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ABSTRACT 
Collisions between a 0.8 M0 red giant and impactors of mass 0.4 and 0.6 M0 are simulated using a three- 

dimensional smoothed particle hydrodynamics (SPH) code. The red giant is modeled as a massive core sur- 
rounded by a gaseous envelope, while the impactor, assumed to be a white dwarf or a main-sequence star, is 
treated as single particle. Encounters at various impact parameters and with relative velocities pertinent to 
globular clusters (10 km s“1) are studied. 

The effect of the encounter on the red giant depends strongly on the impact parameter. We find that if the 
impactor passes within twice the radius of the red giant (2Rrg), mass loss occurs from the red giant envelope 
and both objects are left bound in elliptical orbits. Calculations suggest that if the impactor has an initial 
distance at closest approach of approximately 1.6Rrg or less, the impactor will spiral in to the red giant 
envelope on subsequent periastron passages. For bound systems with a greater separation, the orbit may cir- 
cularize with a radius approximately double that of the initial encounter. In both cases the system will 
undergo a common envelope phase: in the latter case the red giant will eventually fill its Roche lobe as it 
expands up the giant branch. In the case of a sufficiently small closest approach (Rmin < RrG), the impactor is 
immediately captured by the core of the red giant. Both objects form a binary system orbiting inside a 
common envelope formed from the original envelope of the giant. Acting like an “eggbeater,” the system spins 
up the surrounding gas, leading to further mass loss while spiraling together. With a white dwarf impactor, 
the likely outcome of the common envelope phase will be a tight white dwarf/white dwarf binary that will 
merge in less than a Hubble time. In the case of a main-sequence star impactor, a tight binary comprised of 
the main-sequence star and a white dwarf (the red giant core) is likely to be produced, with the main-sequence 
star filling its Roche lobe. 
Subject headings: clusters: globular — stars: late-type — stars: stellar dynamics 

1. INTRODUCTION 

Stellar collisions are important in galactic nuclei and in the 
cores of globular clusters. Up to 40% of the stars in some 
globular cluster cores have suffered physical collisions (Hills & 
Day 1976). Stellar collisions may even be more important in 
galactic nuclei. It has been suggested that the gas released 
could settle to the center of the galactic nucleus to form new 
stars, ultimately forming a supermassive object at the center 
(Begelman & Rees 1978). The mass lost from colliding stars in 
galactic nuclei may provide part of the fuel to power Seyfert 
galaxies and active galactic nuclei, together with stellar winds 
and stellar disruptions. Recent models of the evolution of 
Seyfert galaxies show that at early times stellar winds provide 
most of the mass to the black hole that grows at an Eddington- 
limited rate. At later times, however, stellar collisions dominate 
completely over all other processes as a fuel source to the 
central engine (Hills 1975, 1978). The study of collisions 
between red giants and main-sequence stars is also useful in 
understanding the evolution of common envelope binaries. In 
these systems the primary has overfilled its Roche lobe and 
engulfs the secondary with its gaseous envelope. The inter- 
action between the main-sequence star and the common 
envelope of the contact binary will be similar to that between 
the outer parts of a red giant and an impacting main-sequence 
star. 

Benz and Hills have already published detailed computa- 

tions of collisions between equal-mass main-sequence stars 
(Benz & Hills 1987) and between white dwarfs (Benz, Hills, & 
Thielemann 1989) using the smoothed particle hydrodynamics 
(SPH) method of computational hydrodynamics. We extend 
this work by simulating encounters between red giants and 
main-sequence stars, and between red giants and white dwarfs, 
particularly with masses and impact speeds pertinent to globu- 
lar clusters. Such collisions are of particular importance 
because a large fraction of the stars in a globular cluster are 
low-mass main-sequence stars or low-mass white dwarfs, and 
red giants have a relatively large collisional cross section. The 
relative frequency of collisions between different types of stars 
is examined more quantitatively in § 2. Unlike the collisions 
previously simulated by Benz and Hills, the collisions we con- 
sider are between two objects of very different sizes. It is there- 
fore necessary for numerical reasons to treat the two objects 
differently. We treat the main-sequence star or white dwarf as a 
point mass and model the red giant with a massive core (again 
modeled as a point mass) surrounded by a gaseous envelope 
having a density distribution based on a stellar model found in 
the literature. Although some simulations have been done else- 
where (Livne & Tuchman 1988; Rasio & Shapiro 1990, 1991; 
Goodman & Hernquist 1991), this is the first time that colli- 
sions betweén red giants and main-sequence stars and red 
giants and white dwarfs are modeled in such a manner. Livne 
and Tuchman considered encounters involving a super giant 
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with a radius an order of magnitude larger than the one we 
consider, and Rasio and Shapiro consider encounters between 
a red giant and a neutron star. 

The work of Livne and Tuchman suggests that the result of a 
main-sequence star colliding with a red giant depends very 
strongly on the impact parameter. At high impact parameters, 
i.e., a grazing collision, slight disruption of the gaseous 
envelope occurs, but the main-sequence star passes through an 
otherwise intact red giant. At intermediate impact parameters, 
more disruption of the envelope occurs, resulting in mass loss 
from the red giant. At very low impact parameters, the core of 
the red giant itself is affected by the collision. We therefore 
study the various consequences of the collisions and how they 
depend on the initial impact parameter of the main-sequence 
star or white dwarf. 

We present results of encounters between a 0.8 M0 red giant 
of radius Rrg = 20 R0 

anc^ point masses of mass 0.4 and 0.6 
M©. The distance of closest approach ranges between 0.5Rrg 

and 2.5Rrg. For each encounter, the amount of material escap- 
ing from the system is computed together with the amount of 
material captured by the impactor. We also calculate the shift 
in the relative velocity of the two objects at infinity and 
compare this with a simple analytical expression (Bailyn 1988). 
The subsequent evolution of the system is considered, calcu- 
lating the time lapse before the second close encounter together 
with the separation at the second pariastron passage. The 
spin-up of the remains of the red giant is calculated. We also 
consider the fate of the material that becomes bound to the 
impactor. 

