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ABSTRACT 
We calculate the radiative line widths of the Landau levels in a superstrong magnetic field and give simple 

analytic expressions and fits for these which are valid over a wide range of the principal quantum number and 
the magnetic field strength. If one does not allow for QED corrections, all levels but the first are doubly 
degenerate, corresponding to the two possible spin projections. However, the interaction with the QED 
vacuum removes this degeneracy, leading to an energy splitting of each level which exceeds the radiative line 
width for low Landau levels if the magnetic field is not too large (B < 1013 G). We present estimations of the 
splitting in various limits as a function of field strength and Landau number. The possibility of observing this 
splitting in accreting X-ray pulsars and in gamma-ray bursters is discussed. 
Subject headings: atomic processes — magnetic fields — radiation mechanisms — stars: neutron — 

X-ray: spectra 

1. INTRODUCTION 

Cyclotron lines are important diagnostic tools for neutron star astrophysics, allowing a direct determination of the magnetic field, 
and line profiles give information about the physical conditions in the radiating region. In the X-ray range, these lines have been 
discovered in several accreting pulsars (Her X-l, 4U 0115 + 63, 4U 1538 — 52, X0331 + 53, e.g. Trümper et al. 1978; Wheaton, et al. 
1979; White et al. 1983; Clark et al. 1990; Mihara et al. 1990; Nagase et al. 1991; Makishima et al. 1991), and in a number of 
gamma-ray bursters (GB 870303, GB 880205, GB 890929, and earlier data from Konus, e.g. Murakami et al. 1988; Yoshida et al. 
1990; Mazets et al. 1981). Cyclotron lines arise mainly as a result of scattering, or with smaller probability by emission and 
absorption, involving free electron transitions between quantized energy levels in the presence of the superstrong magnetic field. In 
such a field, the energy of an electron or positron is given by the Landau levels, characterized by the principal quantum number 
n = 0, 1, 2, ... and the normalized magnetic field strength b = hœc/mec

2 = B/BQ, where coc = eB/mec is the cyclotron energy and 
Bq = m2c3/eh = 4.413 x 1013 G is the critical QED field. In units of the electron rest energy, the relativistic expression for the 
energy is 

£ = sn(Pz) = V1 + + Pz ’ (!) 

where the first term represents the rest energy, the second is the transverse energy, and the third is the longitudinal energy, pz being 
the e ± momentum in units of me c projected onto the direction of the magnetic field. The excited levels n> 0 are usually considered 
to be twice degenerate over spin projections, with two Dirac bispinor eigenfunctions corresponding to each level. The coupling of 
the electrons to the radiation field by the interaction Hamiltonian Hj leads to a natural broadening of the excited levels. A less 
widely appreciated fact, however, is that the same interaction also leads to a finite splitting and shifting of each level, which under a 
range of conditions can exceed the natural line width and may be observable with currently planned detectors. 

Although as a rule, in normal astrophysical situations, the natural widths are small compared to the Doppler widths, they are 
needed for the accurate calculation of many radiative processes and for the calculation of realistic line profiles. For instance, they are 
needed to avoid the singularities which appear in the cyclotron emission/absorption spectrum and in the magnetic one-photon pair 
creation/annihilation spectrum, at angles 6 between B and k close to nß (e.g., Herold et al. 1982a; Pavlov 1986; Harding 1986; 
Bezchastnov & Pavlov 1990). They are also necessary in order to treat appropriately the resonances in the QED magnetic Compton 
scattering cross section (e.g., Daugherty & Harding 1986; Bussard, Alexander & Mészáros 1986; Harding & Preece 1989). These 
resonances appear at energies œ ~ nœc, the exact energies and Doppler widths depending on the angles of the incoming and 
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outgoing photons respect to B. General expressions for the natural width were derived by Herold et al. (1982a, b), Latal et al. (1986), 
and Mitrofanov & Pozaneneko (1987). To calculate these widths requires integrations over 0 and sums over all Landau levels ríen 
of complicated expressions, which can be cumbersome and time consuming when n is not small. However, simple approximate 
expressions can be obtained for the widths in various limiting cases, and it is obviously useful to derive simple interpolation 
formulae that match these limiting cases and are sufficiently accurate over a wide range of parameters. 

