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ABSTRACT 
The observations of rotation along the major and minor axes of 38 elliptical galaxies are analyzed to deter- 

mine their intrinsic structure. Rotation along the minor axis occurs (i) as a result of projection effects in tri- 
axial systems and/or (ii) because of real misalignment of the angular momentum axis from the intrinsic short 
axis, as is allowed in triaxial systems. The intrinsic angular momentum can point anywhere in the plane con- 
taining the short and the long axis. The distribution of apparent misalignments is a function only of the tri- 
axiality T of a galaxy and its intrinsic misalignment, and is independent of the flattening of the galaxy in the 
plane containing the long and the short axis. The observed misalignment of the rotation axes and the short 
axes ranges from 0° to 90°, with most ellipticals having misalignments that are small. This is not expected if 
ellipticals are genetically triaxial systems with uniformly distributed angular momentum direction, and 
requires that particular constraints be imposed during the formation process. Some specific galaxies have 
dynamical subsystems with observed angular momenta that are offset 90° from the angular momenta of the 
main part of the galaxy. These galaxies are probably rotating about their long axis in the outer parts. The 
analysis of the observed misalignments requires us to derive the intrinsic ellipticity distribution for ellipticals. 
The resulting distribution, based on CCD data, shows a pronounced lack of round galaxies, unlike that pre- 
viously derived from catalogs. The distribution of triaxiality and intrinsic misalignment of the angular momen- 
tum cannot be derived uniquely, since one observable (apparent misalignment) is used to determine two 
internal parameters (triaxiality and intrinsic misalignment). Various assumptions regarding the intrinsic shapes 
and the direction of the angular momentum were used. An exploration of the solution space showed a wide 
range of valid distributions, ranging from models with only nearly oblate shapes, oblate and prolate shapes, to 
distributions with only triaxial shapes, with varying distributions of intrinsic misalignments. However, all the 
models have a sizable fraction of galaxies (>35%) with intrinsic misalignments less than 15°. The results were 
compared with predictions from several groups for hierarchical formation scenarios. The predicted distribu- 
tions for halos are skewed significantly toward prolate-triaxial shapes. Our data show that the luminous parts 
of ellipticals do not have such high triaxialities. The shapes of the dark halos may well be different from the 
shapes of the luminous matter in ellipticals, despite their similar dynamics. This may result, for example, from 
the effect of gaseous dissipation. 
Subject headings: galaxies: formation — galaxies: internal motions — galaxies: structure — 

stars: stellar dynamics 

1. INTRODUCTION 

Ever since Binney (1978) suggested that elliptical galaxies 
may be triaxial, the question of their intrinsic shapes has 
remained unresolved. Binggeli (1980) showed that the distribu- 
tion of apparent ellipticities is not sufficient to determine their 
shapes uniquely. Tests based on correlations between global 
properties such as surface brightness, velocity dispersion, and 
ellipticity have been inconclusive (e.g., Merritt 1982). Gas kine- 
matics can be used to constrain the shapes of some individual 
galaxies (e.g., NGC 1052: Davies & Illingworth 1986; NGC 
5077: Bert ola et al. 1991), but systems with readily measurable 
gas are too rare to allow a determination of the distribution of 
shapes. 

The distribution of intrinsic shapes is relevant for a much 
wider range of astronomical problems than (just) the construc- 
tion of equilibrium models for elliptical galaxies. Deviations 
from axisymmetry influence the gas kinematics in ellipticals 
(e.g., de Zeeuw & Franx 1989) and may help to fuel black holes 
in the centers. If the intrinsic shapes of elliptical galaxies are 
characteristic of all collisionless systems, then galactic halos 
may be expected to be triaxial as well, causing observable 
effects in the kinematics of disks. The distribution of shapes is 
also of particular significance as a signature of the formation 
process, and could potentially be used to distinguish between 
different formation mechanisms. 

Binney (1985) suggested a new test for the shapes of elliptical 
galaxies: the rotation along the apparent minor and major axis 
can put tight constraints on the shapes if it is assumed that the 
intrinsic angular momenta are well aligned with the intrinsic 1 Current postal address. 
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short axis. He was unable, however, to apply his test ade- 
quately because of the limited accuracy of the available data. 
Shortly afterward, Davies & Birkinshaw (1986) found a galaxy 
rotating rapidly around its apparent long axis, confirming the 
prediction that elliptical galaxies can show rotation along the 
minor axis. More systems with rotation along the minor axis 
were reported by Davies & Birkinshaw (1988), Wagner, 
Bender, & Möllenhof (1988), Jedrzejewski & Schechter (1989), 
and Franx, Illingworth, & Heckman (1989b). Modern detec- 
tors have resulted in measured rotation velocities with accu- 
racies between 5 and 10 km s-1, allowing the application of 
approaches such as that of Binney. Analysis of these new data 
to test hypotheses about the intrinsic shapes of elliptical gal- 
axies is the central purpose of this paper. 

Unfortunately, Binney’s assumption that the angular 
momenta of galaxies are aligned with the intrinsic short axis is 
too limited. The apparent misalignments could in general be 
due to two effects. First, the projection of triaxial figures, which 
causes the apparent short axis to be misaligned with the pro- 
jected intrinsic short axis, and, second, an intrinsic misalign- 
ment of the angular momentum with the intrinsic short axis. 
The second effect was not included in Binney’s analysis. In 
general both effects will be present, and both will increase the 
apparent misalignment between the apparent angular momen- 
tum and the apparent short axis (although for special viewing 
angles they may “ conspire ” to reduce the apparent kinematic 
misalignment). 

It is likely that intrinsic misalignments occur in nature. Tri- 
axial potentials with stationary figures allow streaming about 
both the short axis and the long axis. These streaming motions 
are produced by the short and long axis tubes, respectively 
(e.g., Schwarzschild 1979; Binney & Tremaine 1987). Any self- 
consistent distribution function allows large freedom in the 
angular momentum that each individual orbit contributes to 
the galaxy angular momentum. Within each tube orbit, all the 
stars can rotate either in one sense, or in the opposite sense, or 
in a mixture of both. The angular momentum of the orbit can 
vary from zero to some maximum in either sense. Hence the 
angular momenta of the galaxies may point in any direction 
within the plane containing the short and the long axis. No 
further constraint can be given on purely dynamical grounds. 

It is possible that the formation process is well ordered and 
produces close alignment between the intrinsic angular 
momentum and the intrinsic short axis. Various groups have 
found such organization to occur during simulations of hierar- 
chical galaxy formation (e.g., Barnes & Efstathiou 1987; Frenk 
et al. 1988; Quinn & Zurek 1988; Warren et al. 1991a, b). 
However, all simulations produced some systems with signifi- 
cant misalignments between the intrinsic angular momentum 
and the short axis. 

The galaxies with kinematically distinct cores constitute the 
most direct proof of the existence of systems with large intrinsic 
misalignments. Two Virgo systems, NGC 4365 and NGC 4406, 
show rotation along the minor axis in the outer parts, and no 
rotation along the major axis at the same radii (Bender 1988; 
Wagner et al. 1988; Franx et al. 1989b). In the inner few arc- 
seconds, the galaxies have large rotation along the major axis 
and no rotation along the minor axis. The rotation along the 
minor axis in the outer parts is produced either by a projection 
effect of a triaxial system or by a large intrinsic misalignment. If 
it is caused only by projection effects, the line of sight lies in the 
plane containing the intrinsic long and short axes. In that case, 
the angular momentum of the inner parts would be caused by 
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streaming motions around the intermediate axis. Such rotation 
is not allowed in triaxial galaxies, because the intermediate axis 
tubes are unstable (Heiligman & Schwarzschild 1979). We 
therefore have to conclude that these systems have large intrin- 
sic misalignments between the intrinsic angular momenta of 
the outer parts and their intrinsic short axes—probably 90° 
(Franx et al. 1989b; Illingworth & Franx 1990). Of course, the 
fact that these galaxies show twists of 90° in their rotation axes 
is an indication by itself that the intrinsic rotation axis changes 
in direction; but the important point is that the outer parts are 
the most misaligned (and may very well rotate about their long 
axis)! We note in passing that kinematic twists can be pro- 
duced by projection effects alone, since the shape of the stream- 
lines can change as a function of radius. Thus, small apparent 
kinematic twists do not automatically imply intrinsic twists of 
the rotation axis. Such effects are generally too small, however, 
to invalidate the results for NGC 4365 and NGC 4406. 

This paper is organized as follows. We analyze the kinematic 
misalignments under three different assumptions: First we 
assume that all misalignments are due to the projection effects 
of triaxial shapes. The intrinsic angular momentum is aligned 
with the intrinsic short axis for these models. Second, we 
assume that all misalignments are due to intrinsic misalign- 
ments. That is, the shapes are assumed to be oblate, but the 
angular momentum is not aligned with the intrinsic short axis. 
While unrealistic, such a model allows us to isolate and see the 
effect of intrinsic misalignment alone. Third, we construct a 
more general model for which the misalignments are due to 
both effects. The shapes are triaxial, and the angular momenta 
are misaligned in this case. Although our models do not cover 
the full solution space, they give useful upper limits on the 
“ triaxiality ” of ellipticals, and on the intrinsic misalignments. 
In § 2 we derive the necessary equations that give the observa- 
bles (ellipticities, velocities, position angles, etc.) as a function 
of intrinsic parameters and viewing angles. In § 3 the probabil- 
ity distributions of the observables are derived, for specific 
shapes and intrinsic misalignments. In § 4 we collect and 
discuss the data on the ellipticity distribution and misalign- 
ments. In § 5 we first construct models that reproduce the 
apparent ellipticity distribution. We then derive three pairs of 
models that reproduce the histogram of apparent misalign- 
ments. The data are compared with predictions for halos from 
hierarchical formation scenarios in § 6. The results are dis- 
cussed and summarized in § 7. 

2. PROJECTION OF DENSITY AND VELOCITY FIELDS 

This section summarizes the equations for the projection of 
the density and velocity fields. 

2.1. Projection of Density 
We assume that the density /? of a triaxial galaxy is stratified 

on similar coaligned ellipsoids, so that it may be written as 
p = pm(m2\ where m2 is given by m2(x) = x2/a2 4- y2/b2 + 
z2/c2. The X-, y-, and z-axes are symmetry axes of the density 
distribution. We assume that a > b > c, so that the x-axis is 
the long axis and the z-axis is the short axis of the galaxy. We 
define the intrinsic ellipticities ^ and e2 by 

The projections of such models have been discussed by various 
authors, e.g., Contopoulos (1956), Stark (1977), Binney (1985), 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

38
3.

 .
11

2F
 

FRANX, ILLINGWORTH, & DE ZEEUW 114 

and Franx (1988a, hereafter F88). These authors showed that 
the projected density distribution is stratified on similar 
ellipses. The ellipticity e and minor-axis position angle rminor of 
the isophotes are completely determined by the intrinsic ellip- 
ticities €u €2 and the viewing angles. If </> and 9 are the polar 
coordinates of the line of sight, we may write 

e = e(ei, e2, <M), rm¡„or = e2, <j>, 0). (2) 

Franx (1988a) proved that the above relations can be simplified 
somewhat. Consider two confocal ellipsoids, i.e., their axis 
lengths satisfy 

a\-a2
2 = b\-b2

2 = c\-c2
2 , (3) 

where the subscripts 1 and 2 refer to the two ellipsoids. Franx 
(1988a) showed that two aligned, confocal ellipsoids have the 
same position angle for all viewing angles. We introduce the 
triaxiality parameter T by 

a2 — b2 62(2 — €2) 
a2-c2=e1(2-e1)' (4) 

It follows that all confocal ellipsoids have the same T, and all 
aligned ellipsoids that have the same T can be scaled to be 
confocal. Thus, equation (2) can be rewritten as 

€ = 6(6^ T, 0, 9), Fminor = rminor(T, 0, 9). (5) 

Hence the position angle Fminor is a function only of the tri- 
axiality parameter T and the viewing angles. This special prop- 
erty has an important consequence with regard to isophotal 
twists (F88): if the axis ratios of a triaxial galaxy change with 
distance from the center, then the position angle of the project- 
ed galaxy does not necessarily change with radius. If T is con- 
stant, the position angle is expected to be constant (if we 
assume that eq. [5] is valid if the axial ratios change slowly 
with radius). Thus position-angle twists are caused not by arbi- 
trary changes in the axial ratios, but more specifically, by 
changes in T with radius. 