We discuss the subsequent evolution of binary systems that 
are formed in the encounters. We investigate whether any of 
the bound systems produced by an initial encounter will circu- 
larize rather than have the impactor merely spiral in to the red 
giant envelope. Even if systems do circularize, the subsequent 
red giant evolution will result in a common envelope phase. 
We consider the likely outcome of such a phase in § 5. 

2. COLLISION RATES IN GLOBULAR CLUSTER CORES 

In this section we quantify the statement made in the intro- 
duction that collisions involving red giants are important in 
globular clusters. For a system where stars of mass m* have a 
mean squared velocity dispersion of the collision rate per 
unit volume between two stellar species is given by 

dn - T- — rii n2 ri2 , (1) 

where n1 and n2 are the space densities of the two species. In 
the limit where v* Fesc, the coefficient F12 is given by (Bailyn, 
Grindlay, & Garcia 1990) 

rl2 = <<rF> = niR, + R2)2 

x 
1/2 m1 m2 

+ m2)_ 

1/2 

where Tiq and m2 are the masses and Rx and R2 the radii of the 
two stars, and Fesc is the escape speed between m1 and m2 when 
in physical contact. We are assuming an equipartition of 
kinetic energy. 

Thus, starting with some initial population of stars and 
using models for the temporal evolution of their radii, it is 
possible to evolve such a system. In globular clusters we have 
the added beneficial feature that we can assume that there is 

only one era of star formation with ejecta from winds and 
supernovae being lost from the system. To model the evolution 
of a globular cluster completely, it is necessary to allow for the 
mass loss resulting from collisions. It is also important to con- 
sider the large-scale dynamical evolution of the cluster. Mass 
segregation will occur, resulting in an increase in the relative 
population of the more massive stars in the cluster core. 
However, by considering a simpler case where we have a 
uniform isotropic spherical distribution of stars and where all 
collisions result in mergers, we can at least obtain some reason- 
able estimates for the collision rates between various types of 
stars. 

We consider 105 stars contained within 1 pc3. Initially the 
population follows a power law similar to the Salpeter mass 
function. We assume that no later star formation occurs after 
the initial creation of this population. Using equation (2) to 
calculate the rate coefficients between the various stellar 
species, together with equation (1), the system of stars is 
evolved using the models for stellar evolution produced by 
Mengel, Sweigart, & Demarque (1979) to calculate time- 
averaged radii for the main-sequence and red giant stars of 
various masses. As a simplifying assumption, we do not allow 
the products of mergers to undergo any further collisions. This 
results in only a small error, as the fraction of stars involved in 
encounters is small. We find that main-sequence/main- 
sequence collisions are the most common, and we have 
approximately one-fourth as many involving red giants with 
end states or main-sequence stars. The number changes only 
slightly with the slope of the IMF or the lowest mass assumed. 
These are the second most important collisions. 

3. NUMERICAL METHOD AND INITIAL CONDITIONS 

The simulations were produced using a three-dimensional 
smoothed particle hydrodynamics (SPH) code. For further dis- 
cussion of SPH see Benz (1990). All the collisions involved a 0.8 
Mq red giant constructed using 7132 SPH particles of variable 
smoothing length and a point-mass core. We use a realistic 
equation of state for the gas in the red giant envelope, includ- 
ing both radiation and gas pressure : 

ß 
(3) 

A red giant has a density distribution more centrally peaked 
than a main-sequence star. If the red giant were modeled with 
10,000 equally spaced particles, the average particle spacing, 
and the smoothing length h9 would be of the order of 0.1Rrg. 
Approximately 40% of the mass of the red giant is enclosed 
within a radius of 0.1Rrg. Hence in this case the central par- 
ticle would account for the order of 40% of the star’s total 
mass! There is no reason why all the particles must have the 
same mass, though a broad range of masses may lead to prob- 
lems when mixing occurs in a collision. Further, since SPH 
uses interpolation to calculate physical quantities such as 
density, the extremely high values at the center will be inter- 
polated out to 2h, i.e., 0.2Rrg. This will result in a severe 
broadening of the central density and pressure peaks. The 
above problems can be avoided by substituting a point mass 
for the SPH particle at the center of the red giant. Such a point 
mass interacts with the SPH particles via the gravitational 
force (with a short-range repulsive force to avoid SPH particles 
coming infinitely close). The gaseous envelope of the star is 
modeled with SPH particles. 
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Similarly, an 0.6 M0 main-sequence star, which has a radius 
of 0.6 R® or 0.03Rrg, is actually smaller than the mean inter- 
particle distance. Furthermore, because of the extremely large 
density difference between the giant’s envelope and the main- 
sequence star, the latter will not be affected by passing through 
the giant’s envelope. Hence, we approximate the intruder by a 
point mass as well. Obviously, the above argument is even 
more true for a white dwarf. 

3.1. Producing the Red Giant 
The envelope density distribution is determined by solving 

numerically the hydrostatic equilibrium equation, taking into 
account the presence of a point-mass core. Using the evolu- 
tionary model for an 0.8 M0 star given by McMillan, Taam, & 
McDermott (1990), we chose a core mass of 0.32 M0 for the 
giant corresponding to a star in the middle of the giant branch. 
Finally, the entropy is chosen so that we obtain a red giant 
radius Rrg = 1.3683 x 1012 cm as required by the above 
model. 

4. RESULTS 

In the first group of collisions listed in Table 1, the mass 
ratio between the point-mass impactor and the red giant is 
q = 0.5, i.e., Mimp = 0.4 M0. Such a ratio is applicable when 
the impactor being considered is a main-sequence star. For the 
other collisions listed, q = 0.15, or, equivalently, Mimp = 0.6 
Mq, a typical mass for a white dwarf. In all collisions we set 

= 10 km s-1. With the exception of the two encounters 
with the closest initial impact parameters, only the first 
approach between the red giant and the point-mass impactor is 
simulated; for those cases where a bound binary forms, the 
time to the second approach (periastron passage) would make 
the simulation run times prohibitively long. 

