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ABSTRACT 

We analyze the optical light curve of the OVV quasar 3C 345, showing that it is generated by a nonlinear 
and nonstationary stochastic process. The observed characteristics of the 3C 345 variability, such as the 
varying power spectrum and the strong luminosity bursts, are easily accounted for in this mathematical frame- 
work. Conventional algorithms suitable for linear analysis (power spectrum, structure function, covariance 
function, ...) are not useful in this case and different approaches have to be devised. The physics acting in the 
central regions of QSOs are probably nonlinear and dominated by a quantity subject to random variations. 
Subject heading: quasars 

1. INTRODUCTION 

In recent years the optical variability of QSOs has been 
extensively studied by several authors. The reason for such a 
widespread interest is that variability can provide direct infor- 
mation about the central “engine” of quasars. However, in 
spite of the huge quantity of data collected in more than two 
decades of observations, variability has provided only few indi- 
cations for the understanding of the QSO scenario. The studies 
have followed two directions. On the one hand, correlations 
between the variability and physical parameters such as red- 
shift, absolute luminosity, and radio properties have been 
investigated using large samples of objects (Bonoli et al. 1979; 
Barbiéri et al. 1983; Netzer & Sheffer 1983; Cristiani 1986; 
Pica et al. 1987; Trevese et al. 1989; Cristiani, Vio, & Andreani 
1990). On the other hand, by investigating detailed light curves 
of individual objects, mainly OVVs, investigators have tried to 
characterize statistically the QSO variability phenomenon 
(e.g., Bregman et al. 1988; Webb et al. 1988; Kidger 1989; 
Barbiéri et al. 1990). This latter task turned out to be particu- 
larly difficult due to the erratic nature of the OVV light curves. 

In this paper we tackle the QSO variability problem by 
studying 3C 345, one of the quasars with the longest and most 
uniformly sampled optical record. Its light curve shows short 
periods of intense activity within long interludes of quiescence, 
a behavior lacking up to now any convincing statistical 
description. 

2. THE DATA 

Photometric data about 3C 345 have been found in the 
literature from the sources listed in Kidger (1989) (exactly the 
same references have been used). In addition to these measure- 
ments, we have analysed a number of plates taken at the 
Asiago Observatory with the 67/92/215 cm Schmidt Telescope. 
The 103a-O Eastman emulsion and a Schott GG 13 filter were 
used to match the B system. 

The images of 3C 345 and 14 reference stars, calibrated by 
Goldsmith & Kinman (1965), Kinman et al. (1968), and 
Angione (1971), have been digitized on each plate with the 
PDS of the Padova Observatory. Small areas of 64 x 64 pixels 

1 Based on material collected at the Asiago Astrophysical Observatory. 
2 Dipartimento di Astronomia della Université di Padova, Vicolo dell’ 

Osservatorio 5,1-35122 Padova, Italy. 
3 Dipartimento di Statistica della Université di Padova, Via S. Francesco 

33,1-35122 Padova, Italy. 

have been scanned around each object, adopting an aperture of 
25 x 25 //m2. Magnitudes have then been derived with the 
MIDAS package (Banse et al. 1983) running on the VAX8530 
of the Department of Astronomy in Padova. 

Table 1 lists the magnitudes obtained at the various epochs. 
A comparison with the values given by Barbiéri et al. (1977) on 
the basis of visual estimates provides a AB (this paper — Barb- 
iéri et al.) = 0.02 ±0.15. 

The resulting light curve obtained merging the present data 
with those found in the literature is shown in Figure la. Note 
that it is given in flux units (the transformation from magni- 
tudes to fluxes has been carried out according to Allen 1963). 
Fluxes are the only meaningful physical quantities, and the use 
of magnitudes would make the light curve artificially com- 
pressed, distorting the subsequent statistical analysis. 