The energy shift of the Landau levels is intimately connected to the natural line broadening, these quantities being the real and 
imaginary parts of the complex radiative shift (see, e.g., Akhiezer & Berestetskii 1981). The shifts are generally dependent on the sign 
of the e± spin projection Ç onto 2?, Ç = ±1. This means that the shift can remove the degeneracy of the Landau levels, leading to a 
finite energy split of each level, if the distance between the shifted sublevels exceeds the natural width. The possibility of measuring 
this shift in the high-energy spectrum of magnetized neutron stars would be of great interest, and for this it is necessary to calculate 
the shifts and widths over a wide range of the parameters n and b = B/BQ. Notice that it is not necessary to include in these 
calculations the dependence on the longitudinal momentum of the electron or positron pz, since the value of the widths and splitting 
for pz 0 can be obtained from those for pz = 0 through a Lorentz transformation (Herold et al. 1982a). 

In § 2 we consider the various limiting values for the radiative width, and we compare the results of these and the interpolation 
formulae with those we obtain from numerical calculations of the exact relativistic expressions. In § 3 we discuss the results on the 
splitting of the Landau levels, giving both exact and approximate expressions, and we compare these with the corresponding widths 
as a function of n and b. The results and their observational implications are discussed in § 4. 

2. NATURAL BROADENING OF THE LANDAU LEVELS 

The natural width F£ of the electron state | n, C, pz = 0) can be defined as the sum of the partial widths : 

rl= I n„.= I I r«„,, (2) 
n' <n n' <n = ±1 

where £ = ± 1 is the sign of the spin projection onto the magnetic field. General equations for were obtained, e.g., by Herold et 
al. (1982a) (their eq. [17]). This can be written in units of me c2 as 

a Çnl2 

„■ = 2 de- z Jo í 

œ sin 6 
{[(£„ - 0(e„ + í - co)llAu) + (en + 0(en - Ç - a>)/„2-!,„-,(«)] sin2 6 

snV/fi„2 — 2(w — ri)b sin2 0 

+ [(£„ + 0(en - C - tu)/2_ !,„(«) + (e„ - Q(e„ + Ç - co)/2„._!(«)](! + eos2 0) 

+ 2v
/2n6a>[/„,„.(«)/n_!,„-(«) + In,n -1(u)In^Un^1(u)'] sin 0 eos2 0 

+ 4v/ññ'b[/n_i,„'-i(u)] sin2 0}, 

where 

a = Siñ^0 ^S" ~ Ve» - 2(" “ n">b SÍn2 0] = ann’(0) 

(3) 

(4) 

is the dimensionless frequency of a photon irradiated at the transition n -► n' at an angle 0, en = en(pz = 0) = v' l + 2nb is the energy, 
a = e2/hc is the fine-structure constant, and /„ „ (w) are the functions constructed from the associated Laguerre polynomials 

8" 
h,n(u) = (-IHn! n'!)-1/2e"/2M(”“"')/2 — , (5) 

whose argument is w = (w2 sin2 6)/2b. The expression for the width (eq. [3]) simplifies considerably in the following limiting cases. 
Case A : Nonrelativistic limit, nb l (electron transverse energy eL me c2).—In this case one obtains (Melrose & Zheleznyakov 

1981; Herold et al. 1982) 

+ 1 (n - n' + \)(n - nf)2(n-n,)2n-n' + 1n\ 
(2n — 2n' + l)!n'! 

r-„ = *bn 

r+, = — r-, * nn n * nn 

r„+
n = <xb" 

„2n+ 1 'm 2"(n + 1)! 

(if n' > 0), 

(if n' = 0). 

