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ABSTRACT 
In order to facilitate the interpretation of observations of protostellar sources, we develop an analytic 

theory of protostellar emission. We focus our discussion on submillimeter wavelengths where protostellar 
sources can be spatially resolved. For a given protostellar envelope (i.e., given density and temperature 
distributions), we determine an asymptotic expansion for the specific intensity. We then calculate the convolu- 
tion of specific intensity profiles with the Gaussian response function of a telescope. Using these analytic 
results, we calculate the monochromatic luminosity ratio Lv(R)/Lv(0)—a directly observable quantity—in terms 
of the underlying physical quantities. Observations of Lv(R)/Lv(0) can be used in conjunction with the results 
of this paper to estimate the physical parameters of protostellar envelopes (in particular, the effective power- 
law indices p and q of the density and temperature distributions). 
Subject headings: spectrophotometry — stars: evolution — stars: formation — stars: pre-main-sequence 

1. INTRODUCTION 

Our understanding of the star formation process is rapidly 
growing. Although the identification of actual protostars 
(forming stars which are actively gaining mass from the inter- 
stellar medium) has been elusive (see, e.g., Wynn-Williams 
1982), many protostellar candidates have now been discovered 
and studied over the last decade (see, e.g., Beichman et al. 1986; 
Myers et al. 1987; Beichman 1987; Ladd et al. 1991a). The 
spectral energy distributions of many of these objects are in 
good agreement with spectra calculated from the current pro- 
tostellar theory (see the review of Shu, Adams, & Lizano 1987; 
Adams, Lada, & Shu 1987). These results suggest that proto- 
stellar objects are composed of a central star/disk system 
which is deeply embedded within an infalling envelope of dust 
and gas. The spectral signature of protostars is largely deter- 
mined by the properties of the protostellar envelope which 
absorbs and reradiates most of the energy from the central 
star/disk system. Until recently, the observed spectral energy 
distributions of these sources have been unresolved, i.e., the 
spectral energy is integrated spatially over the object. 
However, with the advent of new telescopes and new tech- 
nology, we now have the capability to spatially resolve protos- 
tellar envelopes, especially at submillimeter wavelengths. 
Preliminary observations of this type have already been 
carried out (see, e.g., Butner et al. 1991 ; Yamashita et al. 1990; 
Walker, Adams, & Lada 1990), and much more work of this 
type will be done in the near future (see, e.g., the companion 
paper by Ladd et al. 1991b). 

The principal goal of this study is to facilitate the interpreta- 
tion of infrared and submillimeter observations by developing 
an analytic theory of emission from protostellar objects. Pre- 
vious theoretical studies have solved the self-consistent radi- 
ative transfer problem for protostellar envelopes (e.g., Larson 
1969; Yorke & Shutov 1981; Wolfire & Cassinelli 1986, 1987; 
Adams & Shu 1985, 1986). For a given protostellar configu- 
ration, these calculations numerically determine the tem- 
perature distribution and then calculate the resulting emergent 
spectral energy distribution. However, for spatially resolved 
sources (which are of interest here), the relevant physical quan- 
tity is not the integrated flux density, but rather the specific 

intensity 7V convolved with the actual response function of the 
telescope. This convolution has been done numerically for a 
few protostellar sources (see Butner et al. 1991 and Walker et 
al. 1990 for studies of the source L1551 1RS 5 in Taurus; see 
Yamashita et al. 1990 for a discussion of the source GGD 27 
1RS; see also Keto 1989), but a general treatment of the 
problem has not been done. This present study provides a 
general treatment of the problem by analytically determining 
both the specific intensity and its convolution with the 
response function of the telescope. In this paper, we focus on 
the calculation of the radiation field for a given protostellar 
configuration (i.e., given density and temperature distribu- 
tions); notice that the previous numerical studies can be used 
as a starting point to determine the underlying density and 
temperature distributions. By providing an analytic treatment 
of the problem, we can isolate the functional dependence of the 
observed quantities on the actual physical properties of the 
protostellar envelope. 

In order to obtain analytic results, we employ standard 
asymptotic methods (see, e.g., Bleistein & Handelsman 1986; 
de Bruijn 1981; Erdelyi 1956). By deriving analytic expressions 
we show the explicit dependence of the radiation field on the 
underlying physical parameters of the emission source. On the 
other hand, an analytic theory is necessarily approximate in 
nature. Indeed, as we discuss in some detail, the errors in our 
asymptotic expansions cannot be made arbitrarily small (this 
property is, of course, common to all asymptotic expansion 
analysis). Thus, care must be taken to employ our approx- 
imations only in their regime of validity. 

This paper is organized as follows. We first present a formu- 
lation of the problem and review the expected protostellar 
configurations based on the current theory of star formation 
(§ 2). In § 3, we obtain an asymptotic expansion for the specific 
intensity /v ; in § 4, we obtain an asymptotic expansion for the 
observed monochromatic luminosity (i.e., the specific intensity 
convolved with the response function of the telescope). The 
asymptotic expansions derived in §§ 3 and 4 are independent of 
each other and can be used for different applications. These 
sections are rather mathematical in nature; the observationally 
oriented reader may wish to skip directly to the results which 
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Fig. 1.—Schematic diagram showing integration path for the specific inten- 
sity integral for a given impact parameter xn. The observer is at spatial infinity 
at the far right-hand side of the diagram. The integrand is sharply peaked 
about the point of closest approach to the star. 

are presented in equations (3.16) and (4.14). In § 5, we use these 
results to derive analytic expressions for the observed mono- 
chromatic luminosity ratio [the ratio Lv(R)/Lv(0) of the mono- 
chromatic luminosity a distance R from the center to that in 
the central beam] ; a more general treatment of the problem is 
given in Appendix B. We conclude (in § 6) with a discussion of 
our results and possible future applications. 

