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SUMMARY 
Periods of oscillation are frequently found using one of two methods: least-squares 
(LSQ) fit or power spectrum. Their errors are estimated using the LSQ correlation 
matrix or the Rayleigh resolution criterion ôvR = 1/AT, respectively. In this paper we 
demonstrate that both estimates are statistically incorrect. On the one hand the LSQ 
covariance matrix does not account for correlation of residuals from the fit. Neglect of 
the correlations may cause large underestimation of the variance. On the other hand 
the Rayleigh resolution criterion is insensitive to signal-to-noise ratio and thus does 
not reflect quality of observations. We derive the correct variance estimates for the 
two methods. In the process we demonstrate that centre of the power spectrum line is 
a maximum likelihood estimate of frequency of the oscillation and demonstrate it is 
statistically equivalent to fitting of a sinusoid by LSQ, so the methods are statistically 
equivalent. Our new and correct variance estimate is quite simple and practicable. It is 
using the autocorrelation function (ACF ) of the residuals to determine their mean 
correlation length and is valid under certain assumptions. We tested the extent to 
which the assumptions may be relaxed by numerical simulations. 

1 INTRODUCTION 

In the first paper of this series (Schwarzenberg-Czerny 
1989), attention was focused on detection of coherent 
oscillations among noise, and testing its statistical signifi- 
cance. In the present paper we assume that the oscillation has 
already been detected. We discuss critically classical methods 
for determination of the value of its period. We point out 
statistical inconsistencies in them. The inconsistencies mainly 
affect the error estimate and only rarely the period value 
itself. So we focus our attention on error estimation. Practical 
experience shows that current error estimates are rarely, if 
ever, rehable. They are certainly inconsistent with the scatter 
of measured period values. We pay special attention to 
methods for determination of periods from a power spec- 
trum line and by LSQ fitting a sinusoid, because of their great 
practical value. Our interest is also motivated by their 
apparently contradictory properties. Namely, on the one 
hand Lomb (1976) and Scargle (1982) found that the two 
methods use the same statistic. On the other hand, in their 
currently used form they yield mutually inconsistent 
accuracy estimates. The LSQ variance, based on the inverse 
normal equations matrix is sensitive to the signal-to-noise 
(S/N) ratio. The power spectrum resolution criterion, due to 
Rayleigh is independent of the S/N ratio. Based on sound 
statistical principles, we analyse these methods anew and 
demonstrate that they are indeed statistically equivalent. 
Thus they yield same period estimate and with the same 
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accuracy. However, the true accuracy turns out to be 
inconsistent with either of the afore-mentioned classical 
estimates. 

An important role in our analysis is played by correlation 
of noise in observations. What really matters is the correla- 
tion of residuals from the fit of a sinusoid performed either 
explicitly by LSQ or implicitly by calculation of power 
spectrum. The correlation of residuals may arise for various 
reasons. Namely, (i) the physical process under study may 
produce noise with some degree of correlation (e.g. flickering 
in Cataclysmic Variables and X-ray Binaries), (ii) imperfect 
measurements may introduce further correlations (e.g. 
atmospheric transparency variations) and (iii) the assumed 
mathematical model is a poor fit (e.g. a sinusoid for Cepheid 
or pulsar light curves). Most observers are quite weary of the 
type (ii) effects and strive to avoid them. Since all physical 
systems have limited frequency response band, none is quite 
free of the type (i) effect, although its role might be negligible 
in certain cases. Actually, observations of the effect give an 
extra information on the involved physics. The type (iii) 
effects are by far the commonest cause of correlation in the 
residuals. Also, observers are mostly ignorant of their role. 

Most textbooks on statistics explain how to take into 
account correlation of observations in the least-squares 
analysis and essentially we could finish the first part of this 
paper by stating so. However, the author is not aware of 
observations published in a refereed astronomical journal in 
which correlation of observations was explicitly taken into 
account in period determination by LSQ. Evidence exists to 
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support the dim suspicion that in no cases is the correlation 
accounted for. In Section 2 we discuss formulation of the 
LSQ method for both correlated and uncorrelated observa- 
tions. We restrict our discussion to observations depending 
on one independent variable, e.g. time. In Section 3 we 
discuss effects of the correlation on results of period analysis 
and consequences of their neglect. For this purpose we use 
analytic considerations. As a particular case we discuss 
period determination by LSQ fitting of a sinusoid. 

Because of affinity between power spectrum and the LSQ 
fit of a sinusoid (Lomb 1976; Scargle 1982) we turn our 
attention to power spectrum analysis too. First we consider 
as an academic example a maximum likelihood method for 
period determination from a power spectrum. From proper- 
ties of this method we draw several conclusions of practical 
importance. In Section 4 we outline practical methods for 
estimation of periods and their variance. We tested our ideas 
by Monte Carlo simulations discussed in Section 5. 