(6a) 

(6b) 

(6c) 
(2n + 1)! 

In these equations, the main contribution to 1 ’ clearly comes from the terms n' = n — 1, i.e., 

rB- = fa«62 , (7a) 

r„+ = fa(n - \)b2 (if «>!), (7b) 

17 = fah3 . (7c) 

For some applications, one needs the spin-averaged width Fn = (r„+ + Fn )/2. In the nonrelativistic limit this is given by 

r„ = fa(n - i)Z>2, (8a) 
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which depends on n, whereas the difference 

afm = r- - r; = Ub2 (8b) 

is independent of n. Obviously this nonrelativistic limit can only be achieved in nonrelativistic magnetic fields h <0. 
By increasing n at a fixed fr <0, one reaches the ultrarelativistic limit n^> b-1 1. In this limit all the terms n, ri, and n — ri 

contributing to F£ are very large compared to unity, and one can neglect the quantization of the Landau levels (replacing the sums 
over n' by integrals), using the asymptotic quasi-classical expressions for the /„,„ («) in terms of McDonalds functions (see, e.g., 
Sokolov & Ternov 1986). Integrating these over 0, we obtain 

dv 

(1 + W)2 
1 + CC 

1 
2 K5/2(m + 

r¡2v2 

l + rjv Ki/iiv) - Cm 1 + 1 + rjv 
>Kll3(v) 

1 — CÇ ti2v2 

+ Lk2I3(v) + í;k1I3(v)-] 

where 

Summing equation (9a) over Ç', one obtains 

(TTS 

ri = Ibjlñb = . 

dv 

:r 

rj2v2 rjv 
K5l3(m + 7^7 K2/3(v) - Í 77^ ^1/3^ 1 i + r¡v 1 1 + rjv 1 + rjv 

(9a) 

(9b) 

(10) 

Both F^' and F£ depend on n only through the parameter rj defined in equation (9b), which is determined by the ratio of the 
characteristic energy of the synchrotron photons, bp± s ~ bs^/nb, to the electron energy e. When the parameter rj is not small, 
quantum effects such as the electron recoil and spin-flip transitions are important, whereas in the opposite limit of rç <0 one is 
dealing with the classical synchrotron limit. We can therefore consider two additional limiting cases. 

Case B: Ultrarelativistic quasi-classical limit, (rj < 1).—In this limit, a direct evaluation of the integrals in 
equation (10), expanded up to terms of order rj, yields the value 

2^3 
otbl 1 - 

o   'y 
j-j= Y^ñb2 - Ç — fíñb2 ) ~ 1.44a¿>(l - l.3y/ñb2 - ÇOAl^nb2). (H) 

We see that the spin-averaged width Fn is almost independent of n, whereas the difference AF„, which is associated with small 
quantum effects, grows proportionally with n1/2. 

Case C: Ultrarelativistic Quantum Limit, n b~3,(r¡ 1).—In this limit it is only the t; 1 values that contribute significantly to 
the integrals for F£. Using the corresponding expansions of the MacDonald functions and evaluating the integrals, one obtains 

= 14r(2/3)ah [ _ r(l/3) 
" 37/3(2nh3)1/6 L 4 14 x 31/3r(2/3)(2nh)1/6 

1.30ah ^ 0.087 
(nb3)116 L1 “ C (nb3)1/6_ * 

(12) 

From this we see that both Fn and AF„ decrease slowly with n. The results for the limiting case A, B, C match each other at rc ~ h 1 

and n ~ b~3. This allows one to write down a simple low-order interpolation formula which has the correct limiting behaviors : 

= - (1 + 0/2]afr2  ( , 
" [1 + {a2c[n - (1 + C)/2]fc}^]1/fl371 + (a4Cnfc3)û57r/6û5Ç * 1 

We calculated F£ from equation (3) for b = 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3, and 0.6 for n = 1-1000 with an accuracy of 0.01% and 
fitted the results using equation (13) with the as fitting parameters. Values of these parameters for the best fit in the region 
b = 0.01-0.6, n = 2-1000 are given in Table 1. 