A series of snapshots of a typical encounter is given in Figure 
1. In this encounter, q = 0.75, and the distance of closest 
approach of the initial encounter divided by the red giant 
radius is x0 = RmiJRRG = 1*25. We see that material is shed 
from the outer layers of the envelope of the red giant as the 
point mass passes by. Some of this material is lost from the 
system, and some becomes bound to the impactor. After their 
initial encounter, the impactor, together with its accreted gas, 

TABLE 1 
Results of First Encounters 

Collision *0 (^min/^Ro) ^acc/^ei 
«)1/2 

Mlost/Menv (km S l) 
ColLA.IOa . 
ColLA.4a .. 
ColLA.óa .. 
ColLA.Sa .. 
ColLA.Ta .. 
ColLA.Sa .. 
ColLA.9a .. 
ColLA.Ha . 
ColLA.Sb .. 
ColLA.9b .. 
ColLA.lb .. 
ColLA.ób .. 
ColLA.2b .. 
ColLAJb .. 
ColLA.3b .. 
ColLA.Sb .. 
ColLA.4b .. 

2.25 
2.0 
1.75 
1.5 
1.25 
1.0 
0.75 
0.5 
2.5 
2.25 
2.0 
1.75 
1.5 
1.25 
1.0 
0.75 
0.5 

0 
3.522E - 4 
3.712E - 4 
4.415E - 3 
1.145E - 2 
1.98E - 2 
2.435E - 2 
5.946E - 2 
0 
0 
1.57E - 4 
6.90E - 3 
1.47E - 2 
2.75E - 2 
4.92E - 2 
6.45E - 2 
9.43E - 2 

0 
0 
4.72E - 4 
1.21E - 3 
3.58E - 3 
1.09E - 2 
2.77E - 2 
5.77E - 2 
0 
0 
7.10E - 4 
1.27E - 3 
2.90E - 3 
8.29E - 3 
1.78E - 2 
4.40E - 2 
8.34E - 2 

4.4 
8.19 

14.30 
22.98 
32.7 
44.6 
61.2 
92.1 

0.75 
7.05 

12.18 
19.81 
28.58 
38.47 
50.74 
67.31 
98.96 

and the remains of the red giant are left bound in eccentric 
orbits. The fractional mass of the envelope of the red giant 
accreted and lost for this and all other collisions is given in 
Table 1. Originally the mass of the gaseous envelope Menv was 
0.48 Mq. In the two cases where x0 = 0.5, we calculate the 
values in Table 1 when the point mass is midway between the 
first and second closest approaches. 

The various energies of the system for this encounter are 
illustrated in Figure 2. Total energy is conserved to ~0.1% or 
less, and angular momentum is conserved to ~0.03% or less. 
Note that we do not show the energies of the escaping gas and 
those of the mass transferred to the compact object separately, 
as these contributions are small compared with those from the 
material remaining in the red giant envelope (fractions of 
thermal and kinetic energies of the gas not contained in the red 
giant envelope are < 1% and <25%, respectively). The main 
source for the change in orbital energy is the energy dissipated 
within the red giant envelope, mostly in heating it up but also 
in spinning up the star. The energy carried off by the mass lost 
from the system is small by comparison. 

After the first approach, and by treating the remains of the 
red giant and the point-mass impactor, with its captured 
material, as a two-body system, we calculate the energy dissi- 
pated and obtain a new value for v^. This assumption is justi- 
fied, since at the end of the run the red giant core and the 
impactor are more than 9Rrg apart. By subtracting the orig- 
inal v^, we calculate (ôv^)112. The values obtained for the 
various encounters are given in Table 1. For the system to 
become bound, we need at least (Sv^)112 > 10 km s“1. Hence 
we see that xcrit, the value of x for which the system is just 
bound, is approximately 2.0 for both values of q. 

4.1. Mass Loss 
The mass fraction of the red giant envelope lost is plotted in 

Figure 3 as a function of x0 for both values of q. We see that 
mass loss increases with q and decreases with x0, as would be 
expected. The mass-loss cross section is given by 

ff = ^2TiAPdP, (4) 

where A is the fractional mass loss in the encounter, A = 
Miost/(MRG + Afimp), and P is the impact parameter. Following 
the method of Benz & Hills (1987), we can calculate the mass- 
loss cross section divided by the geometrical cross section. 
Using the numerical values of A as a function of Rmin derived 
from Table 1, we obtain 

* = Í 0.05(Fesc/F)2 for 4 = 0.5 , 
k(Rrg + Rimp)2 10.05(Fesc/F)2 for q = 0.75 . 1 > 

It is interesting to note the independence of this value of q; 
also, it should be noted that this value is ^ 3 times larger than 
that obtained for collisions between equal-mass main-sequence 
stars (Benz & Hills 1987). 

4.2. Tidal Dissipation and Scaling Laws 
The tidal oblateness 6 of a star of mass MRG caused 

by a passing star of mass Mimp is approximately e ^ 
/Mimp x ~ 3/Mrg, where x = d/R1, d is the distance between the 
two stars, and / is a constant less than or equal to 1 (Fabian, 
Pringle, & Rees 1975; Bailyn 1988). The energy associated with 
such a tidal bulge is £tidal - {GmRGMeJR*)e2, where Menv is 
the mass of the envelope of the deformed star. Hence, in the 
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Fig. 1.—Snapshots of the simulation ColLA.Vb, with 

4-2 0 2 4 

:0 = 1.25 and Mimp = 0.6 M0 (1 time unit = 2.3 days) 
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Fig. 2.—Various energies of the system for the encounter illustrated in Fig. 
1 : (a) the thermal energy of the gas, (b) the total kinetic energy, (c) the total 
energy, and {d) the potential energy. The two dotted lines are the kinetic 
energies of the red giant core and the impactor, the latter having the larger 
value. 

case of the red giant-impactor system, the expected tidal 
energy is given by 

E tidal 
/GMRGMenv\ 2 

V ^RG / 

MU 
MUX6 ’ 

(6) 

where MRG and Mimp are the masses of the red giant and 
impactor, and Rrg is the radius of the red giant. Since the tidal 
energy equals the change on orbital kinetic energy, we have 

(<501/2 [<Z(1 + <?)]1/2 

v3 (7) 

We expect this behavior of (Svl,)112 for x0 somewhat larger 
than unity where the approximations made in obtaining equa- 
tion (6) are more justified. The orbital velocity change at infin- 
ity, (ôv^)112, is plotted in Figure 4 against the distance of 
closest approach, jc0, for both values of q. We see that both 
curves approach the dependence on x predicted by the above 

X0 
Fig. 3.—Mass fraction of the envelope lost after the first encounter as a 

function of the distance at closest approach, x0 (in units of red giant radius 
^rg)- 

Xq 
Fig. 4.—Velocity change at infinity, (ôv^)112, as a function of the distance at 

closest approach, x0 (in units of red giant radius -Rrg). 

equation for 1.5 < x0 < 2.0. For smaller values of x0, the tides 
raised are in the nonlinear regime. It should also be noted that 
small values of (ôv%)1/2 are accompanied by larger fractional 
errors, since the error in the total energy conservation of the 
system is equivalent to an uncertainty in the relative velocity of 
^Ikms-1. 