2. FORMULATION OF THE PROBLEM 

The specific intensity 7V is the fundamental quantity that 
describes a radiation field and our first objective is to calculate 
/v for a given protostellar configuration. Theoretical consider- 
ations suggest that protostellar envelopes should be nearly 
spherical on the size scales probed by current observations (see, 
e.g., Terebey, Shu, & Cassen 1984); in our companion paper 
(Ladd et al. 1991b) we find that the observed aspect ratios of 
protostellar emission maps lie in the range 1.0-1.8 with a mean 
value of ~ 1.3. We therefore limit our present discussion to the 
case of spherical symmetry. For an observer at spatial infinity, 
the integral form of the specific intensity of the protostellar 
envelope can be written 

/v(co ; m) = J Bv[T(r)] exp (- T>(r)Kv dl, (2.1) 

where dl is the increment of path length along the ray, p is the 
density, T is the dust temperature, and kv is the dust opacity 
(see Fig. 1). In equation (2.1) we have explicitly denoted the 
position of the observer as “ oo ” ; since we are always interested 
in 7V at spatial infinity, we suppress this dependence for the 
remainder of this paper. We have specified the direction vari- 
able by the impact parameter m, which corresponds to the 
point of closest approach of the ray path to the center of the 
envelope. In the spherically symmmetric case, the impact 
parameter w uniquely determines the ray path. Notice that we 
have assumed local thermodynamic equilibrium — £V[T] is 
the Planck function at dust temperature T—and that we are 
considering only continuum radiation. The quantity tv is the 
optical depth between the position / along the path and the 
observer at infinity, i.e., 

iv = Kv j*p(r)dl', (2.2) 

where the integral is carried out along the line of sight. Notice 
that the specific intensity is completely determined once the 
density distribution p(r) and the temperature distribution T(r) 
are specified. For a given specific intensity profile 7v[o7(rb)] and 
a telescope with a response function w(rb), the observed mono- 
chromatic luminosity LV(R) is given by the integral 

UR) = 4njdA Mr6)/V[m(rt)] , (2.3) 

where R is the position of the beam center (in coordinates with 
origin at the center of the protostellar envelope), rb is the posi- 
tion vector in the plane of the sky (with origin at the beam 
center), m(rb) = | i? + | is the distance from the point rb to the 
center of the protostellar envelope, and dA is the area element 
(see Fig. 2). 

One basic goal of this paper is to analytically evaluate the 
integrals appearing in equations (2.1}-{2.3). We calculate the 
specific intensity 7V analytically for a given protostellar con- 
figuration, i.e., for given density and temperature distributions. 
We then analytically perform the convolution of the specific 
intensity with the response function of a telescope. We focus 
our discussion on submillimeter wavelengths where emission 
maps of protostellar envelopes can be spatially resolved and 
where the emission is mostly optically thin. In the following 
analysis we treat the submillimeter optical depth tv as a small 
parameter (we do not take tv = 0). This assumption remains 
valid for the visual extinctions Av expected for most of proto- 
stellar evolution (Adams 1990) and implies that exp [ —tv] is a 
slowly varying function along a ray. 

The fundamental physical structure of a protostellar 
envelope is given by the density and temperature distributions, 
p(r) and T(r), respectively. The ultimate goal of this current 
work is twofold: We want to provide a general basis for inter- 
preting the observed spatial distribution of protostellar emis- 
sion in order to ascertain the actual structure in an unbiased 
manner. In addition, we want to compare observational results 
with the current protostellar theory. In order to achieve both 
of these goals, we introduce purely parametric power-law forms 
for the density and the temperature distributions, i.e., 

p(r)=Po(jj and T(r) = T0(^J , (2.4) 

where r0 is some fiducial radius and p0 and T0 are the values of 
the density and temperature, respectively, at r0. By using the 
forms given in equation (2.4), we can calculate observable 
quantities in terms of the basic physical parameters (p, q9 T0, 
p0) of the protostellar envelope. In a fully self-consistent 
theory, the density and temperature distributions are deter- 
mined by the initial conditions (and by the time t since the 
onset of protostellar collapse). As we discuss in the following 
sections, however, the current theory suggests that the density 
and temperature distributions are nearly power laws 
(especially on the size scales probed by the observations). As a 
result, one can think of the self-consistent theory as providing 
definite values for the parameters appearing in equation (2.4). 

2.1. Observational Considerations 
For this paper, the wavelength range of interest is approx- 

imately 100 pm < À < 1100 pm. At shorter wavelengths, pro- 

Fig. 2.—Schematic diagram showing integration variables for the mono- 
chromatic luminosity integral for a given distance R of the beam center. The 
plane of the figure corresponds to the plane of the sky. 
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tostellar sources are generally not well resolved by present-day 
telescopes; at longer wavelengths, the emitted flux density 
becomes very small and measurements with high signal-to- 
noise ratios become difficult to make. In this given wavelength 
range, telescopes generally have response functions (beam 
profiles) which can be modeled with simple Gaussian profiles. 
In this paper, we thus consider the response function w(rb) of 
the telescope to have a simple Gaussian form 

Mrb) = ^ exp [-rb
241n(2)/52] , (2.5) 

where B is the physical distance corresponding to the full width 
at half-maximum (FWHM) of the beam pattern and where ^ 
is the normalization constant. Present-day telescopes can 
achieve an angular resolution in the range 10"-60" (these 
values correspond to the FWHM of the telescope beam). At 
the distance of nearby molecular clouds (~ 150 pc), this range 
of angular scales corresponds to physical size scales B in the 
range 

B = (2.25 - 13.5) x 1016 cm . (2.6) 

and the dimensionless constant m0 = 0.975 (Shu 1977). The 
form of equation (2.8) for the density distribution is valid in 
the regime Rc <^r <4 rH, where Rc is the centrifugal radius 
(Terebey et al. 1984) defined by 

Q2G3M3 

Rc= 16a8 (2.9) 

For typical protostellar sources the radius Rc is generally of 
order 1014-1015 cm (-10-100 AU; see Adams et al. 1987), 
which is much smaller than the size scale B probed by present 
observations. The outer radius RD of the circumstellar disk is 
expected to be approximately given by Rc so that the entire 
star/disk system has a size scale much smaller than B. The 
spherical free-fall form of equation (2.8) thus describes the 
density distribution for most radii of observational interest (i.e., 
p « 3/2); however, for the large end of the size range, the 
density distribution approaches the equilibrium form of equa- 
tion (2.7). Thus, for the size scales of interest in this paper, we 
expect that 

It is obvious that observations cannot probe structure on size 
scales much smaller than B—one result of our analysis is a 
quantification of this statement. We are thus interested in the 
predictions of the protostellar theory on size scales (9 (1016 cm) 
and larger; in the following subsections we review these predic- 
tions. 

2.2. The Density Distribution 
In the current theory of star formation, the density distribu- 

tion is calculated from the equations of motion for a collapsing 
gaseous cloud. For protostars with relatively low mass (M <2 
M0), radiation pressure produces a negligible effect on the 
collapse flow and the dynamics are decoupled from the radi- 
ation field; the physical structure of the protostellar 
envelope—and especially the relevant size scales in the 
problem—can thus be determined directly from an a priori 
dynamical calculation. 