In Figure 1 we draw the plane of all possible shapes (e^ e2). 
We show curves of constant T. The limiting cases T = 0 and 
T = 1 correspond to oblate and prolate shapes, respectively. It 
should be noted that the parameter T is quite similar, but not 
identical, to the triaxiality parameter Z, defined by Binney 
(1985) as Z = (a - b)/(a - c). 

In Figure 1 we have indicated two triaxial models, A and B. 

Cl 
Fig. 1.—Plane of intrinsic shapes (e^ e2). Dashed lines are contours of 

constant triaxiality T. The models A, B, O, and P are indicated (see Table 1). 

TABLE 1 
Standard Examples 

Model e! e2 T i/fint Shape 

A  0.5 0.1 0.25 17° Oblate-triaxial 
B  0.5 0.34 0.75 72° Prolate-triaxial 
0  0.5 0 0 ... Oblate 
P  0.5 0.5 1 ... Prolate 

The axial ratios are given in Table 1. The triaxial model A is 
near to oblate, and B is near to prolate. In Figures 2a and 2b 
contours of constant apparent ellipticity are drawn on the unit 
sphere of projection directions for models A and B. The appar- 
ent ellipticity varies between 0 and The minimum occurs 
along lines of sight in the (x, z)-plane, defined by tan2 9 = 
T/(l — T). The maximum apparent ellipticity is reached when 
looking down the intermediate axis (the y-axis). In Figures 2c 
and 2d we present contours of constant rminor. The position 
angle increases slowly from 0° in the (x, y)-plane to 90° on a 
section of the (x, z)-plane. At two points all contours converge, 
at the z-axis (where the position angle of the projected z-axis is 
degenerate) and at the point where the apparent ellipticity of 
the galaxy is zero, so that the position angle of the galaxy is 
degenerate. 

2.2. Projection of Velocity Fields 
2.2.1. Apparent Angular Momentum 

Suppose one has measured the complete surface brightness 
distribution and the complete velocity field, i.e., the apparent 
radial velocity at all points in the plane of projection. The 
apparent angular momentum of the projected distribution is 
defined in the following way : assume a disklike structure with 
surface density equal to the measured surface density and with 
velocities perpendicular to the disk equal to the observed 
radial velocities. The apparent angular momentum is the 
angular momentum of this structure. Thus, the apparent 
angular momentum is fully specified by the observed surface 
brightness distribution and the observed two-dimensional 
velocity field. Franx (1988b) showed that the apparent angular 
momentum is parallel to the projection of the intrinsic angular 
momentum, if figure rotation is absent and if the streaming 
satisfies the equation of continuity.2 The projection of the full 
three-dimensional velocity field is thus reduced to the projec- 
tion of the angular momentum vector. 

In a general triaxial galaxy, the angular momentum vector is 
not required to be parallel to the intrinsic short axis, the z-axis, 
but it can lie anywhere in the (x, z)-plane (Schwarzschild 1979; 
Levison & Richstone 1987; Statler 1987). Define i^int as the 
angle between the z-axis and the angular momentum. It is 
straightforward to calculate the position angle Fkin of the 
apparent angular momentum with respect to the projected 
z-axis : 

tan rkin = 
sin </> sin ^int 

— cos (f) cos 9 sin i¡/ini -h sin 9 cos i¡/int ' (6) 

In Figures 2e-2f we show contours of constant Fkin of models 
A and B. The measured value of Fkin is equal to ^int when 
looking down the intermediate axis, and it increases toward 
the z-axis. It reaches 90° along the thickly drawn contours, and 

2 The apparent rotation measured along this axis is not necessarily zero. 
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Fig. 2—Projection of models A and B. Model A {left-hand panel) is oblate-triaxial; model B {right-hand panel) is prolate-triaxial (see Fig. 1 and Table 1). The 
galaxies are oriented with their longest axis along the x-axis and their shortest axis along the z-axis. Each viewing angle corresponds to a position on the sphere of 
projection directions, {a, b) Contours of constant apparent ellipticity e on the sphere of projection directions. Contours of e are drawn at intervals of 0.05. (c, d) 
Contours of constant position angle of the minor axis, Fminor, for models A and B. Contours are drawn at intervals of 10°. The position angle is 0° in the (x, y)-plane. 
The position angle reaches a maximum of 90° at a section of the great circle intersecting the x-axis and the z-axis {thick curves), {e, f) Contours of constant position 
angle of the apparent angular momentum, Fkin, for models A and B. Contours are drawn at intervals of 10°. The position angle is 0° along the x-axis, and is equal to 
•Aim al°ng the y-axis. It increases to 90° at the thick contours, and reaches 180° in the section of the great circle intersecting the x-axis and the z-axis. {g, h) Contours of 
constant apparent misalignment '¥ for models A and B. The apparent misalignment follows from subtraction of the position angle of the apparent angular 
momentum from the position angle of the apparent minor axis (eq. [15]), which are shown in panels c-f Contours are drawn at intervals of 10°. The apparent 
misalignment is generally 0° at the x-axis, equal to along the y-axis, and 90° at the z-axis. The apparent misalignment reaches 90° at thickly drawn curves. 
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continues to increase to 180° at the (x, z)-plane. The distribu- 
tion is not symmetric with respect to the (x, y)- and (y, z)- 
planes. 

2.2.2. Apparent Kinematic Misalignment 
An observer cannot determine the angles rminor and Fkin 

separately, but only their difference, the kinematic misalignment 
'F, which is given by 

sin 'F = I sin (Tkin - rminor) | , 0° < 'F < 90° . (7) 

This angle will depend on the viewing angles, on the shape of 
the galaxy (through rminor), and on the intrinsic misalignment 
(through rkin). If iA¡nt = 0, then rkin = 0, and T = rminor. 
Hence in this case only the projection of the triaxial shape of 
the galaxy is relevant. The contours of constant rminor in 
Figures 2c and 2d are also contours of constant *F for this 
special case. If T = 0, then rminor = 0°, and 'F = rkin for 
rkin ^ 90° and *F = 90° — rkin > 90°. This is the hypothetical 
case of an oblate galaxy with intrinsic misalignment. Contours 
of constant Fkin in Figures 2c and 2/are contours of constant 'F 
for such systems. In Figures 2g and 2h we give contours of the 
kinematic misalignments of models A and B. The kinematic 
misalignment is degenerate at six points in the (x, z)-plane, two 
along the direction of the angular momentum of the galaxy 
and four along the directions from which the galaxy appears 
round in projection. The kinematic misalignment is not sym- 
metric with respect to the (x, y)- and (y, z)-planes. 

3. PROBABILITY DISTRIBUTION OF OBSERVABLES 

For the vast majority of elliptical galaxies we do not know 
the viewing angles. This implies that it is impossible to apply 
the results from § 2 directly to derive the intrinsic shape and 
misalignment of angular momentum for an individual galaxy. 
Instead, we have to analyze the statistical distribution of the 
observed parameters for (large) samples of galaxies, assuming 
that the viewing angles are randomly distributed. In this 
section we discuss the probability distributions of the relevant 
observables. 

3.1. Apparent Ellipticity 
Binney and de Vaucouleurs (1981) have derived the prob- 

ability distribution of p{e)d€ for the general case of a triaxial 
ellipsoid. In § 1 of Appendix A we derive equivalent expres- 
sions that are more amenable to numerical integration. The 
moments <€”> of the apparent ellipticity € are defined by 

<e"> = j\>(e)dC . (8) 

They can be expressed as combinations of complete elliptic 
integrals, and can be easily evaluated numerically. Contours of 
constant <€> in the plane of possible shapes are shown in 
Figure 3. The first moment <€> is fairly insensitive to e2 for low 

For small e2, one obtains (see Fall & Frenk 1983) 

<e> = §6! + 0(ef, ei ...) • (9) 

Fig. 3.—Contours of constant mean apparent ellipticity <€> in the plane of 
all shapes; <e) is the apparent ellipticity averaged over all possible viewing 
angles. Contours are drawn at intervals of 0.1. For low el5 <€> is only weakly 
dependent on e2. 

models the kinematic misalignment 'F is equal to the position 
angle of the minor axis with respect to the projected z-axis, 
'F = IF I I x minor!* 

We define p^F, e) as the probability of observing a kinematic 
misalignment *F in the interval OF, ¥ + d'F) and an ellipticity e 
in the interval (e, e + de). It can be evaluated by calculation of 
the corresponding area on the unit sphere of projection direc- 
tions. This calculation is straightforward to do numerically. In 
§ 2 of Appendix A we derive an analytic expression for p(e, 'F), 
which is useful for verifying the numerical results. The resulting 
expression is complex, and is not explicit in terms of e, lF. In 
Figure 4 we show the probability distributions for two models 
with the shapes of models A and B, but no intrinsic misalign- 

Since the mean apparent ellipticity is not strongly dependent 
on e2, one does not expect strong constraints on the triaxiality 
of elliptical galaxies from the observed ellipticities. 

3.2. Kinematic Misalignments for Models with Perfect Intrinsic 
Alignment (i^int = 0) 

First we consider models which have their intrinsic angular 
momentum parallel to the intrinsic short axis. For these 

Fig. 4.—Probability distributions p{e, 'F) of apparent misalignment 'F and 
ellipticity € for triaxial models with perfectly aligned angular momenta. The 
shapes of the models in (a) and {b) are those of models A (oblate-triaxial) and B 
(prolate-triaxial), respectively, but the intrinsic misalignment \J/int is taken to be 
zero. Contours are drawn at logarithmic intervals of A 10log p = i- The prob- 
ability distribution increases along the arrows. The maximum apparent ellip- 
ticity at 'F = 90° is €2. The corresponding viewing angle is along the z-axis. 
The main difference between the oblate-triaxial model and the prolate-triaxial 
model is the absence of flat galaxies with large misalignments in the former 
case. 
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Fig. 5.—(a) Probability distribution p(T) for galaxies with triaxialities 

T = 0.2, 0.4, ... , 1. The dashed curve is for T = 1. The higher the value of T, 
the higher the probability at ¥ = 90°. The probability distributions have been 
normalized to give a mean of 1 over the relevant interval, (b) Corresponding 
cumulative probability distribution POP). The lowest curve has the highest T. 

ment. The probability distribution does not depend strongly 
on 'F for e < e2, but is strongly dependent on 'F for e > e2. The 
largest misalignments are always found at small ellipticities. 
The most important difference between the distributions in 
Figures 4a and Ab is at intermediate apparent ellipticity and 
high misalignment. The first distribution is zero in this region, 
whereas the second distribution (which applies to the galaxy 
which is more prolate) is positive. 

The probability distribution p(vF)d'F is derived in § 2 of 
Appendix A. Since the kinematic misalignment ÿ depends only 
on T and the viewing angles, it follows that ^('FJd'F depends 
only on T. 

In Figure 5 we have plotted curves of p('F) and the cumula- 
tive probability P('F) of finding 'F between zero and a specified 
value, 

P('F) = I p('F')dxF' . (10) 

The extreme case T = 0 corresponds to oblate models, and has 
p('F) = ¿(TO* The extreme T = 1 corresponds to prolate 
models. Note that all the distributions p('F) have a singularity 
at 'F = 0. The value of p('F) at *F = 90° increases with increas- 
ing T. 

We define the moments <¥*> of the observed misalignment. 
These are equal to the value of lFI averaged over all viewing 
angles. In Figure 6a we show the mean observed misalignment 
<'F) and the standard deviation (j('F) = (<lF2> — <'F>2)1/2 as a 
function of T. Surprisingly, the mean observed misalignment is 
almost a linear function of the triaxiality parameter T. This has 
an important implication: it shows that the measurement of 
the mean misalignment of a sample of galaxies is relatively 
simply related to the mean triaxiality <T) of that sample, if 
this class of models is applicable. The standard deviation in the 
distribution of observed misalignments is high, higher than the 
mean observed misalignment for almost all T. 