We calculate the ratio between the velocity shifts for the two 
values of q for the various values of x0. We find that the mean 
of the ratios is 1.3, which agrees very well with the value of 1.32 
predicted by equation (7). 

4.3. The Fate of the Red Giant 
Initially the red giant is not rotating. After the first encoun- 

ter with the point mass it is given a “ kick.” Below we discuss 
the observational effects of this angular momentum transfer 
and whether the red giant will be spun up sufficiently for rota- 
tional instabilities to become important. 

We look at the particles that remain bound to the red giant 
core at the end of the first encounter. By working in the rest 
frame of the red giant core, we calculate the angular momen- 
tum contained in the postencounter star. The convective fric- 
tion time scale for the red giant, i.e., the time for the star to 
become a rigid rotator, is given by (Zahn 1989) 

For the red giant considered here, M = 0.S Mö, R = 20 Re, 
and the luminosity L is 150 L0. Hence iy ~ 0.6 yr. It is there- 
fore reasonable to estimate the rotation rate of the red giant, 
^rg> by assuming rigid rotation, i.e., by dividing the angular 
momentum contained in the star by the moment of inertia. We 
find that QRG <3 x 10“6 radians s-1, corresponding to a 
rotation period ^ 24 days. 

The ratio of the rotational to the absolute value of the gravi- 
tational potential energy, ß = T/\W\, is a well-known indica- 
tor of rotational instabilities. The classical global dynamical 
instability occurs for ß = 0.2738 in the case of Maclaurin 
spheroids. This critical value for ß, derived for incompressible, 
homogeneous fluids, has been shown to hold also for poly- 
tropic configurations (Durisen & Tohline 1985). However, in 
the case of centrally condensed objects the critical value for ß 
may never be reached by progressive spin-up. Indeed, once the 
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equatorial velocity reaches the Keplerian value, any further 
increase will result in mass shedding from the equator. For 
rigidly rotating objects of constant density, the critical value of 
ß for mass shedding is ^ whereas for a uniformly rotating 
polytrope of index n = 3 this critical value is 0.025 (Shapiro & 
Teukolsky 1983). Centrally condensed objects in uniform rota- 
tion are subject to mass shedding at lower values of ß than 
objects of uniform density. In the case of our red giant, the 
critical value is 0.022. The maximum value of ß after any first 
encounter is ^0.005. In confirmation of this calculation, we do 
not see any mass shedding at the end of any of our simulations. 

4.4. The Fate of the Gas Accreting onto the Impactor 
Working in the rest frame of the compact object, we calcu- 

late the angular momentum contained in the SPH particles 
bound to the point mass. Assuming that these particles main- 
tain their individual angular momentum, we can calculate the 
radius of an equivalent Keplerian circular orbit. A disk of 
material would possibly form around the impactor if it were 
unaffected by the subsequent evolution of the system. The 
radius of this disk appears to be highly dependent on the value 
of x0 but will be 10-40 RQ. However, such a disk will be 
disrupted on the second periastron passage of the impactor 
around the red giant, as the impactor will typically pass within 
^ 10-20 Rq of the red giant surface. 

4.5. Evolution after the First Encounter 
As stated above, the grazing collisions leave the red giant 

and the impactor in eccentric orbits. Treating the remains of 
the red giant and the impactor (together with the material 
bound to it) as a two-body system, we calculate the time 
elapsed before a second close approach, iret, together with the 
closest approach at this second encounter, These values 
together with the closest approach for the first encounter are 
given in Table 2. We see that the time before a second encoun- 
ter depends strongly on the initial distance of closest approach. 
For 1.0 < x0 < 2.0, a second encounter will occur ^102-104 

days later. Two competing effects determine the minimum dis- 
tance between the two objects on subsequent encounters. 
Every encounter results in the transfer of orbital angular 
momentum into the rotational angular momentum of the 

TABLE 2 
Details of Calculated Second Encounters 

Collision 
Tret 

(days) 

ColLA.IOa . 
ColLA.4a .. 
ColLA.óa .. 
ColLA.Sa .. 
ColLA.Ta .. 
ColLA.Sa .. 
ColLA.9a .. 
ColLA.Ha . 
ColLA.Sb .. 
ColLA.9b .. 
ColLA.lb .. 
ColLA.ób . 
ColLA.2b . 
ColLA.Tb . 
ColLA.Sb . 
ColLA.8b . 
ColLA.4b . 

2.25 Unbound oo 
2.0 Unbound oo 
1.75 1.748 4690.7 
1.5 1.486 570.4 
1.25 1.212 169.8 
1.0 0.927 64.8 
0.75 0.6753 26.5 
0.5 Tightly bound system 
2.5 Unbound oo 
2.25 Unbound oo 
2.0 1.9985 18009.3 
1.75 1.7426 1172.0 
1.5 1.470 310.4 
1.25 1.192 117.6 
1.0 0.900 51.6 
0.75 0.631 23.6 
0.5 Tightly bound system 

TABLE 3 
Spin-up of Red Giant 

Collision Hrg/Hk ^orb/^K 
ColLA.IOa . 
ColLA.4a .. 
ColLA.6a .. 
ColLA.5a .. 
ColLA.7a .. 
ColLA.Sa ., 
ColLA.9a .. 
ColLA.Ha . 
ColLA.Sb . 
ColLA.9b . 
ColLA.lb ., 
ColLA.6b . 
ColLA.2b .. 
ColLA.7b .. 
ColLAJb .. 
ColLA.Sb .. 
ColLA.4b .. 

