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ABSTRACT 
In massive X-ray binary systems (MXRBs), such as Vela X-l, the accretion-powered X-rays from the 

neutron star will alter the dynamics of the line-driven stellar wind of the early-type primary, by changing both 
the thermal and the ionization structure of the wind material. In a previous paper, Stevens and Kallman 
investigated this effect, neglecting optical depth effects in the transfer of X-rays through the stellar wind 
material. In this paper we extend this work and calculate radiative force multipliers M(í, ATH) that now 
depend on the column of attenuating material ATH, as well as the ionization parameter <^. Optical depth effects 
tend to suppress the effects of X-ray ionization on the force multipliers. We have calculated a number of 
dynamical models for the winds of MXRBs with these force multipliers. In contrast to the optically thin 
models, we were able to find self-consistent dynamical solutions for reasonable values of the X-ray luminosity 
Lx. These solutions also reveal the presence of nonlinear mechanisms that affect the wind dynamics, whereby 
relatively small changes in the force multipliers can lead to large changes in the wind structure. The models 
find the existence of a self-consistent region of solution at an X-ray luminosity of Lx ~ 1036 ergs s-1, and 
suggest the possible existence of high-luminosity states. 
Subject headings: stars: neutron — stars: winds — X-rays: binaries 

1. INTRODUCTION 

Massive supersonic stellar winds are a universal feature of 
early-type stars, the winds being predominantly driven by the 
line absorption of the star’s radiation field by the wind 
material. Massive X-ray binary systems (MXRBs) comprise a 
very interesting and useful subset of early-type systems. These 
systems consist of an OB giant or supergiant with a strong 
stellar wind, and a neutron star (or indeed black hole) compan- 
ion, which accretes material from the stellar wind, giving rise to 
a strong X-ray flux. 

The X-rays from the neutron star provide both an active and 
a passive probe of the stellar wind. The X-ray attenuation that 
has been observed from such systems provides a measure of the 
column density of the wind, and from this, some estimates of 
the wind accretion law, and a measure of the degree of ioniza- 
tion in the wind material (Haberl, White, & Kallman 1989; 
Corcoran & Heap 1991). Also, the X-rays will alter the thermal 
and ionization structure of the wind material and, as a conse- 
quence, alter the wind dynamics. The stellar winds in MXRB 
systems can therefore provide insight into the structure of 
stellar winds from early-type stars in general, and into the 
interaction of X-rays with stellar wind material. 

In addition to the X-ray attenuation, further insight into the 
structure of MXRB stellar winds can be obtained from the 
ultraviolet P Cygni profiles of stong resonance lines, such as 
C iv A1550 and N v A1240, observed with the International 
Ultraviolet Explorer (IUE) satellite. In early-type stars in 
general, these lines provide a good indication of general wind 
characteristics, such as mass-loss rate and terminal velocities 
(Howarth & Prinja 1989). In addition to this, phase-dependent 
variability in these lines, associated with the orbit of the 
neutron star, was qualitatively predicted to occur in MXRBs 
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(Hatchett & McCray 1977). This variability, dubbed the 
“Hatchett-McCray effect” is a result of the X-rays from the 
neutron star either removing or enhancing the abundance of 
the ions responsible for the P Cygni profiles (for example, C3 + 

or N4+) from the region of the wind around the neutron star 
and thus partially suppressing or enhancing the formation of 
different portions of the P Cygni profile. In fact, one of the 
early achievements of the IUE satellite was to actually observe 
this effect in Vela X-l (Dupree et al. 1980). More recently, 
quantitative attempts to reproduce theoretically the observed 
phase-dependent P Cygni variability have been moderately 
successful (McCray et al. 1984). 

The formulation of Castor, Abbott, & Klein (1975, hereafter 
CAK) remains the basis for the current most successful theo- 
retical description of early-type star winds. The original CAK 
theory has been subsequently modified and improved by Paul- 
drach, Puls, & Kudritzki (1986, hereafter PPK) and Friend & 
Abbott (1986) to include the effects of the finite disk of the star 
on the wind dynamics. Models calculated with the modified 
CAK theory are (in terms of global properties such as mass- 
loss rate M and wind terminal velocity t;^) in excellent agree- 
ment with the observed values (Howarth & Prinja 1989). While 
the CAK model, which implicitly assumes that the stellar wind 
is time-independent and monotonically accelerating, cannot 
reproduce time-dependent features of the stellar winds of early- 
type stars, such as the narrow absorption components (Prinja 
¿ Howarth 1988), or the observed X-rays (Cassinelli & Swank 
1983), the good agreement between the time-averaged 
observed properties of early-type stars and CAK-type theory 
suggests that the application of this model to MXRB systems is 
justified and will give reasonable estimates of the global behav- 
ior of such systems. 

Several authors have indeed used CAK-type theory to 
investigate the wind structure of MXRBs. Friend & Castor 
(1982), for example, studied the two-dimensional structure of 
the stellar wind in an MXRB in the orbital plane by allowing 
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for the binary gravitational potential. This meant that the 
primary star became extended in the direction toward the com- 
panion star in a tidal bulge. As a consequence, the mass-loss 
rate from the primary was enhanced along the line of centers of 
the system. A similar approach has been adopted by Stevens 
(1988a) in his model of the eccentric binary X-ray transient 
A0538 — 66. Both of these models concentrated on the impact 
of a modified gravitational potential on the wind dynamics and 
completely ignored the effects of X-ray ionization, which is the 
subject of this paper. 

Several attempts, of varying levels of complexity, have been 
made to include the dynamical effects of X-ray ionization. Ho 
& Arons (1987) developed a relatively simple analytic 
approach to the problem, introducing a simple force cutoff into 
their model to mimic the effects of X-ray ionization. Ho & 
Arons (1987) assumed that the wind of the primary star obeyed 
a standard wind velocity law [i.e., v(r) = ^^(1 — RJr)ß'] up to a 
location close to the neutron star. At this point, the wind 
material was assumed to have become sufficiently ionized that 
no further radiative driving took place, and the wind material 
coasted at constant velocity from this point on. One major 
consequence of their model was that it predicted the existence 
of two stable luminosity states, namely, a high and a low X-ray 
luminosity solution. The applicability of this model will be 
further discussed in § 6. 

In a more sophisticated vein, Blondin et al. (1990) have pre- 
sented results of two-dimensional time-dependent hydrody- 
namic calculations of the wind structure in MXRBs. Blondin et 
al. (1990) used a force law which, in the absence of X-ray ion- 
ization, mimics the CAK expression. To account for the effects 
of X-ray ionization, Blondin et al. (1990), in a similar way to 
Ho & Arons (1987), assumed that the radiative force was unaf- 
fected up to a certain value of the ionization parameter £ (see 
eq. [1]), at which point the force dropped to zero. Blondin et al. 
(1990) found that the X-ray ionization could disrupt the flow, 
leading to the formation of dense wakes around the neutron 
star which could give rise to the episodes of enhanced absorp- 
tion. 

MacGregor & Vitello (1982, hereafter MV), using a modified 
form of the CAK equations, made the first attempt to calculate 
self-consistent dynamical models of the winds in MXRB 
systems including the effect of X-ray ionization on the wind 
structure. However, there were a number of limitations to this 
work. First, the calculations were only one dimensional 
(namely, along the line of centers of the system); second, the 
radiative force from the primary was approximated with only a 
small number of lines, whereas the line force will be comprised 
of contributions from a large assemblage of transitions from a 
number of different ions, including some of the heavier ele- 
ments such as Fe (Abbott 1982); and third, the models they 
calculated assumed that the transfer of radiation through the 
wind material was optically thin. As a consequence of their 
assumptions, MV found that at X-ray luminosities of Lx ~ 
1034 ergs s"1 the radiative line force was essentially extin- 
guished and the wind ceased to flow. This value is significantly 
lower than that observed in actual MXRB systems, where Lx is 
usually 1036 ergs s “1 or greater (Conti 1978). 

In an earlier paper, Stevens & Kallman (1990, hereafter 
Paper I) relaxed one of the simplifications made by MV, 
accounting for a much larger number of driving lines, utilizing 
the line list described by Abbott (1982). However, these calcu- 
lations were still made assuming that the wind flow is optically 
thin to the X-rays from the neutron star. In Paper I we calcu- 
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lated radiative force multipliers M(í, Q that were now func- 
tions of both the optical depth parameter t (as was the case in 
the CAK model; see eq. [3]) and the ionization parameter 
finding that even when £ was relatively small, significant 
changes occurred in M(i, Ç). Stevens & Kallman (1990) also 
used these force multiplier results to calculate the one- 
dimensional structure of stellar winds in MXRBs, finding that 
the X-rays would severely inhibit the radiative acceleration of 
wind material in the supersonic regime. They also found that 
no self-consistent dynamical solutions could be obtained for 
neutron star X-ray luminosities greater than 1035 ergs s-1, 
once again significantly lower than observed in MXRBs, and 
suggested that this discrepancy might be a consequence of the 
optically thin approximation. 

In this paper we extend Paper I to include both the optical 
depth effects in the force multiplier calculations and the 
dynamical solutions. In Paper I the CAK force multiplier M(t) 
was extended to include ionization effects and became a 
function of both t and £. When optical depth effects are 
included, an additional dependency is introduced, namely, 
M = M(i, £, Nh), with Nh being the column density of material 
blocking the X-ray flux, and the calculation of the new force 
multipliers constitutes a major portion of this work. 

The paper is set out as follows; in § 2 the results of the force 
multiplier calculations as a function of i, and NH are present- 
ed; in § 3 the theory of the modified CAK wind dynamics is 
extended to include both ionization and optical depth effects is 
discussed; dynamical results of wind structure calculations are 
presented in § 4 for the case of a single star and for optically 
thin binary models, and in § 5 for optically thick binary 
models; and in § 6 we summarize and discuss the relationship 
between these calculations and the observed behavior of 
MXRBs. 

2. THE RADIATIVE FORCE MULTIPLIERS 

In order to study the influence of X-ray ionization on the 
wind dynamics in MXRBs, within the context of CAK-type 
theory, it is necessary to develop two separate components; (1) 
the dynamical model to actually calculate the wind structure 
(§ 3), and (2) the radiative force multipliers that parameterize 
the degree of momentum coupling between the wind material 
and the stellar radiation field. In this section we will calculate 
these force multipliers M(i, £, ATh), including X-ray ionization 
and optical depth effects. 

In Paper I the force multipliers were calculated as a function 
of t and but no dependence on NH was included, the material 
being assumed to be optically thin. The force multipliers 
derived here thus represent an extension of those presented in 
Paper I ; accordingly, the technique for calculating them is very 
similar, and many of the details associated with their calcu- 
lation will not be reproduced here. 

