INTERSTELLAR MATTER IN EARLY-TYPE GALAXIES. I. THE CATALOG

MORTON S. ROBERTS AND DAVID E. HOGG National Radio Astronomy Observatory¹

JOEL N. BREGMAN Department of Astronomy, University of Michigan

AND

WILLIAM R. FORMAN AND CHRISTINE JONES Harvard-Smithsonian Center for Astrophysics Received 1990 May 7; accepted 1990 August 14

ABSTRACT

A catalog is given of the currently available measurements of interstellar matter in the 467 early-type galaxies listed in the second edition of the Revised Shapley-Ames Catalog of Bright Galaxies. The morphological type range is E, SO, and Sa. The ISM tracers are emission in the following bands: *IRAS* 100 μ m, X-ray, radio, neutral hydrogen, and carbon monoxide. Nearly two-thirds of the E's and SO's have been detected in one or more of these tracers. Additional observed quantities that are tabulated include: magnitude, colors, radial velocity, central velocity dispersion, maximum of the rotation curve, angular size, 60 μ m flux, and supernovae. Qualitative statements as to the presence of dust or emission lines, when available in the literature, are given. Quantities derivative from the observed values are also listed and include masses of H I, CO, X-ray gas, and dust as well as an estimate of the total mass and mass-to-luminosity ratio of the individual galaxies.

Subject headings: galaxies: interstellar matter — galaxies: photometry — galaxies: X-rays — infrared: sources — radio sources: 21 cm radiation

I. INTRODUCTION

Our view of the interstellar content of early-type galaxies has radically changed over this past decade. Where we thought these systems to be essentially devoid of dust and gas, we now know that many contain hot (10^7 K) X-ray gas, warm (10^4 K) ionized gas, and cool ($\leq 10^2 \text{ K}$) gas and dust. In some instances, where the gas and stellar kinematics differ, the origin of the former is attributed to capture. In other instances, the material is most likely intrinsic, as for the X-ray gas.

In all cases this interstellar component, ranging from a few percent of the total mass to values much smaller, holds clues to the past and future development of the parent galaxy. To search for systematics in this nonstellar component, we draw together results from the now extensive literature supplemented by new data from our X-ray, H I, and CO measurements. The sample is well-defined, specifically those galaxies classified Sa or earlier in the second edition of the Revised Shapley-Ames Catalog of Bright Galaxies, or RSA (Sandage and Tammann 1987). Further, the use of only this one source for morphological types ensures a homogeneous type assignment based on large-scale plates. All but three of the 467 galaxies in the Catalog, NGC 4756, NGC 4880, and NGC 5444, have a classification assigned from plates taken with one of the following telescopes: Las Campanas 100", Mt. Wilson 60", Mt. Wilson 100", or Mt. Palomar 200".

We are interested primarily in elliptical and SO galaxies. Types Sa are included to bracket the intermediate classifica-

¹ Operated by Associated Universities, Inc., under Cooperative Agreement with the National Science Foundation.

tion, S0/Sa. We also want to probe the question of the transition, if any, from SO to these earliest spirals and of course that from S0 to E. This catalog tabulates observed and derived parameters which can be used to test the significance of the eyeassigned morphological classification. We will ask if types E and S0 are distinguishable by parameters other than the morphology sensed in photographic images. We know of some already, e.g., the more common occurrence of H I in S0's than in E's, and the kinematic distinction of the ratio: maximum of rotation velocity to central velocity dispersion. These as well as other relations will be discussed in a later paper in this series. Here we tabulate the data available to us through mid-1989.

II. GALAXY SELECTION

The classification of early-type galaxies can often be ambiguous. This is well-illustrated by Knapp *et al.* (1989) where they tabulate the type classification from five different sources for the ~1150 galaxies in their sample. Though these various type assignments often agree, ranges of S0 to Sa and E to S0 to Sap for the same galaxy can be found in their tabulation. Such lack of consistency could easily mask or create trends in small samples, e.g., the CO or X-ray data set currently available. To minimize this possibility, we have chosen a homogeneous data set, the RSA, which has the added advantage that the incompleteness for the entire sample has been studied. Sandage and Tammann (1987) note that the magnitude incompleteness sets in "at about $B_T \simeq 12^m$ and becomes severe by $B_T = 12^m$ 5."

A few galaxies have uncertain type assignment in the RSA, e.g., NGC 2968 is "amorphous or S0₃ pec" and NGC 7679 is

752

"Sc(s)/Sa(tides?)." In our selection we were guided by the type binning in Part III (p. 71) of the RSA. Only three such galaxies with uncertain type are included here: NGC 3390, 4425, and 4760. For each we have assigned a numerical type corresponding to "peculiar."

Although we feel that our sample is consistently typed, a fundamental question can be raised regarding the classification itself. Specifically, are the galaxies arranged and typed in such a way that unintentionally reflects their interstellar content? For early-type galaxies, the only obvious mechanism that could operate in the visual inspection of photographic material is through dust extinction. We feel that this is unlikely, even though many of the peculiar E's and S0's do display an unusual and striking dust morphology, e.g., NGC 1275 and 5128. However, only 10% of the early-type galaxies, E and SO, are classified peculiar (see Table 3). Of the remaining galaxies, the SO_3 systems are defined by an "absorption lane" (Sandage 1961) and the SO_2 systems with a suggestion of this. Thus the SO_1 and E galaxies are viewed as essentially dust-free. The reports of dust in these systems (column [35], Table 1) are generally based on special, sensitive techniques designed to locate small and faint extinction features. The IRAS detection rates are similar, about one-third, for both E's and SO₁'s. The dust masses computed from the IRAS data are in the range 10^{5} - 10^{7} M_{\odot} for both E's and S0's.

We conclude that it is unlikely that dust extinction has somehow biased the classification of early-type galaxies. In this context it is worth noting that the detection rate of optically invisible H I is significantly higher within the SO₁ category than among ellipticals. Rather than dust extinction, it would appear that the prominent stellar disk component of SO's, the distinguishing feature of these galaxies, carries an interstellar component with it.

III. CATALOG

The material is divided into two sections: the observed values, Table 1 and their derivative quantities, Table 2. The latter are generally distinguished as being distance-dependent and/ or model-dependent.

The entries in Table 1, the observed values, are the following:

Columns (1)-(3): the galaxy name and 1950 coordinates. Columns (4)-(5): the morphological type taken from the RSA and a numerical coding of these types. The latter provide a convenient basis for handling and sorting the data. The coding together with the number of galaxies within each type is given in Table 3.

Column (6): the corrected apparent *B*-magnitude, $B_{T}^{o,i}$, from Column (15) of the RSA. It is designated here as *Bo*.

Columns (7)–(8): the total corrected color indices from Column (23) of the "Second Reference Catalogue of Bright Galaxies" (de Vaucouleurs *et al.* 1976), RC2. Additional values are from Sadler (1984*a*) where effective rather than total color indices are given. No adjustments have been made. Average differences are "0.01–0.02 mag. in B - V and 0.04 mag. in U - B."

Column (9): the heliocentric radial velocity, V_H , primarily from Huchra (1987). Some entries are from the H I reference in Column (21).

Column (10): the central velocity dispersion from the compilation by Whitmore *et al.* (1985). Additional values are from Davies *et al.* (1987).

Columns (11)-(12): the optically determined peak rotation curve value and its reference. The latter use the reference numbering system in the kinematic Atlas prepared by Busarello *et al.* (1989) with extensions as required. The key to these references follows Table 1.

Columns (13)-(14): logarithm of the apparent isophotal major diameter at a surface brightness of 25.0 mag arcsec⁻². D is in units of 0.1. The ratio of major to minor axes is given as R25. Values are taken from columns (10) and (11) of RC2.

Columns (15)–(16): the X-ray flux (15) measured in the energy range 0.5–4.5 kev in units of 10^{-14} ergs cm⁻²s⁻¹ and the statistical uncertainty (16) of these values in the same units. These data are derived from Einstein IPC and HRI observations and assume a 1 kev thermal spectrum for converting observed counts to flux. Correction for Galactic H I column density is included. Both source and background uncertainties are included in Column (16). Further details on the derivation of these values are given elsewhere (Forman and Jones 1990). The flux for NGC 5128 is from Forman *et al.* (1985).

Column (17): a code indicating the presence of emission lines, with a number giving the reference. The letter E denotes that emission lines have been detected, the letter N indicates that no lines have been found, though other objects in the same catalog have been detected, and U means that the situation is uncertain. Included in the U sources are ones for which photoelectric data suggest the possible presence of a line, but with a signal-to-noise ratio of less than 3. Another category of U source is an object having an upper limit higher than detections achieved in that same catalog. The key to the references follows Table 1.

Columns (18)–(21): H I data: the line integral, Jy km s⁻¹, for detections (18) and the line width (20). Uncertainties in both quantities could easily be ~20%. The tabulated widths (20) are not uniform in that they are measured at differing positions of the line profile. If a choice is available, 50% of the peak value is taken. H I nondetections are noted in Column (19) and are given as the rms of the observations. The entries here are very heterogeneous in that differing filter (channel) widths are used by the various authors to compute an rms. This reflects the individual observer's evaluation of their null results. The reference numbering system (21) follows that of Huchtmeier and Richter (1989), with additions as required. The key to these references is given at the end of the table.

Columns (22)–(24): the CO flux integral (22), in Jy km s^{-1} . It is taken directly from the reference, Column (24), if given. If the reference gives the CO intensity ICO, the CO flux integral is derived from the equation

$$SCO = G \times (ICO), \qquad (1)$$

where G is the antenna gain expressed in Jy K⁻¹. We adopt for the quantity G the values 41.7, 113, 67, and 34 for the FCRAO, BTL, NRAO 36 ft, and NRAO 12 m, respectively. No correction is made for the source-beam coupling. If the reference gives an intensity in K only, ICO is obtained by integration over the line profile. If only an upper limit is given, the integration is made over 300 km s⁻¹, and assumes that the noise No. 3, 1991

decreases as the square root of the number of channels used in the integration. For those references which give only mass, M, or for which the telescope gain is not available, an equivalent flux integral was computed from the mass using the relationship

$$S = A \times M \times D^{-2} , \qquad (2)$$

where D is the distance and A is the constant relating the emission and the surface density of molecular hydrogen. The rms of the CO flux integral, in Jy km s⁻¹, or the upper limit to the CO flux integral is listed in Column (23).

Columns (25)-(27): continuum radio parameters at 21 cm: Column (25) gives the flux density in mJy. Column (26) gives the one-sigma uncertainty in the flux density, or the upper limit if the source is not detected; again, the units are mJy. Note that we give both rms's and upper limits in the same column. Column (27) gives the source of the data, using the reference key listed at the bottom of the table.

Columns (28)-(30): the quantities are similar to those in the preceding columns, but are for a wavelength of either 13 or 11 cm.

Columns (31)-(33): the quantities are similar to those in the preceding columns, but are for a wavelength of 6 cm.

Column (34): the number of supernovae reported for each galaxy as tabulated in the Asiago Supernova Catalogue (Barbon *et al.* 1989). Further details of these supernovae are given in the Asiago Catalogue and references therein.

Column (35): a coded designation on the presence or absence of visible dust. The letter D indicates that a dust feature has been noted, N that no dust feature was seen by the technique used and to the sensitivity employed. The letter U indicates uncertainty. Numbers in this column are references to the source of these dust designations.

Columns (36)–(37): the flux density, in mJy, at the 60 μ m *IRAS* band, and its error. The data are drawn primarily from Knapp *et al.* (1989) supplemented with data from Fullmer and Lonsdale (1989).

Columns (38)-(39): similar to the preceding, but for the 100 μ m *IRAS* band.

Column (40): the ratio of the *IRAS* fluxes at 12 and 25 μ m. An entry is given only if both the 12 and 25 μ m fluxes have a signal-to-noise ratio greater than 3.

Comments are given in a Notes section at the end of this table. The reader is urged to consult these notes for further information on specific sources. Instances are noted where confusion could affect the tabulated value or has prevented our listing an unambiguous value.

The entries in Table 2, Derivative Quantities, are:

Columns (2)-(3): the distance in megaparsecs. These are computed from V_0/H_0 where V_0 is the radial velocity corrected to the rest frame of the local group using the expression

$$V_0 = V_H + 300 \sin l \cos b \,. \tag{3}$$

The heliocentric velocity V_H is from Column (9), Table 1; l and b are galactic longitude and latitude, respectively. Note that this correction is slightly different from that adopted in the RSA. No corrections for a Virgocentric flow or that due to the "great attractor" are made. $H_0 = 50 \text{ km s}^{-1} \text{ mpc}^{-1}$ is used

throughout. The group/cluster membership as assigned in the RSA is adopted here and so designated in Column (3) where L = Local group, F = Fornax, V = Virgo, and C = Centaurus. The corresponding distances are from Table 2 in the second edition of the RSA.

Columns (4)-(5): the corrected absolute *B*-magnitude and the corresponding logarithm of the luminosity in solar units with $M_B(sun) = 5.48$.

Columns (6)-(7): the logarithm of the 6 cm luminosity (6) or its upper limit (7), both in units of watts Hz^{-1} . These are from the 6 cm flux densities of Column (16) below.

Columns (8)-(9): the logarithm of the X-ray gas mass (8) or its upper limit (9). In computing these masses we follow Canizares *et al.* (1987), equation (9), which invokes a number of assumptions and becomes

log (X-ray gas-mass) =
$$-20.5 + 0.5 \log L_x$$
(watts)
+ $1.2 \log (L_B/L_{\odot})$. (4)

Upper limits are computed for those instances where the X-ray flux is less than 3 rms.

Columns (10)-(11): the log of the H I mass (10) or its upper limit (11). We use

$$M$$
 (H I) = 2.36 × 10⁵ × (flux-line integral) × D^2 . (5)

Here the flux-line integral is in Jy km s⁻¹ and the distance, D, is in Mpc, the former from Table 1, Column (18). For upper limits we take three times the rms (mJy), Column (19), and *assume* a rectangular profile of width 300 km s⁻¹. Thus the algorithm becomes $2.12 \times 10^5 \times \text{rms} \times D^2$ for upper limits.

Column (12): the logarithm of the mass of molecular hydrogen, in solar masses, using the relationship (see Thronson et al. 1989)

$$M(H_2) = 1.1 \times 10^4 \times D^2 \times (SCO),$$
 (6)

where D is in Mpc and SCO is in Jy km s⁻¹. The calculation is made only for those objects for which SCO is measured with a signal-to-noise ratio greater than 3.

Column (13): the upper limit to the mass of molecular hydrogen, calculated as above and using a flux equal to the upper limit.

Column (14): the estimated mass of cool dust, M(dust), inferred from the 100 μ m flux, using the relationship

 $M(\text{dust}) = 0.00478 \ F(100 \ \mu)$

$$\times D^{2} \{ \exp \left[2.94 (F100/F60)^{0.4} \right] - 1 \}, \quad (7)$$

with *M* in solar masses, *D* in Mpc, and the flux in mJy. This expression is taken from Young *et al.* (1989), using as an approximation for the dust temperature $T_d \sim 49(F_{60}/F_{100})^{0.4}$ appropriate for an emissivity exponent of 1. If the 60 μ m flux is lacking, we assume a dust temperature of 30 K. Then the dust mass is given by

$$M(\text{dust}) = 2.60 \ F(100) \times D^2$$
. (8)

TABLE 1A Observed Values

N	IAME	RA	DEC	Type	Туре	Во	(B-V)o	(U-B)o	V	Vel.	Vm	ax	log	log	XRa	эу
		L	.1	(RSA)	KEY				nelio	Uisp.	Rot.	ket.	U25	K25	FLUX	rms .2.1
		n m	d m						km s	km s	km s				10 ' erg	cm ^c s '
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	10	0 6	21 21	SB01(4)	25	12.88	0.88	0.26	3041	182	160	76	1.32	0.25	- /	- /
N	128	0 26	2 35	SU2(8) pec	21	12.63	0.87	0.51	4227		140	76	1.53	0.51	5.6	7.6
N	147	0 30	48 13	deb	10	9.96			-188				2.11	0.20		
N	148	0 31	-32 3	SO2(r)6	22	13.04	0.86	0.36	1897				1.38	0.29		
N	185	0 36	48 3	dE3 pec	17	9.73	C.78		-227				2.06	0.07		
N	205	0 37	41 24	SO/E5 pec	37	8.60	0.75		-271	97			2.24	0.25	12.9	11.7
N	221	0 39	40 35	E2	10	8.79	0.85	0.38	-200	79	50	119	1.88	0.12	44.8	5.5
N	227	0 40	-1 48	E5	10	13.35	0.95		5297	268			1.32	0.09	8.0	5.6
N	254	0 45	-31 41	RSO1(6)/Sa	40	12.66			1629				1.32	0.27		
N	274	048	-7 19	SO1(0)	21	12.98			1729	75			1.24	0.03		
N	357	1 0	-6 36	SBa	50	12.59	1.01	0.54	2406				1.42	0.13		
N	404	16	35 27	SO3(0)	23	10.96	0.86	0.17	-36	55			1.64	0.02		
N	439	1 11	-32 0	E5	10	13.00	0.97		5803				1.42	0.21		
N	474	1 17	39	RSO/a	40	12.35	0.86	0.31	2333	171			1.90	0.04		
N	524	1 22	9 16	SO2/Sa	40	11.62	0.88		2416	270			1.51	0.01	41.8	6.3
N	533	1 22	1 30	E3	10	12.75	1.00		5544	296			1.57	0.15	233.4	43.1
N	584	1 28	-77	SO1(3,5)	21	11.20	0.89	0.47	1875	234	150	76	1.58	0.20	17.7	6.8
N	596	1 30	-7 17	E0/S0(disk)	30	11.88	0.84	0.40	1817	171	73	77	1.54	0.20	5.3	4.2
N	636	1 36	-7 45	E1	10	12.25	0.90	0.40	1805	173	74	501	1.37	0.09		
N	718	1 50	3 57	Sal	50	12.50	0.74		1756	128			1.45	0.05		
N	720	1 50	-13 59	E5	10	11.15	0.86	0.47	1716	224	76	77	1.64	0.20	76.7	8.3
N	741	1 53	5 23	EO	10	12.54	0.92		5553	300	300	42	1.51	0.01		
N	750	1 54	32 58	EO	10	13.17	0.89		5130	198			1.20	0.09		
N	777	1 57	31 11	E1	10	12.23	0.99		5040	335	35	506	1.47	0.08		
N	788	1 58	-73	Sa	50	13.00	0.62		4078				1.26	0.08		
N	821	25	10 45	E6	10	11.89	0.88		1716	215	110	76	1.54	0.19		
N	890	2 19	332	SO1(5)	21	12.26			3994	231	<100	76	1.46	0.19		
N	936	2 25	-1 22	SBO2/3/SBa	40	11.19	0.88	0.49	1434	193	180	63	1.72	0.08	26.3	5.4
N	1022	236	-6 53	SBa(r) pec	57	11.66	0.67	0.17	1503				1.40	0.08		
N	1023	2 37	38 50	SB01(5)	25	10.09	0.86	0.42	648	218	240	76	1.94	0.42		
N	1052	2 38	-8 28	E3/S0	30	11.53	0.89	0.44	1475	204	90	76	1.46	0.16	56.1	5.0
N	1079	2 41	-29 12	Sa(s)	50	12.22	0.83	0.33	1465				1.49	0.20		
N	1169	30	46 11	SBa(r)I	50	11.60			2397				1.64	0.16		
N	1172	2 59	-15 1	so1(0,3)	21	13.00	0.81	0.29	1669	98			1.35	0.04	7.8	4.4
N	1175	31	42 8	SO2(8)	22	13.40			5458	244	160	76	1.39	0.48		
N	1199	31	-15 48	E2	10	12.42	0.95	0.39	2705	210			1.35	0.07		
N	1201	3 1	-26 15	SO1(6)	21	11.56	0.86		1720	167			1.64	0.20	19.4	9.8
N	1209	3 3	-15 48	E6	10	12.26	0.90	0.40	2619	258	175	76	1.42	0.25		,,,,
N	1275	3 16	41 19	E pec	17	11.91	0.52	-0.01	5268	270			1 41	0.12		
N	1291	3 15	-41 18	SBa	50	9 17	0.86	0.30	830				2 02	0.06		
N	1297	3 16	-19 17	502/3(0)	23	12 61	0.00	0.37	1550				1 37	0.00		
N	1302	3 17	-26 14	Sa.	50	11 78			1609				1 4/	0.07		
	1316	3 17	-37 23		2 57	0 72	0.97	0 //	1790	25.2	175	E0/	1.04	0.02	105 (0.1
n N	1717	2 20	-77 14	Sa pinerger Sa	:)/	12 0/	0.03	0.44	1000	232	122	504	1.00	0.11	102.0	7.
N	1724	3 20	-76 79	Ja	50	11 7/	0.05	0.23	1747				1.50	0.00		
N	1720	J 22 Z 2/	- 21 20	R3Dd 501/41	24	11.34	0.74	0.22	1202	704	225	-7/	1.60	0.12	/~ -	
N	1770	J 24 Z 24	-21 30	501(0)	10	12 27	0.01		1409	300	223	10	1.00	0.42	41.5	4.2
N	1229	J 20	- 32 21	E4	10	12.3/	0.93	o / •	1329	101	~~	501	1.36	0.08		
N	1344	J 20	-21 14	E2/201(2)	20	11.20	0.87	0.41	1148	187	90	504	1.59	0.22		

				_	.		40.000	41.5		N 1						
N	AME	RA	DEC	iype	Type	во	(B-A)o	(U-B)o	V	vel.	Vma	ax	log	log	XRa	зу
				(RSA)	KEY				nelio	Disp.	Rot. I	Ret.	D25	R25	Flux	rms
		h m	d m						km s'	km s'	km s		=		10 ⁻ '"erg	cm s '
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	1350	3 29	-33 47	Sa(r)	50	11.02	0.77	0.30	1786				1.63	0.25	14.2	6.7
N	1351	3 28	-35 2	SO1(6)/E6	30	12.65	0.84	0.35	1527	144			1.26	0.18		
N	1357	3 30	-13 50	Sa(s)	50	11.99			2022	120			1.39	0.14		
N	1358	3 31	-5 15	SBa(s)I	50	12.95			4013	160			1.45	0.12	21.4	5.6
N	1366	3 31	-31 21	E7/S01(7)	30	12.81			1310				1.43	0.34		
N	1371	3 32	-25 6	Sa(s)	50	11.50			1472				1.73	0.13		
N	1374	3 33	-35 23	E0	10	12.30	0.90	0.41	1352	187			1.26	0.01		
N	1379	3 34	-35 36	E0	10	12.07	0.85	0.38	1352	133	23	501	1.30	0.02		
N	1380	3 34	-35 8	\$03(7)/Sa	40	11.10	0.90	0.44	1844	227	200	76	1.69	0.41	57.1	13.0
N	1381	3 34	-35 27	so1(10)	21	12.34	0.85	0.41	1751	169	160	76	1.46	0.54	-4.5	16.4
N	1386	3 34	-36 9	Sa	50	11.08			924	183	150	76	1.54	0.37		
N	1387	3 35	-35 40	SBO2(pec)	27	11.83			1302				1.38	0.03	36.5	18.2
N	1389	3 35	-35 54	SO1(5)/SBO1	25	12.39	0.89	0.39	986				1.33	0.17	-1.4	12.9
N	1395	3 36	-23 11	E2	10	11.18	0.97		1664	249	93	501	1.51	0.11	69.0	5.0
N	1399	3 36	-35 36	E1	10	10.79	0.89	0.46	1422	310	26	501	1.51	0.02	532.4	23.3
N	1400	3 37	-18 50	so3(1)	23	12.08	0.90	0.50	549	269			1.28	0.05	19.4	7.9
N	1404	3 36	-35 45	E2	10	11.06	0.88	0.51	1942	225	90	501	1.39	0.03	268.1	18.6
N	1407	3 37	-18 44	E0/SO1(0)	30	10.93	0.89		1766	274	53	501	1.39	0.00	111.2	11.1
N	1411	3 37	-44 15	so2(4)	22	11.70	0.83	0.35	99 7				1.45	0.09		
N	1415	3 38	-22 43	Sa/SBa late	50	11.80			1566				1.56	0.24		
N	1426	3 40	-22 16	E4	10	12.37	0.80	0.34	1443	157			1.33	0.15		
N	1427	3 40	-35 33	E5	10	11.94	0.86	0.39	1395	156			1.45	0.14		
N	1439	3 42	-22 4	E1	10	12.58	0.90		1670	186	21	501	1.37	0.03		
N	1440	3 42	-18 25	SB01/2/a	40	12.65			1534				1.36	0.08		
N	1452	3 43	-18 47	SBa(r)	50	13.03			1904				1.24	0.06		
N	1453	3 43	-4 7	F0	10	12.59	0.92	0.56	3906	290			1.33	0.12		
N	1461	3 46	- 16 32	501/2(7)	22	12.85	••••		1450	205	140	76	1 52	0 46		
N	1521	4 6	-21 11	F3	10	12 58	0.86	0 42	4165	212	140		1 46	0 17		
N	1527	4 6	-48 1	502(6)	22	11 65	0.00	0.42	1165				1 53	0.40		
N	1577	40	-56 15	SE(2/2)/SE2	40	11 65	0 80	0 46	773				1.55	0.40	18 6	37
	1577	4 0	- 30 13	5602(2)/ 584	10	11.05	0.07	0.40	1791	150			1 42	0.00	10.0	5.7
N	1557	4 11	-31 40		10	11.27	0.93	0.70	1001	139			1.02	0.10		
N	1540	4 11	- 31 32	R3DU2/3(U)/8	3 40 10	10.70	0.0/	0.39	12/7	205		501	1.37	0.20		
N	1247	4 14	- 33 42	EC	ייר ייר	10.70	0.00	0.39	124/	205	44	100	1.27	0.00	04 A	7/ F
N	1222	4 15	- 22 24	301/2(3)pec	21	10.30	0.87	0.41	1200		190	72	1.01	0.17	00.U	24.7
N	15/4	4 20	- 57 5	SBU2(3)	25	11.13	0.74	0.30	1042				1.31	0.02	32.1	10.0
N	1596	4 20	- 55 8	SO1(7)	21	11.96	0.80	0.28	1525		-		1.59	0.51		
N	1600	4 29	-5 11	E4	10	12.01	0.85	0.47	4687	525	2	506	1.39	0.13	75.5	14.4
N	1617	4 30	-54 42	Sa(s)	50	10.48	0.82	0.30	1000				1.67	0.29		
N	1638	4 39	-1 54	Sa	50	12.64			3306				1.39	0.11		
N	1700	4 54	-4 56	E3	10	11.81	0.81	0.41	3881	234	80	501	1.46	0.15		
N	1726	4 57	-749	E4/SO2(4)	30	12.84	0.95		4072	240	<75	76	1.16	0.12		
N	1947	526	-63 48	\$03(0)pec	27	11.75	0.93	0.44	1100		60	138	1.47	0.06	22.1	11.2
N	2179	65	-21 44	Sa	50	12.82			2761				1.17	0.15		
N	2217	6 19	-27 12	SBa(s)	50	11.06	0.90	0.43	1600	247			1.68	0.04		
N	2300	7 15	85 48	E3	10	11.99	0.91	0.55	1923	260			1.49	0.07	80.9	14.8
N	2310	6 52	-40 48	\$02/3(8)	23	12.16	0.77	0.24	1217				1.70	0.61		
N	2314	73	75 24	Е3	10	12.83	0.85	0.48	3872	301			1.32	0.07	12.3	5.8
N	2325	70	-28 37	E4	10	11.78	0.95		2158	134			1.36	0.19		