2.25 
2.0 
1.75 
1.5 
1.25 
1.0 
0.75 
0.5 
2.5 
2.25 
2.0 
1.75 
1.5 
1.25 
1.0 
0.75 
0.5 

0.006 
0.020 
0.055 
0.115 
0.197 
0.252 
0.259 
0.312 
0.006 
0.021 
0.060 
0.106 
0.218 
0.303 
0.363 
0.410 
0.480 

0.398 
0.474 
0.580 
0.730 
0.960 
1.342 
2.066 
3.795 
0.367 
0.429 
0.512 
0.626 
0.789 
1.037 
1.449 
2.231 
4.099 

gaseous envelope of the red giant. It is thus reasonable to 
expect that, in a bound system, we will have a subsequent series 
of closer encounters resulting in the eventual merger of the 
point-mass impactor and the remains of the red giant. We 
expect spin-up of the red giant to occur until QRG ^ Qorb ; 
where QRG is the rotation rate of the red giant and Qorb is the 
rotation rate of the point mass around the red giant in its rest 
frame at the first periastron passage. Table 3 gives QRG and 
Qorb (renormalized by the Keplerian breakup rotation rate, 
Qkcp) after various first encounters. We see that spin-up of the 
red giant will occur for many subsequent encounters as typi- 
cally Qrg Qorb after the first encounter. However, circular- 
ization of the orbits of the two objects may also occur, which 
would yield a mean separation ~2x0 by conservation of 
angular momentum. Even if the latter effect dominates, the 
subsequent evolution of the red giant would cause it to engulf 
the point mass, forming a common envelope system not too 
dissimilar from that formed in encounters with x0 = 0.5. We 
will return shortly to a discussion of the subsequent evolution 
of these systems. 

The ratio xJxq is plotted against x0 in Figure 5. We see that 
for both values of q, the value of xJxq asymptotically tends to 
unity for large x0 ; we never see xJxq > 1. Hence it is clear that 
the effects of circularization are small on all first approaches. 

4.5.1. The Properties of a Circularized System 

Let us neglect for one moment the theoretical difficulties of 
calculating the cirularization time scale and suppose that such 
systems can be formed. We can imagine an idealized system 
where the point mass orbits in a circle around the red giant, 
whose rotation period matches the orbital period of the point 
mass and compute the orbital separation Rorh of such a system. 
For a stable circularized system, we must also check that the 
red giant system is not overflowing its Roche lobe. The equiva- 
lent Roche radius of a star in a binary system is given by 
(Eggleton 1983) 

, , 0.49<72/3 

rLÍq) ~ 0.6q213 + ln(l + q113) ’ (9) 

where, in this case, q = MRG/Mimp. We obtain rL = 0.44 for 
Af ¡mp = 0.4 M0 and rL = 0.404 for Mimp = 0.6 M0. The radius 
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X0 

Fig. 5.—Distance at the second periastron passage divided by the distance 
at the first periastron passage, xjx0, as a function of x0. 

Fig. 6.—Ratio xJxq as a function of the red giant rotation rate QRG for 
x0 = 1.5 and Mimp = 0.6 M0. 

of a star filling its Roche lobe is given by RL = rL R. In Table 4 
we give Rorh/RKG, Rl/

rrg, and the orbital period Porh of circu- 
larized systems that could be produced by the various encoun- 
ters. We thus see that even if we could circularize the orbits, the 
systems where x0 < 1.25 cannot form stable circularized 
systems, as the red giants would overflow their Roche lobes. 

4.5.2. Will Any Systems Circularize ? 

We now consider the question of circularization in more 
detail. Once the impactor becomes bound to the red giant, it 
will spin it up on subsequent periastron passages. The orbit of 
the impactor will begin to circularize once QRG ^ Qorb. We 
have to find whether we can achieve this condition before the 
impactor spirals in to the red giant envelope. To investigate the 
spin-up of the red giant on subsequent encounters with the 
impactor, we carried out some encounter simulations, where 
the initial red giant spin was nonzero, q = 0.75 and x0 = 1.5. In 
Figure 6 we plot xJxq as a function of ÜRG. As expected, we 
see that xjx0 c* 1.0 when QRG ^ Qorb. Indeed xJxq seems to 
vary linearly with QRG. In Figure 7 we plot the change in the 
rotation rate of the red giant, AQRG, after the first encounter as 
a function of the initial spin. Again, we see a linear variation 
with Qrg and AQRG ^ 0.0 when QRG = Qorb. From the simula- 
tions carried out with the red giant having zero initial spin, we 
know how xJxq and AQRG depend on x0 when QRG = 0.0. If 
we assume that xJxq goes linearly from these values to unity 
and AQrg 0.0 as QRG -► Dorb, we then have xJxq and AQRG 

as a function of both x0 and DRG. We are thus able to “ evolve ” 

TABLE 4 
Properties of Circularized Systems 

^orb 
Collision jc0 ^ofi/Rrg Rl/Rrg (days) 

ColLA.4a  2.0 3.883 1.708 70.52 
ColLA.óa  1.75 3.351 1.47 56.52 
ColLA.5a  1.5 2.808 1.23 43.38 
ColLAJa  1.25 2.247 0.99 31.01 
ColLA.lb  2.0 3.913 1.58 66.05 
ColLA.6b  1.75 3.3877 1.37 53.22 
ColLA.2b  1.5 2.856 1.15 41.18 
ColLAJb  1.25 2.31165 0.93 29.99 

a system with an initial separation, x0, and QRG = 0.0 on its 
subsequent periastron passages. The evolution of QRG and i2orb 

are illustrated in Figures 8 and 9 for various values of x0. We 
see that the system will circularize when x0 < 1.64 with 
q = 0.75 and when x0 > 1.56 with q = 0.5. Hence circularized 
systems seem the likely product of ^25% of the bound systems 
produced. Smaller values of x0 will produce merged systems as 
either the red giant is spun up until QRG ^ QKep, in which case 
it will swallow up the impactor as its equatorial radius 
increases, or the impactor spirals into the envelope as the dis- 
tance of closest approach on subsequent periastron passages 
approaches the red giant radius. 