For the simplest case of a spherical (nonrotating) and iso- 
thermal cloud core, the initial (unstable) equilibrium density 
distribution of the core has the form 

P(r) = 
a2 1 

2tüG r2 ’ 
(2.7) 

where a is the isothermal sound speed. The collapse of a core 
with the initial configuration (2.7) proceeds in a self-similar 
manner; this self-similar collapse proceeds from inside-out, 
with the central portions falling first and subsequent outer 
layers following as an expansion wave propagates outward at 
the sound speed (see Shu 1977). The region outside of the 
collapse boundary rH = at is unaffected by the collapse and 
retains the initial density distribution (2.7). Notice that this 
solution is valid if and only if the head of the expansion wave 
rH lies within the effective boundary of the core rcore; the 
boundary rcore can be simply defined as the (outer) radius at 
which the initial density distribution of equation (2.7) no 
longer applies. 

In the inner part of the collapse, the gravitational force domi- 
nates over the thermal pressure and the material is essentially 
in free-fall; in this region, the density distribution approaches 
the form 

p = Cr 3/2 , where 
r = m0a

3 

~ 47t(2G3M)1/2 ’ 
(2.8) 

! < p < 2 (2.10) 

will be the appropriate range for the power-law index p of the 
density distribution. 

For radii much less than the centrifugal radius (2.9) the col- 
lapse flow is highly nonspherical and nearly ballistic (pressure- 
free) in nature. The temperature of the envelope increases 
inward until the temperature is too hot for dust grains to 
remain in their solid phase; the dust grains then sublimate at a 
well-defined dust destruction radius rd (Stabler, Shu, & Taam 
1980), which is of 0(1O12 cm) for protostars of solar-type 
masses (Adams & Shu 1986). The inner boundary of the col- 
lapse flow is given by the stellar surface, which has a radius 
Æ* — 1011 cm for protostars of solar-type masses (e.g., Stabler 
et al. 1980). Putting all of the size scales in the problem 
together, we thus obtain the ordering 

R*<rd4Rc4B4rH4 rcore . (2.11) 

Notice that most of the size scales appearing in the above 
ordering depend on the mass M that has fallen to the central 
star/disk system; however, this mass is within a factor of a few 
of the final mass for most of the time spent in the embedded 
phase. Thus, this ordering is expected to be valid for a substan- 
tial portion of the protostellar (embedded) phase of evolution. 
However, for the youngest objects and the largest beam sizes, 
we can have B — rH. 

2.3. The Temperature Distribution 

In the outer portion of the protostellar envelope, we can 
analytically estimate the temperature distribution. This deriva- 
tion, which is given in Appendix A, shows that the temperature 
distribution in the outer envelope is nearly a power-law (in the 
radial coordinate) if the dust opacity also has a power-law 
form at low frequencies, 

;cv = Avß . (2.12) 

Most estimates of interstellar dust opacities (see, e.g., Draine & 
Lee 1984; Hildebrand 1983) suggest that the power-law form 
of equation (2.12) is valid at submillimeter wavelengths (low 
frequencies) and that the index ß lies in the range 1 < ß <2. 
Using the expected form of the temperature distribution (see 
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eq. [A5]), we obtain an estimate for the power-law index q : 

2 1 2 
4 = 4 + ß 

— < q < — ■> 
3 “ ^ “ 5 

(2.13) 

where we havë used the expected range 1 < /? < 2 in obtaining 
the second relation. 

3. ASYMPTOTIC EXPANSION FOR THE 
SPECIFIC INTENSITY INTEGRAL 

In this section, we derive an analytic form for the specific 
intensity of a protostellar envelope. Once the temperature and 
density distributions have been specified, we can write the spe- 
cific intensity in the form 

2hv3 

Iv = -r- Kvmp(m)S(m) (3.1) 

where we have written the integral in dimensionless form 
through 

V i 
J^(w) ds 

r ) ex — \ 
exp (-tv) , (3.2) 

where we have defined a dimensionless variable of integration 
s = l/nj, and where x is defined by 

- hv (¿.Y n w 
X - kT(r) kT0 \r0) ' 

We want to approximate the integral using standard asymp- 
totic methods (see, e.g., Bleistein & Handelsman 1986; de 
Bruijn 1981). Since we are interested in emission in the opti- 
cally thin regime, we consider the factor/(s) = exp ( — tv) to be 
a slowly varying function of the variable s. Notice that in the 
extreme optically thin limit f(s) becomes unity; here, however, 
we obtain a slightly better approximation by retaining the 
optical depth factor and considering it as slowly varying. We 
then define a new function O through the Ansatz 

( m 
r J e' 

1 
, or <I> = pln(r/u7) + In^ — 1), (3.4) 

which is to be considered as a function of the variable of inte- 
gration 5. Using both formal and intuitive arguments, it is 
straightforward to show that the maximum of the integrand 
[the minimum of O(s)] occurs at s = 0, i.e., the point of closest 
approach of the ray to the origin. In obtaining an asymptotic 
approximation for the integral </, we are assuming that most of 
the contribution of the integral occurs near the maximum at 
s = 0, i.e., we assume that the function e-4> is sharply peaked 
about 5 = 0. This assumption is the weakest in the low- 
frequency limit where <D = (p + g)ln(r/n7) + constant. As we 
show below, in this limiting case we obtain an asymptotic 
series in the parameter A = (p + q); this expansion is valid in 
the limit 2 -> oo. 

Notice that the function O is an even function of s, i.e., it is 
symmetric about the point 5 = 0. If we then expand the func- 
tion about the point 5 = 0, we obtain only the even terms : 

<!>(*) = ®o + ^S
2+¿<DÉ)V + ... 

= ln(e*° - 1) + ^ (p + qQ)s2 

- g [2(p + qQ) + q2Q(Q l-Xo]s4 + ..., (3-5) 

where the subscript 0 means that the function is to be evalu- 
ated at s = 0 (r = tn), e.g., x0 = hv/kT(m). The superscripts 
denote derivatives of Q> with respect to s in obvious notation. 
We have also defined a new function Q(x) through 

6W = 
xe 

ex- 1 
(3.6) 

where Q is to be evaluated at x = x0 in equation (3.5). Notice 
that ß -► 1 in the limit of small x <0 and that Q -► x in the 
opposite limit x > 1. Similarly, we can expand the function/(s) 
about the point 5 = 0: 

f(s) =/o +foS + ^/'¿S2 + .... (3.7) 

Since we need to treat the region s < 0 slightly differently 
than the region of s > 0, it is useful to separate the integral J? 
into two separate parts, i.e., let 

J = + (3.8a) 

where 

=f J-a 
dse ®f(s) and B_1 

dse“7(s). (3.8b) 

We now change variables of integration from 5 to t, where t is 
the defined through 

t = <D(s) - O0 (3.9) 

In order to evaluate the integrals JA and we need to 
evaluate the quantity G(t) which is defined by 

CM-!- 
ds ) 

We thus obtain 

Sa=-‘ 

J„ = e 

-Oo 
r 

dte 7Wt)]G(t) , 

-Oo 
r 

dxe t/[s(t)]G(t) . 