As in Paper I, the force multipliers have been calculated 
using the line list described by Abbott (1982). This extensive 
line list contains gf values for over 250,000 transitions from 
17,000 electronic levels, for the first 30 elements in the periodic 
table (i.e., H to Zn). The data in this line list are generally only 
for the first six stages of ionization (in some cases the first nine 
stages), and as in Paper I, it has been necessary to interpolate 
to obtain the qf values for the transitions of more highly 
ionized species. Paper I contains a detailed discussion of the 
method of interpolating the necessary values and errors in the 
force multipliers that might result, and it will not be repeated 
here. 
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2.1. Scaling Laws for Optically Thick Material 
The photoionization code described by Kallman & McCray 

(1982) has again been utilized to find the ionization and 
thermal structure of the wind material. In Paper I the ioniza- 
tion and thermal structure were calculated assuming that the 
wind material was optically thin, in which case the value of the 
ionization parameter Ç (ergs cm s_ 1), given by 

determines the thermal and ionic state of the gas. In equation 
(1), Lx is the X-ray luminosity of the neutron star (ergs s-1), rx 

is the distance from the neutron star (cm), and n is the atomic 
number density (cm “ 3). 

Note that the assumption that the ionization structure is 
determined only by the ionization parameter ^ is violated only 
at high densities (n > 109 cm-3) by collisional suppression of 
dielectronic recombination (Kallman & McCray 1982). The 
collisional suppression of forbidden lines at lower densities 
(n > 103 cm-3) also breaks this relationship, but because the 
forbidden lines never have a major effect on the state of the gas 
at stellar wind densities, the departures are minimal. 

In this paper, we include a finite optical depth, and in such a 
situation the state of the wind material not only depends on ^ 
but will also have an additional dependence on the amount of 
material attenuating the X-ray source. Hatchett, Buff, & 
McCray (1976) have derived the form of the additional scaling 
parameter (which we shall term e), which, along with the ion- 
ization parameter will determine the gas temperature and 
ionization structure for optically thick material. To derive the 
form of the additional parameter e, Hatchett et al. (1976) 
assumed that the wind density law was given by power law, 
namely, 

n = Kr^y , (2) 

with K a constant and rx the distance from the neutron star as 
before. From this, they derived that the additional scaling 
parameter e for optically thick material is given by 

e = LrM- (3) 

Thus, for constant density material y = 0, 

e = Lxn = Ç(nrx)2 = JVjfé , (4) 

where, in this case, NH = nrx. However, in the winds of 
MXRBs, the wind density will not be constant. The region we 
are most particularly concerned about in the calculations is the 
region internal to the orbit of the neutron star, lying upon the 
line of centers of the system. In this situation, the density will 
increase with increasing rx, and for the purposes of this dis- 
cussion we will assume that the density structure in this region 
can be approximated by a power law in rx as in equation (2), 
with an exponent y < 0. It is a simple matter to show that, 
given the form of the second scaling parameter e in equation (3) 
and the power-law distribution described above, 6 can always 
be reduced to a simple product of £ and iVH to varying powers. 
While the wind density structure on the line of centers of the 
system, and, indeed, viewed in any direction, will likely not 
follow a power-law relationship, the analysis above strongly 
suggests that, as would be expected, the effect of the inclusion 
of a finite optical depth on the wind ionization and thermal 
structure can quite generally be parameterized in terms of two 
variables only, namely, £ and iVH. From this, the force multi- 
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pliers can then be parameterized in terms of three variables, 
namely, £, iVH, and the CAK optical depth parameter t (see eq. 
[6]). 

In practical terms, in order to calculate the thermal and 
ionization structure of wind material at specific values of ^ and 
Nh, we assume a cloud with constant density. Then, by adjust- 
ing the location of the inner and outer radii of the cloud, and 
using the radiative transfer code of Kallman & McCray (1982), 
the ionization and thermal structure of the wind material can 
be determined at each point for a grid of values of ^ and NH. 
The wind structure at each set of values of (£, can then be 
used to calculate the force multiplier M(i, £, ATH). 

In general, a finite column density will reduce the degree of 
ionization of the wind material; the higher the column density 
iVH, the higher the attenuation of the ionizing spectrum and the 
lower the degree of ionization. This will mean that, given the 
general trend found in Paper I that the higher the degree of 
ionization the smaller the force multiplier, a finite value of Nn 

will tend to increase the force multiplier M(i, <!;, iVH) for the 
same values of t and ^ over the optically thin case. 

In this paper, as in Paper I, the force multipliers have all 
been calculated assuming that the radiation field of the 
primary can be represented by a 25,000 K, log10 g = 3.0 stellar 
atmosphere (Kurucz 1979). For the neutron star a 10 keV 
bremsstrahlung spectrum has been assumed, appropriate for 
MXRB systems (White, Swank, & Holt 1983). Note that the 
force multiplier results are very insensitive to the actual value 
of loglo0 (Abbott 1982). These parameters are designed to be 
approximately representative of the MXRB system Vela X-l 
(Conti 1978). As in the calculations of McCray et al. (1984), a 
minimum temperature was set on the wind material in the 
ionization structure calculation, though in these calculations 
the minimum value was set to Tmin = 0.6 T* (Drew 1989). 
However, the force multipliers are not very sensitive to the 
precise value of Tmin. 

The radiative force multipliers are given by the summation 
of the forces from individual lines, 

M(i, ^ Nh) = X 7(1 - e-"'), (5) 
lines ** t 

where AvD is the Doppler width of the transition, Fv is the 
emitted flux from the primary star (ergs cm-2 s-1 Hz-1), F is 
the integrated flux of the primary (ergs cm-2 s-1), and rj is a. 
dimensionless line strength parameter, which accounts for the 
ionic and electronic level populations as well as the gf value for 
the transition. The dimensionless Sobolev optical depth 
parameter t is given by 

t = <Tevlhp(^j , (6) 

with (Te the electron scattering coefficient (cm2 g-1) and vth the 
thermal speed (cm s- ^ the mass density of the wind material 
(g cm-3), and v the wind velocity (cm s-1). The optical depth 
for each individual line is then given by tl = rjt. 

2.2. Force Multiplier Results 
The radiative force multipliers M(i, £, NH) have been calcu- 

lated on a grid of i-values in the range 10- 8 to 10°, values of 
the ionization parameter in the range 0-104 ergs cm-2 s-1, 
and values of the column density NH in the range 0-1024 cm-2. 

In Figures la-lc the force multipliers M(i, NH) are shown 
for a variety of values of Ç and NH. The three separate figures 
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Fig. la Fig. lb 

Fig. 1c 
Fig. 1.—Variation of the radiative force multipliers M(i, £, NH) with 

increasing column density iVH, plotted as a function of the optical depth 
parameter t. Results are shown for three separate values of à,, (a) Forlog10 £ = 
0. 5, the radiative force multipliers for four values of Nn are shown, namely, 
log10 iVH = 20, 21, 21.5, and 24, the curves being labeled with the appropriate 
value of log10 1VH. (b) Same as (a), but forlog10 £ = 1.25 and for values oflog10 
Nh = 20, 21.5, 22, and 24. (c) Same as (a), but for log10 £ = 1.5 and for values 
of log10 JVH = 20,22,22.5, and 24. 

are each for a different value of Ç, namely, log10 ^ = 0.5, 1.25, 
and 1.5. In each figure, the force multiplier is plotted for four 
distinct values of Nu (which are not the same in each figure; see 
the figure captions for more details). 

Two general trends can be seen from Figures la-lc. The first 
is that the force multipliers decline with increasing ^ (this is 
better illustrated in Fig. 2; see below). The second is that the 
force multipliers tend to increase with increasing ATH, though 
the details of the change are markedly different at the various 
values of £. In both cases, the changes are more pronounced at 
larger values of t. 

The basic physical reason behind the decline in M(t, £, NH) 
with increasing Ç is the same as the process described in Paper 
1. For single-star models Abbott (1982) has calculated the force 
multiplier as a function of the effective temperature Teff of the 
star, finding that M(t) was largely insensitive to T'tt, for a wide 

range of values of Tcff. This is because the radiation field of the 
primary determines the ionization balance of the wind 
material, and this in turn determines the force multiplier. In the 
winds of OB stars the dominant ionization state of an element 
tends to have an ionization potential of around 20kT-30kT, T 
being the wind temperature (i.e., T ~ Teff), and the major res- 
onance lines of these species typically lie at energies of around 
5kT-lkT. However, the maximum of the function vBv (cf. eq. 
[5]) occurs at around 4kT, and this correlation tends to keep 
the force multiplier remarkably constant. However, in an 
MXRB, this is not necessarily the case; at higher values of ¿ the 
ionization and thermal structure of the wind are determined by 
the radiation field of the neutron star. Thus, in MXRBs the 
wind material will always be overionized compared with the 
case of a single star, and this generally leads to ionic species 
dominating in the wind which tend to have their strongest lines 
at energies considerably higher than the stellar flux maximum 
point. Thus, X-ray ionization has a tendency to diminish the 
radiative line force. 

For all three values of Ç shown in Figures la-lc, for NH < 
1020 cm-2, the force multipliers do not significantly depart 
from the optically thin case. Also, for NH > 1023 cm-2 the 
force multipliers show little change, and are unaffected by 
further increases in NH, the attenuation being sufficient to 
block out the vast majority of the softer X-ray photons which 
can efficiently photoionize the wind material. However, for 
intermediate values of NH the value of the force multiplier is a 
sensitive function of NH, and the variation with NH is different 
for the three values of Ç shown in Figures la-lc. For example, 
for log10 ^ = 0.5, between NH = 1020 cm-2 and NH = 1021 

cm-2, the force multipliers increase by over an order of magni- 
tude for some values of i, while for values of NH between 1021,5 

cm-2 and 1024 cm-2 only comparatively small (<30%) 
changes occur. A similar pattern occurs for log10 ¿ = 1.25. For 
values of Nn < 1021,5 cm-2 only small changes occur with 
increasing ÑH. In contrast, between NH = 1021'5 cm-2 and 
Nh = 1022 cm-2 major changes occur with M(i, <^, JVh), 
increasing by more than an order of magnitude for some values 
of t. Then, for values NH > 1022 cm-2, once more, only small 
changes occur in the force multipliers, the value of M(i, <^, NH) 
changing by less than 50% for all t between NH = 1022 cm-2 

and Nh = 1024 cm-2. For log10 Ç = 1.5 again the behavior is 
similar, except that the major changes in this case occur 
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S between NH = 1022 cm-2 and NH = 1022 5 cm-2, with the 