TABLE 1A—Continued

	A.M.C		DE0	*	•	0	(0.)().	(11		N-1			1			
N	AME	KA	DEC	iype	Type	BO	(8-4)0	(0-8)0		vel.	vn -	ax - 1	log	log	XRa	ау
				(RSA)	KEY				helio	Disp.	Rot.	Ret.	025	R25	Flux	rms
		hm	d	m					km s''	km s ⁻ '	km s''				10 ⁻¹⁴ erg	cm ⁻² s ⁻¹
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	2434	735	-69 1	0 E0	10	12.07	0.92	0.42	1399	205			1.40	0.00		
N	2549	8 14	57 5	57 SO1/2(7)	22	12.06	0.82	0.45	1056	170	115	76	1.62	0.45		
N	2639	8 40	50 2	23 Sa	50	11.90	0.77	0.29	3226	191			1.30	0.18		
N	2646	845	73 3	8 SBO2	25	12.85	0.88		3728	226			1.24	0.03		
N	2655	849	78 2	24 Sapec	57	10.32	0.75		1389	159			1.71	0.07		
N	2672	8 46	19 1	5 E2(tides)	17	12.51	0.88	0.53	3983	281			1.41	0.03		
N	2681	849	51 3	SO Sa	50	10.54	0.72	0.27	715	111			1.58	0.04		
N	2685	8 51	58 5	5 SO3(7) pec	27	11.86	0.76	-	881	102	<100	76	1.72	0.24	5.6	8.2
N	2693	8 53	51 3	52 F2	10	12.70	0.88	0.50	4865	387			1.34	0.11	8.6	8.1
	2732	9 6	79 2	23 \$01(8)	21	12 72	0.83		1057	170	126	76	1 36	0 41	0.0	•••
N	2740	0 2	18 7	10 F3	10	13 03	0.87	0 44	4180	278	85	506	1 30	0.06		
N	2768	07	40 ·	16 ED	22	10 02	0.95	0.44	1747	106	~50	74	1 80	0.00		
	2700	9 1 0 7	7	14 301/2(0)	50	11 10	0.05	0 71	1724	176	10	10	1.00	0.35	70 4	
N	2773	9 /	• • •		50	11.10	0.76	0.51	1320	170			1.05	0.10	30.0	5.5
N	2701	y y	- 14 -		50	12.22			2028				1.59	0.30		
N	2782	9 10	40	19 Sa(s)pec	57	11.50	0.56	-0.05	2550				1.58	0.12	22.4	9.1
N	2784	9 10	-23 5	57 SO1(4)	21	10.87	1.00	0.55	708	240	180	76	1.71	0.35		
N	2787	9 14	69 2	24 SBO/a	40	11.66	0.90		689	194			1.53	0.17		
N	2798	9 14	42 '	2 SBa(s)tides	s 57	12.94	0.60		1733				1.44	0.38		
N	2811	9 13	- 16	6 Sa	50	11.54	0.80	0.35	2514				1.43	0.41		
N	2832	9 16	33 5	57 E3(tides)	17	12.39	0.88		6867	304			1.52	0.17	94.7	16.3
N	2844	9 18	40 2	22 Sa(r)	50	12.78	,		1486	113			1.28	0.29		
N	2855	9 19	-11 4	1 Sa(r)	50	11.79	0.80		1901	241			1.43	0.05		
N	2859	9 21	34 4	3 RSB02(3)	25	11.75	0.85		1685	179	100	68	1.68	0.06	-0.3	3.8
N	2865	9 21	-22 5	56 E4	10	12.09	0.79	0.27	2581	168			1.31	0.12		
N	2880	9 25	62 4	2 SB01	25	12.54	0.79		1563	144			1.41	0.21		
N	2888	9 24	-27 4	9 E2	10	13.16	0.87		2233	87			0.88	0.04		
N	2902	9 28	-14 3	so1(0)	21	13.25			1990				1.11	0.04		
N	2907	9 29	- 16 3	50 S03(6)pec	27	12.83			2090				1.29	0.17		
N	2011	0 31	10 2	2 SOn or SO3	2)27	12 53	0 91	0 43	3131				1 63	0 12	43	75
N	2024	0 32	- 16 1		10	13 11	•	0.45	6615				1 21	0.03	4.5	1.5
N	2050	0 79	50	/ BSD02/3	. 25	11 74	0.91		1727	195	00	49	1.50	0.05		
	2930	7 JO 0 70	 	4 K3DU2/3	25	40.74	1.00	-	1321	103	90	00	1.50	0.17		
N	2902	9 30		13 KSBUZ/SA	40	12./1	1.00		2117	20/		F 07	1.52	0.14		
N	2974	9 40	-5 6	(8 E4 ·	10	11.08	0.89	0.51	1890	204	210	505	1.55	0.21	29.3	0.3
N	2983	9 41	-20 1	4 SBa	50	12.38	0.79		2015				1.41	0.16		
N	2986	9 41	-21	2 E2	10	11.84	0.91	0.53	2275	282			1.40	0.04		
N	2992	943	- 14	5 Sa(tides)	57	11.61	0.74	0.31	2305				1.61	0.46		
N	3032	9 49	29 2	28 RSa pec	57	12.29	0.66		1561				1.39	0.06		
N	3056	9 52	-28	3 SO1/2(5)	22	12.58			1047				1.31	0.16		
N	3065	957	72 2	24 SO1/2(0)	22	12.81	0.85		2004	170			1.30	0.03	73.4	19.8
N	3078	9 56	-26 4	1 E3	10	11.92	0.91	0.51	2502	238			1.29	0.11	42.0	6.6
N	3081	957	-22 3	5 SBa(s)	50	12.50			2413				1.34	0.09	63.0	13.6
N	3087	956	-33 5	9 E2	10	12.53	0.90	0.44	2662	273			1.27	0.17		
N	3091	957	-19 2	23 E3	10	12.34	0.97		3882	290	71	501	1.34	0.10		
N	3098	9 59	24 5	7 SO1(9)	21	12.85			1401	104	130	76	1.41	0.53		
N	3115	10 2	-7 2	8 SO1(7)	21	9_89	0.87	0_49	685	247	225	76	1 92	0 42	22 R	10 0
N	3136	10 4	-67	7 F4	10	11.42	0.60	0.23	1731	278	,		1 40	0 17		
N	3154	10 10	יי. ז ז	· • • • • • • • • • • • • • • • • • • •	, 7 0	13 00	0.00	U.LJ	1204	1/1			1 77	0.17		
N	3159	10 10	70	. [], 302/3(), A []	, JU 10	12.00	0.12	0 54	4092	741			1.33	0.24		
n	200	10 10	72	v LJ	10	12.70	0.90	0.30	0702	200			1.3/	0.04		

TABLE 1A—Continued

TABLE 1A—Continued

N	AME	RA	DEC	Type	Туре	Bo	(B-V)0	(U-B)		Vel.	Vmax	 (log	loa	XR	ay
			020	(RSA)	KEY		(2.1)2	(helio	Disp.	Rot. Re	ef.	D25	R25	Flux	rms
		h m	dm	•••••					km s ⁻¹	km s ⁻¹	km s ⁻¹				10 ⁻¹⁴ erg	cm ⁻² s ⁻¹
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (1	12)	(13)	(14)	(15)	(16)
N	3166	10 11	3 40	Sa(s)	50	10.65	0.80		1339	112			1.72	0.29	23.7	8.3
N	3185	10 14	21 56	SBa(s)	50	12.63	0.71		1218				1.36	0.16		
N	3190	10 15	22 5	Sa	50	11.02	0.84	0.33	1302	195			1.66	0.40		
N	3193	10 15	22 8	E2	10	11.83	0.87	0.44	1378	184			1.45	0.04		
N	3203	10 17	-26 26	so2(7)	22	12.65			2424				1.47	0.63		
N	3226	10 20	20 9	E2/S01(2)	30	12.30	0.87		1275	207			1.44	0.04		
N	3245	10 24	28 45	SO1(5)	21	11.69	0.80		1358	228			1.51	0.24		
N	3250	10 24	-39 41	E3	10	11.79	0.90	0.41	2820	264			1.50	0.17		
N	3258	10 26	-35 21	E1	10	12.48	0.94	0.37	2778	272			1.26	0.04	53.1	14.1
N	3268	10 27	-35 4	E2	10	12.57	0.94	0.41	2818	228			1.31	0.09		
N	3271	10 28	-35 6	Sa	50	11.72	0.94	0.36	3784				1.37	0.32	-9.1	16.0
N	3277	10 30	28 46	Sa(r)	50	12.31	0.75	0.22	1417	217			1.31	0.04		
N	3281	10 29	-34 36	Sa	50	11.96	0.79		3395				1.52	0.27	19.5	15.7
N	3300	10 33	14 25	SBO3/a	40	13.29			2992				1.32	0.27		
N	3301	10 34	22 8	Sa	50	12.24	0.73	0.30	1380				1.56	0.47		
N	3309	10 34	-27 15	E1	10	12.65	0.90	0.58	4057				1.28	0.04		
N	3348	10 4 3	73 6	E0	10	12.08	1.02	0.42	2831	246			1.35	0.01		
N	3358	10 41	-36 8	Sa(r)I	50	11.90			2910				1.58	0.22		
N	3377	10 45	14 15	E6	10	11.10	0.79	0.27	689	160	80	77	1.64	0.21	5.9	4.7
N	3379	10 45	12 50	EO	10	10.33	0.89	0.48	922	218	44	501	1.65	0.05	32.5	13.2
N	3384	10 45	12 53	SB01(5)	25	10.70	0.84	0.41	728	173			1.77	0.35	-5.9	9.7
N	3390	10 45	-31 16	\$03(8) or \$	Sb 27	12.90			2850				1.60	0.77		
N	3412	10 48	13 40	SB01/2(5)	25	11.47	0.83	0.24	867	107			1.56	0.25		
N	3414	10 48	28 14	SO1/2(0)/a	40	11.74	0.93		1476	249	<100	76	1.56	0.13		
N	3449	10 50	-32 39	Sa	50	12.32			3305				1.42	0.33		
N	3458	10 52	57 23	SBO1	25	13.15			1800				1.22	0.19	21.5	12.1
N	3489	10 57	14 10	SO3/Sa	40	11.13	0.74	0.34	693	142			1.57	0.24	6.0	7.0
N	3516	11 3	72 50	RSB02	25	12.34	0.72	-0.01	2602				1.36	0.10	415.0	18.2
N	3557	11 7	-37 16	E3	10	11.23	0.86	0.48	3038	220	140	501	1.60	0.17		
N	3571	11 9	-18 1	Sa	50	11.78			3614				1.52	0.39		
N	3585	11 10	-26 28	E7/SO1(7)	30	10.81	0.87	0.43	1373	220			1.46	0.25	14.2	3.9
N	3593	11 12	13 5	Sa pec	57	10.78	0.64		693	76			1.76	0.37	14.0	5.5
N	3605	11 14	18 17	E5	10	13.06	0.87		686	94	52	~	1.23	0.23	11.2	3.1
N	3607	11 14	18 19	SO3(3)	23	11.08	0.88	0.43	934	240	24	F. 0. /	1.57	0.06	27.6	3.7
N	5608	11 14	18 25	E1	10	11.88	0.87	U.40	1197	204	26	506	1.48	0.09	12.5	٦.د
N	5610	11 15	59 5	E5/S01(5)	30	11.54	0.78		1/65	1/6	140	202	1.50	0.10		
N	3611	11 14	4 49	Sa	50	12.28	0.49		1620	245	4/0	507	1.38	0.07		
N	3013	11 15	28 10	E0/SUI(D)	20	11.00	0.90		1555	213	140	505	1.0	0.20		
N	3019	11 10	20 2	Sa	50	12.02	0 74	0.20	904	140			1.49	0.00		
N	3623	11 10	13 21	Sa(s)11	50	9.17	0.75	0.20	1/77	109			2.00	0.40		
N	2020	11 17	10 3/	58 501/01	3U 24	11.43	0.75		14/3				1.47	0.15		
N	3630	11 17	5 14	501(9)	21	12.00			19/4				1.30	0.41		
N	2021	11 18	-9 39	K2R05/2/2/28	1 4U 10	11 34	0 99	0 53	1702	107	120	507	1 41	0.03		
N	2040	11 18	0 C C	E2	יט זיר	11.20	0.00	0.52	2020	205	120	202	1.01	0.00		
N	3005	11 22	JY 2	503(3)	23 10	11.73	0.0/	0 40	2000	203			1.7	0.10		
N	3700	11 2/	- 30 0	64 68a(a)1	50	17.73	0.74	0.47	2550	201			1 29	0.10		
N	2010	11 30	-21 21	508(7)1 55	10	12.00	ር ይፈ		1408	104	114	77	1 77	0.09	17 0	10.1
N	2019	11 28	-2 22	C)	10	12.19	0.05		1-170	170	1.1.4			0.17	17.9	10.1

N	AME	RA	DEC	Туре	Туре	Во	(B-V)o	(U-B)¢	⊳ v	Vel.	Vm	ах	log	log	XR	ау
				(RSA)	KEY				helio	Disp.	Rot.	Ref.	D25	R25	Flux	rms
		h m	d m						km s⁻¹	km s ⁻¹	km s ⁻¹				10 ⁻¹⁴ erg	cm ⁻² s ⁻¹
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	3872	11 43	14 2	E4	10	12.80	0.88		3210	272			1.35	0.16		
N	3885	11 44	-27 38	Sa	50	12.33			1802				1.23	0.30		
N	3892	11 45	-10 41	SB02	25	12.46			1727				1.44	0.10		
N	3898	11 46	56 21	Sal	50	10.96	0.78		1113	205			1.64	0.23		
N	3900	11 46	27 18	Sa(r)	50	11.44	0.73		1799	128			1.54	0.25		
N	3904	11 46	-28 59	E2	10	11.83	0.90	0.58	1797	197	63	77	1.35	0.13		
N	3923	11 48	-28 31	E4/S01(4)	30	10.79	0.91		1649	249			1.46	0.19	62.0	7.5
N	3941	11 50	37 15	SB01/2/a	40	11.28			944				1.58	0.18		
N	3945	11 50	60 57	RSBO2	25	11.49	0.83		1220	167	167	68	1.74	0.18		
N	3957	11 51	-19 17	so3(9)	23	12.91			1637				1.55	0.63		
N	3962	11 52	-13 41	E1	10	11.61	0.89		1822	234			1.46	0.04		
N	3998	11 55	55 44	so1(3)	21	11.50	0.87	0.46	1028	308			1.49	0.09	538.1	34.7
N	4008	11 55	28 28	so1(5)	21	12.90	0.97		3680	208			1.40	0.23		
N	4024	11 55	-18 4	so1(2,5)	21	12.61	0.94		1646	149			1.37	0.15		
N	4026	11 56	51 14	s01/2(9)	22	11.47			878	203	145	76	1.71	0.56		
N	4033	11 58	-17 34	SO1(6)	21	12.41	0.89		1614	126			1.40	0.36		
N	4036	11 58	62 10	\$03(8)/Sa	40	11.56	0.81	0.49	1382	195			1.65	0.34	0.8	6.8
N	4073	12 1	2 10	E5	10	12.74	1.01		5844	269			1.39	0.11		
N	4105	12 4	-29 28	s so1/2(3)	22	11.76	0.89		1896	242			1.38	0.11	26.8	5.8
N	4106	12 4	-29 29	SBO/a(tides)) 47	12.24	0.89		2198				1.29	0.10		
N	4111	12 4	43 20	so1(9)	21	11.75	0.74	0.28	807	140			1.68	0.63		
N	4124	12 5	10 39	so3(6)	23	12.35			1674				1.66	0.42		
N	4125	12 5	65 27	E6/S01/2(6)	30	10.76	0.81		1340	230	150	502	1.71	0.20		
N	4128	12 6	69 2	so1(6)	21	12.73			2315	213			1.44	0.44		
N	4138	12 6	43 57	Sa(r)pec	57	11.45			960				1.46	0.19		
N	4143	12 7	42 48	SO1(5)/Sa	40	12.07	. —		784				1.46	0.20		
N	4150	12 8	30 40	\$03(4)/Sa	40	12.40	0.73		244				1.39	0.14		
N	4158	12 8	20 27	Sa:	50	12.35			2445				1.31	0.05		
N	4168	12 9	13 29	E1	10	12.21	0.87		2307	182			1.45	0.04	29.4	5.5
N	4179	12 10	1 54	SO1(9)	21	11.84	0.80	0.42	1228	164	230	76	1.62	0.54		
N	4203	12 12	33 28	SO2(1)	22	11.62	0.84		1117	175			1.56	0.04	246.8	22.0
N	4215	12 13	6 41	SO1(9)	21	13.04			2067				1.29	0.41	-6.9	6.2
N	4220	12 13	48 9	Sa(r)	50	11.23			954				1.61	0.43		
N	4224	12 14	7 44	Sa	50	12.04			2651				1.38	0.36		
N	4233	12 14	7 54	SB01(6)	25	12.97			2224				1.37	0.33	3.8	10.6
N	4235	12 14	7 28	Sa	50	12.00			2596				1.63	0.60		
N	4245	12 15	29 52	SBa(s)	50	12.25	0.82	0.34	890				1.52	0.10	-5.9	6.8
N	4251	12 15	28 27	SO1(8)	21	11.62			1014				1.62	0.35	-1.7	3.3
N	4260	12 16	6 22	SBa(s)	50	12.30	0.82	0.37	1846				1.42	0.28	9.2	10.7
N	4261	12 16	66	E3	10	11.38	0.92	0.51	2200	339	15	503	1.59	0.08	91.7	12.9
N	4262	12 16	15 9	SBO	25	12.38	0.87	0.45	1376	176			1.34	0.03		
N	4267	12 17	13 4	SB01	25	11.78	0.85	0.44	1001	162			1.54	0.03	8.6	5.2
N	4270	12 17	5 44	SO1(6)	21	13.17	0.80	0.35	2347				1.34	0.35		
N	4274	12 17	29 53	Sa(s)	50	10.35	0.81	0.29	920	137			1.84	0.39		
N	4278	12 17	29 33	E1	10	11.13	0.89	0.42	643	243	50	77	1.56	0.02		
N	4281	12 17	5 39	SO3(6)	23	12.26	0.84		2732	285			1.49	0.31		
N	4283	12 17	29 35	EO	10	13.12	0.89	0.44	1076	107	_		1.15	0.01		
N	/.201	12 19	75 79	CZ	10	12 22	0 Q4		1715	205	74	504	1 7/	0 07	45 7	54

1991ApJS...75...751R

NAME RA DEC Туре Type Во (B-V)o (U-B)o v Vel. Vmax log log XRay Disp. Rot. Ref. D25 R25 Flux (RSA) KEY helio гms km s⁻¹ km s⁻¹ km s⁻¹ 10⁻¹⁴erg cm⁻²s⁻¹ h d m m (9) (13) (1)(2) (3) (4) (5) (6) (7) (8) (10) (11) (12) (14) (15) (16) N 4293 12 18 18 39 Sa 50 10.36 933 1.78 0.31 0.05 N 4314 12 20 30 10 SBa(rs) pec 57 11.35 0.78 0.25 1004 1.68 5 31 50 11.91 1681 79 1.39 0.32 N 4324 12 20 Sa(r)ring 22 12.32 1298 135 1.37 0.01 4339 12 21 6 21 so1/2(0) 0.86 0.46 N 25 11.93 932 1.61 0.10 3.6 RSBO2 116 90 68 11.4 4340 12 21 17 0 N 13.54 242 1.15 0.31 4342 12 21 7 20 E7 10 0.96 714 N 1.55 0.39 4346 12 21 47 16 SB01(8) 25 12.19 762 N 11.88 1.50 0.44 4.0 3.5 4350 12 21 16 58 so1(8) 21 0.80 1247 192 N 4365 12 21 7 35 E3 10 10.60 0.99 1240 262 15 77 1.79 0.13 23.6 6.0 N 941 1.59 0.20 4371 12 22 11 58 SB02/3(r)(3) 25 11.74 0.93 127 117 68 N 0.15 -39 28 0.91 3373 234 1.51 4373 12 22 E(4,2) 10 11.86 0.42 N 15.7 12 22 13 9 E1 10 10.23 0.92 0.54 1033 296 10 503 1.70 0.06 153.8 N 4374 12 22 15 2 so1(3) 21 12.67 0.82 0.34 1375 136 1.26 0.08 N 4377 0.03 4378 12 22 5 12 Sa(s) 50 12.28 2545 181 1.52 24.3 6.2 N 4379 12 22 15 53 so1(2) 21 12.30 1071 71 1.32 0.06 N 18 28 5.1 4382 12 22 SO1(3) pec 27 10.10 0.81 758 200 1.85 0.13 43.8 N -9.5 5.7 12 22 75 48 21 12.53 1649 193 1.48 0.26 N 4386 SO1(5) 12 23 13 13 SO1(3)/E3 30 10.02 0.47 -284 256 506 1.87 0.13 438.2 17.6 N 4406 0.89 6 9 51 21 12.07 843 85 1.56 0.40 0.0 24.3 4417 12 24 SO1(7) M 12 24 11.12 - 182 1.53 0.43 4419 15 19 Sa dust only 50 12 24 11.50 432 1.57 0.29 -0.5 2.2 4424 9 41 S(a?)pec 57 0.60 0.87 1883 1.53 0.44 4425 12 24 13 0 SBOp or Sap 47 12.79 N 0.33 5.8 0.84 1131 1.74 22.8 4429 12 24 11 23 SO3(6)/Sa p 47 11.15 0.45 184 N 773 171 1.47 0.18 0.2 14.7 4435 12 25 13 21 SB01(7) 25 11.72 0.85 0.43 M 0.37 12 25 25 11.31 515 217 1.66 4442 10 4 SBO1(6) 0.84 0.47 N 4448 12 25 28 53 Sa(late) 50 11.05 0.80 693 176 1.60 0.39 4452 12 26 12 2 so1(10) 21 13.30 152 1.38 0.58 N 13.00 1.34 0.07 N 4454 12 26 -1 39 Sa 50 2407 4459 12 26 14 15 SO3(3) 23 11.49 0.88 0.45 1215 172 75 26 1.58 0.13 29.5 7.7 4461 12 26 13 27 Sa 50 12.09 0.75 0.43 1925 166 1.57 0.38 5.2 10.5 ы 4472 12 27 8 16 E1/SO1(1) 30 9.32 0.89 997 315 29 501 1.95 0.08 836.7 19.7 4473 12 27 13 42 E5 10 11.07 0.81 0.50 2236 197 60 77 1.65 0.24 13.4 8.7 N 12 27 14 20 21 12.70 0.87 1624 1.37 0.28 -16.5 7.7 4474 SO1(8) N -2.3 4476 12 27 12 37 E5pec (dust) 17 13.08 0.83 1955 41 1.28 0.17 12.3 N 5.3 12 27 13 54 SBO1/2/SBa 11.24 0.87 0.52 1355 200 1.60 0.05 41.2 4477 40 N 0.06 -22.9 17.2 12 27 12 36 12.15 1370 77 4478 E2 10 0.84 0.42 144 62 1.31 N 1.25 12 28 9 17 13.41 0.22 4483 SBO1(5) 25 875 N 12 28 77 0.03 12 40 10 9.62 0.53 1292 335 <20 1.86 N 4486 E0 0.88 0.10 4494 12 28 26 3 Ε1 10 10.74 0.83 0.45 1350 174 85 503 1.68 4503 12 29 11 27 Sa 50 12.22 1359 120 1.55 0.30 4.2 3.8 м 0.49 11.0 4.1 4526 12 31 7 58 S03(6) 23 10.59 0.85 0.45 602 275 1.86 N 4546 12 32 -3 31 SBO1/Sa 40 11.30 0.91 1037 1.54 0.32 N 4550 12 32 12 29 E7/S01(7) 12.33 0.79 0.32 381 84 1.54 0.51 3.3 5.5 30 N 80.0 7.8 4552 12 33 12 50 S01(0) 21 10.80 0.95 0.54 322 273 1.62 0.00 N 4564 12 33 11 42 E6 10 11.87 0.90 0.51 1165 165 150 503 1.49 0.35 5.1 6.1 4570 180 12 34 7 31 S01(7)/E7 11.68 0.84 1730 1.61 0.50 30 N 9.0 12 34 9 49 so1/2(4) 22 12.04 0.84 2284 150 1.56 0.12 8.1 N 4578 12 35 4 35 11.53 819 1.64 0.43 N 4586 Sa 50

TABLE 1A—Continued

TABLE 1A—Continued

N	AME	RA	DEC	Туре	Type	Во	(B-V)o	(U-B)	⊳ v	Vel.	Vm	ax	log	log	XR	ау
				(RSA)	KEY				helio	Disp.	Rot.	Ref.	D25	R25	Flux	rms
		h m	d m						km s ⁻¹	km s ⁻¹	km s ⁻¹				10 ⁻¹⁴ erg	cm ^{.2} s ^{.1}
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	4589	12 35	74 28	E2	10	11.81	0.95		1985	241	50	505	1.48	0.05	19.1	5.5
N	4596	12 37	10 27	SBa v. earl	y 50	11.45			1870	149			1.59	0.14		
N	4608	12 38	10 25	SBO3/a	40	12.05			1864	160			1.50	0.08		
N	4612	12 39	7 35	RSB01/2	25	12.04			1884				1.34	0.08		
N	4621	12 39	11 55	E5	10	10.67	0.91		444	225	120	503	1.71	0.18	20.8	5.1
N	4623	12 39	7 57	E7	10	13.09			1788				1.42	0.45		
N	4636	12 40	2 57	E0/SO1(6)	30	10.50	0.89	0.46	937	217	79	77	1.79	0.09	631.6	37.3
N	4638	12 40	11 42	SO1(7)	21	12.05	0.78		1148	133			1.45	0.24	11.9	6.0
N	4643	12 40	2 15	SBO3/SBa	40	11.55	0.87	0.49	1346				1.53	0.10	21.8	6.2
N	4645	12 41	-41 28	E5	10	12.56	0.99	0.51	2601	171			1.35	0.16	-2.2	4.2
N	4649	12 41	11 49	so1(2)	21	9.83	0.95		1095	344	46	501	1.86	0.07	384.6	13.6
N	4660	12 42	11 27	E5	10	11.87	0.89		1115	196	150	503	1.44	0.15		
N	4665	12 42	3 19	SB01/3/SBa:	40	11.43			785				1.62	0.07	17.1	5.7
N	4684	12 44	-2 27	SO1(7)	21	12.27			1589				1.46	0.40		
N	4696	12 46	-41 2	SO3(0)	23	11.36	0.91	0.51	3045	223			1.55	0.04		
N	4697	12 46	-5 31	E6	10	10.11	0.87	0.35	1210	186	103	77	1.78	0.20	40.2	6.8
N	4698	12 45	8 45	Sa	50	11.15	0.77	0.31	1008	166			1.63	0.24	11.1	5.7
N	4710	12 47	15 26	SO3(9)	23	11.85	0.70		1129				1.71	0.57		
N	4742	12 49	-10 11	Е4	10	12.11	0.95		1270	108	83	77	1.37	0.18		
N	4753	12 49	-0 55	SO pec	27	10.85	0.85	0.39	1288				1.73	0.27	17.3	3.5
N	4754	12 49	11 35	SB01(5)	25	11.41	0.88	0.45	1374	204			1.67	0.26	8.5	5.2
N	4756	12 50	-15 8	E3	10	13.28			4164				1.30	0.07	77.2	9.1
N	4760	12 50	-10 13	SO1(2) or c	D 3 7	13.04	0.93		4640	249			1.26	0.01		
N	4762	12 50	11 30	SO1(10)	21	11.26	0.78	0.30	1006	153	160	20	1.94	0.73	17.6	5.5
N	4767	12 51	-39 27	SO/a	40	12.45	0.96	0.55	2997	191			1.42	0.27		
N	4772	12 50	2 26	Sa:	50	11.58			1042				1.52	0.29		
N	4782	12 51	-12 18	EO(tides)	17	12.75	0.93	0.57	3951	385			1.19	0.00	73.7	15.4
N	4783	12 52	-12 17	E1(tides)	17	12.80	0.86	0.52	4609	274			1.22	0.01		
N	4786	12 51	-6 35	E3	10	12.82	0.95		4647	296			1.31	0.12		
N	4795	12 52	8 20	SBa(s)tides	? 57	12.67			2812				1.23	0.06		
N	4825	12 54	-13 23	s01/2(3)	22	12.88			4452				1.31	0.14		
N	4845	12 55	1 50	Sa	50	11.07			1232				1.70	0.50	21.2	5.6
N	4856	12 56	-14 46	SO1(6)/Sa	40	11.35	0.83		1385				1.66	0.46		
N	4866	12 56	14 26	Sa	50	10.59	0.70		1980				1.81	0.62		_ =
N	4880	12 57	12 45	E4/S01(4)	30	12.57			1470				1.52	0.12	10.2	7.3
N	4889	12 57	28 14	E4	10	12.57	0.95		6497	391	24	77	1.48	0.16		
N	4914	12 58	37 35	E5/S01(5)	30	12.30			4663	228			1.56	0.22		
N	4915	12 58	-4 16	EO	10	12.88	0.81		3152	209			1.22	0.08		
N	4933	13 1	-11 13	SO3pec⊺ides	? 27	13.18			3247				1.40	0.21		
N	4936	13 1	-30 15	E2	10	12.28	0.97	0.48	3186	250			1.28	0.00		
N	4958	13 3	-745	SO1(7)	21	11.48	0.76		1223				1.61	0.47		
N	4976	13 5	-49 14	SO1(4)	21	10.73	0.80	0.19	1503	170			1.63	0.22		
N	4984	13 6	-15 15	Sa(s)	50	11.10			1259				1.44	0.10		
N	5011	13 10	-42 50	SO1(2)	21	12.14	0.92	0.50	3125	229			1.30	0.00		
N	5017	13 10	-16 30	E2	10	13.19	0.96		2543	175			1.22	0.06		
N	5018	13 10	-19 15	SO2(4)/a	40	11.65	0.95		2897	223			1.42	0.10		
N	5044	13 12	-16 7	E0	10	11.87	0.98		2704	234			1.42	0.01		
N	5061	13 15	-26 34	E0	10	11.26	0.86		2041	191			1.41	0.04		