As we have seen in Figure 4, the probability distribution 
of 'F depends strongly on the measured apparent ellipticity. 
We have illustrated this effect in Figure 6b, where we plot 
<6T/)/«6><T/» — 1 against T. This quantity is a measure of 

the correlation of the apparent ellipticity with observed kine- 
matic misalignment. It is negative, because the ellipticity and 
kinematic misalignment are anticorrelated (at low ellipticities 
we measure the highest misalignments). The effect is the strong- 
est at low T. This shows that if we want to use the moment 
analysis to derive the mean triaxiality from the mean kinematic 
misalignment, we have to make sure that the sample is 
unbiased in ellipticity. A bias in ellipticity in the data sample 
can produce a bias in the mean misalignment, given the corre- 
lation between the two. 

3.2.1. Observed Kinematic Misalignment for Galaxies with Aligned 
Angular Momenta 

For many galaxies, only the radial velocities along the major 
and minor axes have been measured. For such systems, the 
misalignment is usually determined by 

tan¥obs = ^£, (11) 
^major 

where vminor and t;major are the velocity amplitudes along the 
minor and major axes, respectively. The angle 'F^ can deviate 
from the “ real ” misalignment angle, 'F, between the apparent 
angular momentum and the apparent short axis. Here we will 
investigate what errors can be introduced by this approx- 
imation. 

This type of analysis has been done before by Binney (1985), 
who assumed that the streaming was along contours of con- 
stant density. There is no particular reason that this should be 
the case for ellipticals. Hence the results will be model- 
dependent, i.e., they will depend on the details of the streaming 
motions within ellipticals. We will use the more general models 
from Franx (1988b), which have streaming along similar 
ellipses in planes perpendicular to the short axis. The ellipses 
can have arbitrary shapes and orientations with respect to the 
density distribution. The streaming satisfies the equation of 
continuity. We constructed models with a luminosity density 

0 .2 .4 .6 .8 1 
T 

Fig. 6.—(a) Mean apparent misalignment <'F> as a function of T for 
models with perfect intrinsic misalignment. <4/> is the misalignment averaged 
over all viewing angles. Surprisingly, <'F> is an almost linear function of T. 
The dashed curve is the dispersion in apparent misalignment o-f'F). It is compa- 
rable to OF) over the whole interval of T. These functions are completely 
independent of the value of {b) Correlation between the apparent ellipticity 
e and the apparent misalignment ¥ as a function of T. Curves are drawn for 
ej = 0.1,0.3, and 0.5. 
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decreasing as r~3 and streaming velocities independent of 
radius. We considered three special cases of the streaming 
models: First, we analyzed Binney’s streaming models, in 
which the streaming is along contours of constant density. It is 
straightforward to derive for this case 

^minor   ^minor s* ^ 
^major ^ ^ 

where rminor is the position angle of the apparent short axis 
with respect to the projected z-axis. Since the angular momen- 
tum points along the intrinsic short axis, the observed kine- 
matic misalignment is simply related to the misalignment 
'F of the apparent angular momentum. 

Second, we constructed models with circular streamlines. 
We did not find simple relations for the observed kinematic 
misalignment. As a third kinematic model, we considered the 
case in which the streaming is along ellipses with the same 
axial ratio as the isodensity contours in the (x, y)-plane, but 
with an elongation perpendicular to the elongation of the iso- 
density contours. Such an orientation is typical of streaming in 
nonrotating triaxial potentials, and may therefore be more 
appropriate for triaxial models without figure rotation than 
the previous streaming models. 

The probability distributions of p^o^, e) do not differ 
greatly from the distribution pQ¥, e), which applies if the full 
velocity field is used. We illustrate the differences in Figure 7. 
In Figure 7a the integrated probability distribution pOFobs) is 
shown for the three streaming models with Ci =0.4 and 
T = 0.56. Figure lb shows the mean apparent misalignment 
<XF> as a function of T. There are differences between the 
models, but the effects are not overwhelming. Thus the 
observed misalignment can be used as the real misalign- 
ment angle x¥. 

xobs 

Fig. 7.—(a) Distribution pOFobs) for the models with streaming parallel, 
circular, and perpendicular to the shapes of the galaxy. The dashed curve is the 
distribution p^) for a model with the same shape, (b) Mean observed misalign- 
ment ^obs) as a function of triaxiality. The continuous curve is for models 
with parallel streaming, the short-dashed curve for circular streaming, and the 
long-dashed curve for perpendicular streaming. These curves apply to galaxies 
with ei = 0.5. The equivalent curves for galaxies with e1 = 0.1 coincide with 
the thick continuous curve. Note that the differences are not large in both 
cases, and thus « <¥>. 

Fig. 8.—Probability distributions p(e, T) of apparent misalignments and 
ellipticities for oblate models with misaligned angular momenta. The intrinsic 
misalignments in (a) and (b) are those of models A and B (\j/int = 18°, 72°, 
respectively), but the triaxiality T is equal to zero. Contours are drawn at 
logarithmic intervals of A10 log p = \. The probability distribution increases 
along the arrows. The probability distribution is singular along the curve of 
maximum e for fixed T. The maximum apparent misalignment ate = el equals 
iAint, the intrinsic misalignment. Many of the viewing angles project near to this 
point. The maximum apparent ellipticity equals 1 — [sin2 i//int(l — ej2 + 
cos2 il/intY

12 at ¥ = 90°. 

3.3. Kinematic Misalignments for Models 
with Intrinsic Misalignment 

Next we present the probability distributions of (e, TO for 
models with intrinsic misalignments of the angular momentum 
and the short axis. The most extreme of such models are tri- 
axial, near-oblate, with large intrinsic misalignments. For such 
models the apparent misalignments are mainly caused by the 
intrinsic misalignment and not by the projection of the triaxial 
shape. In the following subsection, we consider oblate models 
with intrinsic misalignments. Such models are not realistic, 
since exactly oblate models will not have intrinsic misalign- 
ments. They are useful, however, because they can be contrast- 
ed with the triaxial models discussed above which had no 
intrinsic misalignments and for which all apparent misalign- 
ments were due to projection effects. Furthermore, the 
resulting probability distributions should be similar to those of 
nearly oblate triaxial galaxies, which can have intrinsic mis- 
alignments (e.g., Statler 1987). 

3.3.1. Oblate Models with Intrinsic Misalignments 

For oblate models the apparent short axis coincides with the 
projection of the intrinsic short axis, and hence Fminor = 0. We 
assume that the full velocity field has been mapped, and the 
apparent misalignment been determined. The probability dis- 
tribution p(e, T/) is easily evaluated numerically. An analytic 
result is given in § 3 of Appendix A. 

Figure 8 shows the probability distribution for two values of 
^int. The distribution is singular along the curve of maximum 6 
for a given 'F. There are two special points: first, the point of 
maximum misalignment at e = The misalignment equals 
the intrinsic misalignment at this point. The corresponding 
viewing angle is along the y-axis. The second point of 
maximum ellipticity at 90° misalignment coincides with a 
viewing angle along the intrinsic angular momentum. 

The probability distribution pi^dW is derived in § 3 of 
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Fig. 9.—(a) Probability distribution p^) for oblate galaxies with intrinsic 
misalignments = 18°, 45°, 72°, 90°. The distributions show a singularity at 
T* = The dashed line corresponds to ^int = 90°. The probability distribu- 
tions have been normalized to give a mean of 1 over the relevant interval, (b) 
Corresponding cumulative probability distribution POP). The lowest curve has 
the highest \J/iM. 

Appendix A. We show examples of the resulting distribution in 
Figure 9. All the distributions p('F) show a singularity at 'F = 

In that aspect the distributions are distinctly different 
from the distributions for the misalignments of triaxial systems 
without intrinsic misalignment, which showed a singularity at 

= 0 for all triaxialities (see § 3.2). The probability distribu- 
tion p('F) is larger than zero for all T* for all i¡/ini > 0. 

We have calculated the mean apparent misalignment <lF> 
and the standard deviation aOF) numerically for these distribu- 
tions, and we show the results in Figure 10a. The mean 
observed misalignment increases almost linearly with for 
small ^int, and flattens out at large i^int. Note that the mean 

0 30 60 90 
V'mt 

Fig. 10.—(a) Mean apparent misalignment <'F> as a function of \J/int for 
oblate models with intrinsic misalignment. The mean apparent misalignment 
reaches as high as 60°. The dashed curve is the dispersion in apparent misalign- 
ment, tf(4/). These functions are completely independent of the value of (b) 
Correlation between apparent ellipticity e and apparent misalignment 'F as a 
function of ^¡nt for e = 0.4. The dashed curve for e = 0.2 almost coincides with 
the curve for e = 0.4. 

119 

observed misalignments can become significantly larger than 
for the previous case of triaxial aligned models. There is again 
a significant dispersion compared with the mean 'F, but 
the ratio <t('F)/<'F> is about half that for the triaxial aligned 
models. 

In Figure 10b the correlation between ¥ and e is shown. The 
correlation is much smaller than for the case of triaxial aligned 
models. Hence a bias in apparent ellipticity in the data sample 
is less important if this type of model is used. 

3.3.2. Kinematic Misalignments for Triaxial Models with 
Misaligned Angular Momenta 

The most general type of model is a triaxial galaxy with 
intrinsic misalignment. The angular momentum is required to 
lie in the (x, z)-plane, and the angle between the z-axis and the 
angular momentum is i/^int. In Figures 2g and 2h we show the 
apparent misalignment as a function of the viewing angles. The 
calculation of the probability distribution p(e, 'F) is too labor- 
ious analytically; hence we have calculated the probability dis- 
tribution numerically. Results for models A and B are shown in 
Figure 11. There are at least three pairs of special viewing 
angles on the sphere of projection directions: one pair along 
the direction of the angular momentum and two pairs where 
the galaxy appears round. The misalignment is not defined at 
those points. 

We have integrated p(€, 'F) to obtain the probability dis- 
tribution p(xF)dvF. The distribution p('F) depends only on the 
triaxiality parameter T and the intrinsic misalignment ^int, 
and is independent of the intrinsic ellipticity Figure 12 
shows the resulting distributions for the two models of Figure 
11. The probability distribution has a singularity at 'F = i^int, 
and is nonzero for all 'F, if 0° < ^int < 90°. We have also 
shown the probability distribution for three galaxies with 
ij/int = 45° and very different T. It is remarkable—and 
unfortunate—that the probability distributions are virtually 
identical. It is straightforward to prove that 

P0F| T, = p(90° - ¥ |1 - r, 90° - lAint). (13) 

Fig. 11.—Probability distributions p(e, 'P) of apparent misalignments and 
ellipticities for models A and B, which are triaxial models with misaligned 
angular momenta (see Fig. 2 and Table 1). These are the most general models 
to be considered. Contours are drawn at logarithmic intervals of A10 log p = 
£. The probability distribution increases along the arrows, (a) Model A, oblate- 
triaxial with small intrinsic misalignment, {b) Model B, prolate-triaxial with 
large intrinsic misalignment. 

ORDERED NATURE OF ELLIPTICAL GALAXIES 
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Fig. 12.—Probability distribution pi'V) for triaxial models with intrinsic 
misalignments. The continuous curves apply to models A and B. The probabil- 
ity distributions are singular at 'F = ij/inV The dashed curves are for special 
models with misalignments i¡/int = 45° and triaxiality T = 0, 0.5, 1. The prob- 
ability distribution is almost independent of T for this special value of i//int. 
(b) Cumulative probability distribution P('F) for the models shown in (a). 

An obvious example is T = 0 and ^int = 0, which is an oblate 
model with the angular momentum along the intrinsic short 
axis and which has zero apparent misalignment. By equation 
(13), the complementary model is a prolate model with the 
angular momentum along the intrinsic long axis, which has 90° 
misalignment for all viewing angles. 

Figure 13a shows the mean observed misalignment angle 
<¥> as a function of T and i^int. Equation (13) implies 

<Vy(T, = 90° - <¥>(1 - T, 90° - iAint) . (14) 

This produces the symmetry in the contours. Figure 13a shows 
clearly that the mean observed misalignment increases with 
increasing T and increasing ^ for all values of T and x¥. This 
has the important consequence that we can find upper limits 
on the intrinsic mean triaxiality by using models with zero 
intrinsic misalignment. Second, the mean observed misalign- 

ment depends only weakly on the triaxiality parameter for 
intermediate misalignments (20° < i¡/int < 70°). Only for i^int ~ 
0° or i^int ~ 90° is the mean apparent misalignment strongly 
dependent on T. 