1.1 Least-squares analysis for correlated and uncorrelated 
data 

The least-squares analysis is sensitive to correlation of 
observations noise (‘the residuals from the fit’). The most 
commonly used LSQ algorithm is valid only for Gaussian 
white noise residuals with the covariance matrix Cx = o2

x\. 
In order to establish notation we rederive the formulae for 

the LSQ method. In a general case of correlated data, the 
parameters y of a function /t(y) = f[t,y) are fitted so that the 
sum of squares of the residuals is minimal (Eadie et al 1971): 

min. = Q2 = [* -/(y^C^x-fiy)}. ( 1 ) 

It is convenient to expand the vector function f{y) into 
Taylor series around a point y0 close enough to the solution. 
Retaining only first and second terms we get 

f(y)=f(yo)+i^r^(y-yo)- dy 

After translation of origins in x and y spaces to /(y0) anc^ Jo* 
respectively, we obtain: 

mm. = Q2 =(*-Ay^C^jr-Ay), (2) 

where matrix 

'■ ?v, • 

called a design matrix depends on a given problem. The 
linear expansion is accurate enough as long as /(y) is 
approximately linear for 1 o changes in y. When this is not the 
case, the LSQ estimate is no longer optimum and unbiased. 
Then the maximum likelihood solution should be used 
instead of the LSQ method. 

The solution of equation (2) is obtained in a standard way 
be equating gradient of Q1 to zero. Its covariance matrix 
follows from the change of variables theorem: 

y = (AtCx
_1A )_1AtCx

_1jr (3) 

Cy = (AtCxA )-1. (4) 

Neglecting the correlation of residuals leads to a solution and 
its covariance matrix which are both incorrect. They are 
obtainable from equation (4) by substitution of for Cx: 

y^HAfAj-W.* (5) 

C^a^A)'1. (6) 

Here, o\ = Var{xx] denotes the variance of the noise. The 
solution and their errors which are used in literature corre- 
spond to y(1) and C(

y
2). They do differ from the correct ones 

given in equation (4). Later we show that the difference 
between the solutions is of little consequence. However, 
difference of the correlation matrices is profound. More, y(1) 

and C^2) are mutually inconsistent. If we treat y(1) as a certain 
linear function of x, then its covariance matrix according to 
the change of variables theorem is (e.g. Eadie et al 1971 ): 

Cy ) = ( At A ) -1 AfCxA( At A ) -1. ( 7 ) 

It is rather than C^2) which is the correlation matrix of y( 1 

Note that Toeplitz Cx does not guarantee that Cy is Toeplitz. 
The asymmetry of Cy reflects the asymmetry of A and it 
stems from asymmetry of parameters of the fitted curve. 

The case of perfectly correlated groups of D observations 
each is easy to understand. To account for correlation it is 
enough to use only one observation from each group, set 
Cx= ox\ and substitute into equation (6). Because the omitted 
observations contain no additional information, no increase 
of covariance Cy is incurred in this way. The used observa- 
tions are uncorrelated so the results are correct and corre- 
spond to y and Cy. Algebraically skipping observations 
corresponds to division of both A1^ and A'jc by D. Com- 
paring results, what we see is that no error in the solution is 
produced by neglect of correlation but covariance C^2) is 
underestimated by a possibly large factor of D: 

y = y(1) = (AtA)-1Atjr (8) 

Cy = C^=avZ)(AtA)-1 (9) 

C[2)=ox{tfA)-]. (10) 

One can expect similar results for a general signal with finite 
correlation length. In the next section we demonstrate that it 
is so indeed. Summarizing, both least-squares solutions y and 
y{1) are equivalent and have the same covariance matrices 
Cy = Cy K Thus neglect of correlation of noise does not affect 
the values of the least-squares solution, as long as our assump- 
tions hold. However, the error estimates suffer severely from 
the neglect. The covariance matrix which is used in literature 
for period estimation, C^1} is smaller from the true correlation 
matrix Cy by a possibly large factor D. Thus neglect of the 
correlation causes underestimation of errors by a factor equal 
to a mean number of observations with correlated noise. 

2 NOISE WITH A SMALL CORRELATION 
LENGTH 

2.1 Evenly spaced observations 

Let us for the rest of this paper assume that observations 
depend only on one independent variable - time. In a more 
general case of correlations in observations obtained in 
multi-dimensional space of independent variables, one has to 
consider number of correlated observations in adjacent 
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200 A. Schwarzenberg-Czerny 

volume. Further, we assume that the noise is Gaussian, i.e. 
that its component nt is normal random variable, E{n} = 0 
Var{n}= 1 for any fixed time t. We shall consider here two 
kinds of noise. The white noise w has identity covariance 
matrix Cw = = I. Any stationary noise process has 
Toeplitz covariance matrix, i.e. a Hermitian matrix homeo- 
morphic to the autocovariance vector a\ Cnij= ai-j = a)-^ 
The stationary noise with finite correlation length D has 
band covariance matrix, with band width D. Each noise can 
be represented by filtered white noise. Its covariance matrix 
also depends on the filter. In matrix notation: 

n = Bw (11) 

Cn = BBf, (12) 

where matrix B defines the filter. The covariance matrix has 
no more symmetry than its filter matrix, except for its 
Hermitian property. 