TABLE 1A—Continued

		RA	DEC	Type	Type	Ro	(B-)()-	(1)		Vol			107	log	VD.	
			220	(RSA)	KEN	DU	(0-0)0	(0-8)	belie	vel. Disp	vm Pot	ax Pof	10g n25	£09 ₽25	FLUY	rms
		h m	d m						km e ⁻¹	km e ⁻¹	km e ⁻¹		025	~~~	10 ⁻¹⁴ ero	cm ⁻² s ⁻¹
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
N	5064	13 16	-47 38	Sa	50	11.39			2982				1.44	0.36		
N	5077	13 16	-12 23	so1/2(4)	22	12.52	0.98	0.54	2764	275	20	84	1.30	0.09	28.2	5.8
N	5084	13 17	-21 33	SO1(8)?	21	11.95			1739	213	200	76	1.68	0.55	68.2	14.7
N	5087	13 17	-20 20	SO3(5)	23	11.93	0.94		1832				1.37	0.18		
N	5090	13 18	-43 26	E2	10	12.36	1.00	0.65	3355	272			1.41	0.02		
N	5101	13 19	-27 10	SBa	50	11.48			1864				1.74	0.05	19.2	7.1
N	5102	13 19	-36 22	SO1(5)	21	10.47	0.58	0.19	420	128			1.97	0.43	-6.1	8.1
N	5121	13 21	-37 25	SO1(4)/Sa	40	12.22			1532				1.36	0.06		
N	5128	13 22	-42 45	SO+S pec	27	6.60	0.85	0.58	547	140	80	99	2.26	0.10	418.0	
N	5193	13 29	-32 58	SO1(0)	21	12.74	0.84	0.39	3644		*		1.25	0.04		
N	5195	13 27	47 31	SB01 pec	27	10.50	0.83	0.34	558	159			1.73	0.10	26.1	7.4
N	5198	13 28	46 55	E1	10	12.90	0.96		2569	212	4	506	1.33	0.06		
N	5266	13 39	-47 55	\$03(5)p(pro)	27	11.85	0.97	0.53	3201	175	210	504	1.51	0.19		
N	5273	13 39	35 54	SO/a	40	12.42	0.80	0.32	1089				1.49	0.06		
N	5308	13 45	61 13	SO1(8)	21	12.20	0.78		2038				1.54	0.65		
N	5322	13 47	60 26	E4	10	10.91	0.80	0.40	1804	310	40	503	1.74	0.15	15.9	5.4
N	5326	13 48	39 49	SO3(6)/Sa	40	12.94			2625				1.39	0.27		
N	5328	13 50	-28 14	E4	10	12.78	0.73		4671	275			1.23	0.08		
N	5353	13 51	40 31	SO1(7)/E7	30	12.05	0.90	0.51	2162				1.45	0.26	48.5	9.2
N	5357	13 53	-30 5	E3	10	13.07	0.93		4975	157			1.20	0.06		
N	5363	13 53	5 30	[\$03(5)]	27	11.06	0.90	0.50	1138	200	140	504	1.62	0.19	40.2	10.9
N	5365	13 54	-43 41	RSB01/3	25	11.90			2497				1.49	0.11		
N	5377	13 54	47 28	SBa or Sa	50	11.26	0.71		1752				1.66	0.23		
N	5380	13 54	37 51	SO1(0)	21	12.75			3173	158			1.33	0.00		
N	5419	14 0	-33 44	SO1(2)	21	12.20	0.94	0.57	4126	301			1.54	0.07		
N	5422	13 58	55 24	Sa or SO3(8)	40	12.71			1869				1.59	0.64		
N	5444	14 1	35 22	Е3	10	12.51	0.98		3994	221			1.43	0.06		
N	5448	14 0	49 24	Sa(s)	50	11.35			1996				1.62	0.31		
N	5473	14 2	55 7	SBO1(3)	25	12.36	0.79	0.49	2023				1.41	0.15		
N	5485	14 5	55 14	\$03(2)p pro	27	12.44	0.83	0.44	1989	140	30	505	1.41	0.09	12.5	6.7
N	5493	14 8	-4 48	SO1(7)	21	12.30	0.79		2627				1.30	0.15		
N	5548	14 15	25 22	Sa	50	12.90	0.55	-0.27	5165				1.28	0.06		
N	5557	14 16	36 43	E2	10	12.01	0.86	0.47	3258	260			1.38	0.04		
N	5566	14 17	49	SBa(r)II	50	10.35	0.71	0.29	1569				1.81	0.43	21.2	6.0
N	5574	14 18	3 28	SO1(8)/a	40	13.25	0.74	0.23	1582				1.21	0.23	-1.1	8.3
N	5576	14 18	3 29	E4(tides?)	17	11.76	0.81	0.38	1555	192	25	503	1.50	0.15	4.2	8.9
N	5614	14 22	35 5	Sa(s)tides	57	12.02	0.77	0.36	3872				1.43	0.07		
N	5631	14 25	56 48	SO3(2)/Sa	40	12.46			1950				1.34	0.02		
N	5638	14 27	3 27	E1	10	12.20	0.82	0.43	1648	168	62	77	1.41	0.04		
N	5687	14 33	54 41	Е3	10	12.60	0.77		2119				1.42	0.15		
N	5689	14 33	48 57	Sa	50	12.44	0.79		2163				1.57	0.49	4.3	7.3
N	5701	14 36	534	(PR)SBa	50	11.80			1505				1.67	0.02		
N	5739	14 40	42 3	Sa(s)	50	12.80			5579				1.35	0.03		
N	5750	14 43	-0 1	SBa(s)	50	11.78			1930				1.46	0.22		
N	5791	14 55	-19 3	SO1(4)	21	12.76	0.94		3316	202			1.38	0.22		
N	5796	14 56	-16 25	E1 pec	17	12.56	0.94		2946	317			1.29	0.07		
N	5812	14 58	-7 15	E0	10	12.27	0.87		2066	204			1.38	0.03		
N	5813	14 58	1 53	E1	10	11.57	0.91	0.50	1963	231	8	77	1.56	0.11		

NAME

RA

DEC

Type

Type

Во

(RSA) KEY Disp. Rot. Ref. D25 R25 Flux helio rms km s⁻¹ 10⁻¹⁴erg cm⁻²s⁻¹ km s⁻¹ km s⁻¹ d m h m (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 5820 5 so2(4) 22 12.99 0.87 0.39 3235 193 1.40 0.04 N 14 57 54 12.46 0.89 0.50 1683 171 77 1.34 0.04 N 5831 15 1 24 E4/SO1(disk) 30 27 1 22 11.72 1359 284 225 76 1.62 0.42 22.4 3.7 N 5838 15 2 2 17 SO2(5) 0.86 0.45 11.13 0.55 1709 250 7 501 1.53 0.02 359.9 9.5 N 5846 15 3 1 47 SO1(0) 21 0.93 50 12.60 0.18 1669 1.43 0.51 5854 15 5 2 45 0.70 N Sa 1850 7 50 12.59 1.45 0.46 5864 15 3 14 SBa N 5 55 57 23 10.86 0.31 672 170 1.72 0.35 22.5 8.5 N 5866 15 S03(8) 0.74 23 12.41 0.95 2267 218 0.02 -1.8 12.3 5898 15 15 -23 55 SO2/3(0) 1.24 N -23 53 2513 235 1.30 0.06 N 5903 15 15 E3/S01(3) 30 12.35 0.89 12.03 2936 248 505 0.11 26.3 11.4 N 5982 15 37 59 31 E3 10 0.83 0.47 10 1.46 1234 1.53 0.05 6340 72 21 Sa(r)I 50 11.29 0.76 131 N 17 11 6482 17 49 23 5 E2 10 11.89 0.75 0.25 3922 287 1.37 0.07 N 6684 18 44 -65 13 SBa(s) 50 10.84 0.74 0.29 865 1.57 0.14 N 6721 -57 49 10 12.93 0.87 0.45 4416 1.29 0.00 N 18 56 E1 248 6758 19 9 -56 23 10 12.43 0.88 0.45 3492 1.32 0.05 N E2 6776 19 20 -63 57 12.76 0.78 0.46 5520 1.28 0.04 N Elp(merger?) 17 -48 25 12.49 3036 0.13 6851 19 59 10 0.84 0.37 182 1.26 N E4 0.08 6854 20 1 -54 31 E1+E0 17 13.16 0.86 0.45 5677 1.36 N 6861 20 3 -48 30 SO3(6) 23 11.95 0.85 0.47 2819 1.43 0.27 N -48 31 11.72 0.52 2854 0.08 6868 20 E3/S02/3(3) 30 0.91 286 1.43 N 6 20 9 -46 18 12.66 0.82 0.29 3121 1.39 0.29 N 6875 SO/a(merger) 47 20 13 10 -71 E3 12.45 0.91 0.57 3836 1.38 0.13 66.5 7.2 N 6876 1 231 20 17 -48 23 23 12.44 3135 1.45 0.18 N 6893 SO3(4) -43 49 12.27 2781 1.34 0.09 N 6902 20 21 Sa(r) 50 -47 11 2716 1.36 0.28 N 6909 20 24 E5 10 12.68 0.75 100 28 77 -52 17 4631 1.30 0.06 N 6935 20 34 Sa(r) 50 12.41 20 -54 28 50 13.02 3964 1.42 0.14 N 6942 36 SBa(s) 20 45 -38 10 R?SO1(3) 21 12.13 2652 0.04 N 6958 0.82 0.40 219 1.38 7007 21 1 -52 45 SO2/3/a 40 12.92 2954 1.27 0.20 N 7014 21 4 -47 22 E5 10 13.28 0.87 0.56 4764 1.29 0.00 N 264 7 -64 14 3105 7020 21 40 12.41 1.63 0.26 N RSO2(5)/RSa 7029 21 8 -49 29 SO1(5) 21 12.53 0.77 0.19 2738 1.15 0.24 N 199 0.36 -48 34 30 11.99 0.82 0.41 N 7041 21 13 SO1(7)/E7 1877 1.59 SO3(4)/Sa 0.11 N 7049 21 15 -48 46 40 11.58 0.95 0.51 2158 1.45 N 7079 21 29 -44 17 SBa 50 12.49 0.77 0.25 2670 1.44 0.20 2958 7096 21 37 -64 8 50 12.53 1.43 0.06 N Sa(r)I 21 37 -42 46 10 12.48 0.88 2404 105 0.22 N 7097 E4 0.42 200 30 1.40 7135 21 46 -35 7 27 12.61 0.91 2718 0.15 N SO1 pec 0.45 1.45 7144 21 49 -48 29 E0 10 11.75 0.82 0.58 1890 185 36 501 1.54 0.00 N 7145 21 50 -48 7 ΕÔ 10 12.13 0.76 0.18 1872 132 21 501 1.40 0.03 N 7155 21 52 -49 45 **SBO** 25 12.79 1853 1.27 0.20 N 21 57 -43 37 7166 SO1(6) 21 12.71 0.93 0.52 2484 1.38 0.45 N -51 59 7168 21 58 E3 10 12.81 0.87 0.48 2747 1.30 0.09 N 22 3 -64 33 22 N 7192 SO2(0) 12.15 0.88 0.48 2904 185 1.39 0.00 7196 22 2 -50 22 E3/SO3(3) 30 12.46 0.91 0.47 2853 276 1.28 0.12 N 22 6 -47 25 10.72 7213 Sa(rs) 50 0.81 0.33 1769 1.27 0.02 5540.0 96.2 N 22 29 -14 22 2586 7302 SO1(4) 21 13.21 0.98 0.43 1.29 0.16 N 22 35 23 32 so2/3(8) 11.58 7332 23 0.76 0.25 1207 154 135 76 1.62 0.51 8.9 N 3.4

(B-V)o (U-B)o V

Vel.

Vmax

log

log

XRay

© American Astronomical Society • Provided by the NASA Astrophysics Data System

щ
-
iO
~
1.2
•
•
S
•
02
ъ
Q
Å.
5
5
5
-

NAME RA DEC Type Type Во (B-V)o (U-B)o V Vel. log XRay Vmax log (RSA) KEY helio D25 R25 Disp. Rot. Ref. Flux rms 10⁻¹⁴erg cm⁻²s⁻¹ km s⁻¹ km s⁻¹ h m d m km s⁻¹ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) N 7371 22 43 -11 16 SBa(r)II 50 12.58 0.63 0.10 2685 1.32 0.01 N 7377 22 45 -22 34 SO2/3/Sa pec 47 12.61 0.91 0.29 3291 1.34 0.09 166 N 7410 22 52 -39 55 SBa 50 10.29 0.77 0.36 1638 1.74 0.43 N 7457 22 58 29 52 so1(5) 21 76 11.68 822 0.25 0.78 78 75 1.64 23 9 -28 48 7507 10 N E0 11.43 0.86 0.53 1536 205 11 501 1.42 0.00 7585 23 15 -4 55 40 12.39 N SO1(3)/Sa 0.80 0.38 3356 1.37 0.09 7600 23 16 -7 51 21 12.99 76 N SO1(5) 3436 218 55 1.38 0.34 7619 23 17 7 56 N E3 10 12:17 0.94 0.55 3758 330 65 77 1.46 0.04 92.6 7.4 N 7626 23 18 7 56 E1 10 12.17 0.92 0.52 3416 270 3 506 1.39 0.08 39.8 6.5 N 7702 23 32 -56 17 50 0.24 RSa(r) 12.27 0.76 0.38 3152 1.28 23 37 Sa pec N 7727 -12 34 57 11.00 0.77 1821 1.62 0.09 23 41 10 29 N 7742 Sa(r!) 50 11.99 0.64 -0.07 1655 101 1.31 0.01 7743 23 41 9 39 M 50 12.04 1658 0.07 SBa 0.90 87 54 68 1.49 23 42 N 7744 -43 11 SB01(3) 25 12.35 3098 1.36 0.11 23 52 5 38 N 7785 SO1(5)/E5 30 12.67 0.92 0.53 3824 100 77 1.36 0.22 241 23 56 -55 44 7796 10 12.32 0.92 0.52 3252 0.06 N E1 1.36 22 54 -36 43 I 1459 E4 10 10.96 0.90 0.54 1659 40 501 1.70 0.15 86.6 9.5 2006 3 52 -36 I 6 Ε1 10 12.27 0.90 0.42 1350 123 1.36 0.04 2035 -45 38 4 7 27 12.13 I SB01(4)pec 0.65 0.26 1503 1.04 0.14 3370 12 24 -39 3 E2 pec 17 11.91 0.91 0.35 2934 207 1.45 0.07 I -5 3896 12 53 4 E1 10 12.37 0.96 0.54 2274 1.34 0.04 I -33 42 I 4296 13 33 E0 10 11.43 0.90 0.54 3762 290 36 501 1.60 0.00 70.1 7.4 I 4329 13 46 -30 2 SO1(5) 21 12.48 0.87 4523 288 1.51 0.31 I 4797 18 52 -54 22 E5/S01(5) 30 12.08 0.86 0.39 2606 130 504 1.45 0.32 4889 19 41 -54 27 so1/2(5) 22 12.06 0.91 0.49 2513 176 1.42 0.26 ĩ I 5063 20 48 -57 15 SO3(3)pec/Sa 47 13.14 0.91 0.26 3402 1.28 0.11 20.6 9.9 5105 21 21 -40 45 E5 10 12.61 0.90 0.56 5437 1.39 0.20 I 5135 21 45 -35 11 57 12.64 -0.03 4842 0.04 Sa pec 0.54 1.12 1 22 10 -46 16 so1(7) 21 12.36 0.79 0.51 1987 I 5181 1.45 0.46 5240 22 38 -45 2 50 11.67 1724 SBa(r) 1.51 0.12 I 22 54 -43 39 5267 Sa(r) 50 11.12 0.84 0.24 1725 1.70 0.09 I 22 54 13.57 -4.2 5269 -36 17 so1(7) 21 0.79 2122 1.40 0.35 8.1 I -45 17 21 11.95 I 5328 23 30 so1(3) 0.95 3121 197 1.39 0.19 A185254 18 52 -54 36 E3 10 12.44 0.78 2668 1.20 0.12 12.56 2902 A202044 20 20 -44 9 Sa(s) 50 1.39 0.37

TABLE 1A-Continued

	AME	Em Line	HI	нт	Line	HI	CO	со	CO	21cm Co	ontinu	um	13/11cm	Conti	านนก	6cm Cor	ntinuur	 n
		+Ref.		rms	wdth.	Ref.		 Er∕Lm	Ref.	Flux E	Er/Lm	Ref.	Flux E	Er/Lm A	Ref.	Flux I	Er/Lm A	Ref.
		J	y km s	¹ mJy	km s ⁻¹		Jy kr	n s ⁻¹		mJy	mJy		mJy	mJy		mJy	mJy	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
N	16	N1		0.7		501					100.0	33		15.0	8			
N	128	E1,34		1.5		501					12.0	21		15.0	8		20.0	17
N	147	N28		18.0		373					10.0	11		60.0	14	12.0		34
N	148	N2,19	10.7		507	232												
N	185	U6	1.4		35	112	26		5		10.0	11		80.0	14		50.0	17
N	205	U6	3.3		46	112	62	17	4		4.0	11		40.0	14		1.0	34
N	221	U6,11		18.0		83					4.0	11		40.0	14		1.0	34
N	227	U3		9.0		1407					21.0	11		30.0	14		12.0	15
N	254	N2	3.8		317	53												
N	274	N27				160		340	6					60.0	14			
N	357	U11		5.0		346								40.0	14			
N	404	E1,7	42.0		80	17	148	30	1		10.0	12		15.0	8		50.0	17
N	439	N2		75.0		320												
N	474	N1	3.3		365	346					0.6	4		15.0	8		90.0	17
N	524	N1		1.9		419					10.0	12		15.0	8	4.1	0.8	3
N	533	N2,19									100.0	33	23.0	3.0	8			
N	584	U11		4.0		205					27.0	11		30.0	14		1.0	5
N	596	U3									114.0	11		40.0	14		1.0	5
N	636	U 3		3.0		1407					12.0	11		30.0	14	6.0		34
N	718	U11	0.2		124	488								15.0	8			
N	720	U3		3.0		488					10.0	11		30.0	14		1.0	3
N	741	N1,22		1.0		28				970.0		11	440.0	22.0	8	200.0		5
N	750	N1		15.0		18					10.0	11		15.0	8		1.0	34
N	777	E2									10.0	24		15.0	8	12.0		34
N	788	E1	7.8		400	7001					50.0	33		30.0	14			
N	821	N1,7		0.9	1	488					8.0	11		15.0	8		60.0	17
N	890	N1		1.0		501					50.0	33		15.0	8			
N	936	E1								3.3	0.4	4		40.0	14	3.7	0.1	4
N	1022	E11,19		5.3		346								50.0	23			
N	1023	N1,27	63.0		663	431		59	8		10.0	12		30.0	14		21.0	26
N	1052	E8,12	5.6		400	493		95	7	833.0	25.0	9				1270.0	40.0	9
N	10 79	U11	37.3		325	346								30.0	14			
N	1169	E2	33.3		451	346					10.0	24		30.0	14			
N	1172	E26		6.9	1	346					100.0	33		30.0	14			
N	1175	N2		1.9		84					10.0	12						
N	1199	N1		2.2		455					17.0	11		30.0	14		1.0	34
N	1201	N1		17.0		346					10.0	12		30.0	14		12.0	15
N	1209	E3,7		7.0		1407					19.0	11		40.0	14		12.0	15
N	1275	E8				102 8	89		10,1	1 20610.0		18				56700.0		29
N	1291	U11	74.5		50	18							63.0		23	43.0		22
N	1297	E2		27.0		1409					50.0	33		50. 0	14			
N	1302	U11	14.1		92	346					10.0	24		50.0	14			
N	1316	E29					117		3	138000.0		28	98000.0		28	65800.0		15
N	1317	N1		21.0		320	126		3									
N	1326	E2,26	39.5		270	320	90		3								50.0	22
N	1332	N1	5.4		228	246					10.0	12		30.0	14		1.0	3
N	1339	N2															12.0	15
N	1344	U3		30.0		311					0.4	4					0.5	4

TABLE 1A—Continued

TABLE 1A—Continued

N	AME	Em Line	НI	HI	Line	HI	со	со	со	21cm C	Continu	um	13/11cm	Conti	nuum	6cm Co	ntinuu	uu Uu
		+Ref.		rms	wdth.	Ref.		Er/Lm	Ref.	Flux	Er/Lm	Kef.	FLUX	Er/Lm	Ref.	FLUX	Er/Lm	ĸet.
		J	y km s	mJy	km s		Jy k	ms'		mJy (OF)	mJy	(77)	mJy	mJy	(70)	mJy	mJy	1775
	1750	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(20)	(27)	(20)	(29) 50 0	27	(31)	(32)	(33)
N.	1350	NZ/	51.4		430	22								25 0	10		0.8	1
N	1357	04 E11	87		617	7002								40.0	14		0.0	•
N	1358	E7	0.7		417	1002								40.0	14			
N	1366	56		44 O		320								40.0	.4			
N	1371	N5	55 5	44.0	788	346					10 0	24		50 0	23			
N	1376	114			500	340					10.0	64		20.0	19		0.7	1
N	1379	113												30.0	19		0.8	1
N	1380	55 E/		25 O		320								40.0	19	1.9	0.1	2
N	1381	114		21 2		320								20.0	19	,	0.7	1
N	1386	E2		21 2		320	171		र					2010	.,	30.0	3.0	15
N	1387	N27		21.2		320	121		5							50.0	12.0	15
N	1380	53												30.0	19		1.0	1
N	1305	N1								32	0 1	4		30.0	14	2.0	0.2	4
N	1300	114		31		418				590.0	•••	27				230.0		27
N	1400	113		13.0		377		125	8	27010	50.0	33		50.0	14	2.0	0.1	2
N	1404	114				511		122	•					30.0	19		0.7	· 1
N	1407	F3		3.3		455				50.0		11	70.0	30.0	14	44.0	4.0	15
N	1411	E3 F4		5.5		422				2010				35.0	19		0.8	1
N	1415	F1 7	7.8		324	346								40.0	14			
N	1426	E1,1			521	510					13.0	11		30.0	14		1.0	34
	1420	114												20.0	19		0.8	: 1
N	1430	N1									17.0	11		40.0	14		12.0	15
N	1440	N2		6.0		1409					50.0	33		30.0	14			
N	1452	N2	76	0.0	177	346								50.0	14			
	1453	F1 7		10 0		1407					31.0	11		30.0	14	18.0	3.0	15
	1461	≥1,7		2.2		7002					50.0	33		40.0	14		••••	
N	1521	F26									21.0	11		40.0	14		12.0	15
N	1527	N2		22 1		320									•••			
	1533	F4	87 5		320	320								30.0	19			
N	1537	N2	01.5		520	520												
N	1543	NL		31 5		320												
N	1540	U 3.4				220								30.0	19		12.0	15
л Ц	1557	F4		21 2	•	320								30.0	1		12.0) 15
ц	1574	F3 4				220								30.0	. 19		12.0) 15
N N	1504	,- 114	15 7		250	320								35.0	19			
-	1600	U 3	, ,	0 1	250	1407				37 0		11		60.0	14	22.0	3.0) 15
N N	1617	N2		30.0		320				51.0							2.0	
N	1638	F3	8.0	20.0	371	7002		35	8		50.0	33		30.0) 14			
	1700	U3.12	0.0	۵.		205		22	2		8.0	11		30.0) 14		0.7	7 5
	1726	N2		4.0		207					50.0	33		30.0) 14			-
N	1947	F4									20.0	22	18.0		1	18.0	3.0) 1
	2170	F2	1 0		102	346								30.0) 14			•
ы	2117	51	24 9		2/0	7/4					12 0	12		40.0	· ·			
N	1111	L I	L7.U		£.40	240					.2.0			40.0				
N N	2217	N1		<u>د</u> ۵	1	1400					10 0	12		60.0) 14	0.7	0.1	2
N N N	2217 2300 2310	N1 N2		6.0 32 0)	1409 320					10.0	12		60.0 20.0) 14	0.7	0.1	1 2
N N N	2217 2300 2310 2314	N1 N2 N1		6.0 32.9 /. 0))	1409 320 205		80	7	20 0	10.0	12		60.0 20.0 40.0) 14) 19) 14	0.7 2.5 8 0	0.1	1

1991ApJS...75..751R

NAME Em Line HI ΗI Line ΗI со со CO 21cm Continuum 13/11cm Continuum 6cm Continuum +Ref. rms wdth. Ref. Flux Er/Lm Ref. Flux Er/Lm Ref. Flux Er/Lm Ref. Er/Lm Ref. Jy km s⁻¹ mJy km s⁻¹ Jy km s⁻¹ mJy mJy mJy mJy mJy mJy (1)(17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) 2434 12.0 N υ4 20.0 19 15 2549 N1 6.0 384 10.0 12 50.0 17 N 30.0 14 N 2639 N1 3.0 498 120 7 101.0 24 76.0 10 50.0 9.0 20 10.0 12 N 2646 N1 6.0 1409 30.0 14 24 2655 130.0 80.0 40.0 14 3.0 E1,7 33.1 182 346 300 6,12 42.0 13 N 8 26 2672 N 1 0.7 7002 14.0 11 15.0 30.0 N 100.0 24 N 2681 E6 3.3 346 145 8 30.0 14 2685 90 3.0 12 3.3 2 N E6,7 32.3 290 26 1 30.0 14 0.2 N 2693 N1 8.0 1407 10.0 11 30.0 14 1.7 0.1 2 2732 N1 12.0 131 10.0 12 30.0 14 N 2749 E3,20 0.9 249 53.0 46.0 8 17 N 11 3.0 80.0 2768 E3,6 6.0 205 13.0 11 30.0 14 10.0 5 N N 2775 U11 4.0 420 292 550 2 15.0 24 15.0 8 10.0 23 2781 13.2 50.0 33 N N2 362 346 2782 9.5 110.0 18 20.0 55.0 13 N E1,7 147 346 1630 200 15 84.0 26 17.0 10.0 12.0 15 2784 N1 377 12 N 12 2787 E6,15 15.1 358 346 15.0 40.0 14 9.0 7 N 2798 8.5 236 2 15.0 39.0 N E1 346 330 59.0 26 11.0 26 1.7 53 2811 N N1 2832 2.2 U3 331 11.0 11 15.0 8 33.0 26 N 2844 310 50.0 33 E2 5.8 346 30.0 20 N 2855 346 17 N E1,7 7.1 60.0 N 2859 N1 1.0 300 7002 10.0 12 15.0 8 1.0 3 N 2865 U3 0.1 4 12.0 15 N 2880 N1 2.7 26 10.0 12 30.0 14 N 2888 N2 12.0 15 2902 N2 12.2 178 466 300 6 50.0 33 N 2907 510 466 50.0 33 N2 6.1 N 2911 501 90.0 4.0 9 120.0 5.0 9 N E6,12 4.4 405 112.0 5.0 8 33 2924 U3 50.0 12.0 15 N 7 2950 U6 2.0 1409 3.0 30.0 14 2.0 7 N 2962 E26 3.5 417 419 6.0 21 15.0 8 10.0 23 N 11 N 2974 E7,12 6.0 580 534 45 8 25.0 9.6 0.1 2 N 2983 N1 4.5 346 418 2986 N1 20.0 11 33.0 3.0 15 N 13 N 2992 E2 27.1 355 346 88 16 8.5 N 3032 E26 1.3 160 27 120 10 4 14.0 21 15.0 8 3.7 0.7 6 3056 N2 N 3065 E1,7 7.8 353 498 47 8 10.0 12 N U12 3.1 267.0 8.0 9 9 3078 418 147.0 8.0 10 167.0 5.0 N 3081 E2,11 17.7 255 346 N 3087 U4 30.0 19 0.7 N 1 3091 Ν2 100.0 33 12.0 15 N 3098 N2 0.6 488 50.0 33 15.0 8 10.0 2 3115 u11 12 0.4 N 1.8 466 N 3136 E4 20.0 19 12.0 15 50.0 33 8 10.0 23 N 3156 N2 0.8 419 15.0 3158 N1 10.0 459 10.0 11 30.0 14 3.0 34 N