Figure 13b shows the correlation coefficient c of the ap- 
parent misalignment with the apparent ellipticity, c = 
((T'e) — <lF><e»/[<7('F)<7(e)], for = 0.4. The correlation 
coefficient is strongly negative at low i/rint and T, and is high at 
high and T. This shows again that a sample biased in 
ellipticity can produce a biased distribution of apparent mis- 
alignments. 

4. DATA COMPILATION 

There are two basic observational constraints on the 
models: (1) the distribution of observed ellipticities and (2) the 
distribution of observed ellipticities and misalignments. These 
two distributions have to be considered separately because 
there is not a complete sample of galaxies with kinematic mis- 
alignments. As we shall see later, the current sample is strongly 
biased toward round galaxies. 

4.1. Distribution of Apparent Ellipticities 
Contradictory results on the frequency distribution of 

apparent ellipticities have been reported, as can be seen, for 
example, in the review by Schechter (1987). A réévaluation of 
the frequency distribution is justified by the extensive data on 
intensity, ellipticity, and position-angle profiles that have 
recently been derived from analyses of high signal-to-noise 
CCD images (Djorgovski 1985; Jedrzejewski 1987; Bender & 
Möllenhof 1987; Bender, Döbereiner, & Möllenhof 1988; 
Franx, Illingworth, & Heckman 1989a; Peletier et al. 1990). 
The Æ-band profiles given by these authors were converted to 
the standard Johnson R band. The ellipticity for each galaxy 
was then determined at the isophotal radius of juR = 20.5 mag 
arcsec-2, where the ellipticities are generally least influenced 
by seeing and noise. To reduce the noise, the listed ellipticities 
for each galaxy were averaged within a radial interval, which 
spanned a range in surface brightness of 1 mag arcsec-2. 
Special caution is needed to avoid systematic effects at small 
ellipticities, where noise tends to systematically increase the 

Fig. 13. (a) Mean apparent misalignment as a function of and T. This is the apparent misalignment averaged over all viewing angles. Contours are 
drawn at 10° intervals. The mean apparent misalignment is zero at T) = (0°, 0), and rises to 90° at (iA¡nt, T) = (90°, 1). The mean apparent misalignment is 
strongly dependent on T for low and high \J/int, but only weakly dependent on T for \J/int « 45°. The mean apparent misalignment increases always with increasing 
«Aim and T. Thus a measurement of <'F> can give upper limits on <^int> and <T). (b) Correlation coefficient r(e, ¥) = [(e'F) - <e><T/>]/<T(e)<7('I') for models with 
€l = 0.4. Contours are drawn at intervals of 0.1. Dashed contours are negative values. 
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Fig. 14.—Histogram of apparent ellipticities for the CCD sample. The 
ellipticity is taken at an isophotal radius fiR = 20.5 mag arcsec-2. There is a 
relative paucity of nearly round galaxies. 

ellipticity. Therefore, we averaged the vectors 

= *i\ 
sin 2rA 

.cos 2F J ’ 
(15) 

where F is the position angle, and rf and are the individual 
measurements. The mean ellipticity is defined as the length of 
the averaged vectors by 

<e> = ^ sin 2r.) + (l>. cos 2ri) • <16) 

We show the frequency distribution of the apparent ellip- 
ticities in Figure 14 and Table 2. The distribution has a peak at 
€ æ 0.2. The total number of galaxies in the sample is 217. The 
mean ellipticity is <€> = 0.22, and the standard deviation is 
(j(e) = 0.12. The frequency distribution is significantly different 
from that shown in Figure 15a, which is based on the RC2 
ellipticities (Binney & de Vaucouleurs 1981; de Vaucouleurs, 
de Vaucouleurs, & Corwin 1976, hereafter RC2), but is similar 
to those presented by Fasano & Vio (1991) and Porter, Schnei- 
der, & Hoessel (1991). We tested whether the difference 
between the current data and the RC2 sample could be due to 
our particular sample or to differences in definition. One clue 
was that the frequency distributions for galaxies common to 
both samples were also inconsistent. The difference persisted if 
we used ellipticities determined at ¿iR = 23.5 mag arcsec-2 

(which corresponded to the fiducial radius of fiB = 25.0 mag 
arcsec-2 for the RC2 data). Hence the difference was not due 
to a systematic difference in the radius at which the ellipticity 
was determined. We show a scatter diagram of the ellipticities 
from the CCD data compared with the RC2 ellipticities in 
Figure 15b. The RC2 ellipticities have large systematic errors 
and are strongly biased toward low values for nearly round 
galaxies. In retrospect, this should not have come as a surprise, 
since the RC2 ellipticities are derived from a variety of sources 
and are mostly based on eye estimates. 

A third independent source of data was the work of Faber et 
al. (1989, hereafter 7SAM), who measured ellipticities for a 
complete sample of ellipticals. This sample is better defined 
than our CCD sample, but unfortunately the ellipticities are 
still eye measures. We compare the CCD data and the 7SAM 

^ ^ccd 

Fig. 15.—(a) Comparison of the histogram of apparent ellipticities from the RC2 {thick line) and our CCD sample {hatched area). Note the abundance of round 
galaxies in the RC2 data, which is due to systematic measurement errors in the RC2 data, {b) Comparison of ellipticities from the RC2 and CCD sample for all 
galaxies in common. Many galaxies with nonzero ellipticity have zero ellipticity in the RC2. (c) Comparison of the ellipticities from 7SAM {thick line) and the CCD 
sample {hatched area), {d) Ellipticities from the 7SAM and the CCD sample for the galaxies in common. The comparison is good, apart from a small systematic effect 
at €7sam ~ 0.2. 
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TABLE 2 
Histogram of Observed Ellipticities 

CCD Sample 7SAM Sample 

N m N m 
0.00-0.05. 
0.05-0.10. 
0.10-0.15. 
0.15-0.20. 
0.20-0.25. 
0.25-0.30. 
0.30-0.35. 
0.35-0.40. 
0.40-0.45. 
0.45-0.50. 
0.50-0.55. 
0.55-0.60. 
0.60-0.65. 

16 
22 
33 
34 
27 
23 
27 
14 
11 

6 
4 
0 
0 

1.48 
2.03 
3.04 
3.13 
2.49 
2.12 
2.49 
1.29 
1.01 
0.55 
0.37 
0.00 
0.00 

38 
30 
41 
39 
52 
58 
30 
26 
16 
15 

5 
2 
2 

2.15 
1.70 
2.32 
2.20 
2.94 
3.28 
1.70 
1.47 
0.90 
0.85 
0.28 
0.11 
0.11 

data in Figure 15c; the histograms are rather similar, and there 
is no significant difference according to the Kolmogorov- 
Smirnov test. The 7SAM data are slightly biased, however, as 
is shown in Figure 15d. This is probably an artifact of the 
method that 7SAM used to measure the ellipticities. The effect 
is not dramatic, and hence these data constitute a good com- 
parison sample. 

4.2. Dependence of Apparent Ellipticity on Other Observables 
Does the distribution of apparent ellipticity depend on other 

observables? This question has been addressed before by 

several authors, with mostly negative or inconclusive results 
(e.g., Strom & Strom 1978 and references therein). We were 
prompted to investigate this when we noted that there are 
almost no very flat, high-luminosity galaxies in the 7SAM 
sample. In Figure 16a we plot a scatter diagram of apparent 
ellipticity versus absolute magnitude, Velocities listed by the 
7SAM were used to derive absolute magnitudes, and H0 was 
assumed to be 50 km s-1 Mpc-1. Some hint of an effect with 
absolute magnitude may be seen in this diagram, since the 
absence of flat bright galaxies is confirmed. It is also clear that 
the effect, whatever it is, is not very large. Next, we divided the 
sample into two equal-sized sets of intrinsically faint galaxies 
and luminous galaxies, and compared the ellipticity distribu- 
tion within both sets. The result is shown in Figure 16b, and it 
does show a small difference, in that the bright ellipticals have 
a narrow distribution that peaks near e = 0.2, while the faint 
galaxies have a flatter distribution extending to e = 0.6. We 
repeated the procedure with the velocity dispersion as a dis- 
criminant, and show the results in Figures 16c and 16d. The 
maximum difference in the cumulative histograms is about 
21% and 25%, respectively, for the two comparisons. The 
probability that both samples are drawn from the same parent 
distribution is 0.01 and 0.06, respectively, according to the 
Kolmogorov-Smirnov test. When we used the 7SAM sample, 
we found similar fractions, which have higher significance 
because of the larger sample (N = 354). 

What does this result mean? First, the difference may be 
(partly) due to the fact that we measure ellipticities at a con- 
stant isophote, and not at a constant structural radius such as 

Mb e 

Fig. 16.—(a) Scatter diagram of ellipticity vs. absolute magnitude. The sample has been divided into two equal-sized parts, indicated by the line. The resulting 
histograms are drawn in (b). The hatched histogram applies to the luminous galaxies, the thickly drawn histogram to the faint galaxies. The absence of luminous 
galaxies with high flattening is notable. The maximum difference in the cumulative histogram is 20%, which is small but significant. It can be caused by 
low-luminosity galaxies with appreciable disks or true differences in the shapes of the spheroids of these galaxies. In (c) and (d) are shown the equivalent results when 
velocity dispersion a is used as a discriminant. 
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the effective radius. If the ellipticity increases systematically 
with radius, then an effect like this may be expected. If we use 
ellipticities derived at an effective radius, the effect is less pro- 
nounced (the maximum difference in the cumulative histogram 
decreases to 0.13-0.18), but it does not disappear. This is con- 
sistent with the results from Porter et al. (1991), who found that 
systematic gradients of the ellipticities of “ normal ” ellipticals 
are small. Second, we know that the rotational properties of 
ellipticals change as a function of mass. Faint ellipticals are 
generally flattened by their rotation, whereas bright ellipticals 
are generally flattened by velocity dispersion anisotropies 
(Davies et al. 1983).3 Thus it would be surprising if their flat- 
tening distributions were found to be identical. Third, the 
maximum difference in the cumulative histogram of ellipticities 
is only 20%. The addition of a fraction of faint, flattened gal- 
axies (ellipticals with disks?) at the 20% level could explain the 
whole effect. Various authors have argued that particular ellip- 
ticals have disks, either on grounds of photometry (e.g., Capac- 
cioli 1987; Carter 1987; Bender et al. 1988) or on grounds of 
spectroscopy (e.g., Davies et al. 1983; Franx & Illingworth 
1988; Bender 1990). The statistical analysis by Rix & White 
(1990) indicates that these disks may contribute significantly to 
the light, and could possibly influence the apparent ellipticity. 

We do not think that the present data can resolve these 
issues. There appear to be small systematic differences between 
faint and bright ellipticals. These differences are either due to 
systematic differences in the flattenings of ellipsoids of different 
masses or due to systematic differences in the mass fraction of 
the disk with luminosity. This suggests that systematic differ- 
ences could also occur in their kinematics and triaxiality, and 
may complicate the interpretation of the data. 

4.3. Distribution of Apparent Ellipticity and Misalignment 

Recently three major surveys of the kinematics of elliptical 
galaxies have been published. Davies & Birkinshaw (1988, 
hereafter DB) have measured radial velocities along several 
position angles for 14 elliptical galaxies. Their galaxies were 
selected on the basis of their radio continuum morphology. 
Since these galaxies were not the extremely bright radio gal- 
axies with disturbed appearances as found by Heckman et al. 
(1986), but regular ellipticals with possibly minor optical 
“ features,” we believe that these galaxies are relatively normal 
ellipticals. Franx, Illingworth, & Heckman (1989b, hereafter 
FIH) studied a total of 22 galaxies, and presented radial veloc- 
ities along the apparent major and minor axes. Their sample 
is biased toward round galaxies (e < 0.3). Most of the galaxies 
have an absolute magnitude in the interval 20 < — MB < 22. 
They were selected irrespective of radio properties or IR emis- 
sion. Only two galaxies showed an indication of faint dust 
absorption, which is a somewhat lower fraction than generally 
observed (cf. Sadler & Gerhard 1985). Jedrzejewski & Schech- 
ter (1989, hereafter JS) observed 14 ellipticals along the major 
and minor axes. They selected their sample on the basis of 
ellipticity, ellipticity gradients, and position-angle gradients. 
Most of their galaxies have only small gradients. Unfor- 
tunately, this selection criterion might have introduced some 
bias, depending on the cause of the position-angle twists. If 
they are due to radial changes of the triaxiality parameter T, 
then the sample is biased toward galaxies which are seen at 
special viewing angles (those angles where the derivative of 

3 We ignore the very faint galaxies with — MB <18, which rotate slowly 
(e.g., Bender & Nieto 1990; de Zeeuw & Franx 1991). 
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position angle with respect to T is small). If the kinematic 
misalignment is caused only by triaxiality, then these are 
angles at which one observes either small or large kinematic 
twists. The bias is not that strong if galaxies have kinematic 
misalignments caused by purely intrinsic misalignments (see 
§3). 