We shall denote the time interval spanned by observations 
by T, the characteristic length of observed signal (e g. period) 
by L and the noise correlation length by D. We shall 
consider only an asymptotic case of short correlation length 

T>L>D>\. (13) 

In any realistic case, matrix A is rectangular and has no 
symmetry at all. The covariance matrices Cy, C^2) and 
differ by powers of Cx. On the one hand, only ~ terms in 
each row of Cx are large, and so only ~ D terms of column of 
A contribute to each product. On the other hand, since we 
assumed A varies only on length L large compared to D, all 
elements of A which contribute are nearly the same: 

(CXAV (14) 

For circular Cx all sums in the square brackets are the same. 
For Toeplitz Cx, CXA = AA. If all observations are positively 
correlated X = D. Very much the same applies to multiplica- 
tion by an inverse C“ except that now the factor is 1/D, so 
that the product by C“ lCx returns A. 

A more strict derivation of these factors is possible. For 
lack of space we sketch it only. It follows from the derivation 
of equation (14) that the factors do not depend on A. Also 
Toeplitz Cx can be approximated by a circular matrix dif- 
fering from it only in corners, with no large effects on the 
matrix products considered. Then, circular matrices C form a 
group with matrix multiplication which is homomorphic to 
the group of corresponding vectors c with convolution or to 
the one of their Fourier transforms with common multi- 
plication. Assuming Gaussian filter b of width D for the 
noise, one can easily perform all calculations in the Regroup 
and then convert results back to matrices. The results are the 
same as in equation (9). Some attention must be paid to the 
normalization of b since the variance of x, cr¡, is known to the 
observer and must be kept fixed. Equation (9) is valid for a 
general asymmetric and rectangular design matrix obeying 
restriction on length scale given by equation (13). Although 
strictly speaking they are valid only for circular Cx, for T> D 
deviations of Cx from circular symmetry are so small that to a 
good approximation can be neglected. Thus our conclusions 
may be extended on a general case of stationary noise since 
its covariance matrix is Toeplitz. 

2.2 Unevenly spaced observations 

Under certain conditions the results of the previous section 
are extendable for the case of observations unevenly distri- 
buted in time. They depend on convolutions of rows of Cx, 
i.e. of shifted ACF, with columns of A. The convolutions can 
be represented by integrals. The results hold as long as the 
distribution of observations in time is such that the ACF can 
be found (Edelson & Krolik 1988) and the products of rows 
of Cx times columns of A are good Monte Carlo approxima- 
tions of the corresponding integrals. We shall not expand this 
topic in this paper as it belongs to the Monte Carlo integrals 
theory. Clearly the conditions are not satisfied, e.g. when the 
average separation of observations is larger than the correla- 
tion length D or when there is a pattern in the distribution of 
the observations at the length comparable to the charac- 
teristic length L of the fitted curve. The correlation length D 
now corresponds to the mean number of consecutive corre- 
lated observations. 

3 ON VARIANCE OF PERIOD ESTIMATES 

3.1 The least-squares period estimate 

Let us now consider a specific case but with important 
applications, namely that of fitting by LSQ of the periodic 
function of time s(Qt), such that 

/ 
s(<j> + l) = s(</>)=Y,y¡<p¡(</>) (15) 

/ = 2 

and all trial functions cp, are orthogonal 

<Pi(</>)<Pj(0) d</>=ôii. (16) 

It is convenient to introduce new notation for the oscillation 
frequency and for the normal equations matrix 
0 = A^. Applying the results of the previous section we find 
that the variance of Q is 

Var{Q}=CvU = o2
xD(0-l)u. (17) 

Since the design matrix A is built of derivatives of s so we 
obtain the elements of 0 by differentiation and summation: 

©n=Zi2 fè 3 
(18) 

í-v y-* ds¡ 
©w=3 í— <Pñ , d(¡) 

(19) 

&„ = Y,cpl¡(p,i={cp¡(p¡)a (20) 
/ 

h7 = 2,...,/, (21) 

where ô is Kronecker symbol and (.) indicates time average. 
Note that we replaced variables of differentiation in the 
design matrix ds/dQ = t(ds/d</>). Both s and cp are periodic 
and t does not change much over one period P « L because 
of our assumption T>L (equation 13). Therefore we 
dragged their average values outside the sums over time. 
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Here we assume that the distribution of observation is such, 
that we can replace sums by the corresponding integrals. 
This is a rather weak assumption, amounting in essence to 
requiring that moments of observations are not correlated 
with the phase of oscillations under study. It is not necessary 
to obtain complete phase coverage during any single cycle of 
observations. In fact, less than one observation per cycle may 
be still acceptable (Schwarzenberg-Czerny 1989). Before we 
proceed to evaluation of the inverse matrix element 0U let 
us note that units of elements of A and 0 are not homoge- 
neous. So their relative magnitudes depend on the choice of 
units. Thus we must define our units before proceeding any 
further. It is also clear from the form of equation (19) that the 
mean time of observation (t) is convenient origin of time, so 
that 01; vanishes. Mean separation of observations must be 
taken for the unit of time so that D corresponds to the mean 
number of correlated observations, as before. It is convenient 
to adopt the amplitude of the oscillation for the unit of 
signals 5, x and y„ / = 2,..., /. Thus the following estimates 
for the averages hold 

~ 1, (22) 

( <Pi Vj) ~ ày orthonormality, (23) 

Schwarz inequality, (24) 

for all ss except pathological ones with steep gradients and 
many discontinuities. 