 TABLE 1A—Continued

766

N	AME	Em Line	HI	HI	Line	HI	со	со	со	21cm C	ontinu	Jum	13/11cm	n Conti	กนนฑ	6cm Co	ntinuu	
		+Ref.		rms	wdth.	Ref.		Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.
		Jy	/ km s [·]	¹ mJy	km s ⁻¹			Jy k	m s ⁻¹	mjy	mJy		mJy	mJy		mJy	mJy	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
N	3166	E1 7	3.5		435	292	138		3		60.0	24	32.0	4.0	8		10.0	23
N	3185	E1,7	3.4		278	292								15.0	8			
N	3190	N1	4.1		457	292					100.0	33				50.0	16.0	20
N	3193	N1		0.7		134					10.0	11		15.0	8		60.0	17
N	3203	N2		30.6		320												
N	3226	E1,7				501		43	1		36.0	11		15.0	8		100.0	17
N	3245	N1		0.8		419		27	4		10.0	12		15.0	8		50.0	17
N	3250	U4															0.1	1
N	3258	E3		1.2		418							90.0	15.0	19	52.0	5.0	19
N	3268	E4											25.0	12.0	19	23.0		1
N	3271	U4												20.0	19		1.0	1
N	3277	E1	3.4		247	467					50.0	33		15.0	8			
N	3281	E2		53.6		320												
N	3300	N5		0.8		419					50.0	33		15.0	8			
N	3301	E1	5.1		320	7001					100.0	33		15.0	8			
N	3309	N2														14.0	3.0	15
N	3348	N1		3.3		455					10.0	11		30.0	14		50.0	17
N	3358	N2				320												
N	3377	U3		0.3		249					4.0	21		15.0	8		0.6	5
N	3379	U11		0.2		7002		4	17		10.0	11		15.0	8	0.8	0.1	2
N	3384	U11		0.5		7002					10.0	12		15.0	8			
N	3390	N2		42.3		320												
N	3412	N1		0.8		419					5.0	21		15.0	8			
N	3414	N1	1.0		330	27					8.0	21		15.0	8		62.0	26
N	3449	E2	19.2		504	552												
N	3458	N5		4.0		384					10.0	12		60.0	14			_
N	3489	E1	0.6		338	7002					7.0	21		15.0	8		0.3	2
N	3516	E1,30		4.1		114				26.0		12				15.5	1.7	6
N	3557	E4		1.9		418				630.0		28	410.0		28	270.0		28
N	3571	N2	4.1		303	466					100.0	33						_
N	3585	N1		16.0		95					10.0	24			-		1.2	3
N	3593	E1,7	8.6		209	346	876	160	1	82.0	5.0	21	64.0	4.0	8	67.0	17.0	20
N	3605	N1 - 2 (0.4		249					10.0	11		15.0	8		1.2	2
N	3007	E20		0.5		50					10.0	12		15.0	8	5.9	0.1	2
N	3608	N1		0.3		421					9.0	11		15.0	8	0.9	0.1	2
N	3010	03,6	40 /	2.1	27/	20		2/0			10.0	11	24.0	50.0	14	5.0		54
N	3011	El	10.6	40.0	214	40/		240	1				24.0	3.0	8			
N	3013	00	F 0	10.0	700	384					10.0	11		30.0	14		1.0	34
N	3019	E1	5.0		508	340		(00	•		10.0	12		40.0	14		80.0	17
N	3023	E1,7	14.0		502	292		680	2		20.0	24		45 0	•			
N	3020	E20	0.0	• •	202	519					10.0	12		15.0	8			
N	3630	NZ		0.9		419					7.0	21		15.0	8		40.0	
N	2021	N2	1.1	<u> </u>	212	400					10.0	25		45 0	~		12.0	15
N	3040	N I 114		0.6		421	~		,	105 0	10.0	11	400.0	15.0	8	4.0		54 70
N	3005			23.2		151	94	14	4	125.0		12	100.0	70 0	30	70.0		30
N	3700	023	10 7	2.0	45.4	418				43.0		4		50.0	19	19.0		1
N	3785		10.5	40.0	151	558					• •						<u> </u>	-
N	3818	T N		10.0		1407					8.0	11					0.7	5

TABLE 1A—Continued

	NAME	Emlin	ο μ τ	ų T	Line	- <u>u</u> t				21.0-	ontin		13/11cm C			600 0-	otion	
	NAME	+Pof	e 11	LIT LIT	udth	ni Ref			LU Pef	FLUX	GILINU Fr/Im	un Ref		nicii 'im	Ref		niinuur Fr/im (n Pof
		· Kera	Jv km s	⁻¹ m.lv	km s ⁻¹	1	Jv k	m s ⁻¹	. Keli	mJv	, m.jv		mJv m			mJv	mJv	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28) (2	9) 19)	(30)	(31)	(32)	(33)
N	3872	N1		1.9		375	/	(/	/		11.0	11	1	5.0	8			
N	3885	E2	18.0	,	555	346									-			
N	3892	N2		3.0		466					50.0	33						
	3898	E6.15	30.0		470	346	154	51	15		100.0	24	3	0.0	14			
N	3900	N1	17.6		414	346					50.0	33	1	5.0	8			
N	3904	N1		3.0		405					10.0	11			_		0.9	5
N	3923	U3.23		12.0		52					0.5	4				4.5	1.0	3
	3941	N1	15.7		217	346					10.0	12	4	0.0	14			
	3945	U6	3.9		680	1409					10.0	12	4	0.0	14		1.0	7
	3957	E2	•••	27.3		320					50.0	33					12.0	15
N	3962	E3.12		5.0		405					10.0	11				3.7		5
N	3998	E6.14	6.4		580	440				104.0	3.0	9	109.0	9.0	10	92.0	3.0	9
Ň	4008	N2		0.6		501				14.0	3.0	21	1	5.0	8			
	4024	N2									50.0	33		-				
N	4026	U6		1.6		517					10.0	12	3	0.0	14		2.0	7
Ň	4033	N2									50.0	33					12.0	15
N	4036	E6		9.0		346					10.0	12	5	0.0	14	3.0		7
N	4073	N2		1.3		501					10.0	12	1	5.0	8			
Ň	4105	E1				405					10.0	11				3.7	0.1	2
Ň	4106	E1				405											12.0	15
h	4111	E6	11.6		327	459		25	9	8.0		7	3	0.0	14	3.0		7
	N 4124	N2		0.6		419					10.0	12	1	5.0	8			
	4125	E6,14		8.0		1407					10.0	11	3	0.0	14	3.0		34
	N 4128	N1									10.0	12	3	0.0	14			
)	N 4138	E26	16.0		290	241	100	33	1		10.0	12	10	0.0	14			
)	N 4143	N1		9.0		346					10.0	12	3	0.0	14	38.0	11.0	20
)	N 4150	E1		0.5		249		280	6,12		10.0	12	1	5.0	8		80.0	17
,	N 4158	E2	8.8		284	346	130	26	18		50.0	33	1	5.0	8			
,	N 4168	E26									11.0	11	1	5.0	8	4.0		34
1	N 4179	N1		1.6		419					8.0	21	1	5.0	8		90.0	17
1	N 4203	E26	27.4		240	519		31	8		20.0	12	1	5.0	8	14.6	0.2	2
	N 4215	N2		1.3		419					5.0	21	1	5.0	8			
I	N 4220	N1		6.0		346					10.0	12	3	0.0	14			
I	N 4224	N2	4.7		495	428					10.0	25	1	5.0	8			
1	N 4233	N2		0.6		501					16.0	12	1	5.0	8			
1	N 4235	E2		3.7		154					10.0	25	1	5.0	8			
1	N 4245	N1	0.4		220	7002					100.0	33	1	5.0	8			
1	N 4251	N1		0.7	,	27					10.0	12	1	5.0	8		1.2	3
1	N 4260	N27	3.0		465	346					120.0	25	1	5.0	8			
I	N 4261	U24								17850.0		25	10900.0 44	0.0	8	8300.0		17
I	N 4262	E26	8.2		440	443					5.0	21	1	5.0	8			
I	N 4267	N1		0.9		419					10.0	12	1	5.0	8			
I	N 4270	N1		3.2		137					50.0	12	1	5.0	8			
I	N 4274	U11	9.2		457	346					10.0	24	1	5.0	8			
I	N 4278	E6,12	10.5		399	519		45	9	518.0	16.0	9	434.0 1	8.0	8	351.0	11.0	9
I	N 4281	N1		0.8		7002				18.0	5.0	21	1	5.0	8			
I	N 4283	E21									42.0	11	1	5.0	8			
1	N 4291	N1									10.0	11	3	0.0	14		0.4	2

TABLE 1A—Continued

	AME	Emilion	нт	нт	line	нт			'n	21cm C	ontin	ium.	13/11cm	Conti	nuum	6cm Co	ntinuu	 m
n.		+Ref		rme	wdth	Ref.	1	Er/Im	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.
		.1	v km s	¹ m.lv	km s ⁻¹		Jv kr	m s ⁻¹		mJv	mJv		mJv	mJv		mJv	mJv	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
N	4293	U11		1.1		419	270	45	19	15.0	2.0	25	20.0	4.0	8			
N	4314	N5		6.2		346		225	6,14		15.0	24		15.0	8			
N	4324	E26	10.1		306	346			•		10.0	25		15.0	8			
N	4339	N1		1.2		501					10.0	11		15.0	8			
N	4340	N5		0.7		419					10.0	12	20.0	4.0	8			
N	4342			1.3		419					3.0	12		15.0	8	5.0		34
N	4346	N2		4.7		381					10.0	12		40.0	14			
N	4350	N1		0.8		419					7.0	12		15.0	8			
N	4365	U11		0.3		7002					4.0	11		15.0	8		0.5	5
N	4371	N19		0.8		419					10.0	12		15.0	8			
N	4373	N2												30.0	19	12.7		1
N	4374	E1,31								6200.0	100.0	25	3635.0	146.0	8	2880.0	240.0	20
N	4377	N2		0.9		419					10.0	12		15.0	8			
N	4378	N2	13.1		340	346					10.0	25		15.0	8			
N	4379	E3		1.0		419					10.0	12		15.0	8			
N	4382	U 1 1		0.6		193					10.0	12		15.0	8		1.0	3
N	4386	N1		5.0		384					10.0	12		40.0	14			
N	4406	U 1 1	1.3		130	551		14	20		4.0	11		15.0	8		0.6	5
N	4417	N2		0.8		419					6.0	25		15.0	8			
N	4419	N2	2.2		176	520	920	190	19	49.0	3.0	25	44.0	4.0	8	34.0	10.0	20
N	4424	E2	3.6		78	377	56	30	19		5.0	25		15.0	8			
N	4425	N1		0.7		419					3.0	12		15.0	8			
N	4429	N1		0.9		419	25	7	4		7.0	21		15.0	8			
N	4435	N1		0.7		419		14	9		6.0	12		15.0	8			
N	4442	N1		0.8		419					10.0	12		15.0	8			
N	4448	E1									10.0	24		15.0	8			
N	4452	N2		0.8		520	52	78	18		10.0	25		15.0	8			
N	4454	N2	2.7		238	466								50.0	14			
N	4459	N1		1.3		419	125	28	4		10.0	12		15.0	8	2.4	0.8	3
N	4461	N1		0.8		419					10.0	12		50.0	14			
N	4472	U11,20		0.2		7002	4		17	225.0	5.0	25	132.0	6.0	8	101.0	22.0	26
N	4473	N1		0.6		7002					6.0	11		15.0	8		1.2	5
N	4474	N1		1.2		419					10.0	12		15.0	8			
N	4476	N2		0.9		419					450.0	12		62.0	8		1.0	34
N	4477	N1		0.7		419					10.0	12		15.0	8		0.3	2
N	4478	N1		2.1		134					450.0	11		750.0	14		1.5	5
N	4483	N2		0.8		419					10.0	25		15.0	8			
N	4486	E6,31						47	21	214000.0		31	122000.0		31	71900.0		31
N	4494	N1		0.5		7002					10.0	11		15.0	8	1.0		34
N	4503	N2		0.7		419		50	22		10.0	12		15.0	8			
N	4526	U11		0.5		193	135	10	4		10.0	12		15.0	8			
N	4546	E1	3.4		358	466				13.0		12		50.0	14			
N	4550	E1		1.5		134					10.0	12		15.0	8		1.0	34
N	4552	E3		0.5		249		185	6,12	124.0	2.0	4	92.0	5.0	8	108.0	2.0	4
N	4564	N19		0.4		193		52	8		10.0	11		15.0	8		1.0	34
N	4570	N1		0.7		419					10.0	12		15.0	8		70.0	17
N	4578	N1		0.4		193					10.0	12		15.0	8			
N	4586	N2	3.9		252	428	520	260	18		10.0	25		15.0	8			
			• •															

TABLE 1A—Continued

	AME	Em Line	HI	HI	Line	ні	со	со	со	21cm C	Continu	Jum	13/11cm	Conti	nuum	6cm Co	ntinuu	
		+Ref.		rms	wdth.	Ref.		Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.
		٦	v km s	¹ mJv	km s ⁻¹		Jv I	(m s ⁻¹		mJy	mJy		mJy	mJy		mJy	mJy	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
N	4589	E6		6.0		384				35.0		11	40.0	30.0	14	23.5	0.6	2
N	4596	N2		1.0		419		50	22		10.0	12		15.0	8			
N	4608	N2		0.9		419					4.0	21		15.0	8			
N	4612	N2		0.8		419					10.0	12		15.0	8			
N	4621	N1		1.0		193		40	8		7.0	11		15.0	8		0.7	5
N	4623	N2		1.5		427					10.0	12		15.0	8	2.0		34
N	4636	E12,20		1.0		193		500	6,13	44.0	2.0	25	64.0	4.0	8	45.0	9.0	3
N	4638	N1		0.9		419					10.0	12		15.0	8		100.0	17
N	4643	N1	1.7		350	137					7.0	25		15.0	8		0.6	2
N	4645	E3,4												30.0	19		12.0	15
N	4649	N1		1.6		134	28	3	4	25.0	2.0	11	27.0		8	24.0	2.0	3
N	4660	N1		0.4		7002					50.0	33		15.0	8		1.0	34
N	4665	N1		8.1		137					10.0	25		15.0	8		0.4	2
N	4684	E2		6.6		466		27	8	42.0	7.0	12						
N	4696	E3,4		2.1		418				3910.0	110.0	32	2460.0	50.0	19	1290.0	30.0	32
N	4697	U3		16.0		95					10.0	11					0.6	5
N	4698	E1	50.3		420	428		135	19		10.0	25		15.0	8			
N	4710	E19	0.6		500	7002	200	30	1	15.0	2.0	12	17.0	4.0	8	8.8	1.1	6
N	4742	E3									10.0	24		100.0	14		1.0	5
N	4753	N1,19		16.0		95		104	1		10.0	24		60.0	14		0.3	2
N	4754	N1		0.9		419					3.0	12		15.0	8			
N	4756	U3																
N	4760	U24											570.0	100.0	14	460.0		15
N	4762	U33		0.6		419					3.0	12		15.0	8			
N	4767	N2												40.0	19		0.9	1
N	4772	N2	15.1		434	346					13.0	25		15.0	8			
N	4782	N21								7670.0	230.0	32	4760.0	30.0	32	2540.0	75.0	15
N	4783	N21																
N	4786	E3															12.0	15
N	4795	N2	6.3		407	346					10.0	25		15.0	8			
N	4825	E2		6.8		466					50.0	33						
N	4845	N2		2.5		346	290		8	34.0	2.0	25	31.0	3.0	8			
N	4856	N1	6.4		454	466					10.0	24						
N	4866	E1,26	14.1		548	346		135	19		10.0	12		15.0	8			
N	4880	N2		0.3		7002					10.0	25		15.0	8		1.0	34
N	4889	N1		0.6		249								15.0	8	1.0		5
N	4914	N2		1.4		501					10.0	12						. –
N	4915	υ 3									29.0	11					12.0	15
N	4933	N2	4.6		528	466											_	
N	4936	E23								41.0	0.5	4	97.0	10.0	15	33.3	0.3	4
N	4958	E26	2.1		374	466					10.0	12		50.0	23			
N	4976	υ3												30.0	19		12.0	15
N	4984	E2	2.5		234	466				23.0	3.0	12		50.0	23			
N	5011	E4												20.0	19		0.8	1
N	5017	υ3									100.0	33						
N	5018	υ3	1.9		170	534					0.5	4		50.0	23	1.1	0.2	4
N	5044	E2		2.2		455					50.0	33				30.0	3.0	15
N	5061										10.0	11		50.0	23		12.0	15

N	AME	Emline	нт	нт	line	нт	0.0	01	0.0	21cm (Contin	Jum	13/110	1 Conti	nuum	6cm Co	ntinu	
		+Ref.		rms	wdth.	Ref.		Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.
			ly km s	¹ mJy	km s	1	Jy k	m s ⁻¹		mJy	mJy		mJy	mJy		mjy	mJy	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	, (29)	(30)	(31)	, (32)	(33)
N	5064	N2	21.7		486	550												
N	5077	E6,12		2.1		418				109.0	5.0	9	133.0	8.0	10	90.0	3.0	9
N	5084	N2	84.8		645	492	32	17	8					50.0	23	34.0	3.0	16
N	5087	N1						42	8								12.0	15
N	5090	E4		1.7		418							3410.0	60.0	19	1630.0	40.0	19
N	5101	E2	34.7		188	346					10.0	24						
N	5102	U4	72.0		438	95		54	9					20.0	19		0.8	1
N	5121	N2																
N	5128	E4					1400		23				128000.0		19	126000.0		19
N	5193	E4												50.0	19		0.8	1
N	5195	E15,23					400	25	4	15.0		24					80.0	17
N	5198	E26				- / 0					10.0	24		30.0	14		47.0	45
N	5266	E3,4	20.0		520	540					10.0	17		15 0	19		12.0	15
N	52/3	E1,20		1.3		419					10.0	12		15.0	1/		100.0	17
N	5300	N I		20.0		205				97 0	10.0	11	70.0	50.0	14	3/ 0	100.0	17
N	5326	20		3.0		203				07.0			70.0	50.0	14	54.0	20 0	20
N	5328	FQ		5.0		504											12 0	15
N	5353	E7	17 6		300	384				40.0		12	70.0	50.0	14	35.0	2.0	13
N	5357	N2			500	504								2010				
N	5363	E3	1.9		629	353	110		16	152.0		18	132.0	6.0	8	95.0	3.0	13
N	5365	N2																
N	5377	E1	9.5		372	346					10.0	24		30.0	14			
N	5380	N2		1.4		501					50.0	33					30.0	20
N	5419	U4								800.0		28	460.0		28	390.0		28
N	5422	N5		2.4		346					10.0	12						
N	5444	E16		0.8		501							178.0	8.0	8	187.0	20.0	20
N	5448	E1	25.4		402	346					10.0	24		60.0	14			
N	5473	N1		5.0		131					10.0	12		30.0	14			_
N	5485	U11		5.0		1409					10.0	12		40.0	14	0.9	0.1	2
N	5493	U3	8.0		520	1409					100.0	33		40.0	14			
N	5548	E1,32	0.8		240	126								27.0	8			- ,
N	5557	03	~ ~	1.5		7002					10.0	11		15.0	8		1.0	34
N	5566	N 1	9.9	~ ~	428	508					10.0	24		15.0	8			
N	5574	N (0.0		419					10.0	11		15.0	0 9		1 0	34
N	5616	US N1	1.2	0.4	250	421					10.0	26		15.0	0 8		20.0	20
N	5631	F1 26	7.6		380	232		245	6 12		10.0	12		12.0	Ŭ		20.0	20
N	5638	u3			500	LJL		242	0,12		26.0	11		15.0	8		0.6	5
N	5687	N1		4.0		131					10.0	12		40.0	14		50.0	17
N	5689	N1	2.8		366	346					10.0	24		50.0	14		100.0	17
N	5701	U11	43.2		123	346		120	7			_		15.0	8			
N	5739	E2	8.0		440	7001					10.0	12						
N	5750	N2	5.2		268	346					50.0	33						
N	5791	N2		0.9		346											12.0	15
N	5796	N2,9	3.1		40	418										154.0	3.0	15
N	5812	U3		4.0		205					26.0	11		40.0	14		12.0	15
N	5813	N1		0.7		427					23.0	11		15.0	8	1.7		5

TABLE 1A—Continued

1991ApJS...75..751R

NAME Em Line HI Line со со 21cm Continuum 13/11cm Continuum 6cm Continuum ΗI ΗI CO +Ref. rms wdth. Ref. Er/Lm Ref. Flux Er/Lm Ref. Flux Er/Lm Ref. Flux Er/Lm Ref. km s⁻¹ Jy km s⁻¹ Jy km s⁻¹ mJy mJy mJy mJy mJy mJy mJy (19) (21) (22) (23) (24) (28) (1) (17)(18) (20) (25) (26) (27) (29) (30) (31) (32) (33) 5820 6.8 350 10.0 12 30.0 36.0 N N1 330 13 8 14 26 5831 0.6 N1 0.8 427 13.0 11 15.0 8 5 N 5838 N1 1.5 501 8.0 21 21.0 3.0 8 50.0 23 N 0.5 5846 E3,12 0.2 551 17 17.0 2.0 11 21.0 3.0 8 7.8 2 N 6 50.0 33 8 5854 N1 0.4 234 170 15.0 N 5864 N19 0.6 501 15.0 8 N 5866 6.0 405 240 80 16.0 2.0 12 40.0 30.0 14 13.0 1.0 3 N U6,11 1 23.0 N 5898 E3 1.2 7003 11 1.1 0.5 3 N 5903 N1,9 11.1 280 7003 34.0 11 26.0 3.0 16 N 5982 U3 10.0 11 30.0 14 1.0 34 6340 14.3 10.0 24 40.0 14 N U11 224 346 95 6,12 6482 1.2 7002 10.0 11 15.0 8 13.0 34 N N1 N 6684 N2 22.0 320 50.0 23 12.0 15 6721 35.0 19 12.0 15 N E4 6758 Ε4 42.0 1 28.0 N 1 6776 E4 30.0 19 12.0 15 N 20.0 19 12.0 15 N 6851 E4 6854 U3,4 20.0 19 12.0 15 N 6861 E4 30.0 19 20.0 19 N 124.0 13.0 124.0 6868 E4 2.1 418 19 7.0 19 N 35.0 12.0 N 6875 E3 19 15 20.0 12.0 15 6876 Ε4 19 N N 6893 N2 N 6902 N2 44.8 327 18 15 N 6909 U3,4 20.0 19 12.0 N 6935 N2 320 N 6942 N2 5.0 6958 E3,4 2.0 418 43.0 12.0 19 27.0 19 N 7007 E4 25.0 19 12.0 15 N 7014 U3,4 25.0 19 12.0 15 N 320 N 7020 N2 31.0 30.0 12.0 15 N 7029 U3,4 19 U4 20.0 12.0 15 N 7041 31.0 320 19 N 7049 E3,4 57.0 15.0 19 35.0 4.0 19 N 7079 E3 25.0 19 0.8 1 7096 320 N N2 43.0 7097 E3,4 30.0 19 17.5 1 N 7135 6.0 0.2 4.0 0.2 4 N E19 22.0 320 - 4 N 7144 U3,4 20.0 19 12.0 15 N 7145 U3 20.0 19 12.0 15 7155 N2 N 7166 E4 20.0 19 0.6 1 N 12.0 7168 υ4 35.0 15 N 19 N 7192 E3,4 25.0 19 12.0 15 7196 υ4 20.0 19 12.0 15 N 7213 3 187.0 10.0 19 N E4 26.8 451 320 445 17.0 19 228.0 7302 4.0 1409 100.0 33 14 12.0 15 N N1 277 40.0 519 170 6,12 10.0 21 8 60.0 17 N 7332 N1 1.6 15.0

 TABLE 1A—Continued

_																		
N	AME	Em Line	e HI	НI	Line	ΗI	со	CO	со	21cm (Continu	uum	13/11ci	n Conti	nuum	6cm Co	ontinuu	im .
		+Ref.		rms	wdth.	Ref.		Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.	Flux	Er/Lm	Ref.
		•	Jy km s	''mJy	km s	1	Jy k	m s''		mJy	mJy		mJy	mJy		mJy	mJy	
	(1)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
N	7371	U11	18.8		142	346	89	24	7		50.0	33		60.0	14			
N	7377	E26		15.0		18											12.0	15
N	7410			21.2		320								50.0	23		12.0	15
N	7457	N1		2.0		501					10.0	21		15.0	8		50.0	17
N	7507	U 3		1.9		455					10.0	11		30.0	14		1.0	34
N	7585	U23		18.0		18					0.4	4		30.0	14		60.0	17
N	7600	N1		4.2		7002								30.0	14		70.0	17
N	7619	N1		1.1		193					23.0	11	22.0	3.0	8	7.7		5
N	7626	U16,24		0.7		193				700.0		11	380.0		30	230.0		30
N	7702																12.0	15
N	7727	U7,11	3.5		421	346					10.0	24		30.0	8			
N	7742	E1,11	13.3		69	346	154	31	7		50.0	33	17.0	4.0	8			
N	7743	U7,11	3.4		258	346					50.0	33		15.0	8			
N	7744																	
N	7785	U3		1.1		193					24.0	11	19.0	3.0	8	3.5		5
N	7796	U4												20.0	19		12.0	15
I	1459	E3		5.8		418				970.0		28	1155.0	23.0	19	1016.0		19
I	2006	N9	3.0		244	553								30.0	19		0.8	1
I	2035	N2												25.0	19		0.7	1
I	3370	E2												30.0	19	6.4		1
I	3896	U3,4												20.0	19		12.0	15
I	4296	E4								14000.0		28	3170.0	42.0	19	1604.0	30.0	19
I	4329	U23								6.9	0.2	4				0.6	0.1	4
I	4797	U3,4												20.0	19		12.0	15
I	4889	E3,4												20.0	19		12.0	15
I	5063	E3	9.7		512	326				1990.0	110.0	32				430.0	30.0	32
I	5105	U3,4												20.0	19	3.7		1
I	5135	E2		18.5		538												
I	5181	E4		24.0	i	320								25.0	19			
I	5240	N2	12.6		338	320												
I	5267		57.8		370	320								50.0	23			
I	5269	U4	18.0		164	379								35.0	19	3.1		1
I	5328	N1															12.0	15
A1	85254	U3																
AZ	20 204 4	E2		30.0		320											12.0	15

TABLE 1A—Continued

N	AME	#	Dust	6	50u	10	0u	12/25u	N	AME	#	Dust	6	0u	10	0u	12/25u
		SN	+Ref.	Flux	err.	Flux	err.	ratio			SN	+Ref.	Flux	err.	Flux	err.	ratio
				п	nJy	п	JУ						n	IJУ	m	Jy	
	(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)		(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
N	16				29		76		N	1350	1			190	3970	470	
N	128			750	41	1550	115		N	1351		N2	90	21	450	37	
N	147				46		160		N	1357			10 30	120	4910	590	
N	148				54		140		N	1358							
N	185		D1,4	440	31	1900	152		N	1366				28	380	54	
N	205		D1,4	570	37	3130	102	0.85	N	1371				135	1170	190	
N	221		N4		87		1255	2.18	N	1374		N2		20		42	
N	227				58		159		N	1379		N2		29	120	41	
N	254				41	570	78		N	1380		D2,5	10 70	43	3060	95	2.43
N	274			4910	590	9390	1500		N	1381				24		63	
N	357								N	1386			5650	38	8890	48	0.35
N	404		D1	2320	59	4000	800		N	1387			2370	28	6030	44	0.94
N	439				46		97		N	1389		N2		28		89	
N	474				27		88		N	1395			50	26	300	42	
N	524		D11	780	34	1820	114		N	1399		N2		32	270	72	
N	533		N4		44		96		N	1400		D9	760	40	2920	129	
N	584				41	520	90		N	1404		N2		28	240	49	
N	596		N4		26		100		N	1407			140	30	430	65	
N	636		N4		42		133		N	1411	1	N2	170	38	620	58	
N	718			640	75	1160	240		N	1415			5280	625	12320	1500	0.47
N	720		N4		42		56		N	1426				29		89	
N	741		N4	200	24	1000	96		N	1427		N2		38		43	
N	750		N4		21		24		N	1439		N2		32	300	35	
N	777				38		76		N	1440				43	1150	88	
N	788								N	1452				135	920	110	
N	821		N4		42	440	104		N	1453		N4		39	670	113	
N	890				30		44		N	1461			80	24	280	92	
N	936		D11		44		90		N	1521		N4		27		109	
N	1022			2012 0	3200	27440	4400	0.23	N	1527				45		90	
N	1023				32		66		N	1533		N2	330	24	1240	87	
N	1052		D1,3	900	31	1400	60	0.43	N	1537				27	260	72	
N	1079			470	100	1290	155		N	1543				28	1430	304	
N	1169			1020	200	5160	800		N	1549		N2		22	160	48	1.50
N	1172				41		72		N	1553		N2	570	24	1010	51	1.31
N	1175				37		126		N	1574		N2	370	22	590	64	1.43
N	1199		D1,3,4		42		80		N	1596		N2		34		65	
N	1201				35		72		N	1600		D4	100	27	170	65	
N	1209		N4		32		98		N	1617			730	60	3770	300	
N	1275	1		7220	860	8000	960	0.34	N	1638		U4		28		169	
N	1291			1870	25	11900	99	1.14	N	1700				26		193	
N	1297		D1		38		128		N	1726		U4	50	31	300	76	
N	1302			290	32	1780	117		N	1947		D1,2	1100	24	4270	50	1.56
N	1316	2	D1,2	3160	30	14200	3000	1.15	N	2179				135	1310	200	
N	1317			3690	35	9530	1555	1.04	N	2217			1360	33	5330	65	1.17
N	1326			8500	48	13180	41	0.52	N	2300				25	_	81	
N	1332	1		520	27	1610	51	0.90	N	2510		DY	130	28	360	168	
N	1339				27	600	51		N	2514			70	22	300	55	
N	1344		D1		43		128		N	2325				54		186	

TABLE 1B

NAME

(1)

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N 3158

#

SN

(34) (35)

Dust

+Ref.

