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ABSTRACT 
Recent observational and theoretical studies of low-mass X-ray binaries (LMXBs) have given rise to a new 

class of standard models. In these models, accretion torques have spun the neutron star primary up to milli- 
second rotation periods. The existence of both millisecond radio pulsars and quasi-periodic X-ray oscillations 
is interpreted as supporting millisecond spin periods. However, millisecond spin periods remain undetected in 
low-mass X-ray binaries. 

Detection of the low pulse fractions expected for binary millisecond X-ray pulsars requires long integration 
times to enhance signal to noise. One of the significant barriers to detection is the pulse phase modulation 
which occurs when signals are integrated over a significant portion of a binary orbital cycle. We derive an 
optimized one-parameter Coherence Recovery Technique (CRT) for recovery of phase coherence. This tech- 
nique affords a large increase in sensitivity over the method of incoherent summation of Fourier power 
spectra. In CRT a sequence of quadratic time transformations is applied to the data, followed by a Fourier 
transform for each trial. One particular transformation results in maximal compensation for the phase modu- 
lation and minimization of frequency broadening in the power spectrum. We discuss the range of spin periods 
expected from LMXB phenomenology, describe necessary constraints on the application of CRT in terms of 
integration time and orbital parameters, and estimate the residual power unrecovered by the quadratic 
approximation for realistic cases. An alternative, equivalent CRT approach is described in which a single 
Fourier transform of the data is followed by the application of a Wiener filter matrix in frequency space. 

We have applied CRT to high time resolution observations (0.3-5 ms) of several LMXBs obtained with the 
Ginga and HE AO 1 X-ray satellites. We present upper limits on the pulsed fluxes from Sco X-l, GX 340 + 0, 
GX 5 — 1, GX 9+1, GX 17 + 2, 4U 1820 — 30, Cyg X-3, and Cyg X-2. The 95% confidence level upper limit to 
the pulse fraction for sinusoidal pulses from the two brightest sources observed, Sco X-l and GX 5 — 1, is less 
than 0.7% for frequencies up to 512 Hz, and less than 0.4% for frequencies less than 100 Hz. Our study 
implies that pulsars in LMXBs must have low pulse fractions (A < 1%), have short pulse periods (Ppul < 2 
ms), or, in those cases where the orbital periods are unknown, be in binary orbits with short orbital periods 
(^orb < 3 hr) 
Subject headings: numerical methods — stars: neutron — pulsars — X-rays: binaries 

1. INTRODUCTION 

In a majority of the Galactic X-ray binary systems contain- 
ing neutron stars, the spin period of the neutron star is current- 
ly unknown. In the subclass of low-mass X-ray binaries 
(LMXBs), the dearth of known spin periods is especially strik- 
ing, there being almost no measured spin periods. The stan- 
dard picture of a LMXB system comprises a neutron star with 
magnetic field of order 109 G accreting 10-lo-10"8 M0 yr_1 

of material from a low-mass companion that is probably a 

1 Postal address: Code 690, Laboratory for High-Energy Astrophysics, 
NASA Goddard Space Flight Center, Greenbelt, MD 20771. 

2 Also Center for Space Research and Department of Physics, Massachu- 
setts Institute of Technology. 

late-type dWarf (Lewin & Joss 1983; Lewin, van Paradijs, & 
van der Klis 1988). Two LMXBs for which the spin periods are 
known, 4U 1626 — 67 (7.6 s) and 1H 2259 + 586 (7.0 s), are 
anomalous, showing evidence of different evolutionary his- 
tories from other LMXBs. Her X-l and GX 1+4, which also 
have known spin periods and whose companions’ masses fall 
within the mass range for LMXBs, have magnetic fields of 
roughly 1Ö12 G. Apart from these four, no other spin periods 
are known in the class of LMXBs. 

The roughly two dozen known binary pulsars belong almost 
entirely to the high-mass X-ray binary (HMXB) class, which 
accounts for fewer than half the known Galactic neutron star 
binary systems. Within the HMXB group spin periods range 
from 0.069 s (A 0538 — 66) to 13 minutes (X Per). Several non- 
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pulsing sources in the HMXB group are black hole candidates 
(e.g., Cyg X-l, LMC X-l, LMC X-3). The HMXB group 
appears to be substantiallyxyounger than the LMXB group. 
Evidence for this includes their relatively higher masses, their 
location in Population I regions of the Galaxy, and the strong 
fields of neutron stars in HMXBs. In seeking periods within the 
LMXBs, HMXB periods are not a reliable guide. Instead, 
millisecond spin periods are suspected for LMXBs. 