; changes at other values of NH being much much smaller. 
^ The behavior of the force multipliers M(t, Nn) with 
^ increasing NH is a consequence of the changing ionization 
S balance (and to a lesser extent the changing thermal structure). 
^ For example, for log10 Í = 1.25, for smaller values of ATH, 

helium is predominantly in the form of He m, and for the 
heavier elements the dominant species are C v or C vi for 
carbon, or O v, O vi, or O vn for oxygen. For log10 ^ = 1.25 
fully ionized helium recombines to He n at a column density of 
around log10 NH = 21.5. The recombination of helium leads to 
a sharp increase in the opacity of the wind material, which in 
turn, prompts a rapid recombination of the heavier elements. 
Thus, when NH > 1022 cm-2, the dominant species are then 
He ii and either singly or doubly ionized species of C, N, and 
O. In this region, the optical depth in the energy range of the 
ionization edges of the species present in the gas is extremely 
high, and the influence of the X-rays on the ionization balance 
has been very significantly reduced by this attenuation. For the 
other values of Ç illustrated in Figure 1, the cause of the varia- 
tion in the force multipliers with increasing NH is the same, the 
difference being largely related to the location of the helium 
ionization edge (see Fig. 3). So for log^ Ç = 0.5 the helium 
front occurs at a value of ArH ~ 4 x 1020 cm-2, while for log10 
Ç = 1.5 the ionization edge occurs at around NH ~ 2.5 x 1022 

cm-2. 
In Figure 2 the force multipliers M(i, £, N^) are plotted as a 

function of the ionization parameter Ç and NH for two specific 
values of í (í = 10-4 and t = 10“2). For other values of t the 
force multipliers behave in an analogous manner. For each 
value of t the force multipliers are plotted for six values of the 
column density NH, namely, log10 NH = 18, 20, 21, 21.5, 22, 
and 22.5. The most obvious result from Figure 2 is that the 
force multipliers tend to decrease with increasing £, though 
now the form of the decrease of M(i, <^, with is a strong 
function of NH. The results for the lowest value of the column 
density shown {NH = 1018 cm“2) essentially mimic the opti- 
cally thin results presented in Paper I. At lower values of the 
column density NH, the force multipliers M(i, £, iVH) show a 

Fig. 2.—Radiative force multiplier M(i, NH) as a function of the ioniza- 
tion parameter The force multipliers shown are for values of i = 10"4 and 
t = 10~2, and are plotted for six values of NH, namely, log10 NH = 18, 20, 21, 
21.5, 22, 22.5. The force multipliers for the highest and lowest values of NH are 
labeled with their respective values of log10 iVH. 
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marked decline at low values of £. For the case t = 10“2 and 
Nh = 1018 cm“2, when the ionization parameter log10 £ = 0, 
the force multiplier has declined by close to an order of magni- 
tude. The effect of higher column densities is to postpone the 
decline in M(i, Ç, N^) until increasingly higher values of £, and 
then for the force multipliers to drop sharply with further 
increases in £. Thus, for Nn > 1022 cm“2, for values of the 
ionization parameter below log10 ^ < 1, only very small varia- 
tions occur in M(i, with increasing £. However, for 
logio £ in the range 1.5-2.0 the force multipliers drop reason- 
ably quickly. The actual value of where this sharp decline in 
M(t, £, Nh) occurs depends on the value of NH. The major 
underlying cause for this behavior is related to the helium 
ionization edge (see below). Note that while major changes 
occur close to the helium ionization front, later we shall see 
that the smaller changes that occur throughout the He n region 
have a very important dynamical impact (§ 5), and the changes 
in the force multipliers should not be considered as a step 
function at the helium edge. 

For values of log10 { > 2 the inclusion of optical depth 
effects does not significantly alter the force multipliers, until 
extremely high values of NH. For values of {this high the wind 
material is basically completely ionized and is thus virtually 
transparent to the ionizing radiation field. Also, in regimes 
where such high values of { are appropriate, the dynamics tend 
to be dominated by the gravitational potential of the neutron 
star (see § 5). 

2.3. The Helium Ionization Edge 
The relationship between the decline in the force multipliers 

and the ionic state of the wind material can be better under- 
stood by considering the ionic state of helium. To do this we 
use a much simplified version of the ionization balance equa- 
tion. For helium, the following equation approximately holds 
for its ionization structure ; 

n2(rx) p 
Jet 

I* e-EiECe^E)aÁE) 
dE 
E = n3(rx)ne(rx)<x3(T), (7) 

where n2 and n3 are the respective ionic abundances of He n 
and He m (cm“3) as a function of the distance from the X-ray 
source rx (cm), ne is the electron density (cm-3), Fr is the 
threshold energy of He n(ET = 54 eV), Ec is the characteristic 
energy of the bremsstrahlung spectrum of the neutron star (in 
this case Ec = 10 keV). The He n photoionization cross section 
a2(E) (cm-2) can be approximated by a2(E) = a0(E/ET)~3

9 with 
a0 = 1.98 x 10“18 cm“2, and the He m to He n recombination 
rate a3 (cm3 s“1) can be approximated by a3 = 1.95 x 10“12 

(T/eV)0,7 (Masai 1984). The energy-dependent optical depth 
t(E) is given by 

<E) = |o n2(r)a2(E)dr . (8) 

While a reasonable approximation to the gas temperature T 
can be readily calculated (Masai 1984), for the purposes of this 
simplified discussion it is sufficient to use the results of 
Kallman & McCray (1982). 

For the situation being considered here, equation (7) is valid, 
for the following reasons: (1) photoionization dominates over 
collisional ionization, (2) hydrogen is almost completely 
ionized and does not contribute significantly to the opacity, 
and (3) the heavier elements do not contribute strongly to the 
opacity in the energy regimes appropriate to helium photoion- 
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f - Ionization parameter 
Fig. 3.—Helium ionization edge. The location of the point where the ionic 

abundances of He n and He m are equal is plotted as a function of Ç and NH 
(solid line). Also plotted are the points where the force multipliers M(i, NH) 
for the case t = 10“4 have fallen by a factor e from their maximum values at 
<!; = 0 (squares). 

ization. The ionization balance for helium calculated with 
equation (7) agrees well with the much more detailed calcu- 
lations used to actually calculate the force multipliers. 

It is possible then to integrate equations (7) and (8) to find 
the location of the He n to He m ionization edge (defined to be 
the location where n2 = n3) as a function of both Ç and NH, and 
some results are shown in Figure 3. For the optically thin limit, 
and, indeed, for small values of ATH, the helium edge occurs at 
relatively small values of with log10 ¿ < 0 (cf. Kallman & 
McCray 1982). As Nu increases, the location of the ionization 
edge moves to higher and higher values of £. For example, at a 
value of Nh = 1022 cm-2, the helium ionization edge occurs at 
a value of log10 Ç ~ 1.3. The increase in the amount of attenu- 
ation of the X-ray flux requires a corresponding increase in the 
level of the unattenuated flux to maintain the same degree of 
ionization. 

Also plotted in Figure 3 are the locations of the points in the 
(£, ATH)-plane where the force multipliers M(i, £, NH) (for a 
value of i = 10 "4, though the behavior is very similar at other 
values of t) have fallen by a factor e from their maximum 
values, which occur when there is no X-ray ionization, at ^ = 0. 
Figure 3 clearly shows the close coupling between the helium 
ionization edge and the decline in the force multipliers seen in 
Figure 2. However, the reason for the decline in M(i, Nn) is 
not a direct consequence of the removal of He n ions, helium 
contributing little to the overall force multipliers (see Paper I). 
The reason is that the ionization structure of heavier elements 
is closely tied to that of helium. Once helium starts to recom- 
bine to He ii, the opacity sharply increases over a large energy 
range, causing the heavier elements to recombine to lower 
stages of ionization. As noted above, the force multiplier is not 
a simple step function, and while the helium ionization edge 
marks a sharp change in M(t, Ç, NH), changes in the force 
multiplier that occur within the He n region will have impor- 
tant dynamical consequences (§ 5). 

Another important point is that in optically thin models the 
ionization fronts are spread out over a large range in £, while, 
in contrast, for the optically thick models the ionization fronts 
are spread over a much smaller range in So for the case when 

Nh is small, the decline in M(t, Ç, NH) with respect to Ç tends to 
be more gradual than for the cases when NH is large. The 
differences between the optically thin and thick cases and the 
importance of the helium ionization edge on the overall ioniza- 
tion structure are well illustrated in the models of Kallman & 
McCray (1982). 

With these force multipliers, the next step is to develop a 
modified version of the CAK model to self-consistently include 
X-ray ionization and optical depth effects, and the mathemati- 
cal theory of this model is developed in § 3. 

3. IMPROVED CAK THEORY FOR MXRB SYSTEMS 

The model considered here is of an MXRB system, consist- 
ing of an early-type OB supergiant primary star of mass M*, 
with a neutron star companion of mass Mx, the two stars being 
separated by a distance D. The dynamical model derived in this 
section includes the effects of X-ray heating and ionization and, 
in addition, the effects of a finite optical depth for the transfer 
of X-rays through the wind material. As such, it represents an 
advance over previous models that have neglected optical 
depth effects entirely, or have included them in an ad hoc 
manner. 

The calculations presented here will be restricted only to the 
line of centers of the binary system. While it is desirable to 
extend the calculations into a second dimension, many of the 
physical processes at work can still be explored in a one- 
dimensional calculation. In addition, the extension to include 
optical depth effects in two dimensions, while conceptually 
relatively simple (for example, Stevens, Blondin, & Kallman 
1990), would add very significantly to the computer time 
required. 

While the basic equations used in this paper are similar to 
those used previously to model the winds of early-type stars 
and MXRBs (cf. Friend & Castor 1982; PPK), the fact that the 
radiative force multipliers are now a function of both the ion- 
ization parameter £ and the column density NH, in addition to 
the optical depth parameter i, significantly complicates the 
problem. However, some of the main characteristics of the 
CAK model are retained; for example, there still exists a criti- 
cal point in the flow, distinct from the sonic point. Also, in this 
model, as in the CAK model, the critical point is located in the 
supersonic region of the wind. However, while in the original 
CAK model it was possible to find exact expressions for the 
conditions at the critical point of the flow, in this case this is 
not possible, and an iterative solution is needed. In addition, 
the nonlocal nature of the problem (in that the flow structure 
depends on the integrated column density of the wind material 
Nh), which again is different from previous formulations of the 
problem, requires an additional iterative loop to find self- 
consistent dynamical wind solutions. 