With our particular choice of units and trial functions, the 
matrix 0 turns out to be nearly diagonal, so that its approxi- 
mate inversion is simple. Thus the parameters y, are nearly 
uncorrelated. Then the variance of the frequency estimate is 

Var{QLSQ} 
3o2

xD ~3o2
xD 

T3({ds/d^)2) T*~ 
(25) 

The last equality corresponds to our particular choice of 
signal units and a smooth 5. We stress once again importance 
of symmetric choice of the time origin in keeping period and 
epoch uncorrelated and their variances small. This is a par- 
ticular case of orthogonalization of variables. 

3.2 The maximum likelihood period estimation from 
power spectrum 

A signal containing periodic oscillation produces a feature in 
its power spectrum or ‘a spectral line’. The half-width of the 
line <3QR~2jr/Tisa measure of power spectrum resolution. 
It corresponds to the change in frequency producing half 
period phase shift over the whole interval of observation. 
Except for a constant factor it is equivalent to Rayleigh 
resolution criterion. Comparison with equation (25) demon- 
strates readily that the Rayleigh resolution overestimates 
period variance by a large factor. In fact it corresponds to a 
frequency interval in which the value of sum of squares %2 is 
less than half of one for a spurious frequency. More 
importantly, the Rayleigh criterion or any similar based on 
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fixed phase shift is independent of signal-to-noise ratio and 
thus does not reflect quality of the data. 

Lomb (1976) and Scargle (1982) demonstrated that LSQ 
and power spectrum methods use equivalent statistics. How- 
ever, they produced no practical methods for exploiting the 
equivalence. Henceforth we shall call Scargle (1982) 
modified power spectrum simply power spectrum. In this 
section we shall derive the maximum likelihood method 
(MLM) for period estimate from power spectrum. We shall 
demonstrate that this method is equivalent to LSQ fitting of a 
sinusoid. 

We apply the MLM to estimation of period from power 
spectrum p, treated as ‘observations’. It is convenient for the 
present purpose to consider /? as a vector of components 
p((d). The components are numbered by frequency &>, a 
possibly continuous independent (i.e. non-random) variable. 
Let f(p,y) be the probability distribution of p and y its para- 
meters, such as co, V, o2, Q, (S/A),... Some of the parameters 
are not random variables, being either known in advance or 
specified as arguments, e.g. times of observation t or current 
frequency co. They are not parameters in the sense used in 
the estimation theory and we shall call them independent 
variables. To stress their role we shall indicate them 
explicitly, if desirable. The aim of estimation is to find values 
of other dependent parameters treated as random variables, 
e.g. power of noise o2 or frequency and SjN ratio of the 
observed oscillation Q, (S/A). We are particularly concerned 
with estimation of Q. 

The likelihood function for A independent observations is 
usually defined as 

N 
In L(p,.y)= X In/(/>,-, j). (26) 

/= 1 

In the present case the ‘observations’, i.e. the power spectrum 
p(co), are continuous and possibly their values at different 
frequencies are correlated. We shall use the following likeli- 
hood function: 

In L(p,y) = F \nf(p(m),y) dw, (27) 

where F( a>) is an as yet unspecified weighting function, taking 
care of the degree of correlation of observations and normal- 
ized so that its integral over a certain frequency band corre- 
sponds to a number of independent power spectrum 
observations in the band. Integration in equation (27) is 
extended over the whole band of power spectrum affected by 
a given oscillation, i.e. over its whole window pattern. 

In case of discrete and evenly spaced observations cover- 
ing a time interval T, independent observations of power 
spectrum are too evenly spaced by the frequency interval of 
a>Q = 1/T, for all kinds of signals (e.g. Scargle 1982). Thus the 
number of independent observations of power spectrum per 
unit frequency interval is 

F(1) = — = const. (28) 

To estimate this number in a general case of unevenly 
sampled observations we define a ‘calibration signal’, consist- 
ing of the sum of a large number of unit amplitude sinusoids 
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with random (i.e. non-coherent) phases and spaced evenly in 
frequency by a>0. It is a well-known fact, that the power 
spectrum of a sinusoid of frequency Q is the sum of the 
sampling window functions W{o)) shifted to ±Q. Strictly 
speaking, this result is valid for the classical power spectrum 
only. For Scargle’s (1982) modified power spectrum one has 
to use power spectra of high-frequency unit test signals 
instead of W, however, this affects little our argument - 
unless a high-frequency pattern is present in the distribution 
of observation times. Non-coherence of the sinusoids in the 
calibration function ensures that their positive and negative 
interferences are equally likely. Thus the expected value of 
power observed in the calibration signal is simply sum of 
powers of components: 

oo 
E{p(œ)}= X W(co + mo()). (29) 

For sufficiently dense distribution of calibration sinusoids 
this sum is proportional to an integral of the window func- 
tion. Equation (29) has a curious property: observed power 
grows proportionally to the number of aliases and sidelobes 
present in the window function. However, power of the input 
calibration signal per unit frequency interval is fixed at the 
value of 1!(Oq. Thus all growth of the observed power is 
spurious and related to the fact that the power spectrum 
contains more and more correlated frequencies as number of 
aliases grows. To account for that and for proper normaliza- 
tion the weighting function for the general case must take the 
following form 

1 jWE(œ) dœ 
ü)0 \W{(jo) dœ 

(30) 

