uniquely define the directions of the Sun and the Earth. Using
spherical trigonometry again, we obtain

Fig. A1. (left) The Cartesian coordinate
system C1 fixed to the asteroid. A strictly
convex surface can be globally parame-
trized using the spherical polar coordi-

y nates (9, y) of the direction of the surface
normal n

Fig. A2. (right) The coordinate system C2
defining the direction of the Sun by the
obliquity y and the solar phase angle «
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P _—.¢._12i+(2S(y)— 1) arctan (cosf tan ) + S(y) &

& = arccos (sin 8 sin ff)

cotd
k=S r—-2S@y -1 arctan(c—os—/j>, (A2)
where S (y) is the unit step function ““backwards”:
_{0,y>0
so={17 2. (a3

sinf=cosy; cosf=0,

the values of the arctangent are in the range [—
ranges of the coordinate angles are

056, k<2m,

0<e<m.

4,31, and the

In the special case §=6,=7% we have 6 =¢p—% and k=0; at
opposition (x=0) the values d=¢, e=60—%, k= —3% can be
chosen. Also, to illustrate the geometry of d,¢ and k, it is
interesting to note that if the rotation axis and the orbital plane of
the asteroid lie in the plane of the ecliptic; i.e., ¢ — ¢, equals 0 or ©
(y= 1%), the angle ¢ will be £ and the angles J and x will be,
respectively, ¢ and 6 with phase shifts of magnitude 3.

Surface coordinate System C4

This system parametrizes a point on a surface using the direction
of the surface outward normal at that point, given by the spherical
polar coordinates (9, w) (Fig. A1). For a strictly convex surface,
this mapping (the Gaussian image) from the surface onto a unit
sphere provides a global parametrization.

Appendix B:
spherical harmonics, Euler angles and rotation matrices

The spherical harmonics ¥;" (9, v) are here defined as

Y™ (9, w) = P (cos 9) ei™?, (B1)

where P" is an associated Legendre polynomial. Normalization
coefficients or “phase factors” such as (—1)™ are here not
included in the functions themselves. For practical purposes, a
useful definition is

I-m

P"(cos9) = ZO A}, cos” 3sin™§, (B2)
where

Al = [(21 1) A2, —(I+m—1) A}_,,] (B3)
for [>m and /> 1, and

AS=QRI-1D)A_,_; A% =1. (B4)

Only such A7, for which # is of the same parity as /—m are
nonzero. Also, note carefully that for negative m-indices

(I—m)!
(+m)!

Throughout our presentation we use the imaginary exponent
notation in conjunction with spherical harmonics because of its

Pm=(=1)"

P, (BS)

331

convenience. For a real-valued Laplace series, Eq. (BS) relates the
coefficients with negative m to those with positive m; thus only the
m 2 0-coefficients are of interest. The formalism can, of course,
quite readily be transformed into the manifestly real-valued
notation involving sines and cosines, if needed.

Spherical harmonics satisfy the orthogonality relation

2n n
[ 10,9 Y7 (3,9) sin$d9 dy = Ny 65,0 (B6)
0 0
where
_An (I+m)!
Now= 3777 I=m)” (B7)

so that if a function f (3, ) is expanded as a Laplace series

© 1
SOW=3% YL ¥, (BS)
the coefficients f,, are
2n n
Jim=Ni! g g S, w) f(3,y) sinddddy. (B9)

All rotations in three-dimensional space can be parametrized
by Euler angles, here defined as follows. The rotation R (y, §, &) of
a coordinate system involves three successive rotations:

1. A rotation through angle o about the z-axis in the positive
rotation direction. As a result of such a rotation, a right-handed
screw would travel in the positive direction along the z-axis.

2. A rotation through angle f about the new y-axis in the
positive rotation direction.

3. A rotation through angle y about the newest z-axis in the
positive rotation direction.

Satisfying the condition (3.4), spherical harmonics transform
under the rotation R (y, 8, ) as

Y™ (9, p) = Z Y™ (9, ) DY (v, B0,

m=-1

(B10)

where Y™ is the form of the function in the new coordinate
system, and the element DY, of a rotation matrix D® (cf.
Weissbluth 1980, noting the difference in the normalization
convention) is

DY (y, B, 0) =™ d, (B) €™, (B11)
where
l+m
dPm(B)= 3
A=0
. (=)™ ="t m)! (I—m')!
WA+m—=)N A=m =D (m —m+ A)!
. <COS§>21+m—m’-Zl <Sin§>m’—m+21. (B12)

A term in the sum vanishes if an argument of a factorial in the
denominator is negative. A relationship between spherical har-
monics and the elements of the rotation matrices is

Y3, )= D§n (0,9, ).

The elements of the rotation matrices satisfy an orthogonality
relation

(B13)
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[N

2n

[ D (. B.2) DR (7, B, ) sin fdodfidy
]

_ 1
=N,

n

(=
Ot A

malj 5m’m 5mk? (B14)
where

N 8 ((=m) (+m)!
mm =201 (+m) (—m)

(B15)

Appendix C: support function and Gaussian surface density

By differentiating the support function (6.1), an expression for the
radius vector of the surface can be directly obtained. The partial
derivative of the support function with respect to 3 is

QS(S’V/)z(”'r)s=”3'r’ (Cl)

since n - rg =0 (the vectors n and r, are, naturally, orthogonal).
Correspondingly ¢, = n,, - ¥, so using the support function and its
derivatives a set of equations for the components of the radius
vector is obtained. Since the vectors n, ng and n,, are orthogonal,
this set of equations can be written, using an orthogonal matrix, as

p=Mr, (€2)
where
P = (05, 0,/sin 9, 0) (C3)
and
ng
M=\ nl/sin9
”T
cosdcosy cosIsiny —sind
= —siny cos i 0 Cc4
sindcosy sindsiny cos
and MT M = I when I denotes a unit matrix. Thus
r@y)=M"p®,y), (C5)

so the shape of the surface can readily be reconstructed from the
support function.

Also the Gaussian surface density can, of course, be expressed
using the support function. A convenient expression can be
obtained by starting from the basic definition of the Gaussian
surface density: the area of a differential surface patch on an
ovaloid body is the area of the corresponding patch on the unit
sphere of the Gaussian image multiplied by the Gaussian surface
density. Thus, using Eq. (2.4) and denoting |J|=J

Jdgd
GCOW =5 g (C6)
}% T _l d9dy
so that
J4
G, '//)=W, €7
from which, using Eq. (2.6) in the end, it follows that
. . —(n- 2
G('g, ‘//)= (n "99) (n rtpw) (n r“}w) . (C8)

sin® 9

Now define, following Minkowski (1903),

A= —n-Fy,

B=—n-rg,/sind,

C=—n-r,/[sin*9, (C9)
so the Gaussian surface density can be expressed as
G, y)=AC—B>. (C10)

Using the relations n-ry =0, n-r,=0 and (1/sin9n,); =0, we
obtain expressions for 4, B and C by means of the support
function:

A=(n-rgy—ng r=045+0,

1 1 cosd
- [sin g r)“’iL = sing % sinZ9 & (C11)
1 cos§
= sin?g [ Do~ v 11= o Qe G e e
since ngg = —n and n,,, - ¥ = cos 3 r3 — g, the third component r

of r being obtained from Eq. (C5).

In principle, one could try to solve for the support function
directly from Eq. (C10), a nonlinear second-order partial dif-
ferential equation of Monge-Ampére-type, when the Gaussian
surface density is known. There is, however, no practical proce-
dure for doing so. One suitable indirect method for obtaining the
support function is the minimization scheme introduced in Sect. 6.
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