3.1. The Equation of Motion 
In the CAK stellar wind model of an early-type star, the 

dynamics of the flow is governed by two equations ; the angle- 
dependent mass conservation equation, 

dM 
dn 

■ pvr 2 (9) 

and the momentum conservation equation, 

dv_ d® 1 dPg 
V dr dr p dr ^ 

(10) 
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(see Friend & Castor 1982). In equation (9), dM/dQ is the 
mass-loss rate per unit solid angle, O is the gravitational poten- 
tial, Pg is the gas pressure ( = pa2), and gR is the radiative force, 
given by 

gR = — K(r, v, dv/dr)M(t, Ç, NH), (11) c 

F being the stellar flux (taken from a Kurucz stellar atmo- 
sphere model with T* = 25,000 K, log10 g = 3.0; Kurucz 
1979). The force multipliers M(t, Ç, NH) are a parameterization 
of the total radiative line force, and the values calculated in § 2 
are used here. In the original formulation of CAK, the force 
multipliers were a function only of t; here they are a function of 
t, Ç, and Nh, and this considerably complicates the method of 
solution. In equation (11), the finite disk correction factor 
(FDCF) K(r, v, dv/dr) corrects for the finite size of the stellar 
disk as viewed by stellar wind material (PPK; Stevens 1988b); 
the calculation of K(r, v, dv/dr) will be discussed in § 3.2. 

The gravitational potential O(r) is calculated including the 
contributions for the two stars; orbital and stellar rotation are, 
for the sake of simplicity (and to highlight the X-ray ionization 
effects on the dynamics) not included. Therefore, O(r) is given 

®(r) = -GM.p-Zl* + , (12) 

with q defined to be the ratio MJM*, and F* and Tx the 
Eddington ratios for the primary and neutron star, respec- 
tively. Substituting equations (9), (11), and (12) in equation (10), 
the equation of motion then becomes 

F(r, v, dv/dr) = r2 dv 
dr 

h(r, v, dv/dr) 

with 

- GM* F* K(r, v, dv/dr)M(t, £, VH) = 0 , (13) 

da2 

h(r, v, dv/dr) = 2arr — r2 —— — GM* 
dr 

x 
[ 
(i - rj - g(i - r>2~| 

(D-r)2 J' 
(14) 

The function /i is a function of v and dv/dr through its depen- 
dence on the temperature and temperature gradient, implicit in 
the first two terms on the right-hand side of equation (14). 

3.2. The Finite-Disk Correction Factor 
The FDCF is the ratio of the force multiplier calculated 

allowing for the finite disk of the star, MFD, to the force multi- 
plier calculated assuming the star is a point source, M. Gener- 
alizing the results of CAK to the case in question, the FDCF is 
given by 

MFD(i, £, Nh) 

with 

and 

, 7VH j/z d/i , (15) 

(16) 

(17) 

Using the original CAK approximation for the force multiplier 
M(t) = /ci_a, it is possible to get the following analytic expres- 
sion for the FDCF (for example, see PPK), 

K(r, v, dv/dr) = 
MFD(t) 
M(t) 

(1 + (T)1+*-(l +d¿jc
2)1+* 

(1 + «XI - /ic
2)ff(l + o f 

In fact, as mentioned by PPK, the function K(r, v, dv/dr) can be 
reasonably approximated by ignoring the nonradial terms in 
equation (18), and thus 

K(r,v,d„/Jr)~K(r)-'- ■ <«> 

As discussed by PPK and by Stevens (1988b), this approx- 
imation actually gives a very good representation of the effects 
of the finite-disk factor on the stellar wind dynamics, and 
indeed this approximation for the FDCF is used in the calcu- 
lation of the starting approximation for the model (see 
Appendix). 

However, when the CAK approximation for the force multi- 
plier is not used, and the numerical results for M(t, Ç, NH), 
obtained in § 2, are used instead, it is not possible to obtain an 
analytic result for K(r, v, dv/dr). Indeed, in the dynamical calcu- 
lations presented in the following sections, the numerical 
results for M(t, Ç, N^) have been used throughout. In this 
situation, it is necessary to evaluate the integral in equation 
(15) numerically to obtain K(r, v, dv/dr). However, this integral 
is well behaved for the conditions considered in this paper, and 
its numerical evaluation poses no problem : a simple Simpson’s 
rule method can be used. Results for the calculated form of 
K(r, v, dv/dr) will be presented in § 4. 

3.3. The Method of Solution 
The inclusion of X-ray ionization and optical depth effects 

considerably increases the complexity of the method of solu- 
tion. In the case of a single star, the force multiplier was a 
function only of the optical depth parameter t, meaning that 
the force multiplier depended only on local quantities. Even in 
the case of the model developed in Paper I, where the force 
multiplier was a function of both t and the force multiplier 
was still a purely local quantity. With the extension to include 
optical depth effects this is no longer the case, the force multi- 
plier now depending on the integrated column of material in 
the direction of the neutron star. The outcome of this is that an 
iterative solution is required. An overall view of the procedure 
to obtain a self-consistent wind solution is set out below, and 
the details will be discussed in the subsequent subsections. 

As in Paper I, the first step is to transform the equation of 
motion to a new set of variables, namely, u, w, and w'. As a 
starting approximation, a guess is made of the critical-point 
radius rc (or, correspondingly, uc); from this guess, initial esti- 
mates of the critical-point conditions can be determined using 
the CAK approximation for the force multiplier (see 
Appendix). The value of the mass-loss rate found in this way, 
along with an assumed wind velocity law [y(r) = 1^(1 
— RJrf, with ß = 0.8], can be used to determine a first 

approximation for the wind column density from any point in 
the wind. Next, the critical-point conditions, using the force 
multipliers calculated in § 2, can then be found by iteration (see 
§ 3.3.2). Then the transformed wind dynamics equation (eq. 
[25]) can be integrated in both directions from the critical 
point, to obtain a new wind solution. This solution can then be 
used to determine a new approximation for the run of column 
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density. Then the procedure can be repeated using this new cal point, 
approximation for the column density, until both the mass-loss 
rate and the velocity law converge. In practice, the procedure 
converges very rapidly, after only 3 or 4 iterations. dw' (27) 

3.3.1. T ransforming the Equation of Motion 
The problem is greatly simplified by the substitution of alter- 

native variables, namely, 

and 

2GM,(1 - TJ 
ral 

v* 
w = —, 

al 

(20) 

(21) 

where F* is the ratio of the primary luminosity to the Edding- 
ton luminosity, 

r * AnGM* c 
(22) 

and a0 is the sound speed for material at a temperature equiva- 
lent to the effective temperature of the star (71). Following on 
from this, 

dw 1 / 2 dv\ 
du - GMJl - r*) \ vfo)' (23) 

The three dependent variables for the radiative force multi- 
plier, namely, t, £, and NH, also need to be transformed into the 
new variables u, w, and w', and in particular we find that 

t = i(w'), £ = £(w, w), ATh = Nh(u) . (24) 

It can be seen that i is a function of w' only, from equations (6), 
(9), and (23). From equation (1), ^ is a function of both rx and n; 
rx depends solely on u; while from the continuity equation n is 
a function of both u and w. The method we utilize to get a 
self-consistent solution means that the column density NH is 
only a function of u (§ 3.3.). 

With these new variables the equation of motion (13) 
becomes, 

F(u, w, w') = y(u, w)l 
w J 

w' — h(u, w, w') 

K(u, w, wf)M(t(w'), Ç(u, w), Nh(u)) 

= 0, 

with y(u, w) = (a/a0)2 = T/T*. 

(25) 

3.3.2. The Critical-Point Conditions 
As in the CAK formulation, the equation of motion (25) has 

a critical point in the supersonic regime of the flow, and, as in 
CAK, the wind solution must satisfy three conditions at the 
critical point. First, there is the transformed equation of 
motion : 

F(u, w, w') = 0 . (26) 

Second, in the supersonic regime below the critical point (a < 
v < vc), the equation of motion F(u, w, w') = 0 has two positive 
solutions for w'. The smaller of the solutions for w' is contin- 
uous with the solution for w' in the subsonic regime. At the 
critical point the two roots coincide, and therefore, at the criti- 

This equation was termed the singularity condition by CAK. 
Third, considering the full derivative of F(u, w, w'), 

dF 
du 

ÔF , dF „ ÔF ^ 
— ~z + w — + w —— = 0 . du dw dw 

(28) 

Requiring that w" is finite, and noting that at the critical point 
dF/dw' = 0, leads to the regularity condition, 

dF dF 
(29) 

These three equations, equations (26), (27), and (29), can be 
used to determine the values of three parameters at the critical 
point, namely, dM/dQ, wc9 and w'. These three values then 
provide the boundary conditions necessary to integrate the 
equation of motion, to find a self-consistent solution. 

In contrast to the CAK model, when the force multipliers 
are given by a numerical grid in terms of variables i, £ and NH9 
it is impossible to find a closed analytic form for the critical- 
point solution, and the solution must be found numerically. 
However, as a starting point for the numerical solution to the 
critical-point value», the CAK-type analytic solution is used 
(see Appendix). Using the values of dM/dQ, wc9 and w' deter- 
mined from the relationships derived in the Appendix, the 
actual values of these variables that satisfy the three equations 
above at the critical point can be determined numerically by an 
iterative procedure. 

Substituting for F(u9 w, w') in the singularity equation (27) 
gives 

I m r« p(KM)l 
w dw1 i - r* |_ dw' J (30) 

and substituting for F(u9 w, w') into the regularity equation (29) 
leads to 

/w'\ dy dh F* d(KM) f 

\w) du du 1 — F* _ du W 
d(KM)l 

dw J 

w'f^ = 0. (31) 
dw v ; 

The values of the three relevant critical-point parameters wc, 
w', and dM/dil can be adjusted until all the conditions of all 
three equations (26), (30), and (31) are satisfied. 

Once the critical-point conditions have been established, it is 
then possible to integrate the equation of motion using a 
Runge-Kutta scheme, in both directions from the critical point, 
using the critical-point conditions as boundary values. As men- 
tioned earlier, it is necessary to iterate to a self-consistent solu- 
tion. The first iteration to obtain a wind solution is done using 
a simple approximation to the column density from each point 
in the wind (see the beginning of § 3.3). Once a wind solution 
has been obtained, the column density values are then updated 
using the wind solution just obtained. The procedure is repeat- 
ed until convergence is obtained. 

As a final criterion, the initial guess of the critical radius is 
adjusted until the electron-scattering optical depth of the wind 
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is equal to unity: 

Jr* 
Gepdr = 1 (32) 

This can be achieved by simply varying the initial guess of rc 
(or, correspondingly, uc) until the desired value of Te is 
obtained. 