We note that neither ellipticity gradients nor position-angle 
twists were used to reject candidate galaxies in the first two 
surveys. Despite the normal caution one should always exer- 
cise when doing statistics on incomplete samples, we assume in 
the following that the combined sample is relatively free from 
gross selection effects. However, the sample is strongly biased 
toward round galaxies, and so we cannot use the histogram of 
observed ellipticities for these galaxies to test the models. 

Scattered through the literature we found minor- and major- 
axis data of varying quality on another 33 galaxies. Accurate 
two-dimensional surface photometry was available for only a 
small fraction of these galaxies. Only seven galaxies with good- 
quality observations along the major and minor axes and reli- 
able surface photometry were found. All were unusual galaxies, 
e.g., NGC 5128 (Wilkinson et al. 1986), NGC 7097 (Caldwell, 
Kirshner, & Richstone 1986), and NGC 3108 and NGC 5266 
(Caldwell 1984). These galaxies were originally studied because 
of their well-known gas and dust features. We were reluctant to 
include these galaxies in our sample; not because they had 
observable gas and dust but because they were chosen as can- 
didates for such studies as a result of the unique characteristics 
of their gas or dust features (often edge-on). Hence these gal- 
axies are likely to have special orientations with respect to the 
line of sight, and are not suitable for statistical analysis. The 
galaxies that were published recently by Wagner et al. (1988) 
cannot be included because they were chosen for publication 
as a result of a striking kinematic property, namely, significant 
rotation along the minor axis. 

The combination of the samples of DB, FIH, and JS yielded 
a sample of 44 galaxies. For six galaxies the misalignment 
angle is determined with accuracy worse than 25°. The mis- 
alignment angle becomes a meaningless number if the error is 
larger than 25°, and so we removed these galaxies from the 
sample. This may have introduced a small bias against those 
viewing angles which result in small observed rotational veloc- 
ities (and thus relatively large uncertainties in those veloci- 
ties), e.g., viewing directions almost parallel to the angular 
momentum. 

We show histograms of misalignment angle, apparent ellip- 
ticities, and velocity amplitudes for these galaxies in Figure 17. 
The kinematic misalignment angles as determined by DB, FIH, 
and JS were used, with their error estimates. The ellipticities 
are recalculated from the CCD data base, and are ellipticities 
at r = re. An accurate error estimate for the kinematic mis- 
alignments remains a difficult task for this type of data. All 
three papers discuss this problem. We believe that the errors in 
the kinematic misalignments may be uncertain by a factor 
between 0.7 and 1.4. More details can be found in the papers 
where the samples are discussed. From the histogram of kine- 
matic misalignment angles in Figure 17a it is clear that there 
are galaxies with significant misalignments. We note that the 
distribution seems to peak around 0° and at 90°, although the 
last peak contains only four galaxies and is therefore barely 
significant. We have also plotted the observed points in the 
(lF, e)-plane (Fig. 18). We see that the misalignment angle 
seems to be distributed independent of the observed ellipticity. 
This contrasts with many of the models which predict a strong 
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Fig. 17.—(a) Histogram of kinematic misalignment ¥. The shaded histogram is for galaxies with an error in the misalignment smaller than 25°; the unshaded 
histogram includes all galaxies. In (b) and (c) are shown histograms of apparent ellipticity e and rotation velocity amplitudes vt0{ for our sample. There is a relative 
absence of galaxies with e > 0.3. 

anticorrelation between the ellipticity and the apparent mis- 
alignment (see § 3). 

5. MODELS OF INTRINSIC SHAPES AND INTRINSIC 
MISALIGNMENTS 

In this section we discuss the construction of distributions 
for the intrinsic flattenings, intrinsic misalignments of angular 
momenta, and intrinsic short axes that are in agreement with 
the data presented in the previous section. It is clear that such 
modeling is not unique, since we have three intrinsic param- 
eters (intrinsic flattening eu triaxiality T, and intrinsic mis- 
alignment il/int) and two observed parameters (apparent 
ellipticity e and apparent kinematic misalignment XF). 
However, certain properties of the apparent ellipticity and mis- 
alignment help us. The distribution of apparent ellipticities 
depends only on the distribution of ^ and on the distribution 
of T. The distribution of the apparent misalignment depends 
only on the distribution of T and the intrinsic misalignment 
^int. Thus we decided to treat these as two separate inversion 
problems. 

5.1. Inversion of the Distribution of Apparent Ellipticities 
We inverted the histogram of CCD ellipticities (see § 4.1). 

This problem is underconstrained, since two intrinsic param- 
eters determine the distribution of one observable. A natural 
assumption that allowed the inversion of the apparent ellip- 
ticities was to assume that all galaxies have the same triaxiality 
T. We fitted a third-order polynomial to the observed (CCD 
data base) histogram of ellipticities, and inverted the resulting 
distribution with Lucy’s (1974) method. This method guar- 

Fig. 18.—Observed galaxies in the (T, e)-plane. Galaxies with errors in T 
larger than 25° are indicated by open circles. It is striking that the distribution 
in 'F does not appear to correlate with €. 

antees smooth, positive solutions. Figure 19 shows the inverted 
distribution of for oblate models, intermediate triaxial 
models, and prolate models. All the distributions peak in the 
interval 0.3 < < 0.5. The oblate and prolate distributions go 
to zero at low ellipticity. The triaxial distribution shows a 
minimum at 6! =0. Note that the oblate distribution does not 
reproduce the dip in the histogram at low ellipticity; it predicts 
too many round galaxies. However, the difference is not sta- 
tistically significant according to a Kolmogorov-Smirnov test 
(which does not have normal statistics, since the data are used 
to find the model solution). A similar result was found by 
Fasano & Vio (1991).4 For the three cases of Figure 19, the 
mean intrinsic flattening is in the range <€!> = 0.3-0.36. 

Given the relatively small differences between the intrinsic 
distributions obtained with different values of T, we have not 
extended the analysis to other hypotheses concerning the 
shape. The distribution of apparent ellipticity is more sensitive 
to the distribution of intrinsic flattenings than the distribution 
of T, and hence many models with similar distributions of e1 
but different distributions of T will fit the data. 

5.2. Inversion of the Distribution of Apparent Misalignment 
We next constructed models for the intrinsic misalignment 

i¡/int and triaxiality T. There is again an ambiguity in the mod- 
eling, since two intrinsic parameters (^int and T) determine the 
distribution of the observable parameter (XF). Hence we con- 
strained our solutions to lie on lines in the plane of intrinsic 
misalignment and triaxiality. We used the following procedure 
to obtain valid solutions: First we chose a line in the (il/int,T)- 
plane on which the solution lay, and defined 10 or 11 points 
(^int.i, 7¿) on that line. We chose three different lines, and con- 
structed three different classes of models, I, II, III, which are 
indicated in the (i^int, T)-plane in Figure 20. Models of class I 
have no intrinsic misalignment; all the apparent misalignment 
is due to the triaxiality. Models of class II have no triaxiality, 
and all the apparent misalignment is due to intrinsic misalign- 
ment. These two classes are extremes, and thus they can be 
contrasted with each other. Models of class III have nonzero 
triaxiality and intrinsic misalignment, and these parameters 
are linearly related. 

Next, for each of the points on the line given by a particular 
class of model we inverted the distribution of apparent ellip- 
ticities for the triaxiality T of that point. Then we calculated 
the distribution p(e, 'F | il/inUi, 7]) for that distribution of and 

4 Fasano & Vio (1991) claimed that the difference is significant at the 3 <t 
level, but they base this on the 3 a deviation of the lowest ellipticity bin. The 
probability that 1 bin out of 13 differs by more than 3 o- is not negligible, 
however. 
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ei e 
Fig. 19.—(a) Inverted distribution of intrinsic flattenings for three different values of the triaxiality parameter T. The continuous line is for T = 0 (oblate), 

the short-dashed line for T = 0.5, and the long-dashed line for T = 1 (prolate). All models have very few intrinsically round galaxies. In (b) is shown the distribution 
of apparent ellipticities for these models (cf. Fig. 14 for the data). The oblate model is not fully able to reproduce the observed minimum at € = 0. 

the specific values of i¡/intfi and Tt of the point. A wide range of 
models can be constructed by varying the weights of the 
“ building blocks ” x¥). The resulting probability distribu- 
tion p(e, XF) is given by 

p(C,4') = I>ii>i(e,'F|./W 7]) (17) 
i 

and is easily evaluated. The procedure guarantees that this 
probability distribution reproduces the observed distribution 
in apparent ellipticity. We next constructed distributions in 
two different ways : 

1. We produced smooth models with Lucy’s (1974) algo- 
rithm. The probability distributions p^e, T*) were averaged 
over the interval 0 < e < 0.3, reflecting the interval in ellip- 
ticities in which the galaxies lie. The resulting distributions 
were smoothed in 'F to represent the average measurement 
error of 6?6. Afterward, they were divided in bins of 10°. 
Finally, the data histogram was inverted with Lucy’s algorithm 
to obtain a smooth distribution of weights w, . 

2. We chose to explore the solutions space through linear 

T 

1 

.8 

.6 

.4 

.2 

0 

0 30 60 90 

Vw 
Fig. 20.—Plane of intrinsic misalignment and triaxiality T. The three 

classes of solutions I, II, and III are indicated. Class I consists of triaxial 
galaxies without intrinsic misalignments, class II of oblate galaxies with intrin- 
sic misalignments, and class HI of triaxial galaxies with intrinsic misalign- 
ments. The squares and triangles indicate the models which are used to 
reproduce the observed misalignments for each class of solution. The stars are 
the dynamical models by Statler (1987), his “Lucy” models. The angular 
momenta are assumed to have their maximum values, both along the x-axis 
and along the z-axis. Solution III lies near to these points. 

programming and systematic searches. For that we needed a 
goodness-of-fit estimator, that allowed us to reject or accept 
models. We used the adapted Kolmogorov-Smirnov test 
devised by Binney (1985). For a given model, the cumulative 
probabilities EOF > 'Fgail^gai) are evaluated for each galaxy. If 
the model is the true model, then these probabilities are ran- 
domly distributed between 0 and 1. This was tested by means 
of the Kolmogorov-Smirnov test, which is based on the 
maximum difference Dmax between the observed and model 
distributions of cumulative probabilities (a linearly rising 
function). We rejected models at the 95% confidence level (i.e., 
the probability of falsely rejecting the true model was smaller 
than 5%). 

In principle, a full exploration of the solution space is a 
complex mathematical problem, and it is not attempted here. 
Instead, we first constructed models by using an approximate 
technique: if the measurement errors in 'F are identical for all 
galaxies, and if the dependence of p(e, 'F) on e can be ignored, 
then the adapted Kolmogorov-Smirnov test reduces to a 
regular Kolmogorov-Smirnov test which can be expressed as a 
set of linear constraints on the weights wf. We name this 
reduced test the limited Kolmogorov-Smirnov test. Next we 
used the linear programming (LP) technique to find a wide 
range of solutions. We adapted the code from Press et al. 
(1986). The LP technique allows us maximize a function (the 
“cost function”). We optimized linear combinations of <g> 
and <<?2>, where q is the changing parameter along the 
sequence of the model “building blocks” p^e, ¥); thus q = T 
for solution classes I and III, and q = ^int for solution class II. 
A systematic survey of all linear combinations of <g> and (q2} 
gives us the total allowed space in the «#>, <g2))-plane. The 
models generated by this technique are of an extreme nature. 
Many of them have only one or two nonzero weights w,. They 
have the special property that a linear combination of valid 
models will again produce a valid model (according to the 
limited Kolmogorov-Smirnov test). When we tested the models 
produced by the LP technique with the original adapted 
Kolmogorov-Smirnov test, we found that some of them were 
ruled out at the 95% confidence limit; apparently the differ- 
ences in the measurement errors and the dependence on e 
cannot be ignored. 