Here, by WE and W we denoted the window functions for 
equidistant and non-equidistant observation of the same 
number and spanning the same time interval T. The analyti- 
cal form of WE is known so the integral in the numerator can 
be calculated by elementary methods. Its value is Ca)0, where 
C = <^( 1 ) = constant. Thus equation (30) can be rewritten as: 

C = \TWda). (31) 

As usual in the MLM, parameters y are found by looking 
for the maximum of L or as solutions of the following 
equations: 

a In ljp2y) = 

dy 
(32) 

Their covariance matrix is (Eadie etal. 1971, section 8.3): 

Cov{y} = E 
I din l\2] 

\ ^ / I 
(33) 

The conditions under which second equality holds are 
satisfied here. In order to proceed any further, we must know 
explicitly the probability distribution /. 

The probability distribution of power spectrum for white 
noise is exponential. It depends on one parameter, variance 
of the noise (Scargle 1982). However, in the present case we 
have to cope with a more complex signal composed of a 
noise and oscillation. Additional parameters concerning of 

the frequency and shape of the oscillation may have to be 
considered. In this paper we are interested in sinusoidal 
oscillations only. So the relevant parameters are the 
frequency of the oscillation Q = yi and power signal-to-noise 
ratio {S2/N2) = y2- and N2 we indicate power spectra of 
the deterministic and noise components. The moments of the 
distribution in such a case are considered in Appendix A. 
The expected value and variance are E{p} = S2 + N2 and 
Var{p} = o2

p = 2N2(2S2 +N2), respectively. As long as 
S2 > N2 the standard deviation is small JVar{p} <p and we 
may approximate the expected value by the observed one 
£{/?}»/?. The exact equality holds in an asymptotic case of 
strong oscillation S2IN2 — °o. Then we may use a linear 
expansion of the power spectrum as a function (statistics) of 
observations x As such the power spectrum has also 
Gaussian probability distribution. The parameters of the 
distribution E{p) and Var{p] are already known. 

Generally, in the MLM we compare the likelihood of the 
power spectrum p(y0) for the true parameter values y0 with 
the observed one p(y). Substituting Gaussians for / in 
equation (27) and expanding /?(eo;y) into linear function of y 
we obtain the likelihood function in the following form: 

In L[p,y) = r (y-yn)'[dp{uTldyAdp{o>)ldyÂy-y<.ù , 
r ïiïWEC) dco 

+ const. (34) 

Differentiating and substituting into equation (33) we obtain 

T dœ dp(a))' dp(aj) 
Cov{y} = 

} 4N2p[l-N2/2p] dy0 dyu 
(35) 

The integrated function is of order 0(p) so it contributes 
most within the spectral lines. It follows from equation (35) 
that integration should be extended over the whole interval 
where line pattern is strong in order to minimize the 
variance. In what follows we shall consider a strong line (S/ 
N>1), whose positive-frequency window pattern does not 
interfere with the negative one and with other lines. So the 
profile of the line is p(a))~ pQW{a)-Q) and depends on two 
parameters only: yj=Q and y2 = PQ (power in the line 
centre). Covariance of the two parameters vanishes due to 
symmetry of the window function, so that dpldpQ and dp! 
dQ are even and odd functions with respect to the line cen- 
tre. Thus we demonstrated that the MLM power and 
frequency estimates are uncorrelated. 

We shall derive a simple analytical estimate of the variance 
of oscillation frequency Q. Substituting p(a)) into equation 
(35) we obtain 

Var{Q} = 8A_ 
pQ 

T d(o\^-\ W'1 ¿ (N2l2Pf 
da) J k=0 

(36) 

For a strong line and near its centre, where most contribution 
to the integral comes from, N2/2p < 1/2, so that the expan- 
sion converges fast and it suffices to retain only first term, i.e. 
unity, 

Var{Q} = 
SolN2 

pQ 
TWda) 

ld\nW\2 

\ dw I 
(37) 
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Replacing the derivative din W/da) in equation (37) by its 
finite difference approximation l/aw and recalling equation 
(31) we obtain 

Var{Q} = 
8olN2 

CpQ 
(38) 

Relations between signal and noise power density func- 
tions pQ and N2 and their amplitudes A and ox follow in a 
simple way from Parseval’s Theorem: PaO^-A2= 1 and 
N2o)n= N2 = a2. We denoted widths of the signal and noise 
bands with cr^ = 1 / T and a)N. The = signs pertain to our 
particular choice of units. 

The noise power density function is affected by presence 
of any correlation. Assuming a Gaussian filter of width D 
and recalling that the noise can be represented by a convolu- 
tion b*w of the white noise w with the filter b we obtain 

¿V2 = I ¡?~b\2\^w\2 = —^- e~D''al¡2. (39) 
Jjr 

For our case P>D so the exponent function can be 
neglected. Note our choice of the amplitude of the oscillation 
and mean separation of observations for units of signals and 
time. Substituting into equation (38) we obtain for the single 
oscillation case 

Var{Qr) 
o2

xP 
T3 ' 

(40) 

This equation has the same form as equation (25) except 
for a constant factor stemming from different normalizations. 
So the MLM estimate of Q has Gaussian probability dis- 
tribution, in the asymptotic case of a strong signal and its 
expected value and variance are the same as in the LSQ case. 
Thus the MLM frequency estimate is equivalent to LSQ 
fitting of a sinusoid, provided that equation (40) is used to 
estimate variance. Note that as long as Q<l/D no explicit 
knowledge of correlation length is required for power 
spectrum period estimation. 