3.4. Effects of Gradients in the Line Force 
In the original CAK model the force multipliers are a func- 

tion of t only, which, when transformed to the new variables 
(eq. [24]), means that they are a function of w' only. In the 
present model the force multipliers are a function of w, w, and 
w'. An important characteristic of line-driven flows which have 
gradients in the line force with respect to w or w (i.e., dM/du # 0 
or dM/dw # 0), pointed out first by Vitello & Shlosman (1988), 
is that there exists an inequality for the line force gradients 
which, if violated, means that no critical-point solution can be 
found. Note that Vitello & Shlosman (1988) were considering 
the case of a wind originating from an accretion disk. There are 
several important differences between the two situations. The 
first is that the geometry is different in the two cases; for the 
accretion disk model the flow is plane-parallel (at least in the 
regions close to the disk), while in the MXRB model the wind 
is assumed to be spherically divergent. The second difference 
concerns the location of the ionizing radiation source; in the 
accretion disk model the ionizing source is located at the base 
of the flow, while in the MXRB model considered here the 
X-ray source is located far out into the flow. Related to this, 
because of the location of the neutron star, the gravitational 
potential experienced by wind material will also be very differ- 
ent in the two cases. However, while the geometry and ioniza- 
tion conditions are different, and the derived inequality for the 
line forces will also be different, the same basic mechanism is at 
work in both cases. 

The influence of line force gradients on the critical-point 
conditions can be seen by considering the regularity condition 
(eq. [31]). To a reasonable approximation, close to the critical 
point y(u, w) = 1 and dy/du = dy/dw = dh/dw = 0. This is 
because no significant temperature variations are taking place 
close to the critical point, which occurs in the dense region 
close to the primary star (see §§ 4 and 5). Equation (31) then 
reduces to 

1 
d(KM) 

du 
+ w'c 

d(KM)~] t dh iw'V _ Q 

dw J du \wcJ (33) 

For a stellar wind outflow to exist we must have dv/dr > 0 at 
the critical point (indeed, one of the underlying assumptions of 
the CAK formalism is of a monotonically increasing wind 
velocity), and thus for any physically meaningful solution 
w' > 0 (from eq. [23] w' oc r2v dv/dr). Rearranging equation 
(33) leads to the following inequality relationship for the line 
force gradients: 

(M) 
ou dw F* du 

Vitello & Shlosman (1988) derived a very similar relationship 
for the case of winds from accretion disks. For winds from 
single stars, dh/du > 0 at the critical point (CAK); however, 
differentiation and examination of equation (14) reveal that 
when the effects of a close binary companion are introduced, 

dh/du < 0 at the critical point. Note that Vitello & Shlosman 
(1988) found that when a nonspherical outflow geometry was 
assumed for accretion disk winds, dh/du was also less than 
zero. 

So in equation (34) dh/du < 0, and both dK/du and dK/ 
dw > 0, while both dM/du and dM/dw < 0. The gradients of 
the FDCF K are reasonably constant with increasing while 
those of M increase with increasing ^ (see Fig. 2). Thus, as ^ 
increases, a point is reached at which inequality (34) can no 
longer be satisfied, and no critical-point solution is possible. In 
model results shown in later sections, for both optically thin 
and thick models, the onset of steep gradients in the line force 
will provide an upper limit for the neutron star X-ray lumi- 
nosity for which a wind solution can be found. However, the 
value of Lx for which this happens will be very different in the 
two different situations, with the limit for the optically thick 
case being orders of magnitude larger than for the optically 
thin case. 

4. results: optically thin models 

In the previous two sections we have calculated a grid of 
radiative force multipliers, and developed a framework to use 
them to calculate self-consistent one-dimensional models for 
the wind structure in MXRBs. In this section we show results 
for the wind of a single early-type star, and for optically thin 
wind models for MXRBs. In the following section, we present 
results for the case of optically thick models for MXRBs, which 
represent the ultimate goal for this paper. 

4.1. Single-Star Models 
The first application of this model is to the case of a single 

star, where no X-ray ionization effects are assumed to occur. 
This case is used as a reference to compare results with the 
formulation of PPK, as well as the binary models presented 
later. For the single-star model, the force multipliers for the 
case of £ = 0 and iVH = 0 have been used. 

The method of solution presented here is somewhat 
improved compared with that set out in PPK, in that in the 
PPK model (as in previous CAK-type models), the force multi- 
pliers have been assumed to be represented by a power law in t 
[i.e., M(t) = kt~a, with k and a the CAK constants]. In the 
method presented here, this assumption is relaxed, and the 
actual numerical values of M(i, £, NH), which differ from a 
power law (see Fig. 1), are used. 

The assumed stellar parameters used in the calculation are 
approximately appropriate for the primary star of the MXRB 
Vela X-l ; the stellar mass M* is 20 M0, the stellar radius R* is 
30 Rq, and as mentioned before, the star is assumed to have an 
effective temperature of 25,000 K (Conti 1978). 

In Figure 4a the velocity law for the single-star model is 
shown, and in Figure 4b the FDCF is shown. In the supersonic 
portions of the flow, the wind velocity law, shown in Figure 4a, 
can be well represented by the formula v(r) = 1^(1 — RJrf, 
with ß = 0.8, a result which agrees well with PPK. The termi- 
nal velocity for the flow, shown in Figure 4a, is close to = 
1200 km s_1. The form of the FDCF, shown in Figure 4b, is the 
same as that found by PPK. Close to the primary star K(r, v, 
dv/dr) ~ 0.6, and at the critical point K = 0.65. Farther away 
from the star K becomes greater than unity, peaking at a value 
of K ~ 1.02, at a distance r ~ 5-6R*. The mass-loss rate for 
this model is slightly over 10“5 M0 yr-1. In Table 1 a 
summary of these and other derived wind parameters are 
given, with a comparison to those calculated using a computer 
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r/R*-1 

here, which does not rely on a power-law fit but uses the calcu- 
lated force multipliers directly. 

From Table 1 it can be seen that the calculated wind param- 
eters for the model star are similar to those for the primary of 
Vela X-l. The mass-loss rate is somewhat higher compared 
with the observed value of Mobs = 7 x 10~6 M0 yr-1, and the 
terminal velocity somewhat lower than the observed value 

= 1500 km s“1 (Conti 1978). Considerably better agree- 
ment between the observed wind parameters for Vela X-l and 
the calculated values could have been obtained by varying the 
assumed values of M* and R*, within the observed range of 
possible values. Given that we are not attempting a detailed 
model of Vela X-l, but only investigating the general behavior 
of systems such as Vela X-l, this is sufficient for the purposes of 
this paper. 

r/R,-1 
Fig. 4.—Results for a single-star model calculated using the improved 

model presented in this paper, (a) Wind velocity law v(r). In the supersonic 
regions of the flow v(r) is well represented by the formula v{r) = 1^(1 — RJr)ß 

with ß = 0.8. (b) Finite-disk correction factor K(r, v, dv/dr). Further details of 
the wind solution are given in Table 1. 

code developed by the author which uses the PPK method of 
solution (Stevens 1988b). The values of k and a used in this 
code (and given in Table 1) are from a least-squares fit to the 
force multipliers used in these calculations. An important point 
to note is that a considerable range of mass-loss rate M and 
terminal velocity could be obtained from the PPK type 
code depending on the range in t over which the least-squares 
fit to obtain k and a was performed. This is simply due to the 
deviations from a power law of the actual force multipliers. For 
example, if the power-law approximation over- or underesti- 
mates the radiative force multiplier at the critical point, this 
will directly alter the calculated M, and this will propagate 
errors throughout the entire wind solution. Thus great care 
must be taken to calculate the best-fit values of k and a. It also 
demonstrates the greater reliability of the method developed 

TABLE 1 
Comparison with Previous Results 

Parameter This Paper PPK 

M(10“6Mo yr"1) 
(km s-1)   

MKo)  
i;c(kms   
v* (km s_1)  

0.32 
0.64 

11.62 10.01 
1197 1160 

1.049 1.061 
75.5 82.7 

0.58 0.50 

4.2. Optically Thin Models for MXRBs 
The next step is to calculate models for MXRB systems, 

where X-ray ionization effects are included but optical depth 
effects are neglected. For these models the separation of the 
system is assumed to be 2R* (cf. MV), and the neutron star 
mass is taken to be the canonical value of Mx =1.4 M0. The 
stellar surface is assumed to be held fixed at R* = 30 R0 

an<^ 
not perturbed by the gravitational field of the neutron star. In 
previous two-dimensional models, the surface of the primary 
has been assumed to follow an equipotential surface (e.g., 
Friend & Castor 1982; Stevens 1988a). For the one- 
dimensional models presented here, this comprises an unneces- 
sary complication, and the neglect of tidal distortion implies no 
loss of generality. 

The optically thin MXRB models presented here are very 
similar to those discussed in Paper I, and are included here for 
completeness and for purposes of comparison with the opti- 
cally thick models presented in the following section. Paper I 
should be referred to for a more complete discussion of opti- 
cally thin models. 

The calculated velocity laws for three different values of the 
X-ray luminosity are shown in Figure 5, which shows the 
region from the surface of the primary star (at r = 30 R0) to 
the neutron star (at r = 60 R0). Also, additional information 

Fig. 5.—Wind velocity laws for three optically thin MXRB models. The 
curves are labeled with the respective values of the neutron star X-ray lumi- 
nosity Lx. The neutron star is assumed to lie at a distance D = 60 RQ( = 2R*). 
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TABLE 2 
Results for Optically Thin Wind Models 

Lx rc dM/dQ vc v(r = 1.5RJ 
(ergs s“1) (RJ log10 ^ (10-7 M0 yr_1 sr_1) (km s“1) (km s_1) 

0   1.051 ... 10.11 72.0 491.0 
1033   1.052 -3.52 9.89 72.6 489.5 
5 x 1034   1.090 -1.56 8.86 100.6 267.2 

on the models is given in Table 2. Clearly, the influence of 
X-ray ionization is to suppress the wind acceleration, leading 
to significantly smaller velocities (reducing the wind velocity by 
up to 50% at some radial distances). However, from Table 2, 
X-ray ionization has a considerably smaller effect on the mass- 
loss rate, with M only declining by ~ 12% for the model with 
the highest X-ray luminosity. 

The reason for this behavior is as follows; in the low-velocity 
(subcritical) regime, the density is high and the ionization 
parameter ^ correspondingly low, and the suppression in the 
radiative force is minimal. Thus, the wind mass-loss rate, which 
is determined by the conditions at the critical point, is largely 
unchanged, and also the wind velocity is largely unaffected in 
these regions close to the primary star. However, in the super- 
sonic regime the ionization parameter rises sharply and the 
dynamical effects increase. X-ray ionization tends to decrease 
the radiative force, and thus tends to decrease the wind acceler- 
ation and the wind velocity compared with the case of no 
X-ray ionization. From Table 2, and Figure 5 for the case of 
Lx = 5 x 1034 ergs s-1, the wind velocity in the supersonic 
regime can be suppressed to a velocity of around 200 km s “1 

over large radial distances. Close to the neutron star, the gravi- 
tational force from the neutron star dominates the flow 
dynamics completely, and the wind material in all models is 
gravitationally accelerated to high velocities. 