Based on this experience, we decided to build “synthetic” 
models, and tested these models with the adapted 
Kolmogorov-Smirnov test. We tried three types of models: (1) 
Models with the weights wf a linear function of parameter q; 
the slope was varied extensively, and any resulting negative 
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weights were substituted by zeros. (2) Models with the weights 
a Gaussian function of q; the mean and dispersion around the 
mean were varied. (3) Models with only two nonzero weights 
(“ two-peaked models ”). All possible combinations were tested, 
with steps of 0.01 in the nonzero weights. Our experience with 
the LP fitting showed that the last type of model explores the 
solution space quite adequately, although we have no guar- 
antee that it gives a full coverage. Below we discuss the 
resulting models for each class of solutions. 

5.2.1. Class I: Models with Perfect Intrinsic Alignment 

We first analyzed models for which the apparent misalign- 
ments are entirely due to projection effects. The angular 
momentum was assumed to be parallel to the intrinsic short 
axis, or i//ini = 0. 

We evaluated 11 models along the line of i/fint = 0, with 
T = í/10, i = 0, 10. We used Lucy’s method to construct a 
smooth, well-fitting model. We call this solution la; it is shown 
in Figure 22a below. It is nonzero from T = 0 to T = 1, and 
thus covers all shapes from oblate to prolate. The mean tri- 
axiality is 0.41. The adapted Kolmogorov-Smirnov test indi- 
cates that it is a good fit to the data. 

We next explored the solution space more systematically 
through our synthetic models described above. We show the 
covered range in the (<T>, <r(T))-space in Figure 21. We derive 
limits on the mean triaxiality 0.14 < <T> < 0.7, and on the 
dispersion in triaxiality 0 < (t(T) < 0.48. Some models with 
zero dispersion in triaxiality (i.e., a single delta function) are 
allowed by the adapted Kolmogorov-Smirnov test, but they 
are not a good fit, since the galaxies with observed misalign- 

(T) 

Fig. 21.—Solution space of mean triaxiality <T> and dispersion in tri- 
axiality (j(T) for models with perfect intrinsic misalignment (i^int = 0). The 
large region bounded by the continuous line is the region of acceptable solu- 
tions with two delta functions in triaxiality (the “ two-peaked ” models). The 
region bounded by the dotted line is the region of acceptable models with a 
Gaussian distribution of T. The dashed line represents acceptable solutions 
with weights that are a linear function of T. The cross is the Lucy solution la. 
The points are predictions for the shapes of dark halos from numerical simula- 
tions of hierarchical formation scenarios. The square is for the distribution 
predicted by Frenk et al. (1988); the triangles and filled circles are for distribu- 
tions by Dubinski & Carlberg (1991) and Warren et al. (1991a, b). The three 
different symbols are for three different radii within the halos, with the central 
shapes being the most prolate. The open circle is the distribution of shapes 
predicted by White & Ostriker (1990) for halos formed on shells around voids. 
The line through the points is the analytical prediction of shapes of halos by 
Bardeen et al. (1986). All of these predictions can be ruled out to apply to the 
luminous parts of ellipticals. 

Vol. 383 

ments 'F > 45° and e > 0.2 are forbidden by these models. The 
presence of these galaxies require nonzero weights wf with 
Ti > 0.5. However, an infinitesimal contribution from these 
components will allow the relatively flattened, misaligned gal- 
axies, and thus we only require (t(T) to be nonzero. The high 
mean triaxialities occur only for models with large ct(T). These 
are models with two widely separated peaks in T. We show an 
example in Figure 22a (solution lb). It has a mean triaxiality of 
0.5 and has only oblate and prolate shapes. It clearly provides 
a good fit to the observed histogram, not much better or worse 
than the Lucy model. These two extremes illustrate well the 
ambiguity of the problem: a wide range of solutions is possible. 

5.2.2. Class II: Oblate Models with Intrinsic Misalignments 

Next we assumed that the apparent misalignments were due 
to intrinsic misalignments. The shapes of the galaxies were 
assumed to be nearly oblate (T æ 0), so that we could use the 
results of § 3 for oblate models. The results should be contrast- 
ed with those of the preceding subsection, where we assumed 
that the apparent misalignments are mainly due to projection 
effects of the triaxial shapes of galaxies. We chose 10 points to 
lie along the line T = 0 with i¡/int = i x 10°, i = 0, 9. The dis- 
tribution of 6! is that for oblate galaxies (T = 0). We have 
again constructed the probability distributions p(e, T') for all 
points. 

The Lucy solution is shown in Figure 22c (solution Ha). It 
has two peaks at ^int = 0 and i^int = 90° and is nonzero in 
between. It has a mean intrinsic misalignment of 24°. It is a 
good fit to the data by the Kolmogorov-Smirnov test. We 
again explored the solution space with our synthetic solutions. 
We found various models with linear, Gaussian, or two-peaked 
distributions that fitted the data satisfáctorily. Again, the pres- 
ence of flattened, misaligned galaxies requires a small contri- 
bution from components with ^int > 40°, but this is not a 
strong constraint, as an infinitesimal contribution is sufficient. 
The range in mean intrinsic misalignment is from 4° to 45°. 
The maximum is reached for a model with two peaks, at 0° and 
90°, with equal contributions. Of interest is the minimum 
required fraction of galaxies with small intrinsic misalign- 
ments. We obtain the following numbers from our modeling: 
/OAint < 5°) > 0.05, /(<Aint < 15°) > 0.35, < 25°) > 0.40. 
Again, we stress that we have no guarantee that these numbers 
are the absolute minima allowed by the adapted Kolmogorov- 
Smirnov test, but we believe that they are a good approx- 
imation. The maximum fraction of galaxies with misalignments 
greater than 45° is 0.5 (e.g., our maximum <^int) model). We 
show an example of one of the extreme models in Figure 22c 
(solution lib). This is a model with two peaks, at ^int = 0° 
and 90°, with relative weights of 0.6 and 0.4. It fits the data 
well according to the adapted Kolmogorov-Smirnov test 
[P^max > Omax.obJ = 0.45], 

5.2.3. Class III: Triaxial Models with Intrinsic Misalignments 

Third, we assumed that all galaxies lie along a line in the 
(*Aint> T)-plane, passing through the points (i^int, T) = (0, 0) 
and (1, 90°). The choice of this line was based on the dynamical 
models produced by Statler (1987). He calculated the 
maximum angular momenta along the long axis and the short 
axis for a variety of models. We analyzed his “ Lucy ” models, 
which have smooth phase-space distribution functions. His 
self-consistent models specify the occupation numbers of the 
tube orbits, but they do not specify whether all stars rotate in 
the same sense around the rotation axis within one tube orbit, 

FRANK, ILLINGWORTH, & DE ZEEUW 
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I V^nt^O 

■ la 

Olb 

Fig. 22.—Solutions for the intrinsic shapes and intrinsic misalignments of elliptical galaxies, (a) Solutions of class I, i.e., triaxial galaxies without intrinsic 
misalignment. Solution la (squares) was derived with Lucy’s method. Solution lb (circles) is one of the well-fitting extreme solutions constructed by our synthetic 
algorithm. This solution contains only oblate and prolate galaxies. Despite the great difference between the two solutions, they both give very similar distributions of 
apparent misalignments in (b). They do not reproduce the peak in apparent misalignments at 90°. (c, d) Solutions Ha (squares) and lib (circles) for oblate galaxies 
with intrinsic misalignments. Again, solution Ha was produced by Lucy’s method and solution lib by our synthetic algorithm. This solution contains only oblate 
galaxies with zero misalignment and 90° misalignment, (e, /) Solutions Ilia (squares) and Illb (circles) for triaxial galaxies with intrinsic misalignments. Solution Illb 
provides a satisfactory fit according to the Kolmogorov-Smirnov test, and consists only of oblate short axis rotators and prolate long axis rotators. 

or within one class of tube orbits rotating around the axis. We 
assumed that all the stars rotating around the x-axis are rotat- 
ing in the same sense, and that all the stars rotating around the 
z-axis are rotating in the same sense. Now the maximum 
angular momenta along the x-axis and the z-axis specify the 
full angular momentum, and the intrinsic misalignment and 
the triaxiality can be evaluated for these models rather easily. 
We have shown the points for all Statler’s “ Lucy ” models with 
6! < 0.5 in Figure 20, and we can see that these points lie 
reasonably near the indicated diagonal. We chose points along 
the diagonal with T = i/10, ij/ini = i x 9°, i = 0, 10. The histo- 
gram of apparent ellipticities was inverted for all these points, 
and the probability distributions p(€, 'F) were evaluated. 

The Lucy solution is shown in Figure 22e. Solution Ilia is 
positive for all points and has two distinct peaks, at \¡/int = 0° 
and = 90°. The solution reproduces the peak at apparent 
misalignment of 90° very well (better than the previous Lucy 
solutions). The mean triaxiality of the model is 0.19, and the 
mean intrinsic misalignment is 17°. Note that the mean tri- 
axiality is more than a factor of 2 lower than the triaxiality of 

solution la, but that the mean intrinsic misalignment is only 
20% lower than that of solution Ha. Apparently, the intrinsic 
misalignment dominates over the triaxiality in producing the 
apparent misalignment for this class of model. Again, we 
explored the solution space more thoroughly using our syn- 
thetic models. We found that the mean triaxiality varied 
between 0.045 and 0.35 for acceptable models. The highest 
mean triaxiality was reached for a model with two peaks, at 
T = 0 and T = 1, with relative fractions of 0.65 and 0.35, 
respectively. Note that this is a combination of oblate short 
axis rotators and prolate long axis rotators. It predicts galaxies 
to have true apparent misalignments of 0° or 90°, and nothing 
in between. Thus the galaxies with intermediate misalignments 
are explained as galaxies with large measurement errors. We 
do not think that this conclusion is correct; it emphasizes one 
of the problems related to the Kolmogorov-Smirnov test : even 
though a galaxy might lie in a region for which p(e, VF) is zero, 
the model will not be rejected because the cumulative probabil- 
ities are used to test the model. Again, this problem can be 
fixed by allowing for an infinitesimally small contribution of 
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galaxies with intermediate misalignments and triaxialities. We 
cannot put useful constraints on the minimum fraction of such 
galaxies. In Figure lie we show a model with nonzero weights 
at T = 0 and T = 1. The relative contributions are 0.7 and 0.3, 
respectively. This model was chosen because it is extreme, but 
it gives a reasonable fit according to the Kolmogorov-Smirnov 
test [p(Dmax > Anax.obs) = 0.13]. 

5.2.4. Mixed Models 

We have argued before that at least some fraction of galaxies 
are long axis rotators (e.g., NGC 4365, NGC 4406). This stimu- 
lated us to consider models for which the galaxies are either 
triaxial with no intrinsic misalignment or have i^int = 90°. 
Hence these models are combinations of short axis rotators 
and long axis rotators. We considered two special cases: one 
for which all long axis rotators are prolate (T = 1), and one for 
which the long axis rotators are oblate (T = 0). Real long axis 
rotators cannot be oblate, because oblate galaxies have only 
rotation around their short axes. Hence this case should be 
considered as the hypothetical limiting case (i.e., small T). We 
cannot give firm lower limits to the fraction of long axis rota- 
tors. This follows from the fact that we can fit the data suffi- 
ciently well by only short axis rotators (models of class I). We 
can put some upper limits on the long axis rotators. We 
explored the solution space with our “two-peaked” models, 
and we found that the maximum fraction of prolate long axis 
rotators is 35%, and of oblate long axis rotators is 50%. The 
best-fitting “two-peaked” model with prolate long axis rota- 
tors had a fraction of 0.90 galaxies at T = 0.3 and a fraction of 
0.10 of prolate long axis rotators. Curiously enough, this model 
was the best-fitting model of all models that we constructed (of 
all classes). We should not attach too much value to that, 
because we made no systematic effort to find the best-fitting 
models. The best-fitting “ two-peaked ” model with oblate long 
axis rotators had a fraction of galaxies with T = 0.3 of 0.85, 
and a fraction of 0.15 of oblate long axis rotators. 