(3.10) 

(3.11a) 

(3.11b) 

In order to evaluate the integrals in equations (3.11), we 
must write s in terms of t by using equation (3.5): 

Ofc4 + 12<DS52 - 24t = 0 , (3.12) 

which is correct up to ®(s6). Notice that equation (3.12) is a 
quadratic in 52, so that two roots exist for s2; we can dis- 
tinguish the physical root by requiring that s -► 0 as t -> 0. 
Notice that we are still left with a sign ambiguity for 5 itself; for 
5 < 0 (as in yA) we take the negative root, whereas for 5 > 0 (as 
in yB) we take the positive root. We can thus write expansions 
for the integrand/(s[t])G(t) for the region s > 0 

/(S[t])G(t) = (2<I>'¿t)-1/2 

}. — 

and for the region s < 0 

—/(S[t])G(t) = (2<I>qt)~ 1/2 

-'©"•fiHS]. I »“> 

Collecting all of the above results and evaluating the inte- 
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grals over t (which are now simply gamma functions; see e.g., 
Abramowitz & Stegun 1965), the asymptotic expansion for the 
integral J takes the form 

=f0 e 
1/2 

1 + 
2% 

(3.14) 

In terms of the original parameters of the problem we can write 

J(w) = (27i)1/2(exo - l)_1(p + qQ) 1/2 exp [-Tv(m)] 

x F 6 - 3^P + 4(pKvm)2 

L *(p + qQ) 

where we have defined a new function through 

qQ 

]• 

P = 
p + qQ 

(1 + X — 0 . 

(3.15a) 

(3.15b) 

Notice that P is slowly varying and is confined to the range 
0 < P < 1. We thus obtain the analytic estimate for the specific 
intensity, which takes the form 

Iv(td) = (2n)1/2Kvmp(m)Bv[T(m)](p + qQ) 1/2 exp [-iv(m)] 

x 
6 — 3qP + 4(pKvm)2 

8(p + gß) 
(3.16) 

where all the functions are to be evaluated at r = m. Equation 
(3.16) represents the first two terms of an asymptotic series, 
which is essentially an expansion in the parameter = 
(P + qQ) and becomes exact in the limit -► oo. This asymp- 
totic expansion has the form expected from application of 
Laplace's method with considered as a large parameter 
(Bleistein & Handelsman 1986). In order to complete the spe- 
cification of Iv(m), we must evaluate the integral for the optical 
depth tv(w), which can be written as 

Tv(m) = Kvp(m)w J (* + 52) Pl2ds 

= Kvp{w)w 
Jk r[(p -1)/2] 

2 r(p/2) 
(3.17) 

where we have written the integral in terms of gamma func- 
tions (see, e.g., Abramowitz & Stegun 1965). For our expected 
value of p = 3/2, the numerical coefficient in equation (3.17) is 
2.622. 

One way to characterize the specific intensity profile is by 
defining an equivalent power-law index p through 

w dlv 

Jv(ot) dm ’ 
(3.18) 

which is generally a function of both the impact parameter m 
and the frequency v. Using equation (3.16) we find that p is 
given by 

//=-l+(p + îô) + |p-(p - 1)tv 

unity, p becomes large, i.e., the specific intensity falls off steeply 
with increasing impact parameter. 

3.1. Low-Frequency Limit 
At this point, it is useful to consider the integral in the 

limits of low-frequency (x 0) and low optical depth (tv -► 0). 
In this limit, 2j = (p + q), and our asymptotic expansion 
(eq. [3.15]) can be written in the form 

A*i) = 
kV> 
hv 

(3.20) 

Since p q is generally ~2 or so, we expect that this expan- 
sion is fairly approximate in the low-frequency limit. However, 
in this limit we can rewrite the integral as 

1 fa 

Ali) = ~ 
J- 

ds(l + s2) Xl/2 = 
r[(2, - l)/2] 

*o nv2) 

(3.21) 

where we have evaluated the integral in terms of gamma func- 
tions. Notice that the validity of this expression is restricted to 
the region of parameter space where > 1 (the integral 
diverges for Àj < 1). For the representative case /Ij = p + q = 
2, the numerical coefficient for the exact integral is n (from 
eq. [3.21]) and the coefficient for our expansion is 11(tc1/2)/8 
(where we have used the first two terms in eq. [3.20]). The 
relative error for this particular case is thus 22%. When the 
low-frequency limit does not apply, the integrand of is more 
sharply peaked about s = 0 and our asymptotic expansion (eq. 
[3.16]) produces a better approximation. Notice also that in 
the low-frequency limit, all of the errof is in the coefficient and 
not in the functional dependence of /v (i.e., we get /v oc m1 - 

in both cases). 

4. CONVOLUTION OF THE SPECIFIC INTENSITY 
WITH A GAUSSIAN BEAM 

In this section, we derive an asymptotic expansion which 
convolves a given specific intensity profile Iv(m) with a 
(Gaussian) telescope response function. If we use the results of 
§ 3 to specify /v(u7), we can estimate the expected monochro- 
matic luminosity as a function of protostellar parameters. 
Although the results of this section are derived in the context of 
protostellar emission, the resulting asymptotic expansion can 
be used in other astrophysical applications. 

For a telescope with a normalized response function w(rb), 
the observed monochromatic luminosity J^V(Ä) from the pro- 
tostellar envelope is given by the integral 

£CV(R) = 4n jdA wfo^lX#-,,)] , (4.1) 

where the symbols are defined as in equation (2.3). For the size 
scales B corresponding to most observing beams of interest, 
the central star/disk system is pointlike, i.e., B > RD. To obtain 
the total observed monochromatic luminosity, we must also 
include the contribution from the source 

(3.19) lcAR) = JdA W(rb)Lwe-^S2(rb + R) = Lvce-"‘w(R), (4.2) 

where we have neglected higher order terms. Notice that for 
most cases of interest the first two terms dominate, i.e., p « 
ip + qQ) — 1 = /l/ — 1. As x = hv/kT becomes larger than 

where Lvc is the intrinsic monochromatic luminosity from the 
central star/disk system, tvc is the total optical depth through 
the protostellar envelope, and <52(jc) is the Dirac ¿-function in 
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two dimensions. Since the central source contribution is com- 
pletely specified by equation (4.2) for a given central source, the 
remainder of this section focuses on the calculation of an 
asymptotic approximation to the contribution of the protostel- 
lar envelope (eq. [4.1]). 