In their models, MV found that, for a certain range of X-ray 
luminosities, both the mass-loss rate and the wind velocities 
could be enhanced. The calculations presented here do not 
reproduce this result and suggest that the maximum mass-loss 
rate and wind velocity occur for zero X-ray luminosity, and 
any increase in X-ray luminosity will decrease both the mass- 
loss rate and the wind velocity in the supersonic regime. This is 
likely due to the fact that MV included the contribution of only 
a few lines to the radiative driving of the wind material in their 
model. When a much larger assemblage of lines is used, as is 
the case here, the influence of an individual line on the 
dynamics is much suppressed. As the X-ray ionization 
increases, and the wind material becomes increasingly ionized, 
the general trend is for the radiative force multiplier to 
decrease with increasing £. While strong lines from more highly 
ionized species, such as N v 21240 or O vi 21032, do start 
significantly contributing to the force multiplier at higher 
values of this is always more than offset by the decline in the 
radiative force from less ionized species which tend to disap- 
pear with increasing Also, the nature of the radiative force in 
a supersonic wind naturally tends to limit the force contribu- 
tion from an individual line (see Paper I for more details). 

For values of Lx > 5 x 1034 ergs s_1 no solution could be 
found that satisfies all the critical-point conditions. This is 
because of the increasing gradients in the radiative line force, 
namely, dM/du and dM/dw. As described in § 3.4, there exists a 
limit for the gradients in the line force at the critical point 
beyond which no critical-point solution is possible. As noted 

earlier, the mass-loss rate is not strongly affected by X-ray 
ionization (see Fig. 2). However, the gradients of the force 
multiplier, dM/du and dM/dw, are more sensitive to For the 
optically thin case, the magnitudes of the gradients begin to 
increase quite significantly around log10 —1.5, and, as 
they increase, eventually it becomes impossible to find a solu- 
tion. 

In summary, for optically thin models, X-ray ionization has 
a relatively small effect on the mass-loss rate from the primary 
but can have a significant impact on the wind velocity law in 
the supersonic regime, potentially suppressing the wind veloc- 
ity by a factor of 2 in some instances. As a consequence of this 
and mass conservation, the density can be enhanced by nearly 
a factor of 2 in certain regimes of the flow, and this could 
potentially have consequences for the attenuation of the 
observed X-ray flux (see § 6). The suppression of the wind 
velocity in the supersonic regime also will have some very 
important consequences for the mass accretion rate on the 
neutron star (which is a very sensitive function of the wind 
velocity) and the resultant level of X-ray emission. This also 
will be discussed later within the context of the optically thick 
models. However, it must be noted that the values of Lx for 
these models are significantly lower than those observed for 
Vela X-l. This discrepancy will also be addressed in the follow- 
ing section. 

5. results: optically thick models 

The model results presented in this section are for the same 
binary parameters as in § 4, and once more the X-ray lumi- 
nosity of the neutron star is used as a free parameter. The 
difference this time is that now the effects of a finite optical 
depth are included in the models, and, as described in § 3, an 
iterative solution is now required to obtain self-consistent 
model solutions. 

From Figures 1 and 2, the introduction of optical depth 
effects tends to diminish the influence of X-rays on the force 
multipliers. For example, for a value of NH = 1022 cm-2, at 
logio £ = 0, the force multiplier has decreased by only a small 
amount (~5%), whereas for the optically thin case, at log10 
<^ = 0, the force multiplier has decreased by almost an order of 
magnitude. Thus, qualitatively speaking, the introduction of 
optical depth effects should allow wind solutions at signifi- 
cantly higher values of Lx than for the optically thin case, 
bringing the models more in line with the observations of 
MXRBs. 

In Figure 6 the wind velocity profiles for a number of models 
are plotted, and in Table 3 additional information on these 
models is given. The basic characteristics of the variation of the 
wind velocity law with { for the optically thick case, shown in 
Figure 6, are quite similar to those shown in Figure 5, for 
optically thin models. Close to the primary, the wind velocity is 
largely unaffected, as is the mass-loss rate. However, in the 
supersonic regime, major suppression of the wind velocity is 
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r - Radial distance (R0) 
Fig. 6.—Wind velocity laws for four optically thick wind models for 

MXRBs. The curves are labeled with the respective values of the neutron star 
X-ray luminosity Lx. The neutron star is assumed to lie at a distance D = 60 
Rq ( = 2Rit). Note, that in comparison to the optically thin models, shown in 
Fig. 5, the value of Lx to achieve the same degree of reduction in the wind 
velocity is approximately two orders of magnitude higher. 

Fig. 7.—Radiative force multiplier M{t, £, NH) as a function of radial dis- 
tance r for four different optically thick MXRB models, with the value of the 
neutron star X-ray luminosity used as a free parameter. The curves are labeled 
with their respective values of Lx. The location of the helium edge for each 
model is also marked (asterisks). 

seen for values of Lx > 1036 ergs s-1. The most important 
difference between the results shown in Figures 5 and 6 is that, 
for the optically thick models, the X-ray luminosities required 
to produce the same behavior are roughly two orders of mag- 
nitude higher than in the optically thin case. For the case of 
Lx = 3.75 x 1036 ergs s-1, the wind velocity is held below 300 
km s_1 for a large part of the supersonic regime. Again, close 
to the neutron star, the gravitational force of the neutron star 
dominates the flow, and the wind is accelerated to high veloc- 
ities. As mentioned earlier, the mass-loss rate remains quite 
insensitive to changes in the X-ray luminosity, decreasing by 
only around 5% as Lx varies from 0 to 3.75 x 1036 ergs s-1, 
with the maximum mass-loss rate occurring for the case of no 
X-ray ionization. In the optically thin models, the value of 
was always small (log10 £c < —1.5; see Table 2), and the force 
multiplier was essentially unchanged by X-ray ionization. 
From Table 3 we see that for the optically thick models much 
higher values of are allowed ~ 1 for Lx = 3.75 x 1036 

ergs s"1). However, because the critical point is located close to 
the primary star (rc ~ 1.05R*), the column density of attenu- 
ating material is very high (iVH ~ 3 x 1023 cm-2), and the radi- 
ative force multiplier is still very similar to its values in the 
limit of no X-ray ionization (see Fig. 2). The decreased wind 
velocity in the supersonic regime and the mass-loss rate being 
essentially held constant lead to the wind being significantly 
denser in the supersonic regime for the models with higher 
values of Lx, and the ratio of the densities of the model with 

Lx = 3 x 1036 ergs s -1 to that with Lx = 0 is greater than 2 in 
certain portions of the supersonic flow. 

As in the optically thin case, increasing gradients in the force 
multiplier with respect to u and w eventually mean that as Lx 

increases there eventually comes a point where no critical- 
point solution can be found. However, optical depth effects 
postpone this point to values of Lx ~ 4 x 1036 ergs s-1 (cf. 
§ 3.4). 

In Figure 7 the variation of the radiative force multiplier 
M(i, £, Nh) with radial distance is shown for the same four 
models illustrated in Figure 6. From Figure 7 we can see that 
the force multipliers are largely unaffected in the dense low- 
velocity regimes near the primary star. This explains the rela- 
tive invariance of the stellar mass-loss rate with increasing 
X-ray ionization (see above). However, Figure 7 also shows 
graphically how quickly the force multiplier drops in the super- 
sonic region, for the higher values of Lx. For the model with 
Lx = 1033 ergs s-1, close to the primary, and throughout a 
major portion of the supersonic region, M(r, Ç, NH) rises stead- 
ily in a manner similar to that for a single-star model (cf. PPK), 
the X-ray luminosity for this model being sufficiently low so as 
not to have a major impact on the wind dynamics, until very 
close to the neutron star (see Fig. 9). However, close to the 
neutron star, the force multiplier is subject to two competing 
effects. First, the gravitational force of the neutron star tends to 
accelerate the material; this leads to a higher velocity gradient, 
which, because the force mulipliers M(i, <^, NH) calculated in 

TABLE 3 
Results for Optically Thick Wind Models 

Lx rc dM/dQ vc v(r = 1.5R*) L“ut 

(ergss-1) (RJ log10 ^ (lO-7 M0 yr-1 sr-1) (kms-1) (km s_1) (ergs s"1) 

0  1.051 ... 10.11 72.1 494.8 1.62 x 1035 

1033   1.051 -3.53 10.04 71.8 492.5 2.00 x 1035 

1034   1.052 - 2.53 9.98 71.8 492.3 2.40 x 1035 

1035   1.052 -1.53 9.92 71.5 493.0 3.59 x 1035 

1036   1.050 - 0.55 9.87 68.2 423.9 1.04 x 1036 

3.75 x 1036   1.046 0.024 9.65 67.5 294.1 3.89 x 1036 
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this paper still retain the basic characteristic of the CAK force 
multipliers—that M(t, Ç, NH) oc {dv/drf with a > 0—finally 
results in the radiative force being enhanced (see Fig. 1). 

Physically, the reason for the dependence of the force multi- 
plier on the velocity gradient is as follows. Consider a mono- 
tonie accelerating wind, and a strong spectral line at a 
frequency v0. At a certain location in the wind, at a radial 
distance r with a velocity v, because of the Doppler shift of the 
wind material, the spectral line will have absorbed the stellar 
flux between the frequencies v0 and v = v0(l + v/c). If some 
external factor were to increase the velocity gradient at this 
radial distance r (such as the gravitational force of a compan- 
ion star), this would lift the material out of the “ shadow ” of 
the underlying material, exposing it to continuum radiation, 
and thus lead to an enhanced radiative force. On the other 
hand, if some external mechanism were to reduce the velocity 
gradient at the radial point r (such as X-ray ionization), then 
this would tend to keep the wind material within the 
“shadow” of the underlying material, and thus reduce the 
radiative force (see below). 