3. DATA ANALYSIS 

3.1. Problematics of Data Analysis 
An important finding about the quasar variability has been 

the recognition of its stochastic nature. In 1968 Man well & 
Simon realized that the time series of 3C 273 showed a “noise 
component ” not associated with the measurement errors. This 
means that the dynamical evolution of the system cannot be 
described by deterministic differential equations. Manwell & 
Simon suggested also that the temporal behavior of 3C 273 
could be due to a shot noise process (see also Terrel & Olsen 
1970). This model, however, is not acceptable: shot noise pro- 
cesses have a power spectrum which does not change (within 
the statistical fluctuations) with time and are not able to 
produce time series characterized by sudden bursts of very 
large amplitude, contrary to what has been observed for the 
QSO time series (e.g., Kidger 1989; Barbiéri et al. 1990). In 
general this limitation is common to all linear stochastic pro- 
cesses (to which shot noise belongs) (Tong 1983). This implies 
that the dynamical evolution of quasars is nonlinear (i.e., 
described by nonlinear stochastic differential equations). 

We have first tried to quantify the nonlinear hypothesis for 
the variability of 3C 345, applying a test suggested by Keenan 
(1985), that evaluates the probability for the Volterra expan- 
sion of the time series to have terms beyond the linear one. 
Since this test requires equally spaced data, a regularization of 
the observed time series has been necessary. Techniques for the 
reconstruction of uneven time series such those suggested by 
Scargle (1989) or Roberts, Lehar, & Dreher (1987) cannot be 
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TABLE 1 
List of the Magnitudes of 3C 345 

Plate B ug Date Julian Day 
Number (mag) (mag) (yy-mm-dd) (2,400,000 + ) 

732   15.86 0.09 
810   16.34 0.04 

1684   17.20 0.07 
2397   16.51 0.10 
2561   17.56 0.02 
2615   17.53 0.08 
2652   17.33 0.06 
3279   16.93 0.02 
3281   16.90 0.07 
3290   16.76 0.05 
3303   16.96 0.06 
3322   16.83 0.04 
3330   17.11 0.11 
3332   17.20 0.07 
3362   17.05 0.07 
3370   17.06 0.08 
3379   16.99 0.09 
3387   16.97 0.07 
3401   17.09 0.05 
3415   17.11 0.12 
3424   16.69 0.07 
3453   16.87 0.05 
4367   16.05 0.05 
4375   16.23 0.06 
4380 ..... 16.21 0.05 
4399   15.65 0.07 
4423   15.99 0.07 
4424   15.98 0.09 
4428   16.13 0.05 
4433   16.06 0.06 
4441   15.94 0.11 
4449   15.77 0.14 
4458   15.62 0.03 
7255   16.77 0.14 
7459   16.48 0.15 
7934   16.70 0.06 
7970   16.69 0.07 
8552   16.12 0.05 
8977   16.40 0.11 
9043   16.43 0.06 
9047   16.57 0.11 

12063   15.57 0.07 
12076   15.69 0.07 
12153   15.86 0.10 
12165   15.90 0.08 
12491   16.41 0.08 
12850   17.03 0.08 
12856   16.44 0.08 
12903   16.54 0.12 
12911   16.53 0.06 
12946   16.31 0.10 
12975   16.55 0.08 
12982   16.51 0.09 
13000   16.69 0.06 
13361   16.86 0.04 
13369   16.89 0.08 
13384   16.62 0.11 
13385   16.83 0.04 
13818   17.21 0.07 
13819   17.06 0.08 
13847   17.11 0.09 
13866   17.37 0.06 
14149   17.45 0.07 
14166   17.22 0.07 
14179   17.60 0.08 
14185   17.51 0.13 
15541   17.71 0.07 
14586   17.47 0.06 
14599   17.82 0.08 