At this point, we should mention some of the assumptions 
made in the above analysis. First, we have assumed that the red 
giant will be a rigid rotator by the time a second encounter 
occurs. As discussed earlier, convection within the envelope 
will lead to rigid rotation in ^0.6 yr. Hence inspection of 
Table 2 tells us that the red giant will be a rigid rotator at the 
time of a second encounter for Xq ^ 1.5. It should also be 
pointed out that the dynamical time scale of the red giant is of 

^Rg/^ORB 
Fig. 7.—Shift in the red-giant rotation rate, AfiRG, as function of QRG for 

x0 = 1.5 and Mimp = 0.6 M0. 
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Fig. 8.—Evolution of bound systems, with Mimp = 0.6 M0, on subsequent 
periastron pasages of the impactor around the red giant. 

the order of a few days, whereas the thermal time scale is 
approximately 7000 yr. The red giant will therefore not have 
time to reach a thermal equilibrium before the second perias- 
tron passage of the impactor. On this second encounter, the 
red giant envelope will be slightly bloated with a layer of 
higher entropy material on its surface. There will also be a ring 
of material around the red giant as well as a disk around the 
impactor. We expect that the increased radius of the red giant 
and the presence of the material around both stars will lead to 
a more rapid spiraling in of the impactor than we have calcu- 
lated above. Hence the calculated minimum values of x0 
required to produce circularized systems should be taken as 
lower limits. 

4.6. The Result of a Close Physical Collision—Common 
Envelope Systems 

A good illustration of a typical collision at a small impact 
parameter is one with a 0.6 MG impactor at a distance of 
closest approach x0 = 0.5. A series of snapshots of this simula- 
tion is shown in Figure 10. The second close approach occurs 
less than 20 days after the initial encounter. A tight binary 

Fig. 9.—As in Fig. 8, but with Mimp = 0.4 M0 

comprising the impactor and the red giant core then forms 
with an initial separation of 1012 cm (c^15 Rö), engulfed in 
what remains of the red giant envelope. As time goes by, the 
binary orbits become less eccentric. The angular momentum of 
the SPH particles (center-of-mass frame) is plotted in Figure 
11. This value remains constant (being some fraction of the 
total orbital angular momentum) until a time of ^6 x 105 s, 
when the impactor strikes the red giant. The point-mass 
impactor then dumps angular momentum into the gaseous 
envelope. One observes a steady increase in the angular 
momentum contained in the gas with sporadic peaks corre- 
sponding to periastron passages by the impactor about the red 
giant core. This binary system acts as an “ eggbeater,” stirring 
up the gaseous envelope after the initial ejection of material 
when the impactor first strikes the envelope of the red giant 
and resulting in additional mass loss as is illustrated in Figure 
12. A density contour map in a plane perpendicular to that of 
the initial trajectories is shown in Figure 13. One observes that 
the system has become somewhat flattened by rotation. It is 
also interesting to note that both the impactor and the red 
giant core, denoted in this figure by crosses, have similar local 
gas densities. If the binary fails to eject all of the envelope, a 
rapidly rotating red giant will remain. One may expect an 
increase in the surface abundance of metals in such a star, since 
processed material is likely to be “dredged up” from the 
center. 

Such common envelope systems are of interest not only in the 
study of the effects of close encounters between stars in dense 
stellar systems but also in understanding how to form white 
dwarf binaries and cataclysmic variables. As mentioned earlier, 
all binaries formed from the encounters between the impactor 
and the red giant will pass through a similar phase, even if the 
binary system circularizes, since the red giant will fill its Roche 
lobe when it further evolves and expands. A more detailed 
discussion of the common envelope phase follows in the next 
section. 

5. DISCUSSION 

5.1. Common Envelopes Formed in Close Physical Collisions 

First we consider the result of the penetration of the red 
giant envelope by the point mass before the system circularizes. 
The point mass will spiral in toward the core as the envelope is 
ejected. By considering the energy required to remove the 
envelope of gas, we can learn something about the ultimate fate 
of the impactor and the red giant core. The binding energy of 
the envelope is given by (de Kool 1990) 

G(MC + Menv)Menv 
Eenv 2 D ’ (10) AArg 

where Menv is the envelope mass, Rrg is the red giant radius, 
and A is a numerical factor of order unity that depends on the 
density distribution of the envelope. Let us suppose that all the 
envelope is ejected and let the final core-point-mass separation 
be denoted by af. The change in binding energy of the impac- 
tor between the onset of the common envelope phase and the 
removal of the entire envelope is given by 

AE _GMimpMc GMimp(Mc + Menv) 
9 2af 2a¡ 

where is the initial separation of the core and impactor. Thus 
we can find the final separation of the core and the impactor 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

38
1.

 .
44

 9D
 

1 j 1 1 ' i 1 1 1 i 1 1 1 i 1.' 1 i 1. 
• • U 7JÛOOQ • — • • • . - 

• * • • • • • 

■1 1 jfc i, 1 Li.,1, 1,1 i 1 t 

•4 -2 0 2 4 

Fig. 10.—Snapshots of the simulation with Mimp 0.6 M0 and x0 = 0.5 (1 time unit = 2.3 days) 
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Fig. 11.—Angular momentum of the SPH particles (center-of-mass frame) 

as a function of time for the simulation illustrated in Fig. 10. 

assuming that all of the envelope is removed with an efficiency 
a, where 

Eeay = ciAEg 

Combining the above two equations, we obtain 

af = M, ( 2Ee Me + Me, 
c\GaMimp a¡ 

Inserting suitable values in the above equation, we obtain 

(12) 

(13) 

af 13.334 
1.485 

jxAf¡mp 
+ 

33.334V1 

«¡ / 
(14) 

where a¡ and af are given in units of R0, and Mimp is in units 
of M0. 