N 0.74 N 0.65 N N4 N 0.69 N N 7070 1100 0.68 N 2.36 N N N N4 N N2 0.80 D1 N 6760 1060 0.34 N 0.35 0.83 D1 N 22760 3600 0.24 N N N N N N N4 N 0.41 D1 N D1 N N2 N N4 0.55 N 0.63 N D4 D9 D4 N4 N 0.43 N 0.96 N 0.47 N N N N N N4 N N 3.40 D1 0.50 N2 N2 N 0.33 N

 TABLE 1B—Continued

NAME

(1)

#

SN

(34) (35)

Dust

+Ref.

12/25u

(39) (40)

60u

mJy

(37)

(36)

100u

mJy

Flux err. Flux err. ratio

(38)

12/25u

(39) (40)

100u

mJy

(38)

Flux err. ratio

60u

Flux err.

mJy

(37)

(36)

N 3818

υ4

NAME # 60u 100u 12/25u NAME 60u 100u 12/25u Dust # Dust +Ref. err. ratio SN +Ref. Flux err. Flux err. ratio SN Flux err. Flux mJy mJy mJy mJy (34) (35) (37) (38) (39) (40) (34) (35) (39) (40) (1) (36) (1) (36) (37) (38) 79 0.38 N N 0.35 N N N N N N N N N N N D7 N N N N D12 N D9 N N N2 N 1.08 N D1,4 1.17 N N N N N N N U4 N N N N D8 N N N 0.37 N N N N N D9 N D1 N N N N N N N N N N D9 υ4 N N N N U4,5 0.57 N N N 0.89 N N N N N N4 N N N N N D11 N N N D10,12 N N N D5 0.83 N N N N N D12 N D1,4 N U4 N N N D5 N N N N

N	AME	#	Dust	6	0u	10	0u	12/25u	N	AME	#	Dust	6	0u	10	0u	12/25u
		SN	+Ref.	Flux	err.	Flux	err.	ratio			SN	+Ref.	Flux	err.	Flux	err.	ratio
				m	Jy	m	Jy						Π	ıJy	m	Jy	
	(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)		(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
N	4589		D13	210	31	590	136		N	5064			3140	370	10150	1600	
N	4596			410	24	670	40		N	5077							
N	4608				25	210	58		N	5084			420	42	2300	330	
N	4612				41		75		N	5087		D9	1110	41	2780	175	
N	4621	1	D10		51		83		N	5090	1	N2	170	46	760	397	0.58
N	4623				23		106		N	5101	1		780	31	5600	280	1.00
N	4636	1	D10	140	43		152		N	5102		D6	940	35	2430	89	
N	4638				45		66		N	5121			320	30	1010	61	
N	4643			640	27	1830	80		N	5128	1	D1,2	230500	560	492000	1880	0.93
N	4645			300	60	1490	227		N	5193			150	27	470	64	
N	4649		U4	900	65	2310	270	1.00	N	5195	1		39070	1261		454	0.01
N	4660				49		89		N	5198		N4		38		68	
N	4665				27		44		N	5266		D1,2	1230	24	3650	56	
N	4684			1310	45	1910	88		N	5273			930	35	1390	108	0.41
N	4696		D1,2	100	23	740	131		N	5308				40		79	
N	4697		D11	470	23	1100	67		N	5322			430	38	890	67	
N	4698				157	1830	210		N	5326							
N	4710		D9	5890	42	13150	156	0.35	N	5328				33		62	
N	4742		D4	460	61	1020	104		N	5353			330	54	1290	100	
N	4753	2	D1	2640	60	8010	176	1.10	N	5357		~ 4	260	27	670	110	o o/
N	4754				45		102		N	5365		D1	1700	46	4450	45	0.86
N	4756				43		135		N	5365			150	175	280	109	
N	4760		N4		43		70		N	53//			870	1/5	3290	400	
N	4762				48		/1			5500		2		21	200	103	
N	4/6/				25		(1			5419		NZ	70	0C 7C	200	74 71	
N	4//2	1			77		200			5466			70	41	330	1/.2	
N	4/82	1			20		200			5444			1630	105	5210	600	
N	4/85			700	39 71	720	00			5440			000	16	3210	600	
N	4/80		N4	200	21	720	00			5485	1	D1 4	150	74	850	88	
N	4790				40		12/	1		5403	•	01,4	150	40	0,0	04	
N	4020			0/50	49	27470	7900	0 45		5548	1		1040	125	1730	200	0 40
N	4040			9450	22	23070	170	0.05	N N	5557	•	114	1040	41	1150	81	0.47
N	4030			150	52	010	145		N	5566		•••	1070	125	5610	900	
N	4000			100	36	710	120	1	N	5574				40	2010	447	
N	4000		N/		55		61		N	5576			90	27	190	247	
N	4007				30		40	1	N	5614			1260	150	6080	970	
	4015		114 5	120	40		103		N	5631		U4	230	34	920	76	
	4073		04,5	340	42	1130	117	0.39	N	5638		U4		30	400	106	
	4036			230	41	1050	116		N	5687		D4		20		45	
N	4950			280	47	310	116		N	5689			440	60	1420	170	
N	4750		N2	220	45	5.0	353		N	5701				135	1110	220	
	4970		112	11360	1800	15600	2500	0.42	N	5739		U4	240	20	740	52	
n N	5011		N2	1,500	30		66		N	5750			600	70	2470	300	
n U	5017				50		102		N	5791				27		135	
N N	5018		D1.5	980	41	1650	80		N	5796		N4		54		56	
n N	5044		.,,,	140	57	130	65		N	5812		U4		42		78	
и И	5044			140	34		101		N	5813		U3,4,5		23		88	5
	1001				24												

TABLE 1B—Continued

=									I =								
)	IAME	#	Dust	6	0u	10)0u	12/25u	N	AME	#	Dust	é	50 u	10	0u	12/25u
		SN	+Ref.	Flux	err.	Flux	err.	ratio			SN	+Ref.	Flux	err.	Flux	err.	ratio
				m	IJУ	ſ	nja						ก	nJy	m	Jy	
	(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	1 -	(1)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
N	5820			130	39	470	147		N	7168				20		40	
N	5831		D4						N	7192				28	270	53	
N	5838		N4	750	40	1480	82		N	7196		D3,5	760	43	2040	169	
N	5846		D10		37		112		N	7213		D1,2	2570	34	8130	118	0.62
N	5854	1			33		166		N	7302			90	34	530	211	
N	5864				27	340	53		N	7332		D9	220	30	360	96	
N	5866		D9	5210	21	16610	51	1.25	N	7371							
N	5898		D3	130	37	200	64		N	7377		D4	390	46	1480	104	
N	5903				23		112		N	7410			830	100	2840	440	
N	5982		N4		33	330	31		N	7457		_	110	42	400	170	
N	6340								N	7507		U3,5		43		136	
N	6482				90		303		N	7585		U4	120	42	310	70	
N	6684				47		93		N	7600				34		66	
N	6721				46		111		N	7619	1	N4		38	630	205	
N	6758			100	31	310	102		N	7626		N4		42		113	
N	6776			260	47	580	149		N	7702			260	25	890	81	
N	6851		D5	250	42	620	84		N	7727							
N	6854				42		124		N	7742			2870	39	6320	132	0.53
N	6861		D5	870	58	3110	115		N	7743			950	42	3020	191	
N	6868		D2,5	470	30	1470	96		N	7744				55		83	
N	6875			1160	51	3070	106	0.74	N	7785		D4		38		88	
N	6876		N2	90	35	430	92		N	7796				28		88	
N	6893		D9	2470	42	7370	71	0.87	I	1459		D3	520	31	1050	91	0.53
N	6902			810	100	4080	500		I	2006			120	15	280	41	
N	6909				44		141		I	2035			140	19	250	34	
N	6935			700	90	3570	430		I	3370		D2,5	570	28	2010	106	
N	6942								I	3896		N2		70		242	
N	6958		D3	1090	34	2020	53	0.75	I	4296		N2	140	59	230	73	
N	7007			270	45	530	60		I	4329			2040	240	1620	190	0.47
N	7014		N2	60	24		89		I	4797				46		120	
N	7020				38	200	57		I	4889		N2	160	72	410	73	
N	7029			190	47	310	57		I	5063		D1	6530	32	3920	200	0.31
N	7041		N2		46	440	80		I	5105		N2		34		88	
N	7049		D2,5	540	23	1760	82		I	5135			16670	2000	26270	3150	0.29
N	7079			130	41	280	90		I	5181			100	22	350	56	
N	7096				215	1130	135		I	5240				150	1240	200	
N	7097		D1,3	200	23	630	104		1	5267			890	180	5840	700	
N	7135			260	32	700	29		I	5269			160	43		122	
N	7144		N2	90	34	29 0	95		I	5328				31	600	54	
N	7145		N2		41		106		A1	85254				43		243	
N	7155				38		84		A2	02044			5040	590	6700	800	
N	7166			220	38	510	75										

 TABLE 1B—Continued

NOTES.-NGC 221: Available H I data confused by nearby source. X-ray emission may arise from an AGN. NGC 274: Available H 1 and IRAS data confused by nearby source. NGC 474: Arp 227. NGC 750: Arp 166. NGC 936: Available H 1 data confused by nearby source, NGC 941; see ref. 232. NGC 1023; Arp 135. NGC 1052; X-ray emission may arise from an AGN. Variable radio emission. NGC 1275: Per A, 3C 84. H I detected in absorption. Variable radio emission. X-ray confused with cluster. NGC 1316: Arp 154. For A. NGC 1596: Near NGC 1602, an Irr. H I flux based on decomposition and is uncertain. NGC 2300: Arp 114. NGC 2655: Arp 225. NGC 2672: Arp 167. NGC 2685: Arp 336. NGC 2782: Arp 215. NGC 2798: Arp 283. NGC 2832: Arp 315. NGC 2911: Arp 232. Possibly variable radio source. NGC 2986: Available H I data confused by nearby source. NGC 2992: Arp 245. NGC 3065: Near NGC 3066, an Sbc. H I flux based on decomposition and is uncertain. NGC 3190: (=NGC 3189), Arp 316. NGC 3226; Available H I and IRAS data confused by nearby source. NGC 3268: Variable radio source. NGC 3358: Available H I data confused by nearby source. NGC 3379: M105. NGC 3390: Numerical type reflects uncertainty in classification. NGC 3414: Arp 162. NGC 3516: Seyfert. X-ray emission may arise from an AGN. NGC 3608: Uncertain H I detection in ref. 427. Upper limit only, with similar rms, in ref. 7002. Confused at X-ray. NGC 3623: Arp 317. NGC 4105: Available H I and X-ray data confused by nearby source (NGC 4106). X-ray emission is from both objects. NGC 4106: See NGC 4105. NGC 4261: 3C 270. NGC 4283: Available H I data (ref. 7002) confused by nearby source. NGC 4374: M84, 3C 272.1. NGC 4382: M85. NGC 4406: M86. NGC 4435: Arp 120. NGC 4472: M49, Arp 134. NGC 4486: M87, 3C 274. X-ray confused with cluster. NGC 4552: M89. Variable radio source. NGC 4621: M59. NGC 4649: M60, Arp 116. NGC 4782: This and NGC 4783 identified with 3C 278. Radio emission is from both objects. NGC 4783: See NGC 4782. NGC 4933: Arp 176. NGC 4936: Possibly radio variable. NGC 4958: Several late-type systems at distances of 12'-14'. NGC 5077: Confusion in IRAS. Radio variable. NGC 5090: Paired with NGC 5091, a spiral. NGC 5128: Arp 153, Cen A. X-ray distribution is complex and has a variable component. X-ray flux is for the "diffuse" component. NGC 5195: Available data confused by nearby source (NGC 5194, M51). NGC 5576: Available H I data confused by nearby source. NGC 5638: Available H I data confused by nearby source. NGC 5820: Arp 136. NGC 5831: Confused in IRAS. NGC 5903: Available H I data confused by nearby source. NGC 6876: Confused in IRAS. NGC 6935: A late-type spiral nearby, will confuse H I observations. NGC 6958: Possibly radio variable. NGC 7213: X-ray emission may arise from an AGN. X-ray emission is variable, by a factor of 2. The value given is the highest value. NGC 7585: Arp 223. NGC 7727: Arp 222. IC 1459: Variable radio source. IC 4329: Confused in IRAS.

 V_{max} REFERENCES. —(20) Bertola and Capaccioli 1978. (26) Peterson 1978. (42) Jenkins and Scheuer 1980. (63) Kormendy 1983. (68) Kormendy 1982. (76) Dressler and Sandage 1983. (77) Davies *et al.* (1983). (84) Bettoni 1984. (92) Kormendy 1984. (99) Bertola *et al.* 1985. (105) Caldwell *et al.* 1986. (119) Kormendy 1987. (138) Zellinger 1987. (146) Tonry 1985. (501) Franx *et al.* 1990. (502) Nieto *et al.* 1988. (503) Bender 1988. (504) Carter 1987. (505) Wagner *et al.* 1988. (506) Jedrzejewski and Schechter 1989.

EMISSION-LINE REFERENCES.—(1) Humason et al. 1956. (2) Sandage 1978. (3) Caldwell 1984. (4) Phillips et al. 1986. (5) Kelton 1980. (6) Heckman et al. 1980b. (7) Burbidge and Burbidge 1965. (8) Heckman et al. 1983b. (9) Sparks et al. 1984. (10) Sparks et al. 1984. (11) Kennicutt and Kent 1983. (12) Demoulin-Ulrich et al. 1984. (13) Gisler and Friel 1979. (14) Bertola et al. 1984. (15) Heckman 1980a. (16) Disney and Cromwell 1971. (17) Bergwall et al. 1978. (18) Chincarini and Rood 1972. (19) de Vaucouleurs and de Vaucouleurs 1967. (20) Dressel et al. 1982. (21) Page 1970. (22) Peterson 1970. (23) Carter et al. 1988. (24) Johnstone et al. 1987. (25) Richter 1987a. (26) Bettoni and Buson 1987. (27) Mayall and de Vaucouleurs 1962. (28) de Vaucouleurs and de Vaucouleurs 1976. (29) Schweizer 1980. (30) Goad and Gallagher 1987. (31) Baum et al. 1988. (32) Wilson et al. 1989. (33) Bertola and Capaccioli 1977.

HIREFERENCES.--(17) Baars and Wendker 1976. (18) Balick et al. 1976. (26) Bieging 1978. (27) Bieging and Biermann 1977. (28) Bieging and Biermann 1983. (30) Biermann et al. 1979a. (52) Bottinelli et al. 1973. (53) Bottinelli et al. 1980. (83) Emerson 1974. (84) Magri et al. 1988. (95) Gallagher et al. 1975. (112) Johnson and Gottesman 1983. (114) Heckman et al. 1978. (126) Heckman et al. 1983a. (131) Knapp et al. 1977. (134) Knapp et al. 1978. (137) Krumm and Salpeter 1979. (154) Mirabel and Wilson 1983. (160) Peterson and Shostak 1974. (170) Lewis 1983. (193) Kumar and Thonnard 1983. (205) Shostak et al. 1975. (232) Balkowski and Chamaraux 1983. (235) Biermann et al. 1979b. (241) Grewing and Mebold 1975. (246) Balkowski 1979. (249) Knapp et al. 1979. (292) Haynes 1981. (311) Hawarden et al. 1981. (320) Reif et al. 1982. (326) Danziger et al. 1981. (331) Valentijn and Giovanelli 1981. (346) Huchtmeier 1982b. (350) Gallagher et al. 1981. (353) Thuan and Wadiak 1982. (373) Fisher and Tully 1981. (375) Helou et al. 1981. (377) Huchtmeier and Richter 1986. (379) Aaronson et al. 1981. (381) Huchtmeier and Richter 1982a. (384) Richter and Huchtmeier 1989. (405) Knapp and Gunn 1982. (418) Jenkins 1983. (419) Giovanardi et al. 1983. (427) Lake and Schommer 1984. (428) Helou et al. 1984. (431) Sancisi et al. 1984. (440) Knapp et al. 1985a. (443) Krumm et al. 1985. (455) Appleton et al. 1985. (459) van der Burg 1985. (466) Richter and Huchtmeier 1987b. (467) Bicay and Giovanelli 1986. (488) Haynes and Giovanelli 1984. (492) Gottesman and Hawarden 1986. (493) van Gorkom et al. 1986. (498) Haynes et al. 1988. (501) Chamaraux et al. 1987. (508) Schneider et al. 1986. (517) van Driel 1987. (519) Burstein et al. 1987. (520) Hoffman et al. 1989. (534) Kim et al. 1988. (538) Phillips et al. 1988. (540) Varnas et al. 1987. (550) Davies et al. 1989. (551) Bregman et al. 1988b. (552) Aaronson et al. 1989. (553) Schweizer et al. 1989. (1028) De Young et al. 1973. (1407) Knapp et al. 1985b. (1409) Wardle and Knapp 1986. (7001) Lewis, B. M., private communication. (7002) NRAO, Unpublished: (7003) Appleton et al. 1990.

CO REFERENCES.—(1) Thronson *et al.* 1989. (2) Young *et al.* 1989. (3) Wiklind and Henkel 1989. (4) Sage and Wrobel 1989. (5) Wiklind and Rydbeck 1986. (6) Verter 1985. (7) Verter 1987. (8) NRAO, Unpublished. (9) NRAO, Unpublished. (10) Lazareff *et al.* 1989. (11) Mirabel *et al.* 1989. (12) Rowan-Robinson *et al.* 1980. (13) Johnson and Gottesman 1980. (14) Elmegreen and Elmegreen 1982. (15) Stark *et al.* 1987. (16) Sanders and Mirabel 1985. (17) Huchtmeier *et al.* 1988. (18) Stark *et al.* 1986. (19) Kenney and Young 1988. (20) Bregman and Hogg 1988a. (21) Jaffe 1987. (22) Young *et al.* 1985. (23) Phillips *et al.* 1987.

RADIO CONTINUUM EMISSION REFERENCES.—(1) Sadler et al. 1989. (2) Fabbiano et al. 1989. (3) Fabbiano et al. 1987. (4) Wilkinson et al. 1987. (5) Birkinshaw and Davies 1985. (6) Wrobel and Heeschen 1988. (7) Heckman et al. 1980b. (8) Dressel and Condon 1978. (9) Wrobel and Heeschen 1984. (10) Condon and Dressel 1978. (11) Hummel et al. 1983. (12) Hummel and Kotyani 1982. (13) Hummel et al. 1984. (14) Pfleiderer et al. 1980. (15) Disney and Wall 1977. (16) Sparks et al. 1984. (17) Ekers and Ekers 1973. (18) Condon and Broderick 1988. (19) Sadler 1984b. (20) Sramek 1975. (21) Bieging and Biermann 1977. (22) Whiteoak 1970. (23) Wright 1974. (24) Hummel 1980. (25) Kotanyi 1980. (26) Sulentic 1976. (27) Killeen et al. 1988. (28) Ekers et al. 1989. (29) Aller et al. 1985. (30) Jenkins 1982. (31) Baars et al. 1977. (32) Wills 1975. (33) Pfleiderer 1977. (34) Impey et al. 1986.

DUST REFERENCES.—(1) Ebneter and Balick 1985. (2) Sadler and Gerhard 1985. (3) Sparks *et al.* 1985. (4) Ebneter *et al.* 1988. (5) Veron-Cetty and Veron 1988. (6) van Driel 1987. (7) Malin and Carter 1983. (8) Tonry, J. L., private communication. (9) Sandage 1961. (10) Kormendy and Stauffer 1987. (11) Kormendy, private communication. (12) Mollenhoff and Bender 1987. (13) Mollenhoff and Bender 1989.

Ξ													
	NAME	Dist. Grp	Abs.	Lg L	6cm Continuum	XRa	эу	HI		H ₂		Dus	t
		Mem	Bo	(Bo)	Lg Lum. Lg UL	Lg Mass l	g UL	Lg Mass	Lg UL	Lg Mass	Lg UL I	Lg Mass I	LgUL
	(1)	Mpc.	Mag.	L _O	watts/Hz	Mo	Mo	Mo	MO	M⊙	Mo	Mo	M _O
-	16	45 /	(4)	(5)	(6) (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	129	97 /	-21.20	10.67	21.89		~ ~~		8.80			/ /E	0.43
N	1/7	07.4	-22.00	7 94	17.95		9.88		9.39			0.45	2 70
L.	1/.8	0.7 L 37 7	-14.10	10 17	17.85			0.55	6.27				2.19 4 10
N	140	071	-1/ 70	7.05	47 77	,		9.55		E 1E		2 0/	0.19
N	205	0.7 1	- 14.37	9 / 0	1/.//	,	/ 77	5.21		5.15		2.74	
N	205	0.7 L	-15.32	9 7 7	10.77	,	4.73	5.50	4 77	5.52		3.37	7 68
1	227	108.2	-21 82	10.02	77.01 72 22		0 70		10 75				7 16
N	254	32.2	-10 88	10.92	22.25		9.19	8 07	10.33			6 10	1.10
	274	36 3	-10 82	10.14	21 7/			0.7/			0 60	6 42	
1	357	40 7	-20 80	10.12	21.74	,			0 / 2		7.07	0.42	
N	404	35	-16 76	8 90	10 17	,		8 08	7.42	7 30		3 05	
	404	115 4	-22 31	11 12	17.17			0.00	11 77	1.30		5.75	7 00
- N	437	48.8	-21 00	10 63	20 /5			0 27	11.55				6 21
	524	50.8	-21 01	10.05	20.45	0 71		9.21	0 02			6 1/	0.21
M	577	112.8	-22 51	11 20	27.10	10 71			7.02			0.14	6 QR
N	584	38.7	-21 76	10.80	22.30	10.71	0 35		0 10			6 31	0.70
	596	37 5	-20 00	10.07	20.23		8 87		7.10			0.51	6 04
N	636	37.1	-20.60	10.57	20.99		0.07		8.94				6.15
N	718	36.8	-20.33	10.32	21.39	1		7.83	0.74			5.49	0.15
N	720	34.6	-21.55	10.81	20.16	9.49			8.88			,	5.87
N	741	112.8	-22.72	11.28	23.48				9.43			7.21	
N	750	106.1	-21.96	10.98	21.13				10.55				6.85
N	777	104.2	-22.86	11.34	22.19								6.83
N	788	82.2	-21.57	10.82	22.21			10.09					
N	821	36.2	-20.90	10.55	21.10)			8.40			6,18	
N	890	83.1	-22.34	11.13	22.09	1			9.17				6.63
N	936	29.4	-21.15	10.65	20.58	9.00			,				5.78
N	1022	30.1	-20.73	10.48	21.51				9.01			6.51	2.10
N	1023	16.2	-20.96	10.58	20.50)		9.59			8.23		5.21
N	1052	29.4	-20.81	10.52	23.12			9.06			8.96	5.27	
N	1079	27.6	-19.98	10,18	21.26	1		9.83				5.58	
N	1169	51.3	-21.95	10.97	21.50			10.31				7.25	
N	1172	32.4	- 19.55	10.01	21.40		8.12		9.19				5.82
N	1175	112.3	-21.85	10.93	22.18				9.71				7.09
N	1199	53.0	-21,20	10.67	20.53				9.12				6.24
N	1201	32.6	-21.01	10.60	21.18		9.01		9.58				5 82
M	1209	51.3	-21.29	10.71	21.58				9.59				6 30
M	1275	108.2	-23.26	11.50	25.90					10.06		6 96	0.50
N	1201	13.8	-21.53	10.80	20.99			9.52				6 71	
N	1207	29.4	- 19.73	10.08	21.49				9.69			5.71	5.94
n u	1302	31.9	-21.14	10.65	21.09			9.53				6 58	2.74
ы Ц	1316	26.3 F	-22.78	11.30	24.74	10.03				8.95		7 00	
R L	1317	26 3 5	-20.06	10.22					9.49	8.98		A 7 A	
ы И	1326	26 3 5	-20 76	10.50	21.62			9.81		8.84		6 15	
ы	1772	27 5	-20 91	10.56	19,96	8.99		8.98		5.04		5 77	
ы	1770	24 0	- 19 53	10.00	20.92	5						5 05	
M N	1777	20 4	-20 27	10 30	19.70				9.42			5.75	5 47
N	1344	20.4	LUILI	.0.00									5.02

TABLE 2A Derivative Quantities

=	NAME	Dist.	Grp	Abs.	Lg L	6cm Con	tinuum	X F	₹ay	HI		H	 >	Dus	
			Mem	Bo	(Bo)	Lg Lum.	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL
		Mpc.		Mag.	Lo	watt	s/Hz	Mo	Mo	Mo	Mo	Mo	Mo	Mo	Mo
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	1350	26.3	F	-21.08	10.62		21.40		8.85	9.71				6.85	
N	1351	26.3	F	-19.45	9.97		19.92							5.60	
N	1357	39.0		-20.97	10.58		21.66			9.49				6.94	
N	1358	79.5		-21.55	10.81		22.28	9.58							
N	1366	23.6		-19.05	9.81						9.72			5.74	
N	1371	27.2		-20.67	10.46		20.95			9.99				6.35	
N	1374	26.3	F	-19.80	10.11		19.92								5.64
N	1379	26.3	F	-20.03	10.20		19.92								5.64
N	1380	26.3	F	-21.00	10.59	20.20		9.04			9.56			5.94	
N	1381	26.3	F	-19.76	10.10		19.92		8.42		9.49				5.64
N	1386	26.3	F	-21.02	10.60	21.40					9.49	9.00		5.99	
N	1387	26.3	F	-20.27	10.30		21.00		8.69					6.15	
N	1389	26.3	F	-19.71	10.08		19.92		8.35						5.68
N	1395	31.1		-21.28	10.70	20.36		9.29						5.88	
N	1399	26.3	F	-21.31	10.72	22.28		9.68			8.66			5.69	
N	1400	9.1		-17.72	9.28	19.30			6.82		8.36		8.06	5.25	
N	1404	26.3	F	-21.04	10.61		19.92	9.41						5.64	
N	1407	33.4		-21.69	10.87	21.77		9.63			8.89			5.36	
N	1411	16.5		-19.39	9.95		19.51							5.05	
N	1415	29.1		-20.52	10.40		21.40			9.19				6.48	
N	1426	26.7	_	-19.76	10.10		19.93								5.69
N	1427	26.3	F	-20.16	10.26	•	19.92							F 00	5.04
N	1439	31.2		- 19.89	10.15		21.15				• • •			5.88	
N	1440	28.7		- 19.04	10.05		21.29			0.77	9.02			0.39	
N	1452	ا ۵۵۰ ۲7 ک		- 19.70	10.10	22 11	21.0/			9.37	10 10			0.49	
N	1455	27 1		-21.05	10.93	22.11	21 7/				9 57			5 10	
N N	1521	80.8		-21 06	10 09	•	21.04				0.00			5.10	6 7/
N	1527	10.0		-10 78	10.70		21.71				0 2/				5 /2
N	1533	11 2		-18 60	0.10		20 48	7 28		0 41	7.24			5 04	J.42
N	1537	24 4		-20 37	10 34		20.40	1.20		7.41				5 60	
N	1543	17.4		- 19 77	10.54						0 31			6 05	
N	1549	20.6		-20.87	10.54		20.79				,131			0.05	5 42
N	1553	21.3		-21.28	10.70		20.81	9, 18			9.31			4 94	2.46
N	1574	16.4		-19.94	10.17	,	20.59	/1.0	8.21		/			4.41	
N	1596	26.0		-20.11	10.24		21.21			9,40					5.63
N	1600	92.0		-22.81	11.32	22.35		10.52			10.21				6.72
N	1617	15.6		-20.49	10.39						9.19			6.10	
N	1638	64.5		-21.41	10.76	,	22.00			9.89			9.20)	6.74
N	1700	75.5		-22.58	11.22		20.83				9.68				6.93
N	1726	79.0		-21.65	10.85		22.17							6.69	
N	1947	17.0		-19.40	9.95	20.79			7.97					5.97	
N	2179	51.0		-20.72	10.48		21.79			9.07				6.95	
N	2217	27.3		-21.12	10.64		21.03			9.64				6.48	
N	2300	42.7		-21.16	10.66	20.18		9.42			9.37				6.06
N	2310	18.9		-19.22	9.88	20.03					9.40				5.67
N	2314	80.9		-21.71	10.88	21.80			9.62		9.74		9.76	6.26	
N	2325	38.0		-21.12	10.64		21.32								6.32