1967 Jul 1 39,673 
1967 Aug 9 39,712 
1969 Jun 25 40,033 
1969 May 23 40,365 
1969 Oct 5 40,500 
1969 Oct 11 40,506 
1969 Oct 14 40,509 
1970 Apr 26 40,703 
1970 Apr 29 40,706 
1970 Apr 30 40,707 
1970 May 1 40,708 
1970 May 2 40,709 
1970 May 10 40,718 
1970 May 11 40,718 
1970 May 26 40,733 
1970 May 27 40,734 
1-970 May 31 40,738 
1970 Jun 1 40,739 
1970 Jun 12 40,750 
1970 Jun 23 40,761 
1970 Jun 27 40,765 
1970 Jul 8 40,776 
1971 May 15 41,087 
1971 May 16 41,088 
1971 May 17 41,089 
1971 May 27 41,099 
1971 Jun 16 41,119 
1971 Jun 17 41,120 
1971 Jun 19 41,122 
1971 Jun 20 41,123 
1971 Jun 26 41,129 
1971 Jun 28 41,131 
1971 Jun 30 41,133 
1974 Jul 10 42,245 
1974 Sep 16 42,307 
1975 May 2 42,535 
1975 Jun 4 42,568 
1976 May 2 42,901 
1977 Apr 12 43,246 
1977 Jun 14 43,309 
1977 Jun 17 43,312 
1983 Apr 15 45,440 
1983 May 4 45,459 
1983 Aug 4 45,551 
1983 Aug 9 45,556 
1984 Apr 25 45,816 
1985 Jun 11 46,228 
1985 Jun 20 46,237 
1985 Aug 9 46,287 
1985 Aug 12 46,290 
1985 Aug 19 46,297 
1985 Sep 8 46,317 
1985 Sep 10 46,319 
1985 Sep 14 46,323 
1986 Jul 10 46,622 
1986 Aug 2 46,645 
1986 Aug 7 46,650 
1986 Aug 7 46,650 
1987 Jun 1 46,948 
1987 Jun 22 46,969 
1987 Jul 23 47,000 
1987 Aug 18 47,026 
1988 Jun 1 47,322 
1988 Jul 7 47,350 
1988 Aug 9 47,383 
1988 Aug 10 47,384 
1989 May 5 47,652 
1989 Aug 3 47,742 
1980 Aug 9 47,748 

applied here because they require a certain “ regularity ” of the 
signal, and clearly this is not the case for 3C 345. Therefore we 
have limited ourselves to average the data in temporal inter- 
vals of about 11 days (800 bins) and fill the empty bins with a 
linear interpolation between adjacent observations, “dirtied” 
by a white-noise process with the same variance of the signal 
during quiescence. Figure lb shows the time series of 3C 345 
obtained in this way. The bin size is the compromise between 
two contrasting conditions : 

1. The bins cannot be too long to avoid a signal sampling 
with a time scale larger than that characteristic of the process. 
If this condition is not verified the possibility to recover the 
“ physics ” of the system is lost. 

2. The bins cannot be too short to avoid the necessity of 
filling too many gaps. 

With a bin size of 11 days, the number of empty bins is 
already 53%. On the other hand, with a larger bin size, a 
number of “ secondary ” bursts in the light curve disappear. 

After the regularization of the sampling, the Keenan test 
shows that the light curve of 3C 345 is nonlinear at a con- 
fidence level of 95%. We stress that the resulting nonlinearity 
can not be an artifice of the technique used for regularizing the 
sampling of the time series, since the gaps have been filled by 
means of a linear process. Numerical simulations carried out 
with a set of linear stochastic models and a sampling similar to 
that of 3C 345 confirm this result. 

We have then tackled the problem of a statistical description 
of the nonlinearity of the light curve of 3C 345. Such an oper- 
ation has to be carried out with great care since we are study- 
ing a continuous signal by means of a discrete model. In time 
series data analysis, this is a rather common situation; the 
practical unavoidability of this approach and the consequent 
problems are delineated for example by Pandit & Wu (1975). 
In the following we will deal with the discrete light curve of 3C 
345 with all the consequent limitations. Even with this simplifi- 
cation the task is very difficult: the “explosive” evolution of 
the time series suggests that certain moments of the process do 
not exist. Moreover, although the last decade registered a 
growing interest of statisticians concerning nonlinear time 
series (Subba Rao & Gabr 1984; Tong 1983; Ozaki 1985), most 
of the work has been limited to such specific problems as limit 
cycle, and amplitude-dependent frequency and jump pheno- 
mena. The only nonparametric approach available for the non- 
linear time series analysis and applicable to our case is 
represented by the “state-dependent models” (SDM) intro- 
duced by Priestley (1980, 1982). This general class of models 
may give an indication of the specific type of nonlinearity 
which is appropriate to a particular situation, and whether a 
linear model might prove equally satisfactory (see below). 
These models have not yet been fully developed, and many 
problems remain to be solved; it is, however, interesting to 
apply them to the data of 3C 345. 