5.1.1. Main-Sequence Impactor 
Consider the case of a main-sequence star striking the red 

giant. The subsequent common envelope phase has three pos- 
sible results. If the final separation between the main-sequence 
star and white dwarf (previously the red giant core) is suffi- 

V) 
CD ¡X cd CJ V) CD 

V) 00 cd 

0 5 10 15 20 25 30 35 40 
Time (105seconds) 

Fig. 12.—Mass fraction of escapers as a function of time for the simulation 
illustrated in Fig. 10. 

t= 12.5000 
Fig. 13.—Density contour map in a plane perpendicular to that of the 

initial trajectories, illustrating the common envelope system produced in the 
simulation illustrated in Fig. 10. 

ciently large that the main-sequence star does not fill its Roche 
lobe, a detached binary system will be formed; we shall call 
such an outcome “case (i).” Since the main-sequence lifetime 
for a low-mass star is extremely long, it seems unlikely that any 
further evolution will occur. To produce a detached system, we 
require af> 1 Re for Mimp = 0.4 M0, and af> 1.4 R0 for 
Mimp = 0.6 M0. The second possible outcome, case (ii), is 
having the main-sequence star fill its Roche lobe. This will 
happen when af < 1.0 R0 for Mimp = 0.4 M0 and when af <> 
1.4 Rq for Mimp = 0.6 M0. If the final separation is less than 
the size of the main-sequence star, then we have our third 
possible outcome, case (iii), namely, that of a physical merger. 
Such a merger may occur before all of the envelope has been 
removed; we will thus be left with a rapidly rotating red giant 
with the main-sequence star enveloping the red giant core. This 
third case will happen ifaf <>0A Re for Mimp = 0.4 R0 and if 
af < 0.6 Rq for Mimp = 0.6 R0. 

We now use equation (14), for both values of Mimp and with 
a range of values of a, to calculate the initial separation 
required to produce the three possible outcomes as described 
above. These are illustrated in Figures 14 and 15. We note that 
for a ^ 0.3 (Livio & Soker 1988; Taam & Bodenheimer 1989), 
the vast majority of systems produced by a common envelope 
phase will contain a Roche lobe-filled main-sequence star, i.e., 
we have case (ii). When the mass of the main-sequence star 
exceeds that of the white dwarf, mass transfer to the white 
dwarf will cause the two objects to spiral in toward each other, 
leading to a second common envelope phase. We also note that 
in order to produce a large fraction of detached systems, we 
require a > 0.4. 

5.1.2. White Dwarf Impactor 

If the impactor is a white dwarf, we will be left with a white 
dwarf binary system after the common envelope phase. Such a 
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a 
Fig. 14.—Result of a common envelope phase as a function of the initial 

separation, at, and efficiency a for a main-sequence star impactor of mass 
Mimp = 0.4 M0. In region (i) a merged system is the product of a common 
envelope phase. In region (ii) we produce a close binary with the main- 
sequence star filling its Roche lobe. In region (iii) a detached binary is produc- 
ed. 

system will lose angular momentum through the emission of 
gravitational radiation on a time scale given by (Landau & 
Lifshitz 1962) 

_ £ _c^ (Mc + Mimp)2/3 /_P \ 8/3 

Tgr 32 G5/3 Mc Mimp \2n) 
(15) 

where P is the orbital period of the binary. The two stars will 
spiral and merge in less than 1010 yr if the initial separation 
satisfies (Iben & Tutukov 1984) 

~ ' \mJ \MqJ V M0 J 
(16) 

From equation (16) we thus see that af <2.1 Rö for = 0.75. 
Hence, if the efficiency a is appropriately 0.3, all white dwarf 
binary systems produced in the common envelope phases of 
binaries formed from encounters between 0.8 M0 red giants 
and 0.6 M0 white dwarfs will merge in less than 1010 yr. Since 
Mimp = 0.6 M0 and Mc ^ 0.32 M0, such mergers will not 

produce Type I supernovae, because the sum of their masses is 
less than the Chandrasekhar mass. Rather they will produce 
fairly massive, rapidly rotating white dwarfs. The approximate 
calculations in § 2 suggest that ^ 102 such stars will be pro- 
duced per 105 stars in 1 pc3 in a typical globular cluster core. 
These rapidly rotating white dwarfs will have a minimum mass 
^0.9 M0. To produce a white dwarf of such a mass from a 
single star requires an initial main-sequence mass ^2.45 M0 
(Iben & Renzini 1983). Assuming that our initial stellar popu- 
lation follows the power law dN cc M~2‘5 dM and that 0.4 
M0 < M* < 15.0 Me, we find that the number of primordial 
white dwarfs with MWD > 0.9 M0 is ^4000 per 105 stars. 
Hence the relative increase in the number of fairly massive 
white dwarfs due to collisions will be small. It has also been 
suggested (Webbink 1984) that a He white dwarf overflowing 
its Roche lobe and transferring mass onto a CO white dwarf 
(as will be the case here) may produce an R Coronae Borealis 
star as helium burning begins in a shell around the CO core, 
causing the rest of the envelope to expand, producing a very 
luminous object. 

5.2. Common Envelopes Formed in Circularized Systems 
We now consider the ultimate fate of bound systems that 

become circularized rather than having the impactor spiral in 
to the red giant envelope. In such systems the red giant will 
eventually overflow its Roche lobe as it expands in its sub- 
sequent evolution up the red giant branch, thus producing a 
common envelope system. Since during this phase of the red 
giant’s evolution only a very small mass fraction of the 
envelope expands, the binding energy of the red giant will be 
similar to the value for the initial red giant model. Hence we 
may still use equation (14) to calculate the final separation of 
the impactor and the red giant core after the common envelope 
phase. Because the final separation is relatively independent of 
the initial separation, the result of a common envelope phase 
formed in a circularized system will thus be the same as that 
formed in a close physical collision. Hence we expect to form 
white dwarf binaries in the case of a white dwarf impactor, and 
white dwarf/main-sequence star binaries with the latter filling 
its Roche lobe in the case of a main-sequence star impactor. 

5.3. Decay and Spin-up Time Scales 
One can compare the decay time scale of the orbit of the 

impactor and the spin-up time scales of the envelope with the 
Keplerian time scale of the impactor’s orbit within the 
common envelope. Li vio & Soker (1988) define 

/?CE = ^ , (17) TKep 

rcE = Iä- (18) 
^decay 

Thus, if ßCB < 1, the impactor will spiral in, rapidly depositing 
energy locally. If yCE á 1, the spin-up of the envelope will slow 
down the orbital decay considerably, since the drag force 
depends on the relative velocity of the impactor with the 
gaseous envelope. The ratios ßCE and yCE are given by (Livio & 
Soker 1988) 

O ^decay 
PCE — TKep 

Fig. 15.—As in Fig. 14, but with M¡ = 0.6 Me 

= FÇ£) TM(a) + Ml/ Vs 

12* L Ms J\FKepA/V 
(19) 
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Q O'! 