TABLE 2A—Continued

1991ApJS...75..751R

=		Dist (inn Abs		600 000	tinum	Y	2av	н				Dus	+
			lem Bo	(Bo)	la lum.		La Mass	la UI	La Mass	la UI	La Mass	2 1 a 111	ia Mass	
		Mpc.	Mag.	Lo.	watt	s/Hz	Mo	Mo	Mo	Mo	Mo	Mo	Mo	Mo
	(1)	(2) ((3) (4)	-0 (5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	2434	22.5	- 19.69	10.07		20.86								5.56
N	2549	22.8	- 19.73	10.08		20.79				8.82				5.67
N	2639	65.4	-22.18	11.06	22.41					9.43		9.75	7.27	
N	2646	77.7	-21.60	10.83		21.86				9.89			6.47	
N	2655	31.4	-22.16	11.06	21.70				9.89			9.51	6.79	
N	2672	77.4	-21.93	10.96		22.03				8.95			6.84	
N	2681	15.3	-20.38	10.34		20.75				8.21		8.57	5.64	
N	2685	19.4	-19.58	10.02	20.17			8.04	9.46			8.57	5.80	
N	2693	98.3	-22.26	11.10	21.29			10.05		10.21			6.73	
N	2732	42.8	-20.44	10.37		21.34				9.67				6.06
N	· 2749	81.2	-21.52	10.80	22.50					9.10			6.81	
N	2768	29.1	-21.40	10.75	21.01					9.03			5.68	
N	2775	23.1	-20.72	10.48		20.81	8.72		8.70		9.51		7.04	
N	2781	35.6	-20.54	10.41		21.58			9.60				6.27	
N	2782	50.8	-22.03	11.00	22.23			9.67	9.76		10.67		6.77	
N	2784	8.7	-18.83	9.72		20.04				8.44				5.42
N	2787	16.6	- 19.44	9.97	20.47				8.99				4.71	
N	2798	34.7	- 19.76	10.10	21.75				9.38		9.64		6.62	
N	2811	45.2	-21.74	10.89						8.87			6.47	
N	2832	136.5	-23.29	11.51		22.39	10.97			9.94			7.06	
N	2844	29.6	-19.58	10.02		21.50			9.08				6.08	
N	2855	33.2	-20.82	10.52		21.90				9.22			6.29	
N	2859	33.0	-20.84	10.53		20.12		8.72	8.41				5.50	
N	2865	46.2	-21.23	10.68		20.41							5.23	
N	2880	33.4	-20.08	10.22		21.13				8.81			5.34	
N	2888	39.0	-19.80	10.11		21.34								6.84
N	2902	34.8	-19.46	9.98		21.56			9.54			9.60	6.30	
N	2907	36.7	- 19.99	10.19		21.61			9.29				5.95	
N	2911	59.5	-21.34	10.73	22.71			9.37	9.56				5.63	
N	2924	87.2	-21.59	10.83		22.04								7.13
N	2950	28.3	-20.50	10.39		20.28				8.53				5.80
N	2962	38.8	-20.23	10.28		21.26			9.09				5.69	
N	2974	33.6	-20.95	10.57	21.11		8.98		9.20			8.75	6.17	
N	2983	35.0	-20.34	10.33						9.07				5.88
N	2986	40.2	-21.18	10.66	21.81								6.18	
N	2992	41.2	-21.46	10.78	21.24				10.03		9.22		6.78	
N	3032	30.0	-20.10	10.23	20.60				8.44		9.07		5.97	
N	3056	15.4	-18.36	9.54										
N	3065	43.2	-20.37	10.34		21.35	9.01		9.54			8.98	5.53	
N	3078	44.5	-21.32	10.72	22.60		9.36			9.11				
N	3081	42.9	-20.66	10.46			9.12		9.89					
N	3087	47.5	-20.85	10.53	20.28									6.47
N	3091	72.5	-21.96	10.98		21.88								
N	3098	26.4	-19.26	9.90		21.10				7.95				5.87
N	3115	9.3	- 19.95	10.17		19.02		7.95		7.52				4.83
N	3136	29.0	-20.89	10.55		21.08								6.01
N	3156	22.3	- 18.74	9.69		20.77				7.93			5.04	
N	3158	139.4	-22.82	11.32	21.84					10.61				7.58

 TABLE 2A—Continued

782

 $\ensuremath{\mathbb{C}}$ American Astronomical Society $\ensuremath{\, \bullet \,}$ Provided by the NASA Astrophysics Data System

	NAME	Dist.	Grp	Abs.	Lg L	6cm Conti	านนุก	XR	ay	н і		Н,		Dus	t
			Mem	Bo	(Bo)	Lg Lum. Lg	g UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL
		Mpc.		Mag.	L _O	watts/	Ηz	M _O	M _O	M _O	M₀	M _O	M _O	M _O	M⊙
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	3166	23.2		-21.18	10.66	2	0.81		8.90	8.65		8.91		6.32	
N	3185	22.5		-19.13	9.84	2	0.96			8.61				5.73	
N	3190	24.2		-20.90	10.55	21.54				8.75				6.42	
N	3193	25.7		-20.22	10.28	2	0.90				7.99				6.22
N	3203	43.1		-20.52	10.40						10.08				6.46
N	3226	23.5		-19.56	10.02	2	1.00						8.42		
N	3245	26.0		-20.38	10.34	2	0.91				8.06		8.30	5.62	
N	3250	50.6		-21.73	10.88	2	0.49								6.41
N	3258	49.9		-21.01	10.60	22.19		9.32			8.80			6.10	
N	3268	50.7		-20.96	10.58	21.85									6.21
N	3271	70.0		-22.51	11.20	2	0.77		10.17					6.53	
N	3277	27.2		-19.86	10.14	2	1.12			8.77				5.86	
N	3281	62.3		-22.01	11.00				9.87		10.64			6.48	
N	3300	57.3		-20.50	10.39	2	1.77				8.75				6.36
N	3301	25.8		-19.82	10.12	2	1.08			8.90				4.97	
N	3309	75.8		-21.75	10.89	21.98									6.82
N	3348	59.8		-21.80	10.91	2	1.63				9.40				6.54
N	3358	52.6		-21.70	10.87									7.15	
N	3377	11.3		-19.17	9.86	1	9.18		7.50		6.91			4.02	
N	3379	15.9		-20.68	10.46	19.38			8.59		7.03		7.05		5.28
N	3384	12.0		-19.70	10.07	2	0.24		7.93		7.18			5.18	
N	3390	51.6		-20.66	10.46						10.38			6.73	
N	3412	14.9		-19.40	9.95	2	0.12				7.58				
N	3414	28.4		-20.53	10.40	2	0.89			8.28				4.93	
N	3449	60.6		-21.59	10.83					10.22				6.78	
N	3458	37.8		-19.74	10.09	2	1.23		8.50		9.08				5.95
N	3489	11.5		-19.17	9.86	1	9.20		7.59	7.27					
N	3516	55.3		-21.37	10.74	21.77					9.42			5.69	
N	3557	55.3		-22.48	11.18	22.99					9.09			5.88	
N	3571	67.6		-22.37	11.14	2	2.34			9.65					
N	3585	22.4		-20.94	10.57	1	9.78	8.65			9.23				5.50
N	3593	11.5		-19.52	10.00	21.03			7.71	8.43		9.11		5.99	
N	3605	11.9		-17.32	9.12	1	9.23	6.58			7.08				
N	3607	16.8		-20.05	10.21	20.12		8.24			7.48				
N	3608	22.1		-19.84	10.13	19.72		8.09			8.02				
N	3610	37.4		-21.32	10.72	20.92					8.90			5.96	
N	3611	29.4		-20.06	10.22	21.16				9.33			9.36	6.07	
N	3613	43.1		-21.52	10.80	20	0.35				9.60				6.06
N	3619	33.1		-20.58	10.42	2	1.12			9.11				6.19	
N	3623	13.8		-21.53	10.80	20	0.36			8.80			9.15	6.77	
N	3626	27.7		-20.78	10.50	20	0.96			9.08					
N	3630	27.1		-19.51	10.00	20).79				8.15				5.73
N	3637	32.8		-19.78	10.10	21	1.19			8.45				6.55	
N	3640	22.9		-20.54	10.41	20.80					7.82				5.51
N	3665	41.8		-21.36	10.74	22.17					9.93	9.26		6.83	
N	3706	54.5		-21.75	10.89	21.83					9.10				6.27
N	3783	45.7		-20.62	10.44					9.70				6.20	
N	3818	26.3		- 19.31	9.92	19	9.92		8.10		9.17				5.66

TABLE 2A—Continued

-															
N	IAME	Dist.	Grp	Abs.	Lg L	6cm Con	tinuum	XR	ау	ні		Н	2	Dus	t
			Mem	Bo	(Bo)	Lg Lum.	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL
		Мрс.		Mag.	L⊙	watts	s/Hz	M _O	M⊙	M⊙	M⊙	M _O	M⊙	M⊙	M⊙
	(1)	(2)	(3)	(4)	(5)	(6)	- (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	3872	62.2		-21.17	10.66		21.71				9.19			6.56	
N	3885	31.2		-20.14	10.25					9.62				6.26	
N	3892	30.6		-19.97	10.18		21.45				8.77			5.15	
N	3898	24.3		-20.97	10.58		21.15			9.62		9.00		6.50	
N	3900	35.3		-21.30	10.71		21.35			9.71				6.32	
N	3904	31.1		-20.63	10.44		20.06				8.79			5.12	
N	3923	28.1		-21.45	10.77	20.63		9.31			9.30				5.87
N	3941	19.1		-20.13	10.24		20.64			9.13					
N	3945	26.8		-20.65	10.45		19.93			8.82				5.94	
N	3957	28.4		-19.36	9.94		21.06				9.67			5.73	
N	3962	32.4		-20.94	10.57	20.67					9.05				6.34
N	3998	22.6		-20.27	10.30	21.75		9.12		8.89				5.00	
N	4008	73.1		-21.42	10.76	21.58					8.85				6.67
N	4024	28.7		-19.68	10.06		21.39							4.93	
N	4026	19.2		-19.95	10.17		19.95				8.10			5.37	
N	4033	28.1		-19.83	10.12		21.05								5.69
N	4036	30.2		-20.84	10.53	20.52			8.81		9.24			5.64	
N	4073	114.1		-22.55	11.21		22.19				9.55				7.20
N	4105	33.2		-20.85	10.53	20.69		8.91						5.50	
N	4106	39.2		-20.73	10.48		21.34							5.57	
N	4111	17.1		-19.41	9.96	20.02				8.90			7.91		
N	4124	21.9	v	-19.35	9.93		20.76	1			7.79			5.67	
N	4125	29.7		-21.60	10.83	20.50					9.18			5.49	
N	4128	49.4		-20.74	10.49	1	.21.47	,							6.18
N	4138	20.2		-20.08	10.22		20.69)		9.19		8.65			
N	4143	16.6		-19.03	9.80	21.10					8.72				
N	4150	4.7		-15.96	8.58		19.42				6.37		7.83	4.04	
N	4158	47.8		-21.05	10.61		21.61			9.68		9.51		6.49	
N	4168	21.9	V	-19.49	9.99	20.36		8.10						5.87	
N	4179	21.9		-19.86	10.14		20.66	1			8.21				5.48
N	4203	22.5		-20.14	10.25	20.95		8.89		9.51			8.24	5.68	
N	4215	39.1		-19.92	10.16		20.96	•	8.46	•	8.62				6.04
N	4220	20.5		-20.33	10.32		20.70				8.73			6.49	
N	4224	50.9		-21.49	10.79		21.49	1		9.46				6.84	
N	4233	21.9	v	-18.73	9.68		20.94		7.75		7.79			4.72	
N	4235	49.7		-21.48	10.78		21.47	,			9.29			5.55	
N	4245	17.6		-18.98	9.78		20.75		7.68	7.47				5.66	
N	4251	20.0		-19.89	10.15		19.68	1	8.02		7.77				5.40
N	4260	34.7		-20.40	10.35		21.33		8.76	8.93				6.12	
N	4261	41.7		-21.72	10.88	24.24		9.70							6.04
N	4262	21.9	۷	-19.32	9.92		20.46	,		8.97				4.52	
N	4267	21.9	۷	-19.92	10.16		20.76	1	8.17	•	7.96			5.88	
N	4270	44.7		-20.08	10.22		21.55				9.13				6.11
N	4274	18.2		-20.95	10.57	,	20.60)		8.86				6.46	
N	4278	12.7		-19.39	9.95	21.83				8.60			7.90	5.01	
N	4281	52.4		-21.34	10.73	21.42					8.67			6.30	
N	4283	21.3		-18.52	9.60	1	20.91								5.45
N	4291	37.9		-20.61	10.44		20.24	9.05							5.95

TABLE 2A—Continued

NAME Dist. Grp Abs. Lg L 6cm Continuum X Ray ΗI H₂ Dust Mem Во (Bo) Lg Lum. Lg UL Lg Mass Lg UL Lg Mass Lg UL Lg Mass Lg UL Lg Mass Lg UL M⊙ M_O м_о Mpc. Mag. Lo watts/Hz M_O Mo M_O M_O Mo (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (13) (11)(12) (14) (15) N 4293 21.9 V -21.34 10.73 20.94 8.05 9.15 5.77 N 4314 20.0 -20.16 10.26 20.86 8.72 9.00 5.84 N 4324 21.9 V -19.79 10.11 20.76 9.06 5.88 N 4339 21.9 V -19.38 9.94 20.76 8.09 5.64 N 4340 21.9 V -19.77 10.10 20.84 8.03 7.85 5.02 21.9 V 9.46 20.46 N 4342 -18.16 8.12 5.78 4346 -18.92 N 16.7 9.76 20.52 8.44 4350 21.9 V -19.82 10.12 7.91 5.22 N 20.60 8.03 4365 21.9 V -21.10 10.63 19.76 5.86 N 8.82 7.48 -19.96 5.72 N 4371 21.9 V 10.18 20.76 7.91 N 4373 62.6 -22.12 11.04 21.78 6.71 N 4374 21.9 V -21.47 10.78 23.22 5.06 9.41 N 4377 21.9 V -19.03 9.80 20.76 7.96 5.23 N 4378 48.6 -21.15 10.65 21.45 9.20 9.86 6.92 4379 N 21.9 V -19.40 9.95 20.76 8.01 5.62 N 4382 21.9 V -21.60 10.83 19.76 9.20 7.79 5.48 N 4386 36.7 -20.29 10.31 21.21 8.59 9.15 5.92 4406 21.9 V -21.68 10.86 19.76 N 9.73 8.17 7.87 4.70 4417 21.9 V -19.63 10.04 20.54 7.91 N 8.36 5.60 4419 21.9 V -20.58 10.36 8.40 6.38 N 21.29 9.69 4424 21.9 V -20.20 10.27 8.61 5.78 N 20.46 8.11 8.68 4425 21.9 V -18.91 9.76 20.24 7.85 5.74 N 20.60 4429 21.9 V -20.55 10.41 7.96 5.96 N 8.55 8.12 -19.98 10.18 7.85 7.87 N 4435 21.9 V 20.54 8.42 5.67 21.9 V -20.39 10.35 7.91 5.52 N 4442 20.76 N 4448 13.7 -19.63 10.04 20.35 5.65 N 4452 21.9 V -18.40 9.55 20.76 7.91 9.09 5.50 N 4454 45.4 -20.29 10.31 21.87 9.12 6.27 4459 21.9 V -20.21 10.28 5.74 N 20.14 8.45 8.12 8.82 N 4461 21.9 V -19.61 10.04 20.76 8.18 7.91 5.48 N 4472 21.9 V -22.38 11.14 21.76 10.21 7.18 7.32 5.55 4473 21.9 V -20.63 10.44 7.79 5.55 N 19.76 8.62 -19.00 7.81 5.48 N 4474 21.9 V 9.79 20.76 8.09 9.64 4476 -18.62 7.96 5.38 21.9 V 19.76 7.73 N 4477 21.9 V -20.46 10.38 19.76 8.64 7.85 5.17 N N 4478 21.9 V -19.55 10.01 20.06 8.25 8.33 5.48 4483 21.9 V -18.29 9.51 7.91 5.74 N 20.76 4486 21.9 V -22.08 11.02 N 24.62 8.39 4.11 5.92 4494 26.6 -21.38 10.74 19.93 7.88 N N 4503 21.9 V -19.48 9.98 20.76 7.89 7.85 8.42 5.80 N 4526 21.9 V -21.11 10.64 20.76 8.69 7.71 8.85 6.83 4546 17.9 -19.96 10.18 5.04 N 20.36 8.41 4550 21.9 V -19.37 9.94 7.92 8.18 5.48 N 19.76 N 4552 21.9 V -20.90 10.55 8.99 7.71 8.99 4.99 21.79 N 4564 21.9 V -19.83 10.12 19.76 8.15 7.61 8.44 5.80 4570 21.9 V -20.02 10.20 20.76 7.85 5.56 N 4578 21.9 V -19.66 10.06 20.76 8.14 7.61 5.56 N 4586 21.9 V -20.17 10.26 20.76 8.64 9.61 6.33 N

 TABLE 2A—Continued

© American Astronomical Society • Provided by the NASA Astrophysics Data System

-		Dist Cor	Abc		6cm Continue	v r	221/					Due	+
ſ		Men	Bo	(Bo)	La Lum. La UI	Lg Mass	La UL	Lq Mass	La UL	Lg Mass	e La UL	Lg Mass	La UL
		Mpc.	Maq.	L_	watts/Hz	M	M_	_g	0	M	0L	M_	-, UC
	(1)	(2) (3)	(4)	(5)	(6) (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	4589	43.3	-21.37	10.74	21.72	9.20			9.38			5.65	
N	4596	21.9 V	-20.25	10.29	20.76				8.01		8.42	4.73	
N	4608	21.9 V	-19.65	10.05	20.36				7.96				5.48
N	4612	21.9 V	-19.66	10.06	20.76				7.91				5.48
N	4621	21.9 V	-21.03	10.60	19.76	8.76			8.01		8.32		5.49
N	4623	21.9 V	-18.61	9.64	20.06				8.18				5.60
N	4636	16.5	-20.59	10.43	21.17	9.17			7.76		9.18		5.51
N	4638	21.9 V	- 19.65	10.05	20.76		8.07		7.96				5.48
N	4643	24.7	-20.41	10.36	19.86	8.53		8.39				5.67	
N	4645	47.2	-20.81	10.52	21.51		8.89					6.62	
N	4649	21.9 V	-21.87	10.94	21.14	9.80			8.21	8.17		5.58	
N	4660	21.9 V	-19.83	10.12	19.76	,			7.61				5.52
N	4665	13.6	- 19.24	9.89	19.35	7.66			8.50				5.06
N	4684	29.2	-20.06	10.22	21.26				9.08		8.40	5.36	
N	4696	56.2	-22.39	11.15	23.69				9.15			6.89	
N	4697	21.4	-21.54	10.81	19.74	9.14			9.19			5.17	
N	4698	21.9 V	-20.55	10.41	20.76		8.49	9.75			8.85	6.36	
N	4710	21.9 V	- 19.85	10.13	20.70			7.83		9.02		6.23	
N	4742	22.3	- 19.63	10.04	19.77	,						5.13	
N	4753	23.4	-21.00	10.59	19.82	8.73			9.27		8.80	6.31	
N	4754	21.9 V	-20.29	10.31	20.24		8.35		7.96				5.58
N	4756	79.9	-21.23	10.68		9.70							6.83
N	4760	89.8	-21.73	10.88	23.65								6.70
N	4762	21.9 V	-20.44	10.37	20.24	8.44			7.79				5.48
N	4767	55.3	-21.26	10.70	20.56								6.28
N	4772	18.7	- 19.78	10.10	20.80			9.09					
N	4782	75.9	-21.65	10.85	24.24	9,88							7.11
N	4783	89.0	-21.95	10.97	,								7.29
N	4786	90.2	-21.96	10.98	22.07	,						6.25	
N	4795	54.6	-21.02	10.60	21.55	i		9.65					6.36
	4825	85.8	-21 79	10 91	22 34			,	10.03				6.85
N N	4845	22.6	-20 70	10.21	21 23	8 62			8 43	9 21		6 60	
	4856	24.4	-20.59	10.47	20.85	0.02		8.95	0.45	<i>,.</i>		0.00	5.81
N N	4050	21 Q V	-21 11	10.45	20.74			9 20			8 85	6.05	2.01
м м	4000	21 Q V	- 10 13	0.04	10 74		786	,	7 48		0.05	0.05	5 68
N	4000	130 1	- 23 00	11 30	21 31	•	1.00		0 77				7 02
N	4007	0/ 3	-22 57	11 22	21.51				0 / 2				6 74
N	4015	60 5	-21 07	10 60	21 72	, ,			7.46				6 47
N	/.033	62 0	-20.78	10.00		•		9 62				6 38	0.47
м м	4733	50 4	-20.70	10.50	22 15			7.02				6 50	
	4750	21 9	-21.00	10.00	22.13			9 77				0.39	5 47
N N	4930	21.0	-20.21	10.20	20.70			0.31					دن. ر ۲ ۲ ۲
N	47/0	22 0	-21.27	10.71	20.90	,		9 /.4				5 00	0.23
N	4704 5011	22.U	-20.01	10.44	20.10			0.40				3.99	6 27
N	5017	JO.U	-21.00	10.00	20.00	, ,							4 34
N	5017	41.1 5/ 4	-20.20	11.01	22.13)		0 17				5 07	0.20
N	5010	50.0	-22.04	10.04	20.37			7.13	0 00			7.23	6 21
N	5044	27 4	-21.00	10.00	21.7/				7.00				6.21
N	2001	31.1	-21.39	10.83	21.30	,							0.04

TABLE 2A—Continued

=														
N	AME	Dist.	Grp	Abs.	Lg L	6cm Continuum		₹ay La !"	HI La Mono		H La Massa	2	Dus	t
		Mino	mem	BO Mag	(80)	Ly LUM. Ly UL	Lg Mass ∎	LY UL		Lg UL M	∟g mass ∎		∟y mass ∎	LG UL
	(1)	mpc. (2)	(٦)	mag. (4)	LO (2)	walts/HZ (6) (7)	™⊙ (8)	™⊙ (9)	™⊙ (10)	"⊙ (11\	™⊙ (12)	™⊙ (13\	™⊙ (14)	™⊙ (15)
M	5064	55 0	(3)	-22 31	11 12		(0)	(7)	10 10	(11)	(12)	(13)	7.20	(1)
N	5077	52.5		-21 08	10 62	22 47	9 23		10.19	9.09			1.20	
N	5084	31 4		-20.53	10.02	21 60	8.93		10.29	//		8.74	6.55	
N	5087	33.3		-20.68	10.46	21.20	1					8.71	6.01	
N	5090	62.7		-21.63	10.84	23.88				9.15		••••	••••	7.09
N	5101	33.6		-21.15	10.65	21.13		9.01	9.97				7.29	
N	5102	6.3	С	-18.53	9.60	18.68	}	7.05	8.83			7.37	4.53	
N	5121	26.5		- 19.90	10.15								5.55	
N	5128	6.3	С	-22.40	11.15	23.78	9.53				8.79		6.69	
N	5193	69.0		-21.45	10.77	20.76	6						6.04	
N	5195	13.3		-20.12	10.24	20.10	8.16				8.89			5.80
N	5198	53.5		-20.74	10.49	21.53	5							6.25
N	52 6 6	59.7		-22.03	11.00	21.71	l		10.23				6.76	
N	5273	23.2		-19.41	9.96	20.81	l			8.17			5.04	
N	5308	44.0		-21.02	10.60	21.36	5			9.91				6.08
N	5322	39.3		-22.06	11.02	21.80		9.46		8.99			5.52	
N	5326	54.3		-20.73	10.48	21.85	;			9.27				
N	5328	90.1		-21.99	10.99	22.07	,							6.70
N	5353	45.1		-21.22	10.68	21.93	9.35		9.93				6.30	
N	5357	96.1		-21.84	10.93								6.33	
N	5363	21.9		-20.64	10.45	21.74	8.72		8.33		8.76		5.88	
N	5365	45.9		-21.41	10.76	•								6.25
N	5377	37.5		-21.61	10.84	21.23	5		9.50				6.51	
N	5380	65.2		-21.32	10.72	22.18	3			9.10				6.79
N	5419	79.0		-22.29	11.11	23.46								6.59
N	5422	40.4		-20.32	10.32	21.29)			8.92			6.15	
N	5444	81.5		-22.05	11.01	23.17				9.05				6.87
N	5448	42.5		-21.79	10.91	21.33	5		10.03				6.68	
N	5473	43.5		-20.83	10.52	21.36	5			9.30			5.58	
N	5485	42.8		-20.72	10.48	20.30		8.90		9.29			6.43	
N	5493	51.1		-21.24	10.69	21.89)		9.69)				6.28
N	5548	104.4		-22.19	11.07	22.51	l		9.31				6.51	
N	5557	67.1		-22.12	11.04	20.73	5			9.16				6.45
N	5566	30.8		-22.09	11.03	21.06	5 9.43		9.34				6.88	
N	5574	31.0		-19.21	9,88	21.24	•	8.09		8.21				6.53
N	5576	30.5		-20.66	10.46	20.05	5	8.79		7.90				6.25
N	5614	79.3		-22.48	11.18	21.88	3		9.79)			7.66	
N	5631	42.3		-20.67	10.46	21.33	5		9.51			9.68	6.12	
N	5638	32.5		-20.36	10.34	20.10)						6.04	
N	5687	45.7	•	-20.70	10.47	21.40)			9.25				6.12
N	5689	46.2		-20.88	10.54	21.41	l	9.02	9.15				6.20	
N	5701	30.0		-20.59	10.43	21.21	1		9.96)		9.07	6.41	
N	5739	114.2		-22.49	11.19	22.19	2		10.39)			6.66	
N	5750	38.1		-21.12	10.64	21.72	2		9.25				6.48	
N	5791	64.6		-21.29	10.71	21.78	3			8.90				6.64
N	5796	57.4		-21.23	10.68	22.78	_		9.38					6.31
N	5812	40.5		-20.77	10.50	21.37	r			9.14				6.01
N	5813	39.2		-21.40	10.75	20.50				8.36	•			6.02

TABLE 2A—Continued

-		Dist	Grn	Abs		6cm Cont	tinuum	Y R	av	HI		н		Dus	+
		0150.	Mem	Bo	(Bo)	La Lum.	La UL	Lg Mass	La UL	Lq Mass	La UL	Lq Mass	2 La UL I	Lg Mass	La UL
		Mpc.		Mag.	Lo	watte	s/Hz	Mo	Mo	Mo	Mo	Mo	Mo	Mo	Mo
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	5820	68.2		-21.18	10.66		21.75			9.87			8.82	6.15	
N	5831	33.6		-20.17	10.26		20.13				8.28				
N	5838	27.2		-20.45	10.37	21.03		8.59			8.37			5.39	
N	5846	34.2		-21.54	10.81	21.05		9.82			7.70		7.89		6.01
N	5854	33.5		-20.03	10.20		21.30			8.02					6.16
N	5864	37.2		-20.26	10.30		21.40				8.25			6.09	
N	5866	17.1		-20.30	10.31	20.66			8.35		8.57	8.89		6.39	
N	5898	43.6		-20.79	10.51		20.66		9.07		8.68				6.07
N	5903	48.5		-21.08	10.62	21 .8 6				9.79					6.31
N	5982	62.8		-21.96	10.98		20.67		9.78					6.53	
N	6340	29.5		-21.06	10.62		21.02			9.47			8.96		
N	6482	82.6		-22.69	11.27	22.03					9.24				7.21
N	6684	14.6		-19.98	10.18		20.49				9.00				5.19
N	6721	86.3		-21.75	10.89		22.03								6.81
N	6758	68.0		-21.73	10.88	22.19								5.84	
N	6776	108.0		-22.41	11.16		22.22							6.26	
N	6851	59.9		-21.40	10.75		21.71							5.86	
N	6854	112.1		-22.09	11.03		22.26								7.08
N	6861	55.6		-21.78	10.90	21.87								6.78	
N	6868	56.3		-22.03	11.00	22.67					9.15			6.36	
N	6875	61.9		-21.30	10.71		21.74							6.63	
N	6876	73.8		-21.89	10.95		21.89	9.96						6.78	
N	6893	62.0		-21.52	10.80									7.10	
N	6902	55.4		-21.45	10.77					10.51				7.21	
N	6909	53.7		-20.97	10.58		21.62								6.50
N	6935	91.5		-22.40	11.15									7.60	
N	6942	77.9		-21.44	10.77										
N	6958	53.4		-21.51	10.80	21.96					9.08			6.06	
N	7007	58.0		-20.90	10.55		21.68							5.59	
N	7014	94.7		-21.60	10.83		22.11								6.79
N	7020	59.8		-21.47	10.78						10.37				6.35
N	7029	54.0		-21.13	10.64		21.62							5.18	
N	7041	36.8		-20.84	10.53		21.29				9.95			6.19	
N	7049	42.4		-21.56	10.82	21.88								6.22	
N	7079	53.1		-21.14	10.65		20.53							5.30	
N	7096	56.9		-21.25	10.69						10.47			7.00	
N	7097	48.0		-20.93	10.56	21.68								5.86	
N	7135	55.0		-21.09	10.63	21.16					10.15			5.90	
N	7144	37.1		-21.10	10.63		21.30							6.02	
N	7145	36.7		-20.69	10.47		21.29								6.05
N	7155	36.2		-20.00	10.19										5.93
N	7166	49.4		-20.76	10.50	20.24								5.56	
N	7168	53.8		-20.84	10.53		21.62								6.26
N	7192	55.7		-21.58	10.82		21.65							6.34	
N	7196	56.1		-21.28	10.70		21.66							6.38	
N	7213	34.7		-21.98	10.98	22.52				9.88		9.77		6.69	
N	7302	54.3		-20.46	10.38		21.63			9.44					6.69
N	7332	29.3		-20.75	10.49		21.01		8.81		8.46		9.21	4.71	