The relative errors in this fitting are maximal (11% for rn
-1 and 15% for Fn

+1) for « = 2 at the lowest and highest values of the 
magnetic field used here in the fitting procedure. If one narrows the field limits, the maximum errors diminish significantly (6% for 
F71 and 7% for Fn

+1 in the range 0.03 <b< 0.3). 
To fit the widths with higher accuracy, one can express the a^ in equation (13) as a quadratic function of the field, 

= c¡ + dty + e¡b2 , (14) 

considering cf, d\, and e\ as new fitting parameters. The best fit in the range b = 0.01-0.6, n = 2-1000 was obtained with the 
parameters given in Table 2. 

TABLE 1 
Parameters a^ 

C a5Ç 
-1  1.568 0.952 0.701 6.518 0.299 
+ 1  1.740 0.760 0.673 49.61 0.197 
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TABLE 2 
Parameters c¡, d\, e\ 

~dp ^ ~cF dF" Í7 

1   1.385 -1.077 1.473 1.381 -2.419 3.167 
2   1.095 0.3025 -0.8404 1.024 -0.7523 0.5282 
3   0.8447 -0.2156 0.00656 0.8421 -0.2652 0.04603 
4   0.7933 -3.601 5.550 0.3632 -1.924 3.109 
5   0.4779 -0.5903 0.3185 0.2458 -0.1617 0.02845 

The typical accuracy of this improved fit is a few tenths of a percent, the maximum errors being 2.5% for F "1 (at n = 2, fr = 0.01) 
and 3.1 % for Fn

+1 (for n = 2, b = 0.3). The maximum errors decrease as the field limits are narrowed (e.g., 1.7% for F“1 and 2.1 % for 
Fn

+1 in the range 0.03 < fr < 0.3). Examples of these fits are shown with full lines in Figure 1 for fr = 0.03, 0.1, 0.3. To demonstrate 
the difference between the exact quantum results of equation (3) and the ultrarelativistic limit of equation (10), we have also plotted 
in Figure 1 the widths from the latter as dot-dashed lines. We see that the difference can be significant even for very high Landau 
levels. 

Fig. 1.—Dependence of the radiative widths F“1/^ (upper curve) and T^/ocb (lower curves) on the Landau level number n for three values oîb = B/BQ. The 
results of the numerical evaluation of eq. (3) are shown as dots; solid lines correspond to the interpolation formula (13), with coefficients given by eq. (14) and Table 2. 
Dashed-dot lines show the widths in the ultrarelativistic approximation of eq. (10). Dashed horizontal lines show the Schwinger value of the splitting, Ae/ctb = (2n) 1, 
and triangles mark the values of the splitting obtained from calculations of Geprägs et al. (1991). 
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TABLE 3 
Parameters 

C 014 Q 2Ç 034 044 054 
-1  0.9451 -0.04383 1.752 0.196 7.628 
+ 1  3.0868 0.42301 2.1654 0.57762 4.3276 

For the first excited Landau level (n = 1) the previous fit by means of equations (13) and (14) is not so good. However, the widths 
F^ can be easily calculated with high accuracy, and the results can be fitted with the following expression : 

U5+0/2 
rc =   n 3a) 

1 + a + 

The fitting parameters to be used in equation (13a) are given in Table 3. The accuracy of this fit in the range 10-3 < b < 107 is 
0.55% for F^1 and 0.05% for F;’' ^ the results being shown in Figure 2. 