3.2. State-dependent Models (SDM) 
Since a comprehensive and detailed introduction to the 

SDM is given in the excellent book of Priestley (1988), only a 
general description is provided here. 

The most general form of a time series model can be 
expressed as (Priestley 1988) 

Xt = h(Xt_1,Xt_2,...,etiet_li...) (1) 

where h( ) is a general function, and Xt and et denote, respec- 
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FIG. 1.—(a) Original optical light curve of 3C 345. Time in units of 11 days; flux in units of 10“12 ergs s-1 cm-2. The top axis units are in Julian days 
(2,400,000 + ). (b) Optical light curve of 3C 345 binned in temporal intervals of 11 days. Time in units of 11 days; flux in units of 10"12 ergs s_1 cm-2, (c) Simula- 
tion ofa bilinear model of order (1,0, 1,1) with a* = 0.90, b = 0.19, pe = 0.01, ß0 = 5.50, er2 = 0.15. Time in units of 11 days; flux in units of 10 12 ergs s 1 cm 2. 
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lively, the values of the series and of a strictly white-noise 
process at the time t. As it stands, equation (1) is “infinite 
dimensional ” in the sense that it involves a relationship 
between infinitely many variables. This form is very difficult to 
treat, and therefore we have to limit ourselves to a “finite 
dimensional ” one. In other words we assume that the relation- 
ship between Xt and the “past history” of the series can be 
described, or approximated, in terms of finitely many values of 
past {Xt} and {et}9 so that we may write, say, 

Xt = M*,-!, • • • > Xt-pi 1> • • • ? et-¿) + et (2) 
or 

xt = + e,, 

where xt denotes the vector : 
Xf _ i (Xt — p, • • •, Xt — i, €t — q, • • • ? — l) • 

With this formulation, et plays the role of the innovation 
process for Xt, and the function h describes the information on 
Xt contained within its past history. Note that at the time 
(t — 1), the evolution of the process described by equation (2) is 
completely determined by the vector (together with the 
future values of et\ and thus xt-1 may be interpreted as the 
“ state vector ” at time (í — 1). 

In the classical statistical literature h( ) is always a linear 
function, and in this case the Wold’s theorem guarantees that 
for a given time series always exists an “ unique ” MA (moving 
average) representation (Scargle 1981; Wei 1990). If h( ) is a 
nonlinear function, a theorem corresponding to that of Wold 
does not exist. Therefore, without “a priori” information, in 
the nonlinear case we have the problem to determine the func- 
tional form of h(-). Expanding equation (2) in a Taylor series 
about an arbitrary but fixed time point t0 and using only the 
linear terms, we obtain 

P 4 
x, + X + Z » (3) 

u — 1 U=1 

where </>„ ~ —dh(-)/dXt_u, ij/u ~ dh(-)/det_u9 and //(•) is a sort of 
mean level. 

This is the basic model of Priestley, and it is called state- 
dependent model of order (p, q). Formally equation (3) is iden- 
tical to a linear ARMA (AutoRegressive-Moving Average) 
model. Now, however, the coefficients </>u, i/^ and the mean fi at 
time (i — 1) are not constant but depend on the “ state vector ” 
xt-v In other words with equation (3) we assume that a 
general time series may be considered the realization of a 
locally linear ARMA model whose evolution at time (t — 1) is 
governed by the “ state ” of the process at the same instant. Of 
course the fitting problem for SDM consists in the determi- 
nation of the coefficients p, </>u, and \l/u. However, these coeffi- 
cients depend on the state vector xt9 and the problem thus 
becomes the estimation of the functional forms of this depen- 
dency. Provided that the coefficients are smooth functions of 
the state vector, such a dependency may be determined by 
using an optimal recursive processing algorithm similar to the 
Kalman filter (Priestley 1980). 