One can convert Lomb (1976) and Scargle (1982) results 
into an explicit relation of x2 and P: ^2(a,)== 

(pQ-p(a)) + 2Do2
x)M/o2x, where M, the total number of 

observations, and pQ, D, o2
x are constants. Since x2 was 

computed for a single oscillation so the relation is valid only 
for the corresponding spectral line. The correspondence of 
the LSQ and MLM results would correspond to a particular 
case of a known theorem that LSQ provides MLM estimate 
in the linear case (Eadie et al. 1971). So for strong lines we 
can entirely dispose with the cumbersome maximum likeli- 
hood algorithm and treat power spectrum as reflected x2 

plot and find the confidence interval accordingly (Fig. 1 ). 

4 NUMERICAL CONSIDERATIONS 

4.1 Iterations of the noise covariance matrix 

In principle one can assume a trial covariance matrix Cx and 
obtain a LSQ fit. The residuals from the fit can be used to 
find the noise ACF, and its corresponding covariance matrix 
Cx. Methods exist to estimate the autocorrelation function 
even for uneven distribution of observations (e.g. Edelson & 
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Krolik 1988). In a general case the input and output matrices 
Cx are inconsistent. Given the new correlation matrix Cx, an 
improved least-squares solution can be computed using 
equation (4). By iterations the solution can be found, which is 
consistent with the correlation matrix Cx. This iteration 
procedure is cumbersome and its convergence is not guaran- 
teed. The iteration procedure may serve as a check and in 
cases when other methods fail to work. 

4,2 The povf mor/em analysis 

We propose the following simple method for LSQ variance 
estimation. Initially proceed as if no correlation was present 
in the noise and get the LSQ solution as usual. Fit the 
unknown parameters y(1) and calculate their correlation 
matrix C(

y
2) (equation 6). In order to find by what factor this 

matrix underestimates the true correlation matrix C^, 
perform a simple post mortem analysis. Namely, find the 
residuals from the fit and calculate their autocorrelation 
function (ACF). Determine the correlation length D by 
fitting a Gaussian function centred at 0 lag and width of D. 
As long as the conditions (13) are met, the true correlation 
matrix is given by equation (9), or simply 

Cf = Dt2\ (41) 

We discuss below numerical tests which demonstrate how 
reliable is this method. 

This method has several advantages. With no extra 
computations it can be applied to published results. 
Provided, that authors published e.g. plots of raw data and 
the fitted curve, D can be roughly estimated by looking how 
many consecutive observations lay on the same side of the 
fitted curve, on average. Thus all quoted variances can be 
scaled readily by D to make them realistic. The post mortem 
analysis can be generalized for the case of observations in Aï- 
dimension space of the independent variables. Then the 
autocorrelation function becomes an «-dimension matrix. It 
determines the «-dimension correlation ellipsoid. One 

Figure 1. A schematic plot of lines produced by an oscillation 
detected in power spectrum p (a) and x1 periodogram (b). The 
shaded area corresponds to the maximum likelihood 1 o confidence 
interval for the frequency of the line and is exactly the same in both 
plots (see Section 4). The interval corresponds to the width of the 
line at levels Do~x down and D up from its peak for (a) and (b), 
respectively. Here pQ denotes power in the line centre, N=T 
number of observations, a“ and D are true noise variance and 
correlation length and Do~ is noise power density, including no 
window function artefacts. 
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204 A. Schwarzenberg-Czerny 

should multiply variances by the average number of observa- 
tions within the volume occupied by the ellipsoid. 

4.3 Binning of data 

An alternative method relies on binning of observations into 
bins of size D. This method requires performing the least- 
squares computation twice: first for unbinned data in order 
to find the solution y and residuals. The residuals serve to 
determine the correlation length D. Then obtain second fit 
for binned data. It yields directly the true covariance matrix 
C(

y
2) since now £)= 1. Similarly to the previous method, this 

method can be generalized to ^-dimensions. 

4.4 Power spectrum linewidth 

An equivalent but particularly simple procedure is possible 
for the strong SjN and simple, non-interfering window 
patterns. Take power spectrum of an oscillation and find 
height pQ of the corresponding spectral line. Find in the 
vicinity of the line the mean noise power level N2 = Do2

x. 
Then the width of the line at the Pq~ N2 level is the 1 o con- 
fidence interval of the oscillation period (Fig. 1). Any effect 
of the correlation of residuals is implicitly included. Finding 
N2 may require some care in practice. Many low-power 
features appearing in power spectra are actually not due to 
noise but are window patterns of some oscillations and thus 
should not be taken into account. However, decision may be 
difficult. This problem may be circumvented if noise 
variance N2 is known a priori, e.g. from tests of the measur- 
ing equipment. Then its power is also known (equation 39). 
In this case the correlation length D must be known 
explicitly. This procedure can be performed graphically with 
no calculation at all. 