We begin by defining a dimensionless parameter XB through 

ÀB = 81n(2)R2/J?2 , (4.3) 

where B is the length corresponding to the FWHM of the 
beam pattern (see § 2). Let (x, y) be the coordinates in the plane 
of the sky centered on the protostellar envelope. Since the 
envelope is assumed to be spherical, without loss of generality 
we can take the center of the observing beam to lie along the 
x-axis and have the position (R, 0). We then define dimension- 
less coordinates (£, ri) which are centered on the beam position : 

£ = (x — R)/R and rj = y/R . 

The integral for j£?v can then be written 

g>=jr4nR2 

M 
drj exp -jie + r,2) 

(4.4) 

(4.5) 

We now have the integral in proper form to perform an asymp- 
totic expansion. Following Bleistein & Handelsman (1986), we 
write our first approximation of /v in the form 

7V(£, rj) = 7V(0, 0) + £ • //0 , (4.6) 

where Ç is the two-dimensional vector (^, r¡)9 and H0 is a two- 
dimensional vector which can be chosen in a variety of ways. 
However, we will see later that certain advantages arise if we 
adopt the judicious choice 

Hot = I IVv«, r,) - /v(0, m , (4.7a) 

Ho, = hly(0,ri)-h(0,0-]. (4.7b) 

Notice that the form (4.7) is slightly different than the naive 
choice 770(* = (dIJdÇ)0 and H0tl = (dljdrj)0. In particular, sub- 
stitution of equations (4.7) into equation (4.6) shows that the 
equality is exact (rather than an approximation correct to first 
order in £ and rj). If we insert the forms from equations (4.6)- 
(4.7) for 7V and H0 in equation (4.5), we obtain 

SejJfAnR2 = 7o(0, 0) J di I exp |^ - y (£2 + >/2)J 

J exp |^ - y (Í2 + rç2)^!^, r¡), 

(4.8) 

where we have used the divergence theorem (the resulting 
surface term vanishes) and we have defined 

-Ho. (4.9) 

If we repeat this process N times, we obtain an asymptotic 
expansion of the form 

N — 1 rao rao 
= jr4nR2 X 0) dÇ\ dr¡ 

j —0 J—oo J—oo 

x exp - y (£2 + >?2)J + (P(^N), (4.10) 

where the functions Ij are defined recursively through the rela- 
tions 

7,.(£, rj) = 7,(0, 0) + £ • //,(£ rj), (4.11a) 

Ij+Aíi rj) = \ • Hj(Ç, rj) . (4.11b) 
(Notice that the notation refers to the jth vector in a 
series and not to the jth component of a vector.) Using the 
definitions (4.11) in conjunction with Lemma 8.3.2 of Bleistein 
& Handelsman (1986), we can evaluate the functions 7/0, 0) in 
terms of the original function 7v(m). This lemma implies that 

/j(0’ 0) = W-A{Iv 
(0,0) 

(4.12) 

where A2 is the two-dimensional Laplacian operator, i.e., 

A -21 21 
Az - dt2 + dr,2' 

(4.13) 

We thus obtain the expansion 

Sn2R2 N-' 1 
^ • 

j = 0 WB)Jj ■ 
Ml + 0(2b*). (4.14) 

(0,0) 
Notice that we have not written the expansion in equation 
(4.14) as an infinite series, but rather as the iV — 1th partial sum 
with an error term (9(ÀB

N). An infinite series would be mean- 
ingless in this context because the series need not converge (this 
property is a well-known aspect of asymptotic analysis; see, 
e.g., Bleistein & Handelsman 1986). This expansion 
approaches the exact integral (eq. [4.1]) only in the limit 
ÀB -► oo. For any finite ÀB, the approximation of equation (4.14) 
becomes better (closer to the exact result) for the first Nc terms 
and diverges with the addition of higher order terms; here, the 
integer Nc is the largest integer for which the ratio of successive 
terms is less than or equal to 1. 

For any given specific intensity profile 7V, equation (4.14) 
provides the desired asymptotic expansion for the observed 
emission J^f/R). The derivation leading to equation (4.14) does 
not depend on the assumption of spherical symmetry and 
hence the expansion is valid for any function 7V(^, rj). We can, 
however, use the (spherical) profile 7v(m) derived in the pre- 
vious section to specify 7V in terms of the temperature and 
density distributions. Finally, we should remark that the 
expansion of equation (4.14) is not applicable for the central 
beam (where R = 0 = 2Ä); for this case, the integral of equation 
(4.1) must be solved by different methods, as we discuss below 
(see also Appendix B). 

5. MONOCHROMATIC LUMINOSITY PROFILES 

For observed maps of protostellar emission, one of the most 
well defined physically measurable quantities is the monochro- 
matic luminosity profile Lv(R)/Lv(0). Since we are considering 
the ratio Lv(R)/Lv(0), any errors associated with the absolute 
calibrations are eliminated. In this section, we combine the 
results of §§ 3 and 4 to derive an analytic expression for the 
monochromatic luminosity profile as a function of protostellar 
parameters. 

To begin, we must evaluate the expansion for <£?V(R) given by 
equation (4.14) above (here we consider only the first three 
terms). Since the specific intensity 7V is a function of m only, we 
can write the Laplacian operator (see eq. [4.13]) as 

A2 = R2 (5.1) 
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The action of the Laplacian operator on the specific intensity 
then becomes 

A?/. 
(0,0) 

a2/J =L2-í?^ W), 
1(0,0) l dw R) 

2(M + 2)2 — R 
dßi 
dm 

x (6/x2 + 8// + 1) + 3( -R ~7~\ 

H- R' 
d2ju 
dm2 

(5.2a) 

^(1 +4^)-i?30 |J/V(Ä), (5.2b) 

where we have written the above expressions in terms of 
the index /i defined by equation (3.19). The above forms are 
somewhat complicated. Fortunately, however, the index // is a 
slowly varying function; for example, if we take the representa- 
tive values p = 3/2 and q = 2/5, then the quantity 
(Rdfi/dxu)^^2 obtains a maximum value (over all x) of ~0.13. 
The variation of p thus represents (at most) a 13% correction 
to the (P(Á¿1) term in the expansion and can be ignored to a 
reasonable degree of accuracy. Using these results in the equa- 
tion (4.14), we obtain the expansion for the protostellar 
envelope contribution: 

J*?V(R) = ^ 
n2B2 

ln(2) ['+k 
+ 

ß2{ß + 2)2 

8AS 

(5.3) 

which is valid in the regime > 1, i.e., R > 0/(8 ln 2)12. 
Notice that the expansion in equation (5.3) contains two 
separate sources of error. The first source of error is that due to 
the asymptotic expansion itself, which has three terms in the 
present form. For a “typical” case with p = 1 and R = B, this 
error is ~4%. The second source of error is associated with the 
approximation of ignoring the derivatives of p (notice that we 
are effectively assuming that Iv is a power law in w). As dis- 
cussed above, if we included the full radial dependence of p, we 
would obtain a correction of order 102^ 1%. 