The useful characteristic of the SDM is that these models 
can be used without any “ a priori ” assumption on the possible 
nonlinearity present in the data. In effect the functional forms 
of (^(x^i) and ^„(x,^) strictly depend on the “type” of non- 
linearity inherent in the time series. In spite of the attractive 
theoretical capabilities of SDM, in practice some fundamental 
problems remain to be solved : 

1. A general method is not yet available to determine the 
order (p, q) of the SDM necessary to identify a nonlinear model 
from a given time series. 

2. It is difficult, expecially with few data, to estimate the 
parameter “surfaces” (Wx^) and ^„(x^) when the dimen- 
sion of the state vector xt^l is greater than 1 or 2 (however, see 
Priestley 1988 and Priestley & Chao 1972). 

3. The estimate of the parameters of the nonlinear models 
provided by the SDM is not accurate. In particular, as shown 
by numerical simulations, the more noisy are the data the less 
reliable the estimates become. 

At the moment the only way to partially overcome the first 
two problems is to try low-order SDM and to see if the corre- 
sponding parameters “ surfaces ” give indications of a determi- 
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Fig. 2.—Diagram of </>2 vs. Xt_1 produced by the SDM 

nate type of nonlinearity. On the contrary the third difficulty is 
not so serious, since the principal aim of SDM is to identify the 
type of nonlinearity present in the data. However in presence 
of “ noisy ” data it is safer to use an SDM of type AR : 

V + z <PJX,-i)X,-u = ¡u(x,-1) + e, , (4) 
«=1 

since, as numerical simulations have shown, it is more robust 
than the ARMA and MA ones. The reason is that in the case of 
an “ ARMA ” SDM, contrary to an “ AR ” one, the state vector 
*í-i depends on the et quantities that, being unknown, can be 
only estimated. 

3.3. Results 

We have fitted a SDM of type AR(2) to the regularized 3C 
345 time series. AR models have been chosen because, as stated 
above, they make possible a more robust representation of a 
stochastic process with respect to the ARMA and MA ones. At 
the same time, lacking at the moment a general criterion, the 
choice of the order is more subjective and dictated by the 
necessity of simplicity in the interpretation of results. Figure 2 
shows the plot of the </>2 parameter versus the values. A 
linear structure is visible in the plot. Such a linear structure is 
typical of the so-called bilinear models of order (1, 0, 1, 1) 
(Priestley 1988, p. 130): 

Xt = a*Xt_1 + bXt_ 1et_! -h et , 

where a* and b are constant coefficients and {Xj and {et} are 
the observed time series and a strict white-noise process 
(innovation), respectively. In this model the a* coefficient rep- 
resents the linear component of the process, whereas the b 
represents the nonlinear one. If the innovation has mean 
and the process has a “pedestal” //0, the model given above 
can be written as 

Xt = X*-Mo 

Xt = fieaXt_i + bXt_ ^t-1 + , 

where a = a* + bfie and {2f *} is the observed time series. 
Bilinear models have been introduced into the statistical 

literature by Granger & Andersen (1978). A more general and 
systematic study is given in the monograph of Subba Rao & 

Gabr (1984). Bilinear models are often used in the field of 
system control since they arise in a natural manner for many 
physical processes (Mohler 1973). An interesting characteristic 
of the bilinear models is their capability of producing strong 
bursts (Tong 1983). 

In order to determine the parameter values of the bilinear 
representation of the 3C 345 light curve, we have tried to apply 
the least-squares algorithm developed by Subba Rao & Gabr 
(1984). Our attempt, however, has not been successful because 
the algorithm does not converge. To avoid this problem we 
have developed a method based on the singular value decom- 
position (SVD) technique (see Appendix). An interesting char- 
acteristic of this method is that, although equally spaced data 
are required, the filling of the occurring gaps is not necessary. 
Using continuous sequences of data with minimum length of 
five points (see Appendix), the parameter values found are as 
follows : 

a* ^0.90, 6^0.79, a^0.15, jx0^5.5, 

where the caret denotes estimate. 
Figure 1c shows a typical simulation that is obtained with 

these parameter values. It has to be noticed that Figure 1c is 
not a fit to the 3C 345 data but simply a realization of a bilinear 
process. 