3. RADIATIVE SPLITTING OF THE LANDAU LEVELS 

From quantum electrodynamics, it is known that the radiative broadening of the discrete energy levels of a system is always 
accompanied by a radiative shift of the levels, the two quantities being related by dispersion relations. In the case of the Landau 
levels, the shift ôs and the widths F are the real and imaginary part of the complex shift (e.g., Herold et al. 1982), 

<54 + in= i 
<Í| Hj\ky<M Hj\i} 

Ei — Ek + iO 
(15) 

where H¡ is the interaction Hamiltonian, | /> is the initial state with one electron or positron of quantum numbers n and C, and | k} is 
an intermediate state with one electron or positron and one photon. A direct calculation of the real part is usually not simple 
because of divergences which need to be removed with an appropriate renormalization procedure (Geprägs et al. 1991). However, 
the quantities that are the most interesting are not the shifts themselves but the differences Á£„ = ös+ — ôe~, which give the energy 
splitting of the nth Landau level. This splitting was recognized by Sokolov & Ternov (1968) as being caused by the anomalous 
magnetic moment A/z of the electron, the value of the splitting being 

As n ^b, 
Vo 

(16) 

where jli0 = eh/2me c is the Bohr magneton and Aju depends generally on b and n. 
The nature of the splitting can be understood more simply for nonrelativistic electrons. In this case the motion in a magnetic field 

is described by the Pauli equation 

(p - eA/c)2 

2me 
-V * B 'F = E'F , (17) 

Fig. 2.—Dependence of the radiative width r[/ctb as a function of b. Dots are the results of the numerical evaluation; solid lines are the values from the 
interpolation formula (13a) with the coefficients given in Table 3. 
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where — fi • B takes into account the interaction of the spin magnetic momentum with the magnetic field, /i = — //<r is the magnetic 
moment operator, // is the value of the magnetic moment, and <r is the spin operator. The eigenvalues of the nonrelativistic energy 
are given by 

1 , Í E = hcoA nr — 1 = hcoA ~ -t- — + 
2 2 fi0 

1 , f M 
2 2 2 ß0J 

(18) 

where «r = 0,1, 2,... and Ç = +1. If // = //0 (i.e., the anomalous magnetic moment A// is zero), the spin term either compensates the 
ground-state energy of the spinless electron hœc/2 or else it multiplies it by a factor of 2, giving thereby the nonrelativistic spectrum 
E = nhcoc, with n = wr + 1 for ( = -hi and n = nr for Ç = — 1. If, on the other hand, // differs from ju0, the spectrum turns into 

i.e., the energy level with the spin-up electron (£ = -hi) lies slightly higher than that for spin-down (f = — 1). 
The anomalous magnetic moment for very low b was first calculated by Schwinger (1948) and is 

(19) 

— = r~ « 1, »7 « 1). 
ßo 27t 

The dependence of A// on n and b was analyzed by Sokolov & Ternov (1986), who obtained 

A// 

Mo 

2a ^ 
nb „. = 0 . 

rit/2 
d(o J d9 

cd sin 6 

[<V(Pz) + w]2 - «„ 
1 + 

2(rt' — h)b + a2 sin2 6 
(osn (p'z) sin2 6 

(20) 

(21) 

where 

£„'(p'z) = + öj2 cos2 0 , 6„ = e„(pz = 0) = J1 + 2nb z = ■ 
cd1 sin2 9 

~2b : 

and the /„^ (z) are defined by equation (5). Equation (21) simplifies considerably in the previous limiting cases. 
Case A : Nonrelativistic limit (nb 1).—In this case Aju is independent of n and differs only slightly from the Schwinger value (20), 

leading to a splitting : 

Ae n 
cab 
In 

^ 0.16ah . (22) 

In the opposite case of large n^> b 1 1 (ultrarelativistic energies), the sum over ri in equation (21) can be replaced by an 
integral, and the quasi-classical expressions can be used for /n>n (z). This yields (Sokolov & Ternov 1986) 

A// 

Mo 

ocrj 
n 

dv 
(1 4- t]vy f 

dt sin i -h 
4t3 

21v: (23) 

i.e., as for the radiative widths, the result depends on n and b only through the parameter rj (eq. [10]). Therefore one can consider the 
same two following limiting cases below 