The spin period, Pspin, is arguably the most important 
parameter to determine in these systems. It is critical for our 
understanding of the evolution of LMXBs and their connec- 
tion with millisecond radio pulsars. This paper describes a new, 
sensitive search for spin periods in several LMXB sources, with 
emphasis on millisecond periods. Power spectra for these 
sources typically show a DC level, low- and high-frequency 
noise, and occasional quasi-periodic oscillations (QPOs), 
without detectable coherent pulsations at any frequency. In 
accreting neutron stars Pspin is largely a consequence of the 
mass accretion rate and magnetic moment, that is, it is an 
integral over the history of the (principally accretion) torques 
applied to the star. For LMXB systems estimates of spin 
periods are largely dependent upon assumptions about the 
torque history. Detection of pulsations due to neutron star 
spin would make it possible to determine orbital character- 
istics and source masses to high precision and would lead to 
the kinds of studies that have been done with binary pulsars, 
including spin period fluctuation studies, but with greatly 
improved precision owing to the short period. 

In the absence of detected spin periods, much has been 
established about LMXBs using other evidence. The total 
luminosity and the detections of X-ray bursts confirm the basic 
assumption that the accreting object is a neutron star. The 
theory of X-ray bursts can be used to obtain a ceiling on the 
magnetic field of about IO10 G. The particular variety of quasi- 
periodic oscillations known as horizontal branch oscillations 
also require a weak magnetic field, of the order 109 G. These 
magnetic field estimates, combined with a standard disk accre- 
tion model, predict LMXB spin periods in the millisecond 
range. Weak fields help explain the lack of conspicuous pulsa- 
tions, but do not rule out coherent pulsations at low levels of 
modulation. 

We have designed high-sensitivity search techniques for 
millisecond periods and applied these methods to data from 
the Japanese satellite Ging a and HE AO 1. The search is opti- 
mized for pulsed signals whose period, drift rate, and ampli- 
tude conform with what is expected for LMXB sources, that is, 
we search for millisecond pulsations with drift rates of the 
magnitude inferred from binary orbit characteristics. In § 2 we 
describe how current understanding of LMXBs guides the 
search strategy and sets these parameter limits. We derive the 
optimum search technique, called the Coherence Recovery 
Technique, In § 3. In § 4 we present the observations and in § 5 
describe implications of the results. 

2. PARAMETER RANGES FOR PULSATION SEARCHES 

2.1. Spin Period Estimates 
Estimates of the expected spin periods in LMXBs are based 

on angular momentum transfer in postulated accretion 
environments, possible links between LMXBs and other 
neutron star populations, and understanding of neutron star 
behavior at high spin frequencies. 

Angular momentum transfer by accretion can be estimated 
from the mass accretion rate M, the accretion geometry, and 
the magnetic moment of the neutron star p. In the high- 
luminosity LMXBs the bulk of the mass transfer is assumed to 
be via a conventional viscous accretion disk (Shakura & 
Sunyaev 1973). The instantaneous angular momentum transfer 
rate is a function of M, p, and Pspin, while the equilibrium spin 
period, Peq, is a function of M and p. For the disk accretion 
torque model of Ghosh & Lamb (1979a, b) the equilibrium 
value is given by 

Peq = (3.9 ms)fi%7M-s
2nR¿ 3nL3S

in , (1) 

where Mns is the neutron star mass in M0, R6 is the stellar 
radius in units of 106 cm, L38 is the X-ray luminosity in units of 
1038 ergs s- \ and p21 is the magnetic moment in units of 1027 

Gem3. 
The oldest approach to estimating magnetic moments in 

LMXBs consists of estimating field evolution from physical 
models. The simplest picture assumes a universal initial field of 
1012-1013 G, decaying exponentially with a time constant of 
about lO6,7 yr to 109 G and 109-1010 yr afterward (Taam & 
van den Heuvel 1986). Crude LMXB age estimates then indi- 
cate 109-1010 G fields. This picture is almost surely too simple 
for LMXBs. Several other factors proposed to enter into the 
field evolution include possible stable minimum values below 
which the field cannot decay and other mechanisms for field 
decay or alignment (Kulkarni 1986; van den Heuvel, van Para- 
dijs, & Taam 1986; Bhattacharya 1989; Shibazaki et al. 1989; 
Romani 1990). The range of values derived in these models is 
108-1010 G. 

Another estimation technique exploits the fact that X-ray 
bursts occur in some LMXBs (see, e.g., Lewin & Joss 1983). 
Thermonuclear runaway models yield a critical accretion rate 
above which bursting is suppressed and only stable nuclear 
burning occurs. This limit is derived assuming uniform accre- 
tion over the stellar surface in a spherically symmetric model, 
hence it can be taken as a limit on a mass accretion rate per 
unit area (Joss 1978). If a mágnetic field channels flow to a 
polar cap, then the maximqm rate is reduced by the ratio of 
polar cap area' to total stellar surface area. A strong field thus 
allows bursts to be suppressed at comparatively lower mass 
accretion rates. Observations confirm the existence of the criti- 
cal accretion rate; the observed value and the theory require a 
stellar field less than 1010 G (Taam & van den Heuvel 1986). 