When comparing Figure 1c with Figure Ih, one must con- 
sider that the light curve of 3C 345 is irregularly sampled. For 
example, the trend visible in Figure \b between 600 and 800 
time units is probably an appearance due to the scarcity of 
data in that interval. With this in mind, the similarity between 
the two figures is striking; the model has been able to get the 
“ explosivity ” of the 3C 345 light curve. 

The values determined for the parameters provide a model 
both nonstationary and noninvertible (Granger & Andersen 
1978). This means that the time series of 3C 345 has statistical 
properties (essentially mean and variance) which vary with 
time and that it is not possible to estimate the {et} sequence 
from the recurrent formula : 

èt = Xt-(ne + + bX^iê.-i). 

Since this formula is fundamental for the least-squares 
methods, it can be easily understood why the algorithm of 
Subba Rao & Gabr has failed to fit the 3C 345 data. 

The bilinear models obtained from the light curves of 3C 345 
regularized with different bin sizes (from 5 to 20 days), are still 
able to reproduce the observed bursts, although with some 
variation of the value parameters, as could be expected (see 
Pandit & Wu 1975). In particular the parameters â* and //e 
vary in a narrow range (respectively, 0.9-1.0 and 0.05-0.2), 
while the parameter S is subject to larger variations (0.6-1.2) 
anticorrelated with the variance oe (0.7-0.1) and ¡x0 is less con- 
strained (1-6). In any case the basic characteristics of the time 
series (noninvertibility and nonstationarity) are preserved. We 
stress that this characterization of the process under study is 
the relevant point in our statistical analysis rather than the 
particular values obtained for the parameters of the discrete 
model. A more detailed study of the identifiability of contin- 
uous dynamical system from discrete time series is under devel- 
opment (Vio et al. 1991). 

4. DISCUSSION AND CONCLUSIONS 

As emphasized above, the importance of the result obtained 
in the previous paragraph resides in the fact that a simple 
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nonlinear stochastic model is able to reproduce the main char- 
acteristics of the light curve of 3C 345. 

The physical implication is that the luminosity of 3C 345 is 
regulated by a quantity subject to random variations. No 
periodicities, or “ transient periodicities ” as suggested by some 
authors (e.g., Webb et al. 1988), are necessary. The model, 
being nonstationary, generates time series whose power 
spectra show strong peaks at low frequency changing both 
their position and amplitude with time, as observed in 3C 345. 
In this framework, the strong luminosity bursts are due to 
small perturbations of a nonlinear system close to an unstable 
state: quasars could manifest the tendency for large-scale 
systems to become organized into a state in which they are just 
on the edge of the instability (cf. Bak, Tang, & Wiesenfeld 
1987; Maddox 1990). These conclusions are not necessarily in 
contrast with the results obtained by Barbiéri et al. (1990), who 
interpreted the light curve of the QSO 3C 446 in terms of a 
periodic nonstationary process with a period of about 1540 
days. In fact, many nonlinear processes can generate periodic 
or semiperiodic time series. 

In the last years it has become evident that also some simple 
nonlinear systems, the so-called chaotic systems, can show 
“noisy” time series, even if their dynamics is governed by 
deterministic equations. However the chaotic processes are sta- 

355 

tionary ones (Scargle 1990) and therefore they cannot explain 
time series characterized by sudden bursts of large amplitude. 