We must now calculate the monochromatic luminosity 
j£?v(R = 0) of the central beam (for the protostellar envelope). 
Since, to leading order, we can ignore the derivatives of p in the 
expansion for J£?V(R), we determine the expected monochro- 
matic luminosity profiles for a specific intensity Jv with a 
power-law form, i.e., we take Iv to be given by 

Iy(w) = /v0 for m>rd. (5.4a) 

/v(m) = /v0 for ru<rd, (5.4b) 

where rd is the dust destruction radius. The end result of this 
analysis is a determination of the power-law index m, which 
can be identified with the equivalent power-law index p of the 
specific intensity (see eq. [3.19]). Notice, however, that taking 
/v to be purely a power law (as in eq. [5.4]) provides a reason- 
able approximation for “long” wavelengths (typically in the 
range Í > 350 /mi); for shorter wavelengths, the approx- 
imation of equation (5.4) begins to break down for the central 
beam. In Appendix B we give a more general treatment of the 
central beam integral. 

With the form equation (5.4) for the specific intensity, we 

have 

^v(0) ^ + 2z"\*dzzl-me~22) ’ (5-5> 

where we have defined a new variable z through 

z2 = 4 In (2)w2/B2 . (5.6) 

The parameter zd is simply z evaluated at m = rd ; notice that 
for typical values of B and rd, we have zd = 0(10“8). If we 
evaluate the integral in the above expression by writing it as a 
power series in zd, we obtain the monochromatic luminosity of 
the central beam 

^v(0) = 
n2B2 

In (2) /v0 

1 - e“2d2 + z3T(l - m/2) - 2 £ (-1)* 
k\ 

Z? + 2 1 
2k + 2 — mj 

(5.7) 

Notice that the power series in zd is convergent and we can 
thus approximate the original integral to any desired accuracy. 

We can now calculate the ratio of the monochromatic lumi- 
nosity at some radius R> B to the central value Lv(0). This 
monochromatic luminosity ratio Lv(R)/Lv(0) is a well-defined 
observational quantity. We first consider the simplest case in 
which the central source contribution (see eq. [4.2]) is negligi- 
ble, i.e., Lv = j£?v ; if we identify // with m, we obtain 

LV(R) = / 2_\m/2 1 

¿v(0) " VV HI - m/2) 

f m2 

L1+^ (j¡)+ ^2'm)] ’ (5-8> 

where the R dependence of the above equation is contained in 
the parameter AB = 8ln(2)R2/B2. Monochromatic luminosity 
profiles for various power-law indices m are shown in Figure 3. 
The approximations leading to equation (5.8) are valid for 
large radii {R > B) and long wavelengths (typically A > 350 

R/B 

Fig. 3.—Monochromatic luminosity profiles for varying effective power- 
law indices m of the specific intensity profile. The solid curves show profiles for 
m = 1/2 (top curve), m = 1 (center curve), and m = 3/2 (bottom curve). The 
dotted portions of the curves are heuristic and correspond to beam offset radii 
R which are too small for the asymptotic theory to be valid. 
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/mi). At short wavelengths, the approximation of equation (5.4) 
breaks down and the central beam integral can no longer 
be approximated with a single power law [when x(R) = 
hv/kT(R) = 1, our approximation is good to a few percent; as 
x(R) increases to ~4, the value of // increases to 2, and the 
central beam integral diverges]. Notice that the result of equa- 
tion (5.3) for the numerator ^(R) is more robust than equa- 
tion (5.7) for the denominator if v(0). 

Since the only free parameter in the ratio is the power-law 
index m, equation (5.8) can be solved for m which thus defines 
an equivalent power-law index for the specific intensity. Notice 
that in the limit m-*0 we recover the expected result that 
Lv(R)/Lv(0) -► 1 ; in the limit m ^ 2, we obtain Lv(R)/Lv(0) -► 0. 
Thus, for any observed ratio Lv(R)/Lv(0), equation (5.8) defines 
an equivalent power-law index me[0, 2]. In the regime where 
the approximation of equation (5.4) is valid, we can identify the 
index m with //. We thus obtain a relationship between directly 
measurable quantities [i.e., Lv(R)/Lv(0)] and the basic physical 
parameters of the protostellar envelope (p, q, and T0). 

We now consider the case in which the central star/disk 
system makes a substantial contribution to the monochro- 
matic luminosity. In this case, let us write the central source 
contribution in terms of the ratio yv defined by 

7v 
Lvce 

t,cw(0) 

^v(O) 
(5.9) 

which is independent of R but is a function of frequency v. The 
monochromatic luminosity profile can then be written 

UR) _ 1 (2ßB)m'2 

Lv(0) 1 + yv r(l - m/2) 

X 
[" m2 m2(m + 2)2~| 

L +2l¡+ 8li J 
+ UL^e->.Bi2 _ 

1 + yv 
(5.10) 

Notice that in this form the monochromatic luminosity profile 
has two unspecified parameters: m and yv. Thus, measurements 
at two different radii R> B must be performed in order to 
estimate the effective power-law index m and the relative con- 
tribution yv of the central star/disk system. 

Notice that to leading order the monochromatic luminosity 
profile has a power-law form Lv(R)/Lv(0) oc R_m; the expected 
distribution is thus scale-free. Keep in mind, however, that the 
above forms are valid only in the spatial regime defined by 
B R < rcore. At the inner size scale, our asymptotic expan- 
sion becomes invalid (the expansion parameter XB becomes 
small) and the ratio must approach unity. The outer size scale, 
which we have denoted as rcore, is determined by the boundary 
of the molecular cloud core. This boundary is roughly defined 
as the radius at which the density distribution flattens out 
sufficiently that p(r) can no longer be described by a power-law 
(and hence our approximations break down). Although this 
size scale is not observationally well determined, rcore is 
expected to be (9(\ pc). In practice, however, flux density mea- 
surements at distances of order rcore cannot be performed with 
an appreciable signal-to-noise ratio; the effective outer radius 
of most emission maps is thus set by the sensitivity limit of the 
telescope (see the companion paper of Ladd et al. 1991b for 
further discussion of observed emission maps and their 
boundaries). 

6. DISCUSSION 

6.1. Summary of the Results 
In this paper, we have presented an asymptotic theory which 

can be used to interpret observed emission maps of protostel- 

lar objects. We have focused our discussion on the sub- 
millimeter portion of the spectrum where nearby protostellar 
objects can be spatially resolved. In this regime, we have 
obtained an asymptotic expansion for the specific intensity (see 
eq. [3.16]); this expansion shows the dependence of the radi- 
ation field Iv on the basic physical structure of the protostellar 
envelope—the density and temperature distributions. We have 
also obtained an (independent) asymptotic expansion for the 
convolution of a specific intensity profile with a Gaussian 
response function of a telescope (see eq. [4.14]). 