The second effect concerns the decrease in the radiative force 
associated with increasing ionization. For the model with 
Lx = 1033 ergs s"1, the decrease in M(i, £, NH) with increasing 
Ç only becomes important very close to the neutron star. Thus, 
for this model, the radiative force first begins to rise sharply as 
the gravitational force of the neutron star accelerates the 
material, which in turn feeds back to further accelerate the 
material, and then M(i, <^, NH) drops sharply as the X-ray 
ionization quickly extinguishes the radiative force. For the 
other models, with higher X-ray luminosities, both effects 
described above are still at work. However, because the X-ray 
flux is higher in these cases, the gravitationally enhanced feed- 
back mechanism for the radiative force multiplier does not 
play a large role, and the reduction in the force multiplier 
caused by X-ray ionization dominates. Figure 7 further illus- 
trates that the decline in the force multiplier is not a sharp 
cutoff as has been assumed by other authors (Ho & Arons 
1987; Blondin et al. 1990). Earlier we showed that the decline 
in the force multiplier was associated with the He n-He m 
ionization edge. However, Figure 7 shows that the reduction in 
M(i, £, Vh) is not just limited to the region close to the ioniza- 
tion edge, and significant decline in M(i, £, NH) occurs in the 
He ii region. For the models with higher values of Lx this is 
particularly marked, the force multiplier having dropped by an 
order of magnitude at the helium edge. Some of this is directly 
due to the decrease of M(i, <^, VH) with <^, seen earlier, but 
another factor that causes the decline in the radiative force is 
the nonlinearity of the dynamical equations. Small decreases in 
the force multiplier can feedback, causing further reductions in 
the force multiplier, a reduction in M(i, £, NH) leading to a 
reduction in the velocity gradient, leading to a greater 
reduction in M(t, Ç, N^) (see above). 

In Figure 8 the relationship between the ionization param- 
eter Ç and the column density NH is plotted for four optically 
thick models. Close to the primary star, Ç will be small and NH 
will be large, while close to the neutron star the situation will 
be reversed. For higher values of Lx the location of a point with 
a certain value of Ç will be preferentially closer to the primary 
star than for a model with lower Lx, and the value of the 
attenuating column density NH will be higher. From Figure 8 
we see that the column density of attenuating material is 
extremely large for the major part of the flow, and reveals the 
extent of the departure from the optically thin case. Also 
plotted in Figure 8 is the location of the helium ionization edge 

£ - Ionization parameter 
Fig. 8.—Relationship between the ionization parameter £ and the column 

density NH for three optically thick models, labeled with their respective value 
of the neutron star X-ray luminosity Lx (solid lines). The locations of the critical 
points for the models are also marked (crosses). Also plotted is the location of 
the helium ionization front as a function of £ and NH calculated in § 2.3 (dashed 
line). 

in the (£, iVH)-plane. Thus the intersection of this line with the 
results for the calculated models indicates the location of the 
helium ionization front for each model. The helium ionization 
edge provides a reasonable estimate of the location where the 
radiative force becomes negligible. As we have seen from 
Figure 7, the radiative force does not cutoff sharply at this 
edge, but its location provides a useful scale height for the 
model. Of note, for the higher luminosity models, is that the 
location of the ionization edge is restricted to a relatively small 
range in <^. For the model with Lx = 3.75 x 1036 ergs s-1 the 
ionization edge occurs at log10 { = 1.65, while for the model 
with Lx = 1035 ergs s”1 the ionization edge still occurs at log10 

Ç = 1.32, a factor of 2 change in Ç for close to a factor of 40 
change in Lx. 

In Figure 9 the variation of the ionization parameter ^ as a 
function of radial distance r is shown, also for the same four 
models described in previous figures. Also plotted is the loca- 
tion of the helium ionization edge. The location of this edge 
moves steadily toward the primary star with increasing Lx, and 
for the model with Lx = 3.75 x 1036 ergs s_1 it is close to the 
midpoint of the flow. 

5.1. The Mass Accretion Rate 
In the above discussion of both optically thin and optically 

thick models for MXRB systems, the neutron star X-ray lumi- 
nosity Lx has been used as a free parameter. In reality, the 
X-ray luminosity of the system is determined by the accretion 
rate onto the neutron star, which in turn depends on system 
parameters (binary separation, stellar masses, binary period), 
as well as wind parameters (mass-loss rate, velocity law). Thus, 
the wind characteristics and the X-ray luminosity of MXRBs 
represent a highly coupled system. In this section we investi- 
gate the possibility of finding self-consistent solutions for the 
X-ray luminosity and wind dynamics. While all the calcu- 
lations presented above have been for one-dimensional models, 
looking solely at the dynamics along the line of centers of the 
system, it is possible to use these results to get an estimate of 
the mass accretion rate Macc. If we neglect the Coriolis force 
(Friend & Castor 1982), then only material that is relatively 
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r - Radial distance (R0) 
Fig. 9.—Radial variation of the ionization parameter for four optically 

thick models, with the neutron star X-ray luminosity Lx as the free parameter 
(curves are labeled with Lx). The location of the helium ionization edge, defined 
to be the location where the abundances of He n and He in are equal, is also 
marked for each of the four models (asterisks). 

close to the line of centers of the system (typically within a few 
degrees) will be accreted onto the neutron star. Thus, even 
though the mass-loss rate and the wind velocity structure vary 
as a function of angle from the line of centers, because we are 
considering only small departures (of the order of a few 
degrees) we can, to a reasonable approximation, use the condi- 
tions on the line of centers to obtain an estimate of the mass 
accretion rate onto the neutron star. 

The mass-accretion rate onto the neutron star will then be 
given by 

M acc 
nr* dM 
Wdñ’ 

(35) 

with dM/dil being the angular mass-loss rate along the line of 
centers and ra the accretion radius, given by 

aBH GMx 

vl + t>orb ’ 
(36) 

vw is the wind speed, t;orb is the orbital velocity of the neutron 
star (which for the system parameters used is equal to approx- 
imately 260 km s_1), and aBH is the “ Bondi-Hoyle ” accretion 
constant. The value of this constant is usually assumed to be 
aBH = 2 (Bondi & Hoyle 1944). However, more recent numeri- 
cal simulations (for example, Shima et al. 1985; Blondin et al. 
1990) have found that in the very complex gas flows that occur 
in MXRBs, the value of aBH used in equation (36) departs from 
this value, and to account for this we calculate the mass accre- 
tion rate assuming three values of aBH, namely, aBH = 1, 1.4, 
and 2. Note that the value aBH =1.4 has been recently sug- 
gested by the work of Blondin, Stevens, & Kallman (1991). 
Note also that the numerical simulations of Blondin et al. 
(1991) demonstrate that the mass accretion rate will be a 
strongly time-dependent quantity, varying quite rapidly on 
short time scales, and the value of aBH assumed will provide a 
time-averaged measure of the mass accretion rate. However, 
equations (35) and (36) should provide an adequate representa- 
tion of the time-averaged accretion rate, and the discussion 
presented here should be a good representation of the time- 
averaged properties of MXRBs. 

The resultant X-ray luminosity from this accretion is then 
given by 

Lr = CMaccc
2, (37) 

with Ç an efficiency factor usually taken to be 0.1 for neutron 
stars (McCray 1977). We can use the dynamical models calcu- 
lated in the previous section to obtain an estimate of the accre- 
tion radius ra (the value of which depends quite strongly on the 
assumed value of aBH), and from this an estimate of the mass 
accretion rate (eq. [36]), and finally the resultant X-ray lumi- 
nosity. There are now two relevant values of the X-ray lumi- 
nosity for each model. The first is the value of the X-ray 
luminosity that was used as an input parameter in the models 
calculated in the previous section (here we shall term this 
parameter Ljj1), and the second is the accretion driven X-ray 
luminosity calculated from equation (37), termed L®ut. For a 
self-consistent model, clearly we require that Ljj1 = L®ut. 

In Figure 10, for the three values of aBH, the relationship 
between the model input X-ray luminosity Ljj1 and the result- 
ant X-ray luminosity L°ut is plotted. While for each value of aBH 
there are some important differences, the general trend is the 
same. At small values of L^", L°ut > Ljj1. As L* increases, L°ut 

increases as well, at first somewhat less than linearly, but at 
higher values of Ljj1 approximately linearly. This increase in 
L°ut is due to the changing wind dynamics. As shown in Figure 
6, as increases, the wind velocity is suppressed, which in 
turn increases the accretion radius, and thus Macc and L®ut. 
When aBH = 2, for which case the accretion radius and L®ut are 
the greatest, there are no self-consistent solutions, and L®ut > 
Ljj1 for all Ljj1. In contrast, for the case where aBH = 1, where the 
accretion radius and L°ut are the smallest, there is one distinct 
solution, at a value of ~ 2 x 1035 ergs s-1. The most inter- 
esting case is for the intermediate value of aBH = 1.4. In this 
case, the condition L®ut = LjJ1 is satisfied (to within a few 
percent) for a range of Lx between 1036 and 3.75 x 1036 ergs 
s-1. Thus, if we assume that aBH = 1.4, there exists a range of 
possible self-consistent solutions for our MXRB model, with 
an X-ray luminosity in the range of a few times 1036 ergs s~ ^ a 

Fig. 10.—Relationship between the value of the X-ray luminosity L*, 
which is used as an input parameter in the models calculated in § 5, and L”ut, 
which is the X-ray luminosity calculated from the model results. Results are 
plotted for three different values of the “ Bondi-Hoyle ” accretion constant aBH 
(solid lines). For ease of reference, the case when L* = L°ut is also plotted 
(dashed line). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

37
9.

 .
31

03
 

324 

value which is similar to that actually observed for Vela X-l 
(White et al. 1983). Note that this level of self-consistency sug- 
gested by Figure 10 should be treated with caution, in that 
these calculations have attempted insight by means of a one- 
dimensional model of what is fundamentally a three- 
dimensional problem. Also, MXRBs are seen to be strongly 
variable at X-ray wavelengths, meaning that the accretion rate 
is also time-dependent. While the above calculations do give 
insight into the interaction of radiation and matter in an 
MXRB, the fact that a self-consistent solution is found for a 
range of values of Lx should only be taken to indicate some 
sort of general time-averaged behavior. 

These results, therefore, give rise to the possibility that the 
effect of X-ray ionization on the wind dynamics in MXRBs can 
give rise to the existence of a number of stable X-ray states that 
an MXRB could exist in. A similar conclusion was reached by 
Ho & Arons (1987) in their MXRB model, although the fact 
that we were unable to find dynamical solutions for values of 
Lx> 4 x 1036 ergs s-1 precludes any discussion about the 
existence of very high X-ray luminosity discussed by Ho & 
Arons (1987). 

6. DISCUSSION 

In the previous sections we have developed the necessary 
tools to calculate realistically the dynamics of an X-ray- 
illuminated wind in a MXRB system, including the influence of 
X-ray ionization on the wind dynamics, and accounting for the 
influence of attenuation of the X-rays from the neutron star. 
For parameters suitable for the MXRB system Vela X-l, we 
have found self-consistent dynamical solutions, with X-ray 
luminosities consistent with those observed for Vela X-l. These 
results represent a considerable improvement over previous 
attempts to model MXRB winds self-consistently, where X-ray 
luminosities were obtained which were orders of magnitude 
below those observed (cf. MV; Paper I); the important differ- 
ence being that these papers did not include optical depth 
effects in the calculation of the radiative force. 