Many of the usual statistical methods, suitable for linear 
cases, have to be dropped in the nonlinear context. For 
example, the power spectra of nonlinear processes generally 
show peaks at certain frequencies and at their sum and/or 
difference. This phenomenon, called frequency multiplication 
(Priestley 1988), is due to the interaction of the harmonics 
characteristic of the process. While the power spectrum is not 
able to find out which peaks are harmonically related, the 
bispectrum, and in general all the polyspectra, can do it and 
therefore help to understand the statistical characteristics of 
the process (Priestley 1988; Nikias & Raghuveer 1987). 
However, without “ a priori ” information on the process, these 
methods provide results which are of difficult interpretation. 
Further work on the statistical algorithms is therefore neces- 
sary, but at the same time it would be of extreme interest to 
translate the models for compact accreting objects (see, for 
example, Abramowicz & Szuszkiewcz 1989) in terms of light 
curves to be analyzed with the present algorithms. 

It is a pleasure to thank C. Barbiéri for helpful discussions 
and suggestions and P. Andreani and F. La Franca for care- 
fully reading the manuscript. 
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APPENDIX 

THE SVD ALGORITHM 

For a bilinear model, once the possible pedestal p0 has been removed from the observed data (i.e., Xt = X* — p0 where Xf is the 
observed time series), we can write a set of equations : 

- a*r-i(A1) 

forming, for i = 2,..., AT (the first equation is lost since e0 is not known), a system of iV — 1 nonlinear equations in iV + 3 unknowns. 
If for a moment we suppose to know the a, b, and pe parameters, the system (Al) becomes linear in the unknowns et, and with the 
additional condition : 

N 
I>, = 0 
t=l 

it can be written in matricial form : 

re = Ç , (A2) 

where 

e — {e1, e2, ..., eNj 

CT = {X2 — pe — aX^ X3 — pe — aX2, ..., XN — pe — x, 0} 

0 
0 0 
0 0 

r = 

lbX1 1 0 
0 bX2 1 
0 0 bX3 

\ 0 0 0 . 
\ 1 1 1 . 

°\ n ' 

bXN _ x 1 
1 1 

(the symbol T denotes transposed). 
In principle by solving the system (A2) it is possible to obtain the {et} sequence; however, due to round-off errors, often the matrix 

F can be singular. In this case the solution is not unique. Usually there will be an AT — M dimensional family of solutions, where M 
is the rank of the matrix F. The singular value decomposition (SVD) is a particular technique that is suited for solving this kind of 
problem (see Press et al. 1988). More precisely, the SVD picks, among all possible solutions, the one with the smallest length | e|2. 
Moreover if the elements of the vector £ are affected by measurement errors, the system (A2) could not have solution. In this second 
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case the SVD is able to construct a “ solution ” vector e that will not exactly solve Fe = Ç, but among all possible vectors €, it will do 
the closest possible job in the least-squares sense. In other words the SVD finds the solution that minimizes the quantity: 

S = I Fe — £ I . 

In reality the a, b, ne and n0 coefficients must be determined. To do so the following procedure has been adopted : 
1. Starting “ guesses ” for a, h, //e, and /z0 are chosen. 
2. The corresponding {et} are calculated with the system (A2) solved through the SVD. 
3. The “ badness ” of the solution is estimated by computing a “ penalty ” described below. 
4. The “ penalty ” is minimized by using a nonlinear fitting algorithm (cf. the routine GRIDLS of Bevington 1969), which varies a, 

b, //e, and //0 and for each combination of these parameters compute, as in step (2), the corresponding {ej. 
The central point of this procedure is the choice of the “penalty”. Since in the model (Al) the et are independent, we have searched 
for the solution which fulfills this condition by adopting as “penalty” the product of two factors CORR and GAUSS, that give the 
degree of correlation and of “ non-gaussianity ” for the innovations, respectively. The quantity CORR is defined as 

( n \l/n 
CORR = (jHj -K, 

and GAUSS is the statistics of D’Agostino (D’Agostino 1986). 
An interesting property of this approach is the possibility of applying it to data with gaps. In principle, in fact, it is sufficient to 

eliminate from the system (A2) the equations corresponding to the missing data, and to solve it as usual. In practice, especially with 
“ noisy ” data, it is more convenient to maintain in system (A2) only the equations relative to continuous sequences of points with a 
minimum length of at least four points. 
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