TABLE 2A—Continued

	AME	Dist.	Grp	Abs.	Lg L	6cm Con	tinuum	XI	Ray	н	I	н	2	Dus	t
			Mem	Во	(Bo)	Lg Lum.	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL	Lg Mass	Lg UL
		Mpc.		Mag.	LO	watt	s/Hz	M _O	Mo	M _O	M⊙				
_	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
N	7371	56.4		-21.18	10.66		21.98			10.15		9.49			
N	7377	67.5		-21.54	10.81		21.82				10.16			6.68	
N	7410	32.7		-22.28	11.10		21.19				9.68			6.25	
N	7457	21.8		-20.01	10.20		20.76				8.30				5.80
N	7507	31.6		-21.07	10.62		20.08				8.60				6.03
N	7585	70.1		-21.84	10.93		20.77				10.27			6.60	
N	7600	71.5		-21.28	10.70		22.09				9.66				6.50
N	7619	79.1		-22.32	11.12	21.76)	10.26			9.16			7.01	
N	7626	72.3		-22.13	11.04	23.16	b	9.95			8.89				6.66
N	7702	61.1		-21.66	10.86		21.73							6.29	
N	7727	38.6		-21.93	10.96		21.25			9.09					
N	7742	37.0		-20.85	10.53	21.21				9.63		9.37		6.36	
N	7743	37.0		-20.80	10.51		21.39			9.04				6.32	
N	7744	61.2		-21.58	10.82										6.38
N	7785	79.9		-21.84	10.93	21.43	5				9.17	•			6.64
N	7796	63.0		-21.68	10.86		21.76								6.44
I	1459	33.4		-21.66	10.86	23.13	5	9.56			9.14			5.43	
I	2006	23.8		-19.61	10.04		19.83			8.60				4.67	
I	2035	26.2		-19.96	10.18		19.91							4.51	
I	3370	53.8		-21.74	10.89	21.35	i							6.56	
I	3896	40.6		-20.67	10.46		21.37								6.49
I	4296	71.4		-22.84	11.33	23.99)	10.41							6.50
I	4329	87.0		-22.22	11.08	20.74	•							5.90	
I	4797	50.4		-21.43	10.76		21.56								6.38
I	4889	48.8		-21.38	10.74		21.53							6.40	
I	5063	66.4		-20.97	10.58	23.36	5		9.30	10.00				5.92	
I	5105	108.8		-22.57	11.22	21.72	2								6.91
I	5135	97.5		-22.31	11.12						10.57	•		7.60	
I	5181	39.2		-20.61	10.44		21.66				9.89	1		5.51	
I	5240	33.9		-20.98	10.58					9.53				6.57	
I	5267	34.0		-21.54	10.81		21.62			10.20				7.22	
I	5269	42.7		-19.58	10.02	20.83	5		8.38	9.89					6.24
I	5328	61.5		-21.99	10.99		21.74							6.77	
A	185254	51.6		-21.12	10.64										6.70
A	20 20 44	57.7		-21.25	10.69		21.68				10.33			6.44	

TABLE 2A—Continued

1991ApJS...75..751R

=								1 =							
N	AME	6cm flux	Er/Lm	Lg X	Lg U.L.	Ĺġ	Lg	N	IAME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg
		Obs/Drv		Lum	XLum.	(M)	(M) /L			Obs/Drv		Lum	X Lum.	(M)	(M)/L
		mjy	mjy	watts	watts	™⊙	solar			mjy	mjy	watts	watts	M⊙	solar
_	(1)	(16)	(17)	(18)	(19)	(20)	(21)	-	(1)	(16)	(17)	(18)	(19)	(20)	(21)
N	16		15.0			11.2	0.5	N	1350		30.0		33.22		
N	128	40.0	12.0		34.32			N	1351		1.0			10.5	0.5
N	147	12.0						N	1357		25.0			10.7	0.1
N	148							N	1358		25.0	34.21		11.5	0.5
N	185		10.0			. .		N	1300						
N	205		1.0		30.31	9.6	1.2	N	13/1		10.0				
N	221		1.0	30.42	7/77	9.1	0.8		1274		1.0			10.8	0.7
N	221		12.0		34.31	11.7	0.8		1700	1.0	0.0	77 47		10.5	0.3
N	204		75 0				• •	N	1701	1.9	1.0	33.0/	77 /4	11.4	0.8
N	214		35.0			10.1	0.0	N N	1794	70.0	7.0		33.01	10.9	0.0
N	357		25.0			• •	0.7		1797	30.0	12 0		77 44	11.0	0.4
N	404		10.0			y.2	0.5		1307		1 0		77 51		
Ni Ni	437		1 0			11 4	1 0		1307	2.0	0.2	33 00	33.31	11 7	0.4
N	52/	. 1	0.8	7/ 11		11.0	0.4		1300	230 0	0.2	36.66		11.5	0.0
N	577	13 0	0.0	75 55		12 1	0.0		1400	20.0	0 1	J4.04	72 77	10 4	1 7
N	58/	13.0	1 0		77 54	12.1	0.9		1400	2.0	1 0	3/ 35	52.51	11 0	0.4
м	504		1.0		33.30	11.4	0.5		1407	44 O	4.0	34.33		11 3	0.4
N	636	6.0	1.0			10.0	0.5		1411	44.0	1.0	54.17		11.5	0.4
n N	718	0.0	15 0			10.9	0.5	N	1415		25 0				
ы	720		1 0	34 04		11 4	0.5	N	1426		1.0			10 7	0.6
N	741	200 0		34.04		12 0	0.7	N	1427		1.0			10.8	0.5
N	750	200.0	1.0			11 3	0.7	N	1439		12.0			10.9	0.8
N	777	12.0				12.1	0.8	N	1440		20.0				
N	788		20.0				••••	N	1452		30.0				
N	821		8.0			11.3	0.8	N	1453	18.0	3.0			11.7	0.8
N	890		15.0			11.6	0.5	N	1461		25.0			11.1	1.2
N	936	3.7	0.2	33.43		11.3	0.7	N	1521		12.0			11.6	0.6
N	1022		30.0					N	1527						
N	1023		10.0			11.4	0.8	N	1533		20.0	32.45			
N	1052	1270.0	40.0	33.76		11.1	0.6	N	1537					10.9	0.6
N	107 9		20.0					N	1543						
N	1169		10.0					N	1549		12.0			11.0	0.5
N	1172		20.0		33.22	10.4	0.4	N	1553		12.0	33.67			
N	1175		10.0			11.7	0.8	N	1574		12.0		33.02		
N	1199		1.0			11.2	0.5	N	1596		20.0				
N	1201		12.0		33.57	11.1	0.5	N	1600	22.0	3.0	34.88		11.9	0.6
N	1209		12.0			11.5	0.8	N	1617						
N	1275	56700.0						N	1638		20.0				
N	1291	43.0) N	1700		1.0			11.6	0.4
N	1297		30.0) N	1726		20.0			11.3	0.5
N	1302		10.0					N	1947	18.0	3.0		33.07		
N	1316	65800.0		33.94		11.6	0.3	N	2179		20.0				
N	1317							N	2217		12.0			11.4	0.8
N	1326		50.0					N	2300	0.7	0.1	34.25		11.5	0.8
N	1332		1.0	33.63		11.6	1.0	N	2310	2.5					
N	1339		12.0			10.7	0.7	N	2314	8.0	0.2		34.13	11.7	0.8
N	1344		1.0			11.0	0.7	I N	2325		12.0			10.7	0.1

TABLE 2B

790

=								1 =							
Þ	IAME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg		IAME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg
		Obs/Drv		Lum	X Lum.	(M)	(M) /L			Obs/Drv		Lum	X Lum.	(M)	(M)/L
		mjy	mjy	watts	watts	M⊙	solar			mjy	mjy	watts	watts	M⊙	solar
_	(1)	(16)	(17)	(18)	(19)	(20)	(21)		(1)	(16)	(17)	(18)	(19)	(20)	(21)
N	2434		12.0			10.9	0.8	N	3166		10.0		33.21	10.7	0.0
N	2549		10.0			11.0	0.9	N	3185		15.0				
N	2639	50.0	9.0			11.2	0.1	N	3190	50.0	16.0			11.2	0.6
N	2646		10.0			11.4	0.6	N	3193		10.0			10.9	0.6
N	2655	42.0	3.0			11.1	0.0	N	3203						
N	2672		15.0			11.7	0.7	N	3226		15.0			11.0	1.0
N	2681		20.0			10.4	0.1	N	3245		10.0			11.2	0.9
N	2685	3.3	0.2		33.04	10.6	0.6	N	3250		1.0			11.6	0.7
N	2693	1.7	0.1		34.45	12.0	0.9	N	3258	52.0	5.0	34.20		11.4	0.8
N	2732		10.0			11.0	0.6	N	3268	23.0				11.3	0.7
N	2749	40.0				11.6	0.8	N	3271		1.0		34.45		
N	2768	10.0				11.4	0.7	N	3277		15.0			10.9	0.8
N	2775		10.0	33.29		11.0	0.5	N	3281				34.34		
N	2781		25.0					N	3300		15.0				
N	2782	55.0			33.93			N	3301		15.0				
N	2784		12.0			10.9	1.2	N	3309	14.0	3.0				
N	2787	9.0				10.9	0.9	N	3348		10.0			11.4	0.5
N	2798	39.0						N	3358						
N	2811							N	35//		1.0		32.33	10.6	0.7
N	2832		11.0	35.32		12.2	0.7	N	33/9	0.8	0.1		33.08	11.1	0.6
N	2844		30.0			10.4	0.4	N	3384		10.0		32.70	10.9	0.8
N	2855		60.0			11.2	0.7	N	2745		F 0				• •
N	2859		1.0		33.17	11.2	0.7		3412		5.0			10.5	0.4
N	2865		1.0			11.0	0.3		3414		8.0			11.5	0.9
N	2860		10.0			10.8	0.6		3447		40.0		77 70		
N	2000		12.0			9.9	-0.2		3420		10.0		33.19	40 F	• •
N	2902		25.0						7514	14 0	1.0	75 10	32.32	10.5	0.0
N	2907	120.0	25.0		77 09				2557	270.0	2.0	32.10			• •
N	2911	120.0	12.0		33.90				7571	210.0	(0.0			11.0	0.4
NE .	2924		12.0			44 0	• •		7595		40.0	72 07		11 0	• /
N	2930		10.0			11.0	0.6		3503	67 0	17.0	32.73	77 /7	10 1	0.4
N N	2902	0.4	10.0	77 40		41 3	0.4		3605	07.0	1 0	72 28	J2.42	0.1	0.7
N	2097	9.0	0.2	33.00		11.2	0.8	N N	3607	20	0 1	32.20		11 1	0.7
N	2703	77 0	7.0			11 /	07		3608	0.0	0.1	32.96		11 0	0.7
	2900	9.5	5.0			11.4	0.7		3610	5.0	0.1	52.00		11.0	0.7
н ы	2772	2.5	07						3611	14 0	3 0				0.4
N	3054	2.1	0.7						3613	14.0	1 0			11 /	0.4
	3065		10.0	3/ 21		10 0	0.4		3610		10 0			11.4	0.0
N	3005	167 0	5.0	34.21		10.9	0.6		3623		10.0			11 1	0 7
n M	3070	107.0	5.0	34.00		11.2	0.5		3625		10.0				0.5
N N	3087	07		34.14		11 7	0.0		3620		7 0				
N N	3001	0.7	12 0			11.3	0.0		3630		12 0				
n N	20091		15 0			10.7	0.7		36/.0	۸ ۵	12.0			11 1	07
N	JU70		1.0		32 /0	10.4	1 0		3645	70 0				11 7	0.1
M M	3175		12 0		JC.47	11.2	0.5	N	3706	10 0				11 6	0.0
NE N	3156		10.0			10 5	0.9		3783						5.7
N	2159	20	10.0			12.2	0.0		3818		1 0		33 40	10 0	1 0
n	2120	5.0				16.6	v.7						22.40		

TABLE 2B—Continued

791

TABLE 2B—Continued

=								1 =							
N	IAME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg	1	NAME	6cm flux	Er/LM	LGX	Lg U.L.	Lg	Lg
		Obs/Drv		Lum	X Lum.	{M}	(M)/L			Obs/Drv		Lum	X Lum.	(M)	(M)/L
		mjy	mjy	watts	watts	™⊙	solar			mjy	mjy	watts	watts	Mo	solar
_	(1)	(16)	(17)	(18)	(19)	(20)	(21)	_	(1)	(16)	(17)	(18)	(19)	(20)	(21)
N	3872		11.0			11.5	0.8	N	4293	15.0					
N	3885							N	4314		15.0				
N	3892		25.0					N	4324		10.0			10.1	0.0
N	3898		20.0			11.2	0.6	N	4339		10.0			10.5	0.6
N	3900		15.0			10.8	0.1	N	4340	12.0		32.82		10.6	0.5
N	3904		1.0			11.0	0.6	N	4342	5.0				10.8	1.3
N	3923	4.5	1.0	33.77		11.2	0.4	N	4346		10.0				
N	3941		10.0					N	4350		7.0		32.78	10.9	0.8
N	3945		1.0			11.1	0.7	N	4365		1.0	33.13		11.5	0.9
N	3957		12.0					N	4371		10.0			10.7	0.5
N	3962	3.7				11.2	0.6	N	4373	12.7				11.6	0.6
N	3998	92.0		34.52		11.4	1.1	N	4374	2880.0	240.0	33.95		11.5	0.7
N	4008	6.0	1.5			11.4	0.6	N	4377		10.0			10.4	0.6
N	4024		25.0			10.7	0.6	N	4378		10.0	33.84		11.3	0.7
N	4026		2.0			11.1	0.9	N	4379		10.0			9.9	0.0
N	4033		12.0			10.6	0.5	N N	4382		1.0	33.40		11.3	0.5
N	4036	3.0			33.35	11.2	0.7	N	4386		10.0		33.44	11.1	0.8
N	4073		10.0			11.8	0.6	N	4406		1.0	34.40		11.6	0.7
N	4105	3.7	0.1	33.55		11.2	0.7	N	4417		6.0		33.62	10.3	0.3
N	4106	1	12.0					N	4419	34.0	10.0				
N	4111	3.0				10.7	0.7	N	4424		5.0		32.58		
N	4124		10.0					N	4425		3.0				
N	4125	3.0				11.4	0.6	N	4429		7.0	33.12		11.1	0.7
N	4128		10.0			11.3	0.8	N	4435		6.0		33.40	10.8	0.6
N	4138	1	10.0					N	4442		10.0			11.2	0.8
N	4143	38.0	11.0					N N	4448		10.0			10.8	0.8
N	4150)	10.0					N	4452		10.0				
N	4158		15.0					N	4454		30.0				
N	4168	4.0		33.23		10.8	0.8	N	4459	2.4	0.8	33.23		10.9	0.6
N	4179	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.0	55125		10.9	0.8	N	4461		10.0		33.26	10.9	0.9
	4203	14 6	0.2	36 17		10.0	0.0	N	4472	101.0	22.0	34.68		11.8	0.7
	4205	14.0	5 0	54.17	77 57	10.7	0.7	N	4473		1.0		33.18	11.1	0.7
л И	4213		10 0		55.55				4474		10.0		33, 12		••••
n M	4220		10.0						4476		1 0		33 33	0 4	-0.2
	4264	•	15.0		77 74				4410		1.0	33 37		11 1	0.7
N	4233		10.0		33.20				4411		2.0	55.51	33 /7	10 5	0.7
N	4233	r r	10.0		70.00				4470		10.0		33.47	10.5	0.5
N	4243	ſ	15.0		32.88				4405	71000 0	10.0			11 0	
N	4251		1.0		32.08				4400	1900.0				11.0	0.0
N	4260		15.0	-	33.6/				4494	1.0			70.00	11.1	0.4
N	4261	8300.0		34.28		11.8	0.9	N	4505		10.0		32.82	10.0	0.0
N	4262		5.0			10.7	0.8	N	4526		10.0		32.85	11.6	1.0
N	4267		10.0		32.95	10.8	0.6	N	4546	6.0					
N	4270		15.0					N	4550		1.0		32.98	10.3	0.4
N	4274	,	10.0			10.9	0.3	N	4552	108.0	2.0	33.66		11.4	0.8
N	4278	351.0				11.0	1.1	N	4564		1.0		33.02	10.8	0.7
N	4281	8.0				11.6	0.9	N	4570		10.0			11.0	0.8
N	4283	5	15.0			10.1	0.5	N	4578		10.0		33.14	10.8	0.7
N	4291		1.0	34.05		11.4	1.0	I N	4586		10.0				

_						17									
ī	AME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg		AME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg
		Obs/Drv		Lum	X Lum.	(M)	(M)/L			0bs/Drv		Lum	X Lum.	(M)	(M}/L
		mjy	mjy	watts	watts	Mo	solar			mjy	mjy	watts	watts	M₀	solar
	(1)	(16)	(17)	(18)	(19)	(20)	(21)		(1)	(16)	(17)	(18)	(19)	(20)	(21)
N	4589	23.5	0.6	33.63		11.4	0.7	N	5064						
N	4596		10.0			10.8	0.5	N	5077	90.0	3.0	33.97		11.4	0.8
N	4608		4.0			10.8	0.8	N	50 8 4	34.0	3.0	33.91		11.4	1.0
N	4612		10.0					N	5087		12.0				
N	4621		1.0	33.08		11.3	0.7	N	5090	1630.0	40.0			11.6	0.8
N	4623	2.0						N	5101		10.0		33.46		
N	4636	45.0	9.0	34.31		11.2	0.8	N	5102		1.0		32.06	10.5	0.9
N	4638		10.0		33.01	10.6	0.5	N	5121						
N	4643		1.0	33.20				N	5128	126000.0		33.30		10.9	-0.3
N	4645		12.0		33.53	11.0	0.5	N	5193		1.0				
N	4649	24.0	2.0	34.34		11.8	0.9	N	5195	6.0		32.74		10.8	0.6
N	4660		1.0			10.9	0.8	N	5198		10.0			11.2	0.7
N	4665		1.0	32.58				N	5266		12.0			11.3	0.3
N	4684	18.0						N	5273		10.0				
N	4696	1290.0	30.0			11.5	0.3	N	5308		10.0				
N	4697		1.0	33.34		11.2	0.4	N	5322	34.0			33.48	11.8	0.8
N	4698		10.0		32.99	10.9	0.5	N	5326		20.0				
N	4710	8.8	1.1					N	5328		12.0			11.6	0.6
N	4742		1.0			10.3	0.3	N	5353	35.0	2.0	34.07			
N	4753		1.0	33.05				N	5357					11.1	0.2
N	4754		3.0		32.95	11.2	0.9	N	5363	95.0	3.0	33.36		11.1	0.7
N	4756			34.77				N	5365						
N	4760	460.0				11.5	0.6	N	5377	,	10.0				
N	4762		3.0	33.00		11.2	0.8	N	5380		30.0			11.1	0.4
N	4767		1.0			11.3	0.6	N	5419	390.0				11.9	0.8
N	4772		15.0					N	5422		10.0				
N	4782	2540.0	75.0	34.71		11.8	1.0	N	5444	187.0	20.0			11.6	0.6
N	4783					11.6	0.6	N	5448		10.0				
N	4786		12.0			11.7	0.7	N	5473		10.0				
N	4795		10.0					N	5485	0.9	0.1		33.64	10.9	0.4
N	4825		25.0					N	5493		25.0				
N	4845	28.0	3.0	33.11				N	5548		25.0				
N	4856		10.0					N	5557	,	1.0			11.6	0.6
N	4866		10.0					N	5566		10.0	33.38			
N	4880		1.0		33,10			N	5574		15.0		33.46		
N	4889	1.0				12.3	0.9	N	5576		1.0		33.47	11.1	0.6
N	4914		10.0			11.8	0.6	N	5614		10.0				
N	4915		12.0			11.2	0.6	N	5631		10.0				
N	4933							N	5638	i	1.0			10.9	0.6
N	4936	33.3	0.3			11 4	0.6	N	5687	•	10.0				
N	4958	55.5	10 0				0.0	N	5689	I	10.0		33.75		
ы И	4076		12 0			11 0	03	N	5701		15.0				
N N	409/	10 0	2 0					N 1	5739		10.0				
n u	5011	10.0	1 0			11 2	0 4	<u>и</u>	5750	1	30.0				
N	5017		50 0			10.0	0.4	L N	5701		12 0			11 7	
N N	5017	1 1	20.0			11.7	0.0	L N	5704	154 0	3.0			11 4	0.0
N N	5010	1.1 70 0	7.0			11.4	0.4		5812		12 0			11 1	, 0.9 N A
	5044	50.0	12 0			11.4	0.7		5812	17				11 /	0.0
N	2001		12.0				0.5	1 4	2013					11.4	

TABLE 2B—Continued

•

_							<u></u>			* 					
1	AME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg	N	IAME	6cm flux	Er/Lm	Lg X	Lg U.L.	Lg	Lg
		Obs/Drv		Lum	X Lum.	(M)	(M)/L			Obs/Drv		Lum	X Lum.	(M)	(M)/L
		mjy	mjy	watts	watts	Mo	solar			mjy	mjy	watts	watts	M _O	solar
_	(1)	(16)	(17)	(18)	(19)	(20)	(21)		(1)	(16)	(17)	(18)	(19)	(20)	(21)
N	5820		10.0			11.3	0.6	N	7168		12.0				
N	5831		1.0			10.9	0.6	N	7192		12.0			11.2	0.4
N	5838	12.0	3.0	33.30		11.5	1.1	N	7196		12.0			11.4	0.7
N	5846	8.0	0.5	34.70		11.4	0.6	N	7213	228.0	10.0	35.90			
N	5854		15.0					N	7302		12.0				
N	5864		15.0					N	7332		10.0		33.44	11.0	0.5
N	5866	13.0	1.0		32.95	10.9	0.6	N	7371		25.0				
N	5898		2.0		33.92	11.1	0.6	N	7377		12.0			11.1	0.3
N	5903	26.0	3.0			11.3	0.7	N	7410		12.0				
N	5982		1.0		34.21	11.6	0.6	N	7457		10.0			10.3	0.1
N	6340		10.0			10.8	0.2	N	7507		1.0			11.1	0.5
N	6482	13.0				11.7	0.4	N	7585		1.0				
N	6684		12.0					N	7600		20.0			11.4	0.7
N	6721		12.0			11.5	0.6	N	7619	7.7		34.84		11.9	0.8
N	6758	28.0						N	7626	230.0		34.40		11.6	0.6
N	6776		12.0					N	7702		12.0				
N	6851		12.0			11.1	0.3	N	7727		10.0				
N	6854		12.0					N	7742	10.0	3.0			10.4	-0.1
N	6861	20.0						N	7743		15.0			10.5	0.0
N	6868	124.0	7.0			11.6	0.6	N	7744						
N	6875		12.0					N	7785	3.5				11.6	0.7
N	6876		12.0	34.64		11.5	0.6	N	7796		12.0				
N	6893							Î	1459	1016.0		34.06			
N	6902							I	2006		1.0			10.4	0.4
N	6909		12.0			10.6	0.0	I	2035		1.0				
N	6935							1	3370	6.4				11.3	0.4
N	6942							I	3896		12.0				
N	6958	27.0	5.0			11.3	0.5	I	4296	1604.0	30.0	34.63		11.9	0.6
N	7007		12.0					I	4329	0.6	0.1			11.9	0.8
N	7014		12.0			11.6	0.8	I	4797		12.0				
N	7020							I	4889		12.0			11.1	0.4
N	7029		12.0			11.0	0.4	I	506 3	430.0	30.0		34.20		
N	7041		12.0					I	5105	3.7					
N	7049	35.0	4.0					I	5135						
N	7079		1.0					I	5181		25.0				
N	7096							I	5240						
N	7097	17.5				11.2	0.6	I	5267		30.0				
N	7135	4.0	0.2					I	5269	3.1			33.72		
N	7144		12.0			11.2	0.6	I	5328		12.0			11.3	0.3
N	7145		12.0			10.7	0.2	A1	85254						
N	7155							A2	0 2044		12.0				
N	7166	0.6													

TABLE 2B—Continued

=

_	 	

TABLE 3
THE CENSUS OF THE ISM TRACERS

			IR	AS	60	CM	Н	[1	X-F	RAY	C	0	EM	LINE	Du	JST
CLASSIFICATION	Type Code	NUMBER OF GALAXIES	Obs	Det	Obs	Det										
3	10	124	120	43	119	52	64	3	39	27	7	0	122	34	69	18
Ξρ	17	12	12	7	11	4	6	2	4	2	2	2	12	3	3	2
<u>50</u> ,	21	59	58	21	59	13	47	11	21	7	11	1	59	13	9	4
$S_{0_1/2}$, S_{0_2} ,, S_{0_2}	22	21	19	11	17	5	16	4	6	5	3	0	21	9	4	1
SO_{2} , SO_{2}	23	19	18	15	18	10	16	2	7	2	9	6	19	8	19	19
SB0	25	29	27	14	26	2	24	4	11	2	2	0	28	4	2	0
S0p. SB0p	27	18	18	16	16	8	13	6	12	6	5	3	18	10	10	8
E/S0	30	29	27	13	28	11	23	4	11	8	5	1	29	9	15	10
E/S0n	37	2	2	1	2	1	1	1	1	0	1	1	2	0	2	1
SO/Sa, SBO/SBa	40	36	32	23	32	9	31	14	10	7	2	0	35	13	8	5
W/San SB0/San	47	6	6	5	6	1	4	1	2	1	1	1	6	4	2	2
Sa SBa	50	97	87	81	81	11	89	67	18	7	25	13	93	42	4	1
San SBan	57	15	13	12	14	7	14	11	4	1	10	7	15	11	1	1
ALL CLASSES	51	467	439	262	429	134	348	130	146	75	83	35	459	160	148	72
															and the second se	

The calculation is made only if the signal-to-noise ratio of the 100 μ m flux is greater than 3, and if the 100 μ m flux is greater than 240 mJy.

Column (15): the upper limit to the dust mass, derived using equation (8). The flux used is the greater of 3 times the rms of the 100 micron observation, or 240 mJy.

Column (16): the flux density at 6 cm, in mJy. It is derived either from an observation at that wavelength or from an estimation based on an observation at another wavelength. In the latter case, it is assumed that the spectral index of the emission is 0.7.

Column (17): the error in the flux density, or an upper limit to that value. The units are mJy. If the upper limit is taken from work at another wavelength, no correction for spectral index is applied.

Columns (18)-(19): the X-ray luminosity (18) or its 3 rms upper limit in the 0.5-4.5 kev band. The latter are given for those instances where the X-ray flux is less than 3 rms.

Column (20): an estimate of the total mass of the galaxy contained within a radius R:

$$\{M\} = 2.32 \times 10^5 \, R\sigma^2 \,, \tag{9}$$

where σ is the central velocity dispersion, as in column (10) of Table 1, and R is from D_{25} . The units are solar mass, kpc and km s⁻¹. The assumptions and unknowns, e.g., the forms of the dispersion and rotation curves and the dispersion tensor, are such that we consider the resultant values as estimates only, although they do represent well-defined normalizing quantities for other entries in Tables 1 and 2. To emphasize the formalization of this approach (see e.g., Tonry and Davis 1981; Binney 1982) we call the resultant mass estimator a "mass gauge" and denote it as $\{M\}$.

Column (21): the mass gauge-to-luminosity ratio in solar units. $\{M\}/L$ scales with H_0 .