We have shown in § 2 the sensitivity of the force multipliers 
to both the ionization parameter £ and the attenuating column 
density NH. Increasing ^ tends to reduce M(i, <^, iVH), while 
increasing NH has the opposite effect. The He n-He m ioniza- 
tion edge marks the location where the force multiplier drops 
rapidly to zero. However, it is important to note that the force 
multipliers drop gradually in the He n region, and that the 
decline in M(i, <^, NH) with increasing Ç is certainly not a step 
function, with a sharp cutoff at the helium ionization edge. 

In the optically thick dynamical models calculated in § 5, 
X-ray ionization does not seriously alter the subsonic velocity 
structure or the mass-loss rate of the primary star. The main 
impact is on the supersonic wind velocity, which can be severe- 
ly reduced by X-ray ionization. This decrease in the wind 
velocity, coupled with the mass-loss rate being largely 
unchanged, means that the density in an X-ray-illuminated 
wind will be higher than that of an undisturbed wind, by up to 
a factor 2 for some locations and X-ray luminosities. However, 
this is likely unrelated to the absorption dips seen in MXRBs 
(Charles et al. 1978), which are more likely associated with 
some form of accretion wake, as shown in the numerical simu- 
lations of Blondin et al. (1990). 

Also of note is the nonlinearity of the dynamical equations, 
with various feedback mechanisms, which can either further 
enhance or suppress the radiative force, depending on what 
additional mechanism is at work. This is because of the depen- 
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dence of the force multiplier on the local wind velocity gra- 
dient, and this means that under certain conditions, relatively 
small changes in the ionization structure can result in fairly 
major changes in the wind dynamics (§ 5). Also, in these models 
the radiative force is suppressed over a large part of the super- 
sonic flow, and there is no sharp cutoff in the radiative force. 

In their two-dimensional numerical simulations Blondin et 
al. (1990) sought to include the effect of X-ray ionization on the 
wind dynamics by including a force cutoff. For values of £ less 
than a certain critical value the radiative force was unaffected, 
while for values larger than this the radiative force was set to 
zero. Blondin et al. (1990) set this cutoff to occur at log10 ^ = 
2.5. However, as we have noted above, the force multipliers do 
not behave in such a well-mannered way, the decline with 
respect to ¿ being more gradual and complicated. 

An obvious future improvement on this work would be to 
utilize the force multiplier calculations presented here in con- 
junction with a two-dimensional time-dependent model, such 
as that of Blondin et al. (1990). Simulations such as those of 
Blondin et al. (1990) are needed to study the complex time- 
dependent behavior of MXRBs, and have revealed a wealth of 
interesting phenomena, such as ionization wakes, accretion 
wakes, and short-lived disklike accretion phenomena. It is 
therefore desirable to find a means of combining the results 
presented in this paper with models such as that of Blondin et 
al. (1990), to understand whether the phenomena found in that 
paper will still be apparent when more realistic approx- 
imations are employed for the effect of X-rays on the wind 
dynamics. 

As noted earlier with regard to Figure 8, the location of the 
helium ionization edge is relatively restricted in terms of ^ ; as 
Lx varies from 1035 to 3.75 x 1036 ergs s-1, the location of the 
edge moves from log10 Í = 1-65 to log10 £ = 1.32. Compari- 
son of Figures 7 and 9 also reveals that the location of the 
point where the radiative force begins to drop sharply is also 
quite localized in terms of near a value of log10 ^ ~ 1-1.5. 
Thus, calculations of the sort described by Blondin et al. (1990) 
performed with a force cutoff located at around log10 ^ = 
1-1.5 would probably represent a reasonable first approx- 
imation to the results presented here. However, the inclusion of 
the force cutoff would also eliminate many of the nonlinear 
feedback effects found associated with the dynamical models 
shown in § 5. 

The accretion rate onto the neutron star is a sensitive func- 
tion of the wind velocity law Macc oc i?-4, and because X-ray 
ionization can alter r by a factor of 2 or more, the assumed 
X-ray luminosity for the model can change the value of Macc by 
an order of magnitude or more. Ho & Arons (1987), in their 
one-dimensional analytic approach, adopted a similar force 
cutoff to that described for the Blondin et al. (1990) model. 
Typically, Ho & Arons (1987) found that their MXRB models 
could exist in two self-consistent luminosity states, one high- 
and one low-luminosity state. In the low-luminosity state, the 
wind was largely unaffected by X-rays until very close to the 
neutron star. Note that Ho & Arons (1987) set the radiative 
force cutoff to occur at log10 ^ = 4, a value which is at least 
two orders of magnitude too high (see Fig. 2). In this case the 
wind velocity at the radius of the neutron star would be large, 
leading to small X-ray luminosity (Lx ~ 1035 ergs s~1). In con- 
trast, in the high-luminosity state, the wind material would be 
ionized by the X-ray source while still close to the surface of the 
primary, and would then coast at low speed before being ac- 
creted, leading to a very high luminosity (~1038 ergs s-1). 
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However, in the high-luminosity state there are several impor- 
tant assumptions that tend to undermine the applicability of 
their results. In particular, in the high-luminosity models, the 
radiative force cutoff* occurs very close to the primary star, and 
the wind material coasts at a velocity typically less than the 
orbital speed, which means that the neglect of the Coriolis 
force will likely be important. Also, Ho & Arons (1987) 
assumed a value of £cut = 104. If a more realistic, smaller value 
of £cut were used, the force cutoff would occur even closer to the 
primary star, and at even lower velocities, and the neglect of 
the Coriolis force will be even more important. Also, the 
neglect of X-ray heating, and the one-dimensional nature of 
their formulaton, mean that the actual wind structure is likely 
to be considerably more complicated than suggested by the 
model of Ho & Arons (1987). 

The dynamical results presented in § 5 somewhat change this 
picture of a simple force cutoff, and a dichotomy of two solu- 
tions, one high- and one low-luminosity. Assuming parameters 
appropriate for Vela X-l, we found a range of possible self- 
consistent solutions, ranging from values of Lx of 1036 to 
3.75 x 1036 ergs s- ^ Even at these values of Lx the wind veloc- 
ity is strongly affected by X-ray ionization. Unfortunately, 
because of difficulties intrinsic to the CAK formulation, we are 
unable to say anything about the wind structure in the case 
when the X-ray luminosity is very high. 

One a more speculative note, from the point of view of the 
wind dynamics in MXRBs, it may be possible to split the class 
into three broad (and probably not very well defined) cate- 
gories. At the lowest X-ray luminosities, the Be/X-ray binaries 
(which numerically comprise the largest subtype of MXRBs) in 
quiescence have X-ray luminosities with Lx ~ 1032-1033 ergs 
s"1 (van den Heuvel & Rappaport 1986). These systems are 
powered by the weak winds from the Be star primaries. In this 
situation, where wind densities (and column densities) are low, 
the optically thin results presented in § 4 will likely be appli- 
cable. For the classical MXRBs which have moderate lumi- 
nosities (Lx ~ 1035-1037 ergs s_1), such as Vela X-l and 4U 
1700 — 37, the optically thick calculations presented in this 
paper will likely be appropriate. However, for the very high 
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luminosity systems (Lx > 1038 ergs s-1), such as SMC X-l, 
LMC X-4, and possibly Cen X-3, the model presented here will 
probably not work. As seen in § 5, in the one-dimensional 
models presented in this paper, there is an upper limit to the 
value of Lx for which solutions can be found. Also, in these 
systems other important mechanisms will be at work and must 
be included in any realistic model of such a system. For 
example, the X-ray flux in these systems is so strong that the 
primary star will be strongly irradiated, possibly leading to a 
strong self-excited evaporative wind from the primary 
(London, McCray, & Auer 1981). Also, because the material 
will likely be very ionized over a large volume, and thus pre- 
sumably flowing quite slowly (there being little radiative 
driving of the wind material), two-dimensional effects associ- 
ated with the Coriolis force or binary rotation will likely be 
much more important than in the moderate X-ray luminosity 
systems primarily considered in this paper. 

In conclusion, we have calculated a series of MXRB models 
accounting for the influence of X-rays on the wind dynamics, 
and including optical depth effects in the transfer of X-rays 
from the neutron star through the wind material. The force 
multipliers are found to be a very sensitive function of the 
column density NH as well as the ionization parameter £. 
Dynamical models, using parameters appropriate for Vela X-l, 
calculated using these results reveal a number of nonlinear 
feedback mechanisms that affect the wind dynamics, whereby 
relatively small changes in the force multipliers can lead to 
large changes in the wind structure. The models also find the 
existence of a self-consistent region of solution at X-ray lumi- 
nosities ~ 1036 ergs s-1, in agreement with the observed value 
ofL* for Vela X-l. 

I would like to thank Dave Abbott for making available the 
line list used in the force multiplier calculations. I would also 
like to thank Tim Kallman and John Blondin for several useful 
discussions during the course of this work. Further thanks are 
also due to Tim Kallman for reading an earlier version of this 
paper. The referee, David Friend, is also thanked for his con- 
scientious reading of the paper. 
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APPENDIX 

As a starting point to find the critical-point solution when the numerical grid of values of M(i, £) is used, the three equations, that 
define the critical-point conditions (namely, the equation of motion, the singularity condition, and the regularity condition, eqs. 
[26], [27], and [29], respectively) are solved using a power-law expression for M(t) and ignoring any temperature or ionization 
effects. Using 

and noting that 

then the equation of motion becomes 

M(t) = kr« , 

t = 
Í oe vth dM/dQ \ , 
\gmJi - rjw ’ 

(Ai) 

(A2) 

with 

F(u, w, w') = - h(u) - CK(u, w, w'XwT , (A3) 

r, rgmji - 
1 — r* _<Je !'th dM/dSi J (A4) 
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This equation can then be substituted in the three conditions at the critical point, and neglecting any nonradial terms in 
K(u, w, w') (see text for a further explanation of this), the following expressions can be found: 

< = B{12 (xh(u) 
1 — a 

(A5) 

with 

Wc (1 - a)Bj/2 ’ 

B - 1 — 
du \ — öl K du 

(A6) 

(A7) 

This leads to the following expression for the mass-loss rate : 

dM GM^l - rj T r^k T/ot 

dci~ C7evlh La-r*)cJ ’ 

with 

(A8) 

C 
h 1 

l-xK wr* ■ (A9) 

These values for dM/dQ, wc, and w' are then used to determine the critical-point conditions when X-ray heating and X-ray 
ionization are included in the dynamics. 
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