5 SIMULATION TESTS 

In order to verify how far our assumptions (equation 13) may 
be relaxed, extensive Monte Carlo simulations were per- 
formed. The simulated data consisted of a periodic signal 

plus the correlated noise. For each simulated data set a 
period was found by LSQ fitting of a sinusoid. Comparison 
of the variance of the fitted period with computed values of 
Cy (equation 9) served as a test of validity of our assumptions 
and results. 

The signal consisted of a sinusoid of amplitude S'/A, con- 
stant period P and random phase. Two types of the noise 
were generated: (i) (MA) a moving average noise obtained by 
convolving a white noise with a Gaussian filter of width D 
and (ii) (S+ W) a sinusoid of amplitude l/>/2, period D and 
random phase plus a white noise of variance 1/2. The MA 
red noise may be considered a model of flickering in 
accreting binary stars. The S+W noise imitates a not 
uncommon situation when another unrecognized oscillation 
is present in data. In both cases noise had unit variance. The 
white noise was generated using a Gaussian pseudorandom 
number generator. In order to avoid switch-on effects the 
first series of random numbers was discarded. For each set of 
the parameters D, P and SjN, NC= 10000 data sets were 
simulated. Each consisted of a time series of length 
NT= 1000 sampled at unit time intervals. 

A sinusoid was fitted to each time series by the non-Unear 
LSQ method. The calculations started from the true value of 
the period P and Newton iterations were performed in each 
case in order to find the best-fit period ZYso* ^ was f°und in 
practice that six iterations were enough. Those results for 
which the period difference AP ^lsq P produced a shift 
in phase in excess of 0.1 on ends were rejected. Their count 
NM was kept separately in order to estimate the cycle miss 
probability pm~ NM/NC. Thus we rejected simulations for 
which no secure cycle count can be established in the same 
way as a careful observer would do. For the rest of the 
simulations the external variance of the period was found: 

Var{P0}~ 
1 

.NC-NM 

NC-NM 
I (AP)2. (42) 

This ‘observed’ variance can be compared with the mean of 
the LSQ variances computed for each fit (equation 9). The 
calculations were repeated for a grid of values of the para- 
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Figure 2. Comparison of two variance estimates of periods obtained by LSQ fitting of sinusoids to simulated oscillations with correlated noise. 
The calculated variance Kc from LSQ multiplied by the correlation length D accounts for the effect discussed in Section 2. The ‘observed’ 
variance was obtained directly from the scatter of fitted period around its value used in simulations. The simulations were obtained for a grid of 
periods F = 25-400, each marked with different symbols, noise correlation lengths D = 2.5-40 and signal-to-noise ratio (SIN) = 4 and 2 (a), (Sj 
TV) = 1 (b) and (S/N) = 0.5 (c). To avoid overcrowding, many symbols overlapping with bottom crosses ( + ) are not drawn. The constant value of 
VJ V() in (a) and (b) for D//:>< 0.2 demonstrates that as long as our assumptions are satisfied VQ and V() are identical except for a constant factor. 
Note breakdown of their correspondence for small (S/N) (c) for all but the smallest D. 
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meters D = 2.5, 5, 10, 20, 40, P=25, 50, 100, 200, 400; and 
S/N= 0.5, 1, 2, 4. Statistical accuracy of the results was 
checked by comparison of calculations using different 
random number series. The corresponding variances 
differed by no more than 0.01 dex. 

Comparison of the observed and computed variances 
reveals orders of magnitude discrepancies of observed and 
LSQ variances ignoring correlation length effect. The classi- 
cal LSQ approach underestimates the variance. Thus the 
simulations support our first conclusion: the classical LSQ 
variance estimates are wrong in case of correlated residuals. 
No clear pattern appears in the S+W noise simulations. A 
change in the period of the interfering oscillation affects the 
basic period variance by factor at least of several. The effect 
is worst for close principal and ^background periods. At 
this point we close discussion of the S+W simulations. 

The MA results reveal some systematic patterns. In Fig. 2 
we plot log ratio of the computed variance to that predicted 
by equation (9). The latter variance is corrected for noise 
correlation length D. In Fig. 2 we plot log ratio of the com- 
puted and predicted variances against log correlation length 
D. Points corresponding to the same values of P are marked 
with the same symbols. Separate graphs are presented for 
each SjN value. The results for S/N=4 and 2 are the same 
and thus are not repeated on the plot. They demonstrate that 
for D/P<02 the variances predicted by equation (9) and 
true variances agree very well, except for a constant scaling 
factor of ~ 10-025 = 0.56. For D/P<0.1 any differences are 
no greater than the Monte Carlo errors. No discrepancies 
occur for correlation length as short as 2.5 time steps. How- 
ever, for correlation length comparable to the period of 
oscillation, D/P> 0.3 a quite different picture emerges. 
Instead of being proportional to D/P the true variance is 
roughly proportional to (D/P) -*, so that the plotted ratio of 
variances grows with (D/P)2. It is possible that this effect 
saturates for D/P>1. However, no further investigations 
were carried out since such long D are avoided in practice. S/ 
N ratio does affect our results but only when its value is 
small, (S/AO < 1. For (S/N)= 1/2 and P3D> 5 x 106 the true 
variance is less than the predicted one. However, the pre- 
dicted variance at such conditions is large and indicates 
possibility of wrong cycle count. Indeed, in such cases cycle 
miss probability was high, reaching 0.4 for D = 40 and 
P = 400. So, the variance is artificially decreased by rejection 
of the outlying period estimates. In such cases the simulated 
data are simply insufficient to find the period unambiguously. 
Any random noise fluctuations may be mistakenly taken for 
oscillation maxima. Still, this situation was correctly pre- 
dicted by equation (9). 