A third method uses quasi-periodic oscillations found in 
some LMXBs (see, e.g., Lewin et al. 1988). The beat frequency 
model (Alpar & Shaham 1985; Lamb et al. 1985) for the hori- 
z:ontal branch QPÖ mode (HBO) requires neutron stars with 
magnetic fields ~5 x 109 G and spin frequencies of ~ 100 Hz. 
However, recent analyses indicate problems with the beat fre- 
quency model (Shibazaki 1989; Norris et al. 1990; Mitsuda et 
al. 1990). 

When magnetic moments in the range of these various esti- 
mates (1027-1028 G cm3) are substituted into equation (1), a 
period in the millisecond range is derived. This is part of the 
basis for the suggestion of an evolutionary link between 
LMXB sources and radio millisecond pulsars (Helfand, Ruder- 
man, & Shaham 1983; Joss & Rappaport 1983; Paczynski 
1983; Savonije 1983; cf. Ruderman 1990). Using this hypothe- 
sis we gain a fourth estimate of magnetic field strength: it 
should equal or exceed the value now derived for radio milli- 
second pulsars using their observed spindown rates, or limits. 
This method gives 108-109 G. 
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If the evolutionary connection between LMXBs and radio 
millisecond pulsars is correct, then working backward from the 
end result provides a different way to estimate LMXB spin 
periods. If an observed LMXB is in torque equilibrium, the 
current spin period of the LMXB progenitor is approximately 
the same as that of the radio pulsar it will later produce. The 
radio periods are mostly in the range 1.5-10 ms, and this range 
becomes the estimated LMXB period range as well. However, 
no fully satisfactory scenario currently exists which incorpo- 
rates all details, including population statistics in globular 
clusters (Kulkarni, Narayan, & Romani 1990), of millisecond 
radio pulsars and LMXBs. 

Consistency requires that there have been sufficient elapsed 
time to complete the required angular momentum transfer. 
The most conservative estimate of this time follows the scheme 
used by Wagoner (1984) who assumed a magnetic field less 
than 108 G, too weak to form a magnetosphere. Angular 
momentum transferred per unit accreted mass, dJ/dM, then 
assumes its lowest possible value. Wagoner estimated 0.4 M0 
must be accreted to reach spin periods of approximately 1 ms ; 
this requires 107-5-109 5 yr at an accretion rate of 10~8-10-1° 
M0 yr- ^ The estimated mass transfer requirement is an upper 
bound because spin periods of radio millisecond pulsars are 
often longer, up to several milliseconds, and also because a 
larger magnetic field than that used by Wagoner will increase 
dJ/dM without precluding evolution to a radio millisecond 
pulsar. 

The common element in the foregoing parameter estimates 
is the standard disk magnetosphere interaction for which equa- 
tion (1) gives the limiting spin period. Other limits may apply if 
H is very small. The most rapidly spinning radio pulsars such as 
PSR 1937 + 21 and PSR 1957 + 20 suggest possible relevance 
of these other limits, which we now describe. 

Two limits on spinup exist in the absence of a magnetic field. 
The better known one is the centrifugal breakup limit. There is 
also a general relativistic effect that can become significant at 
millisecond spin periods, one that has been recognized since 
the 1970s. This limit is associated with instabilities driven by 
gravitational radiation reaction (Chandrasekhar 1970; Fried- 
man & Schutz 1978). Wagoner (1984) showed how these CFS 
instabilities could be excited in LMXBs and that the neutron 
star could become a pulsar in both gravitational waves and 
X-rays, with the frequency (common to both X-rays and 
gravity waves) being that of the rotating nonaxisymmetry 
responsible for the gravity wave emission, as seen in the inertial 
frame of the observer. This frequency is not the same as the 
stellar rotation frequency but is nevertheless expected to be in 
the range 200-800 Hz. 

Spin period equilibrium is reached with the CFS mechanism 
when the gravitational instability growth time equals the 
viscous damping time. In equilibrium the angular momentum 
added to the star by accreting matter is radiated away in gravi- 
tational waves. The equilibrium equation analogous to equa- 
tion (1) depends upon what nonaxisymmetric mode is excited; 
numerical results are given in Wagoner (1984) for reasonable 
values of the viscosity. Friedman, Ipser, & Parker (1986) have 
considered this scenario from the standpoint of the fastest 
radio millisecond pulsars and speculate that the 642 Hz spin 
frequency of PSR 1937 + 21 could be just below the threshold 
for exciting the CFS instability. 