These results can be used to calculate directly observable 
quantities. For example, we have calculated the expected 
monochromatic luminosity profile for a power-law Iv profile 
(see eq. [5.8] and [5.10]); by comparing these results to obser- 
vations, an effective power-law index for the specific intensity is 
determined. This index m can then be compared to the 
expected power-law index p of the specific intensity profile (see 
eq. [3.18]) and can thus constrain the physical properties of the 
protostellar envelope. We have also provided a more general 
treatment of the problem (see Appendix B) which remains valid 
when the specific intensity cannot be considered as a pure 
power law. 

The asymptotic results of this paper depend on two large 
parameters. The first, Aj, measures the degree to which the 
specific intensity integral (see eq. [3.2]) is peaked about the 
point of closest approach (5 = 0). The second, measures the 
degree to which the beam response function changes faster 
than the physical background. In the limit -> 00, the 
observed flux density is probing a single line of sight—that 
corresponding to the direction of the beam center. In the limit 
/Ij -► 00, the specific intensity integral is probing a single point 
along its line of sight—that corresponding to the point of 
closest approach of the ray to the center of the envelope. Thus, 
in the limit that both XB and A7 are large, observations can 
probe a single point in the protostellar envelope. However, 
these limits are not realized in actual practice and the expan- 
sions presented in this paper provide the leading order correc- 
tions to this idealized limit. 

The analytic results of this paper are meant to be comple- 
mentary to numerical studies of this type. Numerical evalu- 
ation of the integrals (for Jv and Lv) will ultimately be of greater 
accuracy than the results obtained here. By obtaining analytic 
results, however, we have directly shown the dependence of the 
observational quantities on the underlying physical quantities 
of the problem. In this current study, the density and tem- 
perature distributions of the protostellar envelope were taken 
as given. In a self-consistent calculation, the density distribu- 
tion is determined by the equations of motion for the collapse 
flow and the temperature distribution is determined by the 
condition of radiative balance. However, since these distribu- 
tions have been calculated previously (see § 2 and the refer- 
ences therein), we can use the self-consistent values as input 
parameters for our formulae. 

6.2. Recipe for Interpretation of Observations 
In order to illustrate the possible uses of the asymptotic 

theory of this paper, we now present a step by step outline for 
interpreting observations of protostellar sources. The ideal 
range of wavelengths for this sort of procedure is 350 pm < 
À< 1100 pm. For shorter wavelengths, the approximations 
used to compute the monochromatic luminosity profile (in § 5) 
begin to break down (see Appendix B) and the sources are not 
expected to be well resolved; at longer wavelengths, the total 
emitted energy is too small to make emission maps with high 
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signal-to-noise ratios. In using the following outline, keep in 
mind that individual cases will vary and that this recipe is 
meant to be suggestive rather than definitive. 

1. Begin with observed emission maps of protostellar 
sources. For a given frequency of observation, produce a mea- 
sured monochromatic luminosity profile Lv(R)/Lv(0\ i.e., 
obtain the relative flux density as a function of radius R from 
the center of the source. If the observations are of sufficiently 
high quality (high signal-to-noise ratio), each independent scan 
across the source can be considered as a separate flux profile; 
in practice, however, the observations might need to be circu- 
larly averaged to obtain a single flux profile with a reasonable 
signal-to-noise ratio. 

2. Calculate the effective power-law index m for the 
observed flux profile. If only a single value of LX(R) is measur- 
able (for R > B), simply use equation (5.8) to obtain the effec- 
tive index m. If two independent values L^RJ and LV(R2) are 
available (where both Ru R2 > B\ use equation (5.10) to solve 
for both the index m and the relative contribution yv of the 
central source. If additional measurements are available, find 
the overall best fit to the flux profile and thereby determine an 
effective power-law index meff. 

3. Repeat the above procedure for every frequency for which 
data exists. The result will be an effective index meff(v) which is 
a function of frequency. 

4. Compare the observationally determined index meff with 
the theoretically expected index // from equation (3.19). To 
leading order meff + l = Aj = p + qQ [recall that Q = Q(x), 
where x = hv/kT]. To specify the temperature, we must know 
both the coefficient T'if and the power-law index q. We thus 
have three parameters (p, q, and Teff) and observations at three 
frequencies should suffice to estimate their values. 

5. If more data are available (in addition to the minimal 
amount required to solve for p and q), the estimated values of p 
and q can be checked for self-consistency. (Notice that this 
procedure is quite similar to that used to calibrate data in the 
submillimeter continuum and should thus be both self- 
explanatory and highly familiar to seasoned submillimeter 
observers.) The result of this procedure should be “ error bars ” 
which estimate the uncertainty in assigning single power-law 
indices p and q to the density and temperature distributions 
respectively. 

6. If the resulting values for p, q, and Teff suggest that the 
approximations of § 5 are breaking down, better results can be 
obtained by using the more general treatment of the problem 
given in Appendix B. In this general treatment, the central 
beam integral must be done numerically and the integral is a 
function of all three variables p, q, and Teff As a result, the 
conversion between the observed quantities [Lv(R)/Lv(0)] and 
the physical variables involves a search of a three-dimensional 
parameter space. 

7. If an absolute (calibrated) measurement of LV(R) is avail- 
able, the leading coefficient of the monochromatic luminosity 

can also be determined (see eqs. [3.16] and [5.3]). This coeffi- 
cient is proportional to /cvp0 in our parametric representation 
(see eq. [2.4]) and is proportional to kv C in the protostellar 
theory. 

6.3. Future Work 
Although the results of this paper should be useful for inter- 

preting existing and future observational data, further analysis 
of this kind can be performed. In this present work, we have 
only calculated the two leading order terms (in l/2j) of the 
specific intensity expansion; higher order corrections can be 
obtained as the observations become increasingly precise. In 
addition, further analytical work can be done to study proto- 
stellar emission in other regimes, e.g., in the near-infrared 
where the optical depth attenuation factor is large (and there- 
fore not slowly varying as assumed here). If analytic approx- 
imations for the specific intensity 7V can be obtained over the 
entire wavelength range of interest, these results can be used as 
a starting point for a self-consistent radiative transfer calcu- 
lation. Although these calculations have already been per- 
formed for the case of spherical symmetry, calculations in 
higher dimensions (e.g., axial symmetry) remain difficult 
because of the large number of required computations (see 
however, Dent 1988 and Efstathiou & Rowan-Robinson 1990 
for preliminary calculations in two spatial dimensions); analy- 
tic approximations may be useful in this context. 