Case B: Ultrarelativistic quasi-classical limit, b'1 n b~3,(r¡ 1).—In this case equation (23) leads to approximately the same 
splitting as forn \ namely 

a ^ ~ 0.16ah . (24) 

Case C : Ultrarelativistic quantum limit, n$> b 3,{rj P 1).—In this limit, the splitting decreases with increasing w: 

ahr(l/3) 0.074ah 

V^t,)2'3 “ (nb3)1'3 • 

Equations (22), (24), and (25) can be combined in the interpolation formula 

(25) 

Ae n 
ae 

[1 +(u7nh3)a8]1/308 ’ 
(26) 

with a6 ^ 0.16, a7 ^ 10.1, and a8 = 0.5, appropriate for the purposes of rough estimations. 
Exact values of the shifts <5e£ were calculated by Geprägs et al. (1991) for n = 1 and n = 2 in a wide range of b. The corresponding 

splittings are shown by triangles in Figure 1. We see that for h < 0.1 the exact splittings are quite close to the Schwinger 
value of equation (20) (marked as a dashed horizontal line in Fig. 1), whereas for h > 0.1 the exact values lie increasingly lower for 
increasing b. 
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4. DISCUSSION 

Comparing the results of § 2 and 3, we see that the ratio of the cyclotron line splitting to the natural line width is approximately 
given by 

Í0.12[(n — 1 > rKb-1; 
-^-jo.ll, b-'^n^b-3; (27) 
r" [0.057(nb3)-1/6 , tip b~3 . 

Thus, in the nonrelativistic limit the interaction with the radiation field can remove the degeneracy of the lowest Landau levels 
satisfying 

n < 0.5 + 0.12b-1 , (28) 

provided the field is not too strong, b < 0.25 (or B < 1013 G). With decreasing field strength, the number of Landau levels which are 
nondegenerate increases. For instance, in a field B ~ 3 x 1012 G observed in the X-ray pulsar Her X-l (Trümper et al. 1978; Mihara 
et al. 1990), only the first excited level can be considered sufficiently well split to be nondegenerate. However, in a field B ~ l x 1012 

G, as observed in the X-ray pulsar 4U 0115 + 63 (White et al. 1983; Nagase et al. 1990), or II ~ 2 x 1012 G, as observed in the 
gamma-ray bursters GB 870303 and GB 880205 (Murakami et al. 1988), and the X-ray pulsar 4U 1358 — 52 (Clark et al. 1989), one 
may expect the splitting of two or three excited levels. 

The amount of the splitting, in the nonrelativistic limit (22), is the same for all the levels independently of n : 

AE - 0.6b keV = 13.5(£/1012 G) eV . (29) 

This level splitting can, in principle, produce an observable substructure in the cyclotron resonance lines. If the resonance is 
associated with a transition n«->0, the line should split into a doublet. The red component of the doublet arises due to spin- 
down <r+ spin-down transitions, while the blue component (shifted by AE from the red component) arises from spin-flip transitions. If 
the resonance is associated with a transition between excited Landau levels, the line splits into a triplet, with the central component 
caused by spin-conserving transitions, while the red and blue satellites are caused by spin-down <-► spin-up and spin-up <-► spin- 
down transitions, respectively. The shift between the satellites equals 2AE. 