5.2.5. General Characteristics of the Solutions 

In summary, we have produced solutions on three lines in 
the (i^int, T)-plane. There is no reason to believe that real gal- 
axies are constrained to lie on a line in a plane, and so it should 
be possible to construct much more general solutions. Given 
the degeneracy of the mathematical problem, we did not 
attempt to produce such solutions. The previous solutions do 
suggest some important constraints on the models: (1) all the 
solutions have a sizable fraction of galaxies with intrinsic mis- 
alignments smaller than 15° (at least 35%). This is needed to 
reproduce the strong peak at observed misalignments of 
0°-10o. (2) The small peak of galaxies near misalignments of 
90° can be reproduced quite well with a small fraction (10%- 
20%) of galaxies that rotate round their long axes. These gal- 
axies can be near to oblate or prolate. The current data do not 
allow us to put strong constraints on their shapes. (3) All solu- 
tions satisfy the following constraint on the mean triaxiality 
and mean intrinsic misalignments: <T> < 0.70 and <iAint> < 
45°. These large values of <T> and <^int) can only be reached 
for models with large dispersions in these parameters. The 
distributions have to have two separated peaks to reach these 
values. We cannot put interesting lower limits on <T> and 
<^int)- These results can be improved by extending the data set 
to large ellipticities. A larger data set would also help to estab- 
lish the fraction of galaxies with large intrinsic misalignments. 

6. PREDICTIONS FROM HIERARCHICAL FORMATION MODELS 

The formulation of the cold dark matter hypothesis (Peebles 
1982; Blumethal et al. 1984) to explain the formation of the 
structure in the current universe has stimulated intensive 
research into the detailed properties of halos in this model. 
Two types of predictions have been made about the shapes of 
halos. First, Doroshkevich (1970) and Bardeen et al. (1986, 
thereafter BBKS) have given predictions for the shapes of 
peaks in Gaussian random fields. These predictions should be 
regarded as predictions of initial conditions, before the struc- 
tures collapsed and became nonlinear. BBKS give very general 
formulae which can be applied easily to hierarchical models 
with different power spectra. Second, numerical simulations of 
the collapse of structure have been analyzed to yield distribu- 
tions of intrinsic shapes of halos (e.g., Frenk et al. 1988). Most 
of these simulations included only the dissipationless dark 
matter component. The similarity between the dynamics of 
halos and elliptical galaxies may be taken as an indication that 
they have similar shapes. However, there is no compelling 
reason that this should be so. Nevertheless, the comparison 
between the halo predictions and the constraints provided by 
our data may give new constraints on the formation mecha- 
nism of the luminous parts. 

6.1. Analytical Predictions for the Shapes of Peaks 
BBKS derived the intrinsic shapes of the peaks in their 

Gaussian random fields by evaluating the probability distribu- 
tion of the spatial second derivatives at each peak. This deri- 
vation requires the random field to be continuous and 
differentiable. Random fields with power spectra P(k) = kn, 
where k is the frequency, are generally not differentiable. These 
fields are usually smoothed by a Gaussian on the scale of the 
object (here galaxy halos) to obtain a useful result. BBKS 
showed that the shape distribution is a function only of the 
spatial size of the peak, expressed by their parameter x. The 
shape is not directly related to the height of the peak. The size 
parameter is correlated with the height of the peak in a sta- 
tistical sense, however. For power spectra with indices between 
0 and —2.5, the parameter x generally lies between 1 and 6, for 
peak heights between 1 and 6 times the standard deviation of 
the field. We transformed the probability distribution for the 
shapes given by BBKS into the probability distribution of 6! 
and T. For the derivation see Appendix B. In Figure 23a we 
show the distribution of triaxiality for various values of x. For 
all values of x in the relevant range, the models predict a peak 
at high T, and the mean triaxiality varies between 0.6 and 0.75 
for x = 6 and x = 1, respectively. This shows that the initial 
conditions for halos can be thought to be very triaxial-prolate. 
We have drawn the line of <T> and <r(T) in Figure 21. Clearly, 
it lies outside the range of our acceptable synthetic solutions. 
When we apply the adapted Kolmogorov-Smirnov test to 
these models (see § 5), we find that we can rule out these dis- 
tributions at the 0.995% confidence level. Thus ellipticals do 
not have the typical triaxialities predicted for halos in their 
initial stages of collapse. 

6.2. Numerical Results of the Shapes of Peaks 
The collapse of the halos will certainly alter their shapes. 

The direction of the effect is not very predictable in the nonlin- 
ear regime. In the linear regime, structures will become flatter, 
(i.e., increases), but the triaxiality does not necessarily 
change by a large factor. Many authors have performed 
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Fig. 23.—(a) Predicted distribution of the triaxiality of peaks in Gaussian random fields. These distributions are thought to be typical of the initial conditions 
before collapse. The distributions depend on the parameter x, which is a measure of the size of the peak. This parameter was varied between 1 and 6 in steps of 1, and 
covers the relevant range for most power spectra, (b) Distribution of triaxiality of collapsed halos in hierarchical formation scenarios. The continuous line is based on 
simulations by Frenk et al. (1988), the dotted line on simulations by Warren et al. (1991b), and the dashed line on simulations by Dubinski & Carlberg (1991). We 
show the least prolate-triaxial distributions from the last two authors. All three distributions are inconsistent with the data on the luminous parts of ellipticals, 
(c) Distribution of triaxiality taken from White & Ostriker (1990), for halos forming on shells around voids. This distribution is comparable to the others and 
inconsistent with the data on the luminous parts of ellipticals. 

numerical simulations of this process, and have measured the 
shapes of the resulting halos (Frenk et al. 1988; Dubinski & 
Carlberg 1991; Warren et al. 1991a, b). Generally, they have 
found that the halo shapes were more flattened than elliptical 
galaxies (and, of course, much larger!). We determined the 
distribution of triaxialities of the halos in the three sets of 
simulations, and we present these in Figure 23b. It is remark- 
able that the distributions look rather similar, despite large 
differences in resolution and particles per halo between the 
different authors. This gives us some confidence in the result. 
We have plotted the mean triaxialities and dispersions in tri- 
axiality in Figure 21. They overlap well with the BBKS predic- 
tions, but they extend to more triaxial-prolate shapes. All of 
these shape distributions can be ruled out to apply to the 
luminous parts of ellipticals at the 99.3% confidence level or 
better. This analysis assumes that the angular momentum is 
perfectly aligned with the intrinsic short axis, which is prob- 
ably not the case for structures formed in this way. If we were 
to include the intrinsic misalignments, the discrepancy with the 
data would only become worse ! 

There may be several reasons for the difference between the 
halo shapes and the luminous parts of ellipticals. First of all, 
the simulations may still lack the resolution needed to get the 
proper shapes in the central parts of the halos. Miralda-Escudé 
& Schwarzschild (1989) showed that the regular box orbits 
which sustain the shapes of triaxial galaxies become unstable 
in scaleless potentials or potentials with small core radii. This 
effect may be relevant for dark halos. The numerical dark 
matter simulations may not have enough radial resolution to 
find this effect. Hence, with much higher resolution, the halos 
may become more axisymmetric. Second, it is possible that 
significant gradients in triaxiality occur in these halos. It is 
remarkable to note, however, that both Dubinski & Carlberg 
and Warren et al. find gradients in the triaxialities of their 
halos, with the inner parts being more prolate (which exacer- 
bates the problem). Third, our data concern only the luminous 
parts of galaxies, and these may very well have shapes different 
from those of the halos. Ellipticals may have formed from 
“galaxies” with significant substructure (e.g., protogalaxies 
with bars and disks). Thus, the luminous parts may have 
shapes different from those of the dark halos caused by the 
(dynamically cold) structure of the luminous material prior to 
the last “merger event” in which the galaxy was assembled. 
Finally, the effects of dissipation and hydrodynamics have not 

been included in most simulations. Gas may help to make 
galaxies more axisymmetric because it tends to settle in (nearly) 
circular disks. Thus any gas settling may help to make the 
shapes of the luminous part more axisymmetric, and it might 
even help to make the whole halo more axisymmetric. It is 
noteworthy that exactly this effect was found by Katz & Gunn 
(1991) in their collapse simulations. If this process is the most 
relevant, then it may help to put constraints on the fraction of 
mass in gas at the last round of major “ mergers ” which formed 
the present galaxies. It would be useful to investigate how 
much mass has to be added on the stable gas orbits to influence 
the shape of a triaxial galaxy significantly. 

It is also possible, of course, that galaxies formed in a way 
quite different from that in the hierarchical formation sce- 
narios. We are unaware of detailed predictions of the shapes of 
halos or galaxies in alternative scenarios, except for the work 
of White & Ostriker (1990). These authors analyzed the halos 
formed on expanding shells of dark matter around voids. They 
found that their halos are more spherical than the halos pro- 
duced in hierarchical scenarios. We determined the distribu- 
tion of triaxialities, and plotted this in Figure 23c. Remarkably, 
the distribution is very similar to the distributions for hierar- 
chical scenarios. Such a distribution is likewise ruled out to 
apply to the shapes of ellipticals. The same uncertainties as 
discussed for the hierarchical models apply to this type of 
model. Summarizing the above results, it might be hard to 
distinguish between formation scenarios on the basis of the 
shapes of ellipticals, but it may be possible to find interesting 
constraints on the formation of their luminous parts (in addi- 
tion to constraints from their relative sizes, densities, flat- 
tenings, angular momenta, M/L ratios, etc.). 

7. CONCLUSION 

We have constructed a variety of models which are able to 
reproduce the observed distribution of apparent ellipticities 
and apparent kinematic misalignments. The models are con- 
strained by two different sets of data. The first is the distribu- 
tion of observed ellipticities. These were drawn from a large 
data set of accurate CCD images that has been reported in the 
literature over the last few years. The new data show a relative 
paucity of nearly round galaxies, in agreement with other 
recent analyses. The distribution differs markedly from the 
older distribution of ellipticities obtained from the RC2. This is 
presumably due to the inhomogeneous data quality and non- 
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quantitative determinations used for the older photographic 
results. The second data set is a compilation of apparent kine- 
matic misalignments from the recent literature, using those 
three surveys of the rotation along the minor and major axes of 
ellipticals that are statistically sound. 

The distribution of apparent ellipticities for high-luminosity 
ellipticals and low-luminosity ellipticals are somewhat differ- 
ent. There is a relative absence of highly flattened, high- 
luminosity galaxies. This may reflect a true difference in the 
flattenings of the ellipsoids, since the shapes of luminous gal- 
axies appear generally to result from velocity dispersion 
anisotropies, while the shapes of faint galaxies result from rota- 
tion. Alternatively, contamination by galaxies with significant 
disks in the faint sample could cause a similar effect. At least 
20% of faint ellipticals would need to have such disks to 
explain the difference that is seen. 

The determination of the intrinsic shape and intrinsic mis- 
alignment of the angular momentum from the intrinsic short 
axis is degenerate. Three intrinsic parameters (ellipticity, tri- 
axiality, and intrinsic misalignment) are constrained by two 
observable parameters (apparent ellipticity and apparent kine- 
matic misalignment). The problem simplifies somewhat by 
using the special property that the apparent kinematical mis- 
alignment depends only on the intrinsic misalignment and tri- 
axiality, and so the ellipticity drops out. Hence we regarded the 
two problems of finding the intrinsic flattening and finding the 
intrinsic triaxiality and misalignment as separate ones. The 
inversion of the apparent ellipticities depends only weakly on 
the assumed triaxiality of galaxies. For all triaxialities, the dis- 
tribution of intrinsic flattenings shows a peak at an ellipticity 
between 0.3 and 0.45, and declines to a low value at 6! = 1 
— c/a = 0. For oblate and prolate models the inverted intrinsic 
distribution has no round galaxies, and for triaxial systems the 
fraction of galaxies with € < 0.1 is small (on the order of 7%). 