On the observational side, the results of this paper suggest a 
somewhat different observing strategy than is normally used. 
In an ideal case, observations should be performed over the 
wavelength range 350 pm < A < 1100 pm. Observations at 
shorter wavelengths (~ 100 pm) are invaluable for defining the 
peaks of the spectral energy distributions (e.g., Ladd et al. 
1991a), but are not as useful for determining the spatial struc- 
ture of protostellar sources. The most important observed 
quantity for determining spatial structure is the relative mono- 
chromatic luminosity profile Lv(R)/Lv(0) and the goal of obser- 
vational work is thus to obtain these profiles with the highest 
possible signal to noise ratios. To achieve this goal, relatively 
more observing time should be spent on determining LV(R) for 
large R and relatively less time should be spent on obtaining 
absolute calibrations. Notice also that a complete emission 
map with low signal to noise is not as useful as a single scan 
across the sources (a single flux profile) with higher signal to 
noise. Finally, notice that the 600 pm band, which is noto- 
riously difficult to calibrate, can be profitably employed in this 
context because only a relative calibration is required. 

I would like to thank Gary Fuller, Ned Ladd, Phil Myers, 
Phil Pinto, George Rybicki, Frank Shu, and Steve Stabler for 
stimulating discussions and useful comments. I would also like 
to thank an anonymous referee for useful comments regarding 
the presentation of this paper. This work was supported by a 
Center for Astrophysics Fellowship. 

APPENDIX A 

THE TEMPERATURE DISTRIBUTION 

In this Appendix we derive an anlytic form for the temperature distribution of a protostellar envelope (see also Larson 1969; 
Adams & Shu 1985,1986). This derivation is valid in the outer portion of the envelope where emission is optically thin (this portion 
of the envelope also corresponds to the size scales of interest for this paper). If we assume that all of the direct radiation from the 
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central star/disk system is attenuated, the condition of radiative balance for the dust grains becomes 

i; 
dvKvBv[T-] KFaT* = ke S' , (Al) 

where we have introduced the frequency-averaged energy density S of the radiation field, the Planck mean opacity kp(T), and the 
energy weighted mean opacity ke (a is the usual radiation constant). In the limit that the emission becomes optically thin, the 
distribution of the specific intensity in frequency does not change with radius and hence ke constant. In this limit S = J^/c, where 

is the frequency integrated flux, which takes the simple form 

4nr2 ’ 

where L is the total luminosity of the protostar. We thus obtain the following relation for the temperature distribution 

KeL -2 7Cp(T)r4 = 
4nac 

(A2) 

(A3) 

where the right-hand side of the equation is independent of temperature. At low frequencies, the dust opacity kv is expected to have a 
power-law form with an index ß (see eq. [2.12]). For the relatively low temperatures of interest, we can therefore estimate the Planck 
mean opacity using equation (2.12) for /cv : 

kp(T) = r(4 + M4 + /0 
F(4)C(4) 

(A4) 

where ( is the Riemann zeta-function and F is the gamma function (see, e.g., Abramowitz & Stegun 1965). Combining all of the 
above results, we thus obtain the radial dependence of the temperature distribution 

T(r) = mm 
AF(4 + M4 

1/(4 + /?) 
r-2/(4 + /?) (A5) 

which should be valid over most of the range in size scales probed by the observations. Notice that we have assigned a single 
temperature distribution to the dust grains even though the dust grains have different compositions and sizes. Calculations which 
include multiple temperature distributions (for multiple components) suggest that this assumption is basically valid (see Wolfire & 
Cassinelli 1986,1987). 

APPENDIX B 

GENERAL TREATMENT OF THE CENTRAL BEAM INTEGRAL 

In this Appendix, we present a more general form of the monochromatic luminosity profile (see eqs. [5.8] and [5.10]). The 
derivation given in the text breaks down at “ short ” wavelengths (2 < 350 /an) because the power-law form for the specific intensity 
profile becomes invalid. The treatment given in this Appendix remains valid over the entire range of submillimeter wavelengths (100 
jum < À < 1100 /mi). On the other hand, this generalization cannot be done completely analytically and the results are not as 
“ clean ” as those of § 5 in the text. 

The expansion of equation (5.3) for the quantity J^V(R) remains valid for essentially all cases of interest. However, we need to 
recalculate the central beam integral for J^v(0). It is convenient to write the specific intensity /v in terms of its value at R: 

/mV eXR — 1 
tn/v(tn) = K/v(R)(-j , (Bl) 

where x = hv/kT (as usual), xR = x(R), and where the index a is given by our asymptotic expansion of § 3, i.e., 

a = 2- p -^P + ... , (B2) 

where we have neglected higher order terms. The monochromatic luminosity in the central beam can then be written in the form 

J^v(0) = Sn2jriv(R)R2 dv v* 
eXR- 1 

1 
exp [ —t>2AB/2] , (B3) 

where we have written the variable of integration as i; = ru/R [notice that x = x(v) = xRvq]. When the central source contribution 
can be neglected (i.e., when = Lv), the generalized monochromatic luminosity profile can be written 

w = ± 1 r1 + ini + m> + 2_)2 /n- 
/-v(0) K(p, q, xR, Ab) |_ 2Xb 82b \^bJ_ 

(B4) 
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Fig. 4.—Relative error in the central beam integral as a function of xR. The quantity œ is the ratio of the monochromatic luminosity at R = B given by the 
power-law approximation of § 5 to that given by the numerical treatment of Appendix B. The various curves correspond to p = 3/2 and q = 1/3 (solid line) ; p = 1 and 
q = 2/5 (dotted line); p = 3/2 and q = 2/5 (dashed line). 

where we have defined the function K through 
r°o exR _ ^ 

K(P, q, xR, ÀB) =1 dv va — - exp [-ü2>Ib/2] . (B5) 

Since XB is a known quantity for a given observation, the function K contains three free parameters which can be taken to be p, q, 
and some effective temperature Tm. Notice also that, in general, the integral for K must be performed numerically. Equations (B4) 
and (B5) provide a generalized version of equation (5.8) in the text. The corresponding generalization for the case of nonvanishing 
central source flux (see eq. [5.10]) can be found similarly. 

The approximations of § 5 can now be quantified. Let us define m to be the ratio of the monochromatic luminosity profile given 
by § 5 (see eq. [5.8]) to that given by the treatment of this appendix (see eq. [B4]). If we specify R = B and the power-law indices p 
and q of the density and temperature distributions, the ratio co is a function of xR only. Figure 4 shows co as a function of xR for a few 
representative values of the indices p and q. The deviation of œ from unity determines the validity of the power-law approximation 
of §5. 
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