IV. DISCUSSION

The principal thrust of this work is to inventory the amount of interstellar material present in various forms in early-type galaxies. We have accordingly focused on those tracers for which the observations as reported in the literature are the most complete. Our results are summarized in Tables 3 and 4, which show the number of objects of various types that have been searched and the number of detections for *IRAS* 100 μ m emission, X-ray emission, radio emission, neutral hydrogen emission, or carbon monoxide emission. To improve the statistics, Table 4 gives averages of these data over several type groups. Also shown are the number of objects with notes about the presence of either emission-line material or visible dust.

As might be expected, the degree of completeness varies widely from one technique to the next. Even so, 202 (65%) E's and S0's (including peculiars and E/S0's) have already been *detected* in one or more of the five principal tracers. Thanks in large part to the work of Knapp *et al.* (1989), the *IRAS* data are the most complete, with information in hand on 94% of the objects. The rate of detection increases from 36% of the ellipticals to 93% of the Sa and Sa(pec) galaxies, with the later types showing generally higher detection rates. Although many of the earliest galaxies have been detected, there are a number where the upper limits are at the maximum sensitivity provided by *IRAS*, taken here to be 240 mJy at 100 microns.

The sampling is also nearly complete for radio continuum emission. However, the data are much less homogeneous than for *IRAS*. The most sensitive observations are made using interferometers, but these instruments have poor sensitivity to extended features of low surface brightness. Some of the objects have been done with filled apertures, but confusion limits the sensitivity to flux levels much higher than those attained with the arrays. There is also a possible effect arising from spectral index variation, since many of the sources were observed either at 1400 MHz or at 5 GHz, but not both. Thus, the "pseudo-6 cm" flux densities presented in Table 2 are useful indications of whether a given object is a strong radio source, but cannot be used easily to develop statistics about rate of detection.

A representative sample of the galaxies has now been surveyed for neutral hydrogen emission, with the recent observations reaching to interesting sensitivities. As expected, neutral hydrogen is found commonly in the Sa and Sa(pec) types. In 796

1991ApJS...75..751R

TABLE 4 ISM Tracers by Grouped Types

Type Keys	Number of Galaxies	IRAS		6 см		Н		X-Ray		СО		EM Line		Dust	
		Obs	Det	Obs	Det	Obs	Det	Obs	Det	Obs	Det	Obs	Det	Obs	Det
10	124	120	43	119	52	64	3	39	27	7	0	122	34	69	18
30	29	27	13	28	11	23	4	11	8	5	1	29	9	15	10
21, 22, 23, 25	128	122	61	120	30	103	21	45	16	25	7	127	34	34	24
17. 27. 37	32	32	24	29	13	20	9	17	8	8	6	32	13	15	11
40. 47	42	38	28	38	10	35	15	12	8	3	1	41	17	10	7
50, 57	112	100	93	95	18	103	78	22	8	35	20	108/	53	5	2

spite of a number of very sensitive searches, only three elliptical galaxies have been detected in H I emission, and there is evidence that in two of these the hydrogen is the result of capture. Certainly in this survey there is no evidence that neutral hydrogen is a common constituent of the interstellar medium of elliptical galaxies. This is not the case for the S0's, where 21 out of 103 observed have been detected in H I.

The X-ray emission from elliptical galaxies is an important tracer of the ISM, since it implies that there is a large mass of hot gas in or near each X-ray galaxy. The data given here is a complete summary for all early-type RSA galaxies observed by *Einstein* and for which reliable information can be derived. Although the sample is admittedly small, we note that the detection rate for elliptical galaxies is nearly twice that for S0's. This difference may only reflect the brighter absolute magnitude of the elliptical galaxies in this sample. Extending the survey will be an important task for future X-ray telescopes.

There is but a small amount of information on the presence of CO in these objects. Only now with improved receivers can CO sensitivities be pushed to meaningful limits. We have included what CO observations are available. With the small numbers, generalizations are dangerous, but it seems that sources with *IRAS* emission at 100 μ m greater than a few Janskys can be detected. Most Sa and Sa(pec) galaxies that have been observed have also been detected. No ellipticals in our catalog have been detected, while seven S0's are detected in CO.

The column (17, Table 1) relating to emission lines gives a qualitative measure as to whether emission lines are present. There are a few studies which give quantitative data about various emission lines, either as equivalent widths or in inten-

sity units, but the data are so diverse in their characteristics (slit width, sensitivity, emission lines used) that we elected to not use them. However, almost all of the objects have been looked at, with varying degrees of sensitivity. About 35% of the sample have been found to have optical emission lines. Among the ellipticals, 28% show line emission, only a modest increase over the 18% reported by Humason, Mayall, and Sandage (1956). Of the galaxies with emission lines, 90% have been seen in one or more of the five tracers.

The column (35, Table 1) describing the presence of visible dust summarizes an extremely heterogeneous group of papers. Obviously the success in seeing the dust depends critically on the observing conditions and techniques, as well as on the amount of dust in the galaxy and the viewing aspect. In addition, there are severe biases with galaxy type. Thus, all SO_3 galaxies show dust, by definition. Further, there are very few entries for the Sa galaxies because they are expected to have dust, and few authors therefore specifically mention its presence. Thus, it is not possible to use the data in our table to evaluate the frequency of appearance of dust in early-type galaxies in any meaningful way.

The nature of the interstellar material in early-type galaxies will be discussed elsewhere. It is interesting, however, to note the presence in Table 2 of a number of galaxies which have been detected in many tracers, as well as a few for which there are very good upper limits in most tracers. A few of each of these two types are listed in Table 5.

Finally, it was noted that, of the 467 RSA galaxies included in Tables 1 and 2, there are two (NGC 3056 and NGC 6942) for which we were unable to find any data at all. Unhappily, these are not the only moderately bright galaxies that have

INTERSTELLAR MATTER IN SELECTED GALAXIES										
Galaxy	Type Code	M _B	6 cm Cont. Log Lum. (W Hz ⁻¹)	X-Ray Log Mass (M_{\odot})	H I Log Mass (M_{\odot})	CO Log Mass (M_{\odot})	IRAS Dust Log Mass (M_{\odot})			
N 2974	10	-20.95	21.11	8.98	9.20	<8.75	6.17			
N 3998	21	-20.27	21.75	9.12	8.89		5.00			
N 5128	27	-22.40	23.78	9.53		8.79	6.69			
N 5353	30	-21.22	21.93	9.35	9.93		6.30			
N 3115	21	-19.95	<19.02	<7.95	<7.52		<4.83			
N 3379	10	-20.68	19.38	<8.59	<7.03	<7.05	<5.28			
N 4473	10	-20.63	<19.76	<8.62	<7.79		<5.55			
N 4564	10	-19.83	<20.76	<8.15	<7.61	<8.44	< 5.80			
N 5576	17	-20.66	<20.05	<8.79	<7.90		<6.25			

TABLE 5 Interstellar Matter in Selected Galaxie

No. 3, 1991

been "forgotten." Appendix A of the RSA lists 259 early-type galaxies which warrant inclusion in the basic Shapley-Ames catalog by reason of their brightness, but which were excluded for one reason or other. They are often omitted from surveys and catalogs, and there is thus a dearth of information available on them. We urge that observations of these objects in at least some of the tracers be made.

We wish to express our appreciation and thanks for the early receipt of preprints and unpublished data as well as valuable conversations with F. Bertola, M. Capaccoli, K. Ebneter, G. Knapp, J. Kormendy, G. Longo, A. Sandage, F. Schweizer, H. Thronson, and J. Tonry. We are grateful to Joanne Nance who showed her usual care, accuracy, and speed in maintaining the extensive data base from which this catalog grew.

REFERENCES

- Aaronson, M., Dawe, J. A., Dickens, R. J., Mould, J. R., and Murray, J. B. 1981, M.N.R.A.S., 195, 1P.
- Aaronson, M., et al. 1989, Ap. J., 338, 654.
- Aller, H. D., Aller, M. F., Latimer, G. E., and Hodge, P. E. 1985, Ap. J. Suppl., 59, 513.
- Appleton, P. N., Pedlar, A., and Wilkinson, A. 1990, Ap. J., in press.
- Appleton, P. N., Sparks, W. B., Pedlar, A., and Wilkinson, A. 1985, M.N.R.A.S., 217, 779.
- Baars, J. W. M., Genzel, R., Pauliny-Toth, I. K. K., and Witzel, A. 1977, Astr. Ap., **61**, 99. Baars, J. W. M., and Wendker, H. J. 1976, Astr. Ap., **48**, 405.
- Balick, B., Faber, S. M., and Gallagher III, J. S. 1976, Ap. J., 209, 710.
- Balkowski, C. 1979, Astr. Ap., 78, 190.
- Balkowski, C., and Chamaraux, P. 1983, Astr. Ap. Suppl., 51, 331.
- Barbon, R., Cappellaro, E., and Turatto, M. 1989, Astr. Ap. Suppl., 81, 421.
- Baum, S. A., Heckman, T., Bridle, A., van Breugel, W., and Miley, G. 1988, Ap. J. Suppl., 68, 643.
- Bender, R. 1988, Astr. Ap., 193, L7.
- Bergwall, N. A. S., et al. 1978, Astr. Ap. Suppl., 33, 243.
- Bertola, F., Bettoni, D., Rusconi, L., and Sedmak, G. 1984, A.J., 89, 356. Bertola, F., and Capaccioli, M. 1977, Ap. J., 211, 697.
- . 1978, Ap. J., 219, 404.
- Bertola, F., Galletta, G., and Zellinger, W. W. 1985, Ap. J., 292, L51.
- Bettoni, D. 1984, Messenger, 37, 17.
- Bettoni, D., and Buson, L. M. 1987, Astr. Ap. Suppl., 67, 341.
- Bicay, M. D., and Giovanelli, R. 1986, A.J., 91, 732.
- Bieging, J. H. 1978, Astr. Ap., 64, 23.
- Bieging, J. H., and Biermann, P. 1977, Astr. Ap., 60, 361.
- . 1983, A.J., 88, 161.
- Biermann, P., Clarke, J. N., and Fricke, K. J. 1979a, Astr. Ap., 75, 7. . 1979b, Astr. Ap., 75, 19.
- Binney, J. 1982, Ann. Rev. Astr. Ap., 20, 399.
- Birkinshaw, M., and Davies, R. L. 1985, Ap. J., 291, 32.
- Bottinelli, L., Gouguenheim, L., and Heidmann, J. 1973, Astr. Ap., 25,
- 451. Bottinelli, L., Gouguenheim, L., and Paturel, G. 1980, Astr. Ap. Suppl., 40, 355.
- Bregman, J. N., and Hogg, D. E. 1988a, A.J., 96, 455.
- Bregman, J. N., Roberts, M. S., and Giovanelli, R. 1988b, Ap. J., 330, L93.
- Burbidge, E. M., and Burbidge, G. R. 1965, Ap. J., 142, 634.
- Burstein, D., Krumm, N., and Salpeter, E. E. 1987, A.J., 94, 883.
- Busarello, G., Longo, G., and DiMartino, F. 1989, Atlas of Velocity Dispersion Profiles and Rotation Curves for Elliptical and Lenticular Galaxies (Naples: Liguori).
- Caldwell, N. 1984, Pub. A.S.P., 96, 287.
- Caldwell, N., Kirshner, R. P., and Richstone, D. O. 1986, Ap. J., 305, 136.
- Canizares, C. R., Fabbiano, G., and Trinchieri, G. 1987, Ap. J., 312, 503. Carter, D. 1987, Ap. J., 312, 514.
- Carter, D., Prieur, J. L., Wilkinson, A., Sparks, W. B., and Malin, D. F. 1988, M.N.R.A.S., 235, 813.
- Chamaraux, P., Balkowski, C., and Fontanelli, P. 1987, Astr. Ap. Suppl., 69, 263.
- Chincarini, G., and Rood, H. J. 1972, A.J., 77, 4.
- Condon, J. J., and Dressel, L. L. 1978, Ap. J., 221, 456.
- Condon, J. J., and Broderick, J. J. 1988, A.J., 96, 30.
- Danziger, I. J., Goss, W. M., and Wellington, K. I. 1981, M.N.R.A.S., 196, 845.
- Davies, R. D., Staveley-Smith, L., and Murray, J. D., 1989, M.N.R.A.S., 236, 171.

- Davies, R. L., Burstein, D., Dressler, A., Faber, S., Lynden-Bell, D., Terlevich, R., and Wegner, G. 1987, Ap. J. Suppl., 64, 581
- Davies, R. L., Efsathiou, G., Fall, S. M., and Illingworth, G. 1983, Ap. J., 266, 41.
- de Vaucouleurs, A., and de Vaucouleurs, G. 1967, A.J., 72, 730.
- de Vaucouleurs, G., and de Vaucouleurs, A. 1976, A.J., 81, 595.
- de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G., Jr. 1976, Second Reference Catalogue of Bright Galaxies (Austin: University of Texas)
- De Young, D. S., Roberts, M. S., and Saslaw, W. C. 1973, Ap. J., 185, 809. Demoulin-Ulrich, M.-H., Butcher, H. R., and Boksenberg, A. 1984, Ap. J.,
- 285, 527.
- Disney, M. J., and Cromwell, R. H. 1971, Ap. J. (Letters), 164, L35.
- Disney, M. J., and Wall, J. V. 1977, M.N.R.A.S., 179, 235.
- Dressel, L. L., Bania, T. M., and O'Connell, R. W. 1982, Ap. J., 259, 55.
- Dressel, L. L., and Condon, J. J. 1978, Ap. J. Suppl., 36, 53.
- Dressler, A., and Sandage, A. 1983, Ap. J., 265, 664.
- Ebneter, K., and Balick, B. 1985, A.J., 90, 183.
- Ebneter, K., Djorgovski, S., and Davis, M. 1988, A.J., 95, 422.
- Ekers, R. D., and Ekers, J. A. 1973, Astr. Ap., 24, 247. Ekers, R. D., et al. 1989, M.N.R.A.S., 236, 737.
- Elmegreen, D. M., and Elmegreen, B. G. 1982, A.J., 87, 626.
- Emerson, D. T. 1974, M.N.R.A.S., 169, 607.
- Fabbiano, G., Gioia, I. M., and Trinchieri, G. 1989, Ap. J., 347, 127.
- Fabbiano, G., Klein, U., Trinchieri, G., and Wielebinski, R. 1987, Ap. J., 312, 111.
- Fisher, J. R., and Tully, R. B. 1981, Ap. J. Suppl., 47, 139.
- Forman, W., and Jones, C. 1990, in preparation.
- Forman, W., Jones, C., and Tucker, W. 1985, Ap. J., 293, 102.
- Franx, M., Illingworth, G. D., and Heckman, T. M., 1990, Ap. J., in press. Fullmer, L., and Lonsdale, C. 1989, in Catalogued Galaxies and Quasars
- Observed in the IRAS Survey (NASA JPL D-1932 Version 2)
- Gallagher III, J. S., Faber, S. M., and Balick, B. 1975, *Ap. J.*, **202**, 7. Gallagher III, J. S., Knapp, G. R., and Faber, S. M. 1981, *A.J.*, **86**, 1781.
- Giovanardi, C., Krumm, N., and Salpeter, E. E. 1983, A.J., 88, 1719.
- Gisler, G. R., and Friel, E. D. 1979, Index of Galaxy Spectra (Tucson: Pachart).
- Goad, J. W., and Gallagher, J. S. 1987, A.J., 94, 640.
- Gottesman, S. T., and Hawarden, T. G. 1986, M.N.R.A.S., 219, 759.
- Grewing, M., and Mebold, U. 1975, Astr. Ap., 42, 119.
- Hawarden, T. G., Longmore, A. J., Goss, W. M., Mebold, U., and Tritton, S. B. 1981, M.N.R.A.S., 196, 175.
- Haynes, M. P. 1981, A.J., 86, 1126.
- Haynes, M. P., and Giovanelli, R. 1984, A.J., 89, 758.
- Haynes, M. P., Giovanelli, R., Starosta, B. M., and Magri, C. A. 1988, A.J., 95, 607.
- Heckman, T. M. 1980a, Astr. Ap., 87, 152.
- Heckman, T. M., Balick, B., and Crane, P. C. 1980b, Astr. Ap. Suppl., 40, 295.
- Heckman, T. M., Balick, B., and Sullivan III, W. T. 1978, Ap. J., 224, 745.
- Heckman, T. M., Balick, B., van Breugel, W. J. M., and Miley, G. K. 1983a, A.J., 88, 583.
- Heckman, T. M., Lebofsky, M. J., Rieke, G. H., and van Breugel, W. 1983b, Ap. J., 272, 400.
- Helou, G., Giovanardi, C., Salpeter, E. E., and Krumm, N. 1981, Ap. J. Suppl., 46, 267.
- Helou, G., Hoffman, G. L., and Salpeter, E. E. 1984, Ap. J. Suppl., 55, 433.
- Helou, G., Khan, I. R., Malek, L., and Boehmer, L. 1988, Ap. J. Suppl., 68, 151.

798

1991ApJS...75...751R

- Hoffman, G. L., Lewis, B. M., Helou, G., Salpeter, E. E., and Williams, H. L. 1989, Ap. J. Suppl., 69, 65.
- Huchra, J. P. 1987, The Center for Astrophysics Redshift Catalogue, from the Astronomical Data Center at the NASA Goddard Space Flight Center.
- Huchtmeier, W. K. 1982b, Astr. Ap., 110, 121.
- Huchtmeier, W. K., Bregman, J. N., Hogg, D. E., and Roberts, M. S. 1988, Astr. Ap., 198, L17.
- Huchtmeier, W. K., and Richter, O.-G. 1982a, Astr. Ap., 109, 331.
 - . 1986, Astr. Ap. Suppl., 63, 323.
- -. 1989, A General Catalog of H I Observations of Galaxies (New York: Springer).
- Humason, M. L., Mayall, N. U., and Sandage, A. R. 1956, A.J., 61, 97. Hummel, E. 1980, Astr. Ap. Suppl., 41, 151.
- Hummel, E., and Kotanyi, C. G. 1982, Astr. Ap., 106, 183.
- Hummel, E., Kotanyi, C. G., and Ekers, R. D. 1983, Astr. Ap., 127, 205.
- Hummel, E., van der Hulst, J. M., and Dickey, J. M. 1984, Astr. Ap., 134, 207.
- Impey, C. D., Wynn-Williams, C. G., and Becklin, E. E. 1986, Ap. J., 309, 572.
- Jaffe, W. 1987, Astr. Ap., 171, 378.
- Jedrzejewski, R., and Schechter, P. 1989, A.J., 98, 147.
- Jenkins, C. R. 1982, M.N.R.A.S., 200, 705.
- . 1983, M.N.R.A.S., 205, 1321.
- Jenkins, C. R., and Scheuer, A. G. 1980, M.N.R.A.S., 192, 595.
- Johnson, D. W., and Gottesman, S. T. 1980, in Photometry, Kinematics, and Dynamics of Galaxies, ed. D. S. Evans (Dordrecht: Reidel), p. 57. . 1983, Ap. J., 275, 549.
- Johnstone, R. M., Fabian, A. C., and Nulsen, P. E. J. 1987, M.N.R.A.S., 224, 75.
- Kelton, P. W. 1980, A.J., 85, 89.
- Kenney, J. D., and Young, J. S. 1988, Ap. J. Suppl., 66, 261.
- Kennicutt, R. C., and Kent, S. M. 1983, A.J., 88, 1094.
- Killeen, N. E. B., Bicknell, G. V., and Ekers, R. D. 1988, Ap. J., 325, 180.
- Kim, D.-W., Guhathakurta, P., van Gorkom, J. H., Jura, M., and Knapp, G. R. 1988, *Ap. J.*, **333**, 684. Knapp, G. R., Gallagher III, J. S., Faber, S. M., and Balick, B. 1977, *A.J.*,
- 82, 106.
- Knapp, G. R., Guhathakurta, P., Kim, D.-W., and Jura, M. 1989, Ap. J. Suppl., 70, 329.
- Knapp, G. R., and Gunn, J. E. 1982, A.J.; 87, 1634.
- Knapp, G. R., Kerr, F. J., and Henderson, A. P. 1979, Ap. J., 234, 448.
- Knapp, G. R., Kerr, F. J., and Williams, B. A. 1978, Ap. J., 222, 800.
- Knapp, G. R., Turner, E. L., and Cunniffe, P. E. 1985b, A.J., 90, 454.
- Knapp, G. R., van Driel, W., and van Woerden, H. 1985a, Astr. Ap., 142, 1.
- Kormendy, J. 1982, Ap. J., 257, 75.
- -. 1983, Ap. J., **275,** 529.
- . 1984, Ap. J., 286, 116.
- . 1987, in IAU Symposium 127, Structure and Dynamics of Elliptical Galaxies, ed. T. de Zeeuw (Dordrecht: Reidel), p. 17.
- Kormendy, J., and Stauffer, J. 1987, in IAU Symposium 127, Structure and Dynamics of Elliptical Galaxies, ed. T. de Zeeuw (Dordrecht: Reidel), p. 405.
- Kotanyi, C. G. 1980, Astr. Ap. Suppl., 41, 421.
- Krumm, N., and Salpeter, E. E. 1979, Ap. J., 227, 776.
- Krumm, N., van Driel, W., and van Woerden H. 1985, Astr. Ap., 144, 202. Kumar, C. K., and Thonnard, N. 1983, A.J., 88, 260.
- Lake, G., and Schommer, R. A. 1984, Ap. J., 280, 107.
- Lazareff, B., Castets, A., Kim, D.-W., and Jura, M. 1989, Ap. J. (Letters),
- 336. L13.
- Lewis, B. M. 1983, A.J., 88, 1695.
- Magri, C., Haynes, M. P., Forman, W., Jones, C., and Giovanelli, R. 1988, Ap. J., 333, 136.
- Malin, D. F., and Carter, D. 1983, Ap. J., 274, 534.
- Mayall, N. U., and de Vaucouleurs, A. 1962, A.J., 67, 363.
- Mirabel, I. F., Sanders, D. B., and Kazes, I. 1989, Ap. J. (Letters), 340, L9. Mirabel, I. F., and Wilson, A. S. 1983, Ap. J., 277, 92.
- Mollenhoff, C., and Bender, R. 1987, in IAU Symposium 127, Structure and Dynamics of Elliptical Galaxies, ed. T. de Zeeuw (Dordrecht: Reidel), p. 409.
- 1989, Astr. Ap., 214, 61.
- Nieto, J. L., Capaccioli, M., and Held, E. U. 1988, Astr. Ap., 195, L1.

- Page, T. 1970, Ap. J., 159, 791.
- Peterson, B. A. 1970, A.J., 75, 695.
- Peterson, C. J. 1978, Ap. J., 222, 84.
- Peterson, S. D., and Shostak, G. S. 1974, A.J., 79, 767.
- Pfleiderer, J. 1977, Astr. Ap. Suppl., 28, 313.
- Pfleiderer, J., Durst, C., and Gebler, K.-H. 1980, M.N.R.A.S., 192, 635.
- Phillips, M. M., Jenkins, C. R., Dopita, M. A., Sadler, E. M., and Binette, L. 1986, A.J., 91, 1062.
- Phillips, M. M., Turtle, A. G., and Pence, W. D. 1988, private communication
- Phillips, T. G. et al. 1987, Ap. J. (Letters), **322**, L73. Reif, K., Mebold, U., Goss, W. M., van Woerden, H., and Siegman, B. 1982, Astr. Ap. Suppl., 50, 451.
- Richter, O.-G. 1987a, Astr. Ap. Suppl., 67, 261.
- Richter, O.-G., and Huchtmeier, W. K. 1987b, Astr. Ap. Suppl., 68, 427. 1989, Astr. Ap. Suppl., submitted.
- Rowan-Robinson, M., Phillips, T. G., and White, G. 1980, Astr. Ap., 82, 381.
- Sadler, E. M. 1984a, A.J., 89, 34.
- 1984b, A.J., 89, 53.
- Sadler, E. M., and Gerhard, O. E. 1985, M.N.R.A.S., 214, 177.
- Sadler, E. M., Jenkins, C. R., and Kotanyi, C. G. 1989, M.N.R.A.S., 240, 591
- Sage, L. J., and Wrobel, J. M. 1989, Ap. J., 344, 204.
- Sancisi, R., van Woerden, H., Davies, R. D., and Hart, L. 1984, M.N.R.A.S., 210, 497.
- Sandage, A. 1961, The Hubble Atlas of Galaxies (Washington: Carnegie Institute of Washington).
- . 1978, A.J., 83, 904.
- Sandage, A., and Tammann, G. 1987, A Revised Shapley-Ames Catalog of Bright Galaxies (Washington: Carnegie Institute of Washington).
- Sanders, D. B., and Mirabel, I. F. 1985, Ap. J. (Letters), 298, L31.
- Schneider, S. E., Helou, G., Salpeter, E. E., and Terzian, Y. 1986, A.J., 92, 742
- Schweizer, F. 1980, Ap. J., 237, 303.
- Schweizer, F., van Gorkom, J. H., and Seitzer, P. O. 1989, Ap. J., 338, 770.
- Shostak, G. S., Roberts, M. S., and Peterson, S. D. 1975, A.J., 80, 581.
- Sparks, W. B., Disney, M. J., Wall, J. V., and Rodgers, A. W. 1984, M.N.R.A.S., 207, 445.
- Sparks, W. B., Wall, J. V., Thorne, D. J., Jorden, P. R., van Breda, I. G., Rudd, P. J., and Jorgensen, H. E. 1985, M.N.R.A.S., 217, 87.
- Sramek, R. 1975, A.J., 80, 771.
- Stark, A. A., Elmegreen, B. G., and Chance, D. 1987, Ap. J., 322, 64.
- Stark, A. A., Knapp, G. R., Bally, J., Wilson, R. W., Penzias, A. A., and Rowe, H. E. 1986, Ap. J., 310, 660.
- Sulentic, J. W. 1976, Ap. J. Suppl., 32, 171.
- Thronson, H. A., Tacconi, L., Kenney, J. D. P., Greenhouse, M. A., Margulis, M., Tacconi-Garman, L., and Young, J. S. 1989, Ap. J., 344, 747.
- Thuan, T. X., and Wadiak, E. J. 1982, Ap. J., 252, 125.
- Tonry, J. 1985, A.J., 90, 2431.
- Tonry, J. L., and Davis, M. 1981, Ap. J., 246, 666.
- Valentijn, E. A., and Giovanelli, R. 1981, Astr. Ap., 114, 208.
- van der Burg, G. 1985, Astr. Ap. Suppl., 62, 147.
- van Driel, W. 1987, Ph.D. thesis, University of Groningen.
- van Gorkom, J. H., Knapp, G. R., Raimond, E., Faber, S. M., and Gallagher III, J. S. 1986, A.J., 91, 791.
- Varnas, S. R., Bertola, F., Galletta, G., Freeman, K. C., and Carter, D. 1987, Ap. J., 313, 69.
- Véron-Cetty, M.-P., and Véron, P. 1988, Astr. Ap., 204, 28.
- Verter, F. 1985, Ap. J. Suppl., 57, 261.

Whiteoak, J. B. 1970, Ap. Letters, 5, 29.

1989, Ap. J., 339, 729.

Wiklind, T., and Henkel, C. 1989, Astr. Ap., 225, 1.

Wills, B. J. 1975, Aust. J. Phys. Ap. Suppl., 38, 1.

Wiklind, T., and Rydbeck, G. 1986, Astr. Ap., 164, L22.

liams, R., and Sparks, W. B. 1987, M.N.R.A.S., 224, 895.

59, 1.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

- . 1987, Ap. J. Suppl., 65, 555.
- Wagner, S. J., Bender, R., and Mullenhoff, C. 1988, Astr. Ap., 195, L5. Wardle, M., and Knapp, G. R. 1986, A.J., 91, 23.

Whitmore, B. C., McElroy, D. B., and Tonry, J. L. 1985, Ap. J. Suppl.,

Wilkinson, A., Browne, I. W. A., Kotanyi, C., Christiansen, W. A., Wil-

Wilson, A. S., Wu, X., Heckman, T. M., Baldwin, J. A., and Balick, B.

No. 3, 1991

Wright, A. E. 1974, M.N.R.A.S., 167, 273.
Wrobel, J. M., and Heeschen, D. S. 1984, Ap. J., 287, 41.
——. 1988, Ap. J., 335, 677.
Young, J. S., Scoville, N. Z., and Brady, E. 1985, Ap. J., 288, 487.

Young, J. S., Xie, S., Kenney, J. D. P., and Rice, W. L. 1989, *Ap. J. Suppl.*, 70, 699.
 Zellinger, W. Z. 1987, Ph.D. thesis, University of Wien.

JOEL N. BREGMAN: Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090

WILLIAM R. FORMAN and CHRISTINE JONES: Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

DAVID E. HOGG and MORTON S. ROBERTS: National Radio Astronomy Observatory, Edgemont Road, Charlottesville, VA 22903-2475