Many models could be constructed to reproduce the histo- 
gram of apparent kinematic misalignments. Models with all 
galaxies triaxial and well-aligned angular momenta, models 
with all galaxies oblate and nonaligned angular momenta, and 
more general models (triaxial with intrinsic misalignments) 
worked equally well. We argue from the presence of kine- 
matical subsystems in the cores of NGC 4365 and NGC 4406 
that these galaxies have angular momenta oriented close to the 
long axis. Hence, some galaxies are likely to have intrinsically 
misaligned angular momenta, and models which do not allow 
for such misalignments are too limited. The results from 
models which include galaxies with large intrinsic misalign- 

ments suggest that 10%-20% is a reasonable estimate of the 
fraction with such intrinsic misalignments. The current data 
cannot constrain their triaxiality; they can range from oblate 
to prolate. The solutions that we produce can be either rela- 
tively smooth or very peaked. All solutions give acceptable fits 
to the data, as tested by an adapted version of the 
Kolmogorov-Smirnov test. All the solutions require at least 
35% of galaxies to have misalignments smaller than 15°. It is 
remarkable that the momenta are so well aligned with the intrin- 
sic short axis, since this is not required for triaxial galaxies. The 
maximum mean triaxiality T that is allowed is 0.7, on a scale 
where T = 0 for oblate and T = 1 for prolate shapes. The 
maximum mean misalignment is 45°. It will be interesting to see 
whether one formation mechanism can account for both the large 
fraction of galaxies with very small intrinsic misalignments and 
the small fraction of galaxies with large intrinsic misalignments. 

The resulting triaxiality and misalignment distributions can 
be compared with the predictions from theories of hierarchical 
formation of galaxies. Analysis of the shapes of the density 
peaks before collapse predicts highly triaxial-prolate struc- 
tures. Numerical simulations have also produced halos that 
are comparably triaxial-prolate. These shapes are systemati- 
cally more triaxial-prolate than the luminous parts of ellip- 
ticals. This comparison should not be considered to be a 
reflection upon the hierarchical formation picture. First, the 
simulations may not yet have the required resolution. Second, 
our observations relate to the luminous parts of galaxies, 
which may well have different shapes from the halos. The frac- 
tion of mass in gaseous form may have been relevant, particu- 
larly in the most recent merger. As gas tends to settle in nearly 
circular disks, it may influence significantly the shape of the 
resulting galaxy. More studies of this effect, and detailed simu- 
lations of mergers in the protogalactic epoch, may help to 
clarify these differences. 
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APPENDIX A 

THE PROBABILITY DISTRIBUTIONS 

1. PROBABILITY DISTRIBUTION p(€)d€ 

We derive an expression for the probability p(e)d€ of observing an apparent ellipticity e in the interval (e, € + de) for random 
viewing angles and fixed shape. We use the results by F88, who showed that the apparent ellipticity is related to the conical 
coordinates //, v of the vector of projection p by 

See F88 for a more detailed description of the conical coordinates. We introduce the probability distribution p(//, v)dp dv of finding 
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conical coordinates n, v in the interval (//, /; + dfj), (v, v + civ) for arbitrary viewing angles. It is straightforward to derive 

Piß, v) = 
// - v 

2n sj-h(ß)h(v) ’ 
with 

/j(t) = (t — a2)(T — b2)(T — c2) . 

By equation (Al), the probability distribution p(ju, e) is given by 

where v = (1 — e)2//- We derive 

dP = p(e)de = í p(p, v)dp dv = de í p(p, v) ^ d// = de Í dp., 
JcOi.v) ^ ie(n,v) TlyJ — h(ßj)h(v) 

(1 - e)N/ë p 

131 

(A2) 

(A3) 

(A4) 

p(e)de = J-h{p)h(ep) 
0, 

dpde for 0 < e < er , 

for €!<€<!, 
(A5) 

where e = (1 - e)2. The integration limits and p2 depend on the shape of the galaxy. For galaxies with axial ratios b/a > c/b, i.e., 
oblate-triaxial systems, we derive 

(h2, b2/e) for 0 < € < e2 , 

(^i, P2) = j (b2, a2) for e2 < e < e3 , 
(c2le, a2) for e3 < e < er . 

where e3 = 1 — c/b. For prolate-triaxial galaxies with axial ratios b/a < c/b we have 

(b2, b2/e) for 0 < e < e3 , 

(Pi, Pi) = ) (c2/e, b2/e) for e3 < e < e2 , (A7) (c2/e, b2/e) 
(c2/e, a2) 

for e3 < e < e2 , 
for e2 < e < Cj . 

The integrand in equation (A5) is singular but integrable at these limits. The function p(e) is generally a hyperelliptic integral, which 
is easily evaluated numerically. The general characteristics of p(e)de have been described by Binney & de Vaucouleurs (1981). The 
present formalism shows that special cases occur not only for oblate and prolate spheroids but also for elliptical disks and for 
ellipsoids with b/a = c/a. 

2. CALCULATION OF pi'V, e) FOR MODELS WITH PERFECT INTRINSICALIGNMENT (^in, = 0) 

Franx (1988a) showed that the apparent minor axis of a projected ellipsoid is parallel to the tangent of the coordinate line 
P = Pip) on the unit sphere of projection directions at p. It follows that the position angle of the minor axis is given by 

iP - a2ÏP - h2)(v - c2) tan rminor (v _ a2Xv _ biiß _ C2} • 

Since iAint = 0, for these models T* = Fminor. The probability distribution pi'V, e) can be evaluated from 

Sip, v) 

Pi, Vi 
where //,, v¡ are all the solutions (possibly multiple) of p, v for 

p(T, e)dVde = X 
Si'V, e 

'Pip, v) = e(p, v) = e 

pip, v)d^de , 

The Jacobian in equation (A9) can be written as 

dip, v) 
£}(¥, e) 

= 4p^p^[_(a2 - c2Xh2 - c2) -ip- c2Xv - c2)] / , 
I Cip, v) I 

where 

Cip, v) = -a2(p - b2\p - c2Xv - h2Xv - c2) - b2(p - a2\p - c2Xv - a2)(v - c2) 

+ c2ip - a2\p — b2Xv — a2)(v - b2) . 

The resulting expression for /?(¥, e) is 

POP, e) = X [(a2 - c2\b2 - c2) -{p- c2)(v - c2)] ^ . 
W.vi Tl\ Cip, v) I 

(A8) 

(A9) 

(A10) 

(All) 

(A 12) 

(A 13) 
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We still have to calculate the solutions of equation (A 10). By eliminating v from 

Vol. 383 

e^(l-e)2=- 

and 

we obtain a cubic equation for //, 

with coefficients 

tan2 'F = i2 = 
(// - a2){fi - b2)(v - c2) 

(A 14) 

(A 15) 

(A 16a) 

(A 16b) 

(A 16c) 

are valid. In the general case, equation (A 16) has two solutions for all ('F, e) with e < €2 and either two or no solutions if e2 < e < 6^ 
depending on the value of ¥. 

The probability distribution p('F) is calculated by integrating p^F, p) over //. The result is 

Only those solutions that satisfy 

(v - a2)(v - b2)(M - c2) 5 

a3fi3 + a2ii2 + + a0 = 0 , 

a3 = e + t2e2 , 

a2 = — c2(l + e2t2) — e(l + t2)(a2 + b2), 

a1 = c2(a2 b2)(l + et2) + a2b2(e + i2), 

a0 = —a2b2c2(l + i2). 

b2 < < a2 , c2 < e/Li < b2 

1 Ca2 

n sin2 'F Jb2 
(/I - v) (v - c2) 

dju , 
£(v) (p-c2 

where v = v(//, 'F) is the solution for v of T^v, p) = '¥ (see eq. [A 15]) and 

E(v) = (v — a2)(v — b2) — (v — a2)(v — c2) — (v — b2)(v — c2) . 

We can write this as an explicit function of T and 'F : 

1 
pm = 2n sin2 'F 

i06(,-T)+r i 
Jo (s + 1 - T)^/B(s, T)J 

where 

A(s, T, T) = s(s - T) + (s + 1 - TX2s - T) tan2 Ÿ , 

B(s, T, T) = s2(s - T)2 + 2(T - 2)s(s - T)(s + 1 - T) tan2 ¥ + T2(s + 1 - T)2 tan2 »P 

For special values of T and/or T the integral is elementary. For *F = n/2 we find 

p(n/2) = {1 + [(1 - T)/T] log (1 - T)}/n . 

Oblate models have T = 0, and p^F) = ^(T/). Prolate models have T = 1. In this case we obtain 

2 log (sin 'F) 
p('F) = 

71 COS2 'F 

(A 17) 

(A 18) 

(A 19) 

(A20) 

(A21) 

(A22) 

3. OBLATE MODELS WITH MISALIGNMENTS (T = 0) 

Equation (6) in § 2.2 gives the apparent misalignment as a function of the viewing angles and the intrinsic misalignment. Equation 
(Al) for the apparent ellipticity reduces to 

e = 1 - VO-e^ + cos^Cl-a-ei)2] (A23) 

for oblate systems. 
It is straightforward to calculate the probability of finding 6, 'F in the interval (e, € + de), ('F, 'F + ¿PF) 

p(e,x¥)dedx¥ = 

where </>,, are the solutions of 

I 
dit, 6) 

M, »)]*« - [If^l • 
d{e, T) 

Où = e, et) = T . 

(A24) 

(A25) 
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We find 

ORDERED NATURE OF ELLIPTICAL GALAXIES 

tan ipi, 1 -e 
I sin 6 cos tp- cos 6 tan ^¡n,|J ^/[l - (1 - e!)2]^! - e)2 - (1 - e^2] ' 

The inversion of e, to (p, 9 can be done explicitly. Equation (A26) reduces to 

p(e, T) = - 
C(<Pinl, 9, T) 1 -e 

n 7t[cos2 'P + cos2 9 sin2 T] ^/[l - (1 - e^Rl - e)2 - (1 - e^2] ’ 

133 

(A26) 

(A27) 

where 

C(<pint, 9, T) = 
cos 9 for 9 < ipin 

sin 9/jD9PiM, 9, T) for 9 > \p1M , 

D(ipint, 9, T) = tan2 ipint + tan2 \pint cos2 9 tan2 *P — sin2 9 tan2 T , (A28) 

^^cc08 I- 

We have left 6 in parts of the expression to avoid unnecessarily long equations. The probability density depends on e and only 
through (1 — e)/(l — except for a constant scaling factor. Thus the probability densities of all models with constant i/fint but 
differente! are easily transformed into each other. 

The integrated probability distribution pOF) is given by 

pCP) = /! + /2, 

i 
ii = 

f2=- 

n sin2 ¥ 

2 1 

log (cos2 T + cos2 ipiat sin2 ¥), 

rc ^tan2 T tan2 \p~t + tan: 

(A29a) 
COS tj/int 

A. dx 
cos2 'F + x2 sin2 'F ^/x

2 + ( 

where 

-i:,v3 
Ci = 

if 
C2 if 'F > ^int , 

tan2 ^int — tan2 'F 
tan2 'F tan2 i/fint + tan2 il/u 

(A29b) 

The remaining elliptic integral in I2 is evaluated numerically. 

APPENDIX B 

AXIAL RATIOS OF PEAKS IN LINEAR GAUSSIAN RANDOM FIELDS 

BBKS derive the distribution of shapes in terms of the parameters e and p, which are related to the axis lengths of a triaxial 
ellipsoid by 

2(a 2 + b 2 + c 2)5 

These are related to our parameters and T by 

2 _ 1 + p — 3e 

so that 

^ = (1 - e^)2 = 
1 + p + 3e 

(1 - e2)[l - T(1 - e2)] 

T = 

P = 

a 2 — 2b 2 + c 2 

2(a~2 + b~2 + c~2) * 

(p - e)(l + p + 3g) 
2(2p - l)e 

(1 + ^2)[1 - T(1 - e2)-] - 2e2 

(Bl) 

(B2) 

2{(ei + 1)[1 - T(1 - e2)-] + e2} ’ 

BBKS proved that the probability distribution of e, p depends only on the parameter x, which is a measure of the size of the peak : 

^5 3255/2 x8 
p(e, p I x) = —7=^ — exp 

72^/w [- 

2{(e2 + 1)[1 - T(1 - c2)] + c2} ' 

x, whic 

^W(e, 

(B3) 

x (ie + p2) P) • (B4) 
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The function/(x) is given by BBKS in equation (A 15), and the polynomial W(e, p) in equation (C4). It is straightforward to derive for 
the probability distribution of T, for given x 

55/26 x8 F /5\ 1 
p(€l’Tlx)=exp L"wx2(3'2+_ 2^3^2 ~ p2^1+^+ 3^)2 • (B5) 
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