In general, the observation of this superfine cyclotron structure in accreting X-ray pulsars and gamma-ray bursters should be 
difficult, since the splitting is very small compared to the line energy, and also compared to the typical line widths. However, they 
are, in principle, within the capabilities of modern high-resolution X-ray spectrometers. If the splitting exceeds the effects of all 
broadening machanisms, its observation at the first cyclotron harmonic E ~ ha>c would require a resolving power R > hœJAE ^ 
(0.16a)-1 ~ 860. Such resolution is obtained with the XRS bolometer detector proposed for AXAF, or (at lower energies < 3 keV, if 
cyclotron lines are found there) also with high-dispersion gratings coupled to high spatial resolution imaging detectors, such as the 
BCS spectrometer. Several possible line-broadening mechanisms may be considered. One of these is the effect of magnetic field 
inhomogeneities. For a dipole field the radial extent of the line-producing region should not exceed Ar/r ~ oc/6n ~ 4 x 10“4 in 
order not to smear the split Aœ/œ ~ cc/2n9 corresponding to Ar < 400 cm. The width of radiative shocks or the cooling region 
behind a collisionless shock in high-luminosity accreting pulsars may be larger than this, although the line need not necessarily form 
over the whole width. Alternatively, for accreting sources heated by Coulomb or nuclear collisions or for typical X-ray source 
thermal atmospheres, the width of the region could be well within the above constraint. There is also the variation of the dipole field 
with magnetic colatitude 0, AB/B ~ 302/8, which could smear out the lines if the size of the line region extends over a range 
of 02 > 4ol/3% ~ 3 x 10-3. This is similar to the polar cap size 02 ~ 3 x 10~3LlÇB^*17 of accreting magnetized sources. How- 
ever, radiative transfer calculations (e.g., Mészáros & Nagel 1985) indicate that the line forms over a depth which can be much 
smaller than the whole polar cap width. A more important broadening could be due to the Doppler effect, which gives a width 
FD ~ ¿>(27* cos2 0)1/2 for T* = kT/mec

2 1 and cos 6 > or rD ~ bT* for cos 6 which exceeds the splitting for 
any 0 if T* > 0.16a (kT > 0.6 keV). If the optical depth t in the wings is large, the actual line width could be larger than this by an 
additional factor of at most order a few, but in gamma-ray bursters one cannot exclude the possibility that the line formation region 
is thin or nearly thin, particularly at the harmonics above the first, e.g., as modeled by Miller et al. (1991). 

The line shapes, however, become strongly asymmetrical for observation angles 6 -► 7ü/2, with a sharp blue edge (see, e.g., Herold 
et al. 1982a; Bussard et al. 1986; Pavlov 1986; Bezchastnov & Pavlov 1990). This structure arises, on the one hand, due to a 
relativistic kinematical restriction on the maximum frequency of the emitted (absorbed) photon : 

« < “max = ^~+ 2'l/’sin 1 + 2nb ~*(n~ n ^b at nfr «1, 0 ^ , (30) 

and, on the other hand, due to the fact that at 0 -► n/2 the line is broadened only by the quadratic Doppler effect, which shifts the 
frequencies only toward the red wing (in the above units œc = b). The sharp blue edges are present also in the fine and superfine 
structure peaks, and their energy is constant, independent of temperature. This means that the superfine structure of the cyclotron 
lines may in principle be observable, even at high temperatures. This is because, no matter how broad the red wing of the line is, the 
blue edges will remain sharp and separate, if the field is sufficiently homogeneous and the line is observed close to perpendicular to 
the magnetic field. For the latter one does not require beaming in this direction, only an adequate phase angle resolution. The lines 
observed in accreting pulsars and gamma-ray bursters are believed to arise from cyclotron scattering, which causes an absorption- 
like feature. While scattering is a second-order process, the process can be approximated by that of a first-order cyclotron 
absorption followed by emission (e.g., Harding & Daugherty 1991), so the line shapes are similar. The fine-structure and hyperfine- 
structure splits discussed here will be essentially identical in the cyclotron scattering as in the cyclotron absorption, since the splits 
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are given by the same mechanisms. We may therefore discuss these effects within the context of the first-order cyclotron process, 
neglecting for simplicity any transfer effects. The latter is clearly an oversimplification in accreting pulsars, but may be adequate for 
harmonics above the first in gamma-ray bursters. In this spirit, we may use the thin absorption profiles as a useful first-order 
description of the profiles that would be actually produced. The profile of the first harmonic of the cyclotron line co ~ coc due to 
n — ri = 1 transitions in a thermal plasma (calculated as described by Bezchastnov & Pavlov 1990) is plotted on the top half of 
Figure 3, showing the fine structure from individual l->0, 2-*l,3->2, ..., transitions. The splitting is, of course, displayed either 
in the emission or the absorption profile, so for the usually observed absorption features one need simply consider the inverted form 
of Figure 3. The fine-structure peaks split further into a doublet (for the transition to the ground state ri = 0) or a triplet (for ri = 1, 
2, ...). Two examples of this superfine-structure doublet and triplet for the first and second peak are shown qualitatively in the 
bottom half of Figure 3 (quantitative calculations will be given elsewhere). A similar picture applies to the higher harmonics 
n — n' = 2, 3, ... , as well. One should note that the red component of the doublet and the central component of the triplet, which 
are associated with spin-conserving transitions, are more intense than the spin-flip components. 