Summarizing, our estimate of variance (equation 9) is 
reliable for the stochastic noise, as long as our assumptions 
hold. In fact, our conditions (equation 13) need not be 
satisfied with large margin. Our variance estimate fails when 
other periodic signals of comparable magnitude interfere. 

6 CONCLUSIONS 

Our results may be interpreted in a simple way. 

(i) Provided, that our new statistically correct procedures 
are followed, power spectrum and least-squares (LSQ) fit of a 
sinusoid are equivalent methods for period determination. 

Accuracy of period determination 205 

For this purpose our corrected variance estimate (equation 
9) should be used. This estimate is consistent with scatter 
from different measurements. Old error estimates, based on 
variance obtained directly from the fit or on the Rayleigh 
resolution criterion ôv=l/T are statistically incorrect. 

(ii) If on average D consecutive deviations from the LSQ 
fit are correlated, they give us as much information on noise 
as a single observation. So in effect we get D times less 
uncorrelated observations on which our LSQ analysis is 
based. Thus our actual variance is, by a possibly large factor 
of D, larger than that indicated by the LSQ fit routine. In 
other words we could essentially bin each D observation 
together without increase of the period variance. For small S/ 
N ratio we propose using least-squares fit as before and then 
following it by our post mortem analysis. The analysis 
requires calculation of the residuals from the fit and then 
their autocorrelation function. The half width at half 
intensity of the autocorrelation function maximum around 0 
lag is an estimate of the correlation length D. Then all 
variances and covariances should be multiplied by D 
expressed in units of mean observation separation (Section 
2). 

(iii) For the strong S/N ratio an equivalent but simpler 
procedure using power spectrum is feasible. Take power 
spectrum of an oscillation and find height pQ of the 
corresponding spectral line. Find in the vicinity of the line 
the mean noise power level N2 = Do2

x. Then the width of the 
line at the - Do] level is the 1 o confidence interval of the 
oscillation period (Fig. 1). Any effect of the correlation of 
noise is implicitly included (Section 3.2). 

(iv) A particularly pleasing practical property of the new 
statistically correct variance estimates in (ii) and (iii) is that 
they can be easily obtained for most already published 
observations using simple graphic procedure. Namely, to 
estimate the correlation length D for LSQ (ii), it suffices to 
count mean number of consecutive observations lying on the 
same side of the fitted curve. To estimate the noise level for 
the power spectrum (iii) it suffices to draw its mean level by 
eye, ignoring all strong lines and their aliases. Then the same 
height as that from 0 up to the mean noise level should be 
plotted from the peak of the line down. The width of the line 
at this level provides 1 o confidence interval. 

(v) More general and exact numerical procedures are 
available (Section 4). 
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APPENDIX A 

Let us assume that a signal x is a sum of the deterministic and 
stochastic (noise) processes s and n respectively, x = s + n. 
We indicate their Fourier transforms by k = v = and 
ô = &~s. We assume that noise is independent from signal and 
that its variance exists and mean vanishes, so that E{v} = 

= = However, we do not assume here that 
the noise is white. The expected values and variances of the 
power spectra of the involved processes are E{ôô} = ôô = S2, 
H2r{(5(5} = 0, E{vv\ = N2 Var{vv} = NA. These equations 
define N2 and S2. We exploited here known exponential dis- 
tribution of vv (e.g. Scargle 1982). The power spectrum of 
the signal is p=icK = ôô + vv+ vô + Sv. The expected value 

and variance of the last two terms are 
E{vô + <M = 0£{v} + d£{v} = 0 and Var{vô +ôv\ = E{(vô + 
ôv)2} = E{v2ô2 + v2ô2 + 2vi'<5<3} = ô2E{v2} + ô2E{v2} + 
2ôôE{ vv} - 2S2N2. We exploited the fact, that because of the 
time symmetry 0 and jt/2 phases of the noise transform are 
equally probable, so £{v2} = 0. Using the above auxiliary 
results it is straightforward to obtain the expected value of 
the power spectrum of the combined signal: 

E{p} = N2 + S2. (43) 

We start calculation of the variance from its definition: 
Var{p] = E{(p — N2~S2)2} = E{(vv + vô + vô - N2)2} = 
E{{vv- N2)2}-\- Var{vô +vô\ + 2E{(vv-N2)(vô + vô)}. The 
first term can be evaluated explicitly since the probability 
distribution of the white noise is exponential {cf. Scargle 
1982), yielding N4. We already evaluated the second term. 
The last term vanishes since it amounts to an expected value 
of a product of two factors, which signs are independent. 
Indeed, the sign of the first factor depends solely on the 
modulus of the noise transforms and the second one on its 
phase. Collecting all terms together we obtain finally 

Var{p} = N2{N2 + 2S2). (44) 
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