Fig. 16.—Values of /?CE = tDecay/TKep and yCE = T5pin.up/Td„iy as a function 
of the fractional radius of the red giant for Mimp = 0.6 M0 and Mimp = 0.4 
M0. 

where a is the separation, M(a) is the mass in the giant to 
radius a, pa is the local density in the common envelope, Ms is 
the impactor mass, V is the relative velocity between the 
impactor and the common envelope, and (47r/3) pa a3 = M(a). 

We can now calculate ßCE and yCE for our red giant model 
for various values of Mimp and V(r). In Figure 16 we see ßCE 

and yCE for Mimp = 0.4 M0 and Mimp = 0.6 M0 assuming 
V = FKep; this should be compared with Figure 2 in Li vio & 
Soker (1988). We see that in both cases ßCE <1 for 0.1 < 

o -i-> o (0 
a 
e 

x) 
a (Ü 
0) u o o 
c (U 0) 
£ 
CD 

rQ 
(D O 
c CÖ 
(A 
S 

Fig. 17.—Core-impactor separation as a function of time for Mimp = 0.6 
M0 and x0 = 0.5. 

Fig. 18.—As in Fig. 17, but with Mimp = 0.4 M0 

R/Rrg < 0.95. This suggests that an impactor will rapidly 
spiral in once at this range of radii. However, it should also be 
noted that yCE ^ hence spin-up of the envelope will occur 
rapidly. This will reduce V and thus the drag force and Mach 
number, J/. For ^ < 1, F(Jt) > 1 and ßCE will increase. If 
ßCE > 1, the impactor will dump energy in a torus within the 
envelope and local effects will become less important. 

We can make an estimate of ßCE for the two encounters 
where x0 = 0.5 (colLA.4b and colLA.lla). The distances 
between the red giant core and the impactor as a function of 
time for these two simulations are illustrated in Figures 17 and 
18. From this figure we can make an estimate of ßCE by mea- 
suring the shift in core-impactor separation between successive 
maxima, Aa. Hence Tdecay ^ (a/Aa)At, where Ai is the time 
between two successive maxima = TKep. Hence we have ßCE = 
(a/Aa). The values for ßCE calculated in this way are given in 
Table 5. We see that the measured values of ßCE always greatly 
exceed the theoretical values calculated assuming ^ — ^Kep* 
This is because we have spun up the envelope of the red giant, 
thus reducing the Mach number of the flow, JP, to below unity, 
thus giving F(Jt) > 1 and greatly increasing ßCE. A more 
detailed study of the common envelope process and the calcu- 
lation of the parameters a, /?CE, and yCE will follow in a later 
paper. 

5.4. Can We Distinguish a Binary Formed by 
Capture from a Primordial One ? 

We now consider whether one could distinguish observa- 
tionally between binary systems formed from close encounters 

TABLE 5 
Common Envelope Evolution 

Time 
Collision (105 s) SeparationV^RG ßcE 

ColLA.Ha  34.61 0.374 9.67 
ColLA.Ha  35.98 0.338 14.05 
ColLA.Ha  37.23 0.325 21.68 
ColLA.Ha  38.41 0.308 22.45 
ColLA.4b   34.78 0.561 10.65 
ColLA.4b   36.78 0.524 15.75 

a Separation between red giant core and point mass impactor. 
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and primordial systems. We consider the case of a 0.6 M0 
white dwarf in a circular orbit, of radius Rorh = 80 R0* Let us 
try to produce an identical system, beginning with a binary 
system of two main-sequence stars. The primary will expand as 
it becomes a red giant, filling its Roche lobe, resulting in a 
common envelope phase. The gaseous envelope of the primary 
will be removed, leaving a white dwarf behind, orbiting the 
intact secondary. If the white dwarf has a mass ^0.6 M0, as 
assumed here, the initial primary mass is required to be ^1.1 
M0. We may calculate the maximum final separation of the 
two stars after this first common envelope stage by setting 
a* = oo in equation (14). We thus obtain 

ocGMr Mh Ufmax 
imp 

2E. 
(21) 

If we assume £env oc Menv(Menv + Mc), then the binding energy 
of the 1.1 M0 red giant envelope will be approximately double 
that of the 0.8 M© red giant. Inserting suitable values for Mc, 
Mimp, and £env into the above equation, we thus obtain 

«/a,» - 7-0a rq ; (22) 
hence we conclude that it is extremely difficult to produce the 
desired binary from a primordial binary, since we would need 
some mechanism to give a > 10. 

6. CONCLUSION 

We have successfully simulated encounters between a 0.8 
M© red giant and a 0.6 M© white dwarf and between the red 
giant and 0.4 and 0.6 M© main-sequence stars; such encoun- 
ters are applicable to globular cluster cores where the turnoff 
mass is oberved to be ^0.8 M©. We see a fractional mass loss 
larger than that observed in previous simulations of collisions 

between main-sequence stars. We have shown that impactors 
passing within ~2Rrg will become bound to the red giant, 
resulting in either the production of a binary engulfed in a 
common envelope of gas or a close binary system. In the case 
of a white dwarf impactor, it seems extremely difficult to 
produce a similar close binary system from a primordial binary 
system. Simple calculations suggest that a common envelope 
phase will produce a white dwarf binary of separation ~2-3 
R© or less when the impactor is a low-mass white dwarf. If the 
impactor is a low-mass main-sequence star, the nature of the 
final object is a function of the initial impact parameter and 
efficiency a. For extremely close physical collisions, a rapidly 
rotating red giant seems likely to be produced, as the main- 
sequence star impactor spirals in and merges with the red giant 
core. The most probable outcome for most encounters appears 
to be the production of a close white dwarf/main-sequence 
binary, with the latter filling its Roche lobe. If the main- 
sequence star is more massive than the white dwarf, mass 
transfer onto the white dwarf will produce a second common 
envelope phase. More studies of the evolution of common 
envelope systems will be carried out, so that one may compare 
numerical results with the theory described by Livio and 
Soker. 
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