The spin-conserving superfine transitions are not only more intense than the corresponding spin-flip transitions, they also have a 
different polarization. In the nonrelativistic approximation, the more intense components are associated with El (electric dipole) 
transitions, which contribute mainly to the extraordinary polarization mode, with the wave electric vector perpendicular to B at 
9 -► 7ü/2. The less intense spin-flip transitions, on the other hand, are associated mainly with Ml (magnetic dipole) transitions, which 
at 0 -► tt/2 have an electric vector along the magnetic field (ordinary polarization mode). This means that the spectrum of the linear 
polarization degree should show a sharp jump when scanning from the blueshifted spin-flip components toward the spin-conserving 
main component. Such polarization features could be observed, in principle, with a narrow-band Bragg polarimeter, if the frequency 
of the cyclotron line falls in the instrumental sensitivity band (typically <4-5 keV, e.g., the Bragg device in the SXRP X-ray 
polarimeter array designed for the Spectrum X-Gamma mission). A detection could be made easier if it were possible to place the 
central frequency of the narrow-band polarimeter near the blue edge of the line and then one allowed the detection band to oscillate 
in frequency around the central position, which would produce a strong modulation of the polarization signal. This would help to 
identify the superfine structure with a polarization experiment. 

Fig. 3.—Top: spectrum of the first harmonic of the cyclotron radiative emissivity per electron for a thermal plasma with 7* = 0.04 (kT ~ 20 keV), b = 0.05 
(ß ~ 2 x 1012 G) at 0 = tc/2. For the more commonly encountered absorption lines, neglecting transfer effects, the line profile would be given by this same figure 
upside down. Peaks in the spectrum (fine structure) are associated with transitions n -► n — 1 from different n. Bottom : qualitative picture of the doublet and triplet 
structure (superfine structure), imposed on the fine-structure peaks due to the splitting of the Landau levels, for the first two fine-structure peaks of the spectrum in 
the top of the figure. 
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Finally, it is worthwhile to point out that there may occur electron spin-flip transitions between the sublevels of the same Landau 
level, with typical frequency in the UV range (hco ~ 7-70 eV for B ~ (0.5-5 x 1012 G). The spontaneous rate of these transitions, 
however, should be much smaller than that of the X-ray transitions between different Landau levels (Parle 1986). If maser effects 
occur, which overpopulate the higher sublevel f = + 1 compared to the lower £ = — 1, this could lead to a significant enhancement. 
This may occur for n = 1, because the ( = -hi level is depopulated by the less intense spin-flip transitions, while the Ç = —1 is 
depopulated by the more intense spin-conserving transitions. 

In summary, we have pointed out the possibility of distinguishing a superfine structure in the cyclotron lines of X-ray pulsars and 
gamma-ray bursters, if these are observed close to perpendicular to the field. These superfine doublets and triplets are caused by the 
anomalous magnetic moment of the electron in a strong field, and the components of the multiplets have different polarizations. 
Both the polarization and the amount of splitting, which depends on the magnetic field strength and Landau number, are in 
principle measurable, although not easily. Their detection would help determine the aspect angle under which a particular magnetic 
neutron star is observed and would strengthen the determination of the magnetic field strength by eliminating possible ambiguities 
in the harmonic number. 
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