Whether or not the CFS mechanism limits spinup in 
LMXBs, it is desirable to search in X-ray time series for spin 
frequencies up to at least the 642 Hz frequency observed for the 

fastest radio millisecond pulsar. What are the highest limits 
that might be considered as outer bounds for period search- 
ing? Recently several papers have appeared exploring how 
neutron star spin frequencies up to 2 kHz might arise 
(Friedman et al. 1986; Michelson & Wood 1989). For the 
softest proposed equations of state, the only way to reach such 
high spin frequencies requires supporting the star by angular 
momentum, that is, if sufficient angular momentum were 
removed, the star would collapse to a black hole. There is 
presently no positive observational evidence to support spin 
frequencies this high and no basis for expecting them in the 
context of the standard picture of LMXBs, but the fact that 
they cannot be completely excluded with conventional equa- 
tions of state shows that it is desirable to push pulsation 
searches to high frequencies, roughly 2 kHz. 

A similar question may be posed for the low-frequency end : 
what is the minimum frequency that is approximately compat- 
ible with current understanding of LMXB sources? Circum- 
stantial evidence cited earlier shows LMXB magnetic moments 
are probably well below 1028 G cm3. If we conservatively use 
an upper bound of // = 1029 G cm3 in equation (1), we obtain 
an extreme upper limit of about 200 ms for bright LMXB and 
perhaps 500 ms for fainter ones. This limit is most relevant to 
sources that neither show HBO nor bursts, so that the other 
field estimates are not necessarily applicable. GX 9 +1 is one 
example of such a source. 

Several detections of possible periodicities should be men- 
tioned. There have been at least five reported transient detec- 
tions during X-ray bursts. In four cases the detection has been 
seen only once in the source in question; in one (the Rapid 
Burster) it was seen in two bursts at slightly different periods. 
The sources and periodicities are: MXB 1728 — 34, 12 ms 
(Sadeh et al. 1982); 4U 1254-69, 27 ms (Mason et al. 1980); 
Aql X-l, 130 ms (Kelley et al. 1989); the Rapid Burster, 503 and 
508 ms (Tawara et al. 1982); and 4U 1608 — 52, 650 ms 
(Murakami et al. 1987). Periods seen only during bursts might 
have causes other than the spin of the star, such as oscillations 
in the burst envelope. The period in Aql X-l shows no drift 
while those in MXB 1728 — 34 and 4U 1608 — 52 show substan- 
tial drift. A 2.93 ms pulsation in hard X-rays from Sco X-l was 
reported by Leahy (1987). However, this period has not been 
seen in other observations of comparable or greater sensitivity 
(Middleditch & Priedhorsky 1986; Wood et al. 1989; this 
paper) and is almost certainly spurious. 

2.2. Caveats 
Uncertainties relating to the exact specification of magnetic 

field evolution were already described. Magnetic field estimates 
based on X-ray bursts and QPOs are vulnerable in part 
because neither bursts nor HBOs are seen universally in 
LMXBs, hence such estimates cannot rigorously be extended 
to all LMXBs. Doubts about validity of HBO models are 
another obvious concern. Recently Norris et al. (1990) have 
shown that the specific modulation mechanism suggested for 
the HBO may have difficulties explaining the lack of short time 
scale correlations between low-frequency noise and QPO 
strength; however, the possible relationship between QPO fre- 
quency and stellar spin frequency remains a promising aspect 
of the beat frequency model for HBO. One reason for search- 
ing for millisecond pulsars in sources that show HBO is to 
attempt to confirm the most basic assumption of the beat fre- 
quency model. 
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Extending field estimates obtained from a few members of a 
class to the entire class is justified only if the class is well 
defined and reasonably homogenous. The X-ray source classi- 
fication scheme is still evolving. Two groups of LMXBs have 
now been identified based on differences in spectral modes and 
fast X-ray variability. These are the so-called Z sources (which 
show the horizontal branch oscillations and the approximately 
6 Hz normal branch oscillations) and the atoll sources 
(Hasinger & van der Klis 1989; van der Klis 1989). Hasinger & 
van der Klis (1989) have suggested that the magnetic fields of 
the neutron stars in atoll sources are systematically different 
from those in Z sources, possibly related to a systematic differ- 
ence in orbital periods and evolutionary histories. It may 
therefore be critical to avoid subclass boundaries in estimating 
source parameters. As an extreme type of class-related issue, it 
should be recalled that we have chosen to regard pulsation 
periods near 7 s in 4U 1626 — 67 and 1H 2259 + 586 as irrele- 
vant to the LMXB spin period question. Although there is 
ample justification for this choice there is still room for it to be 
wrong since in at least 1H 2259 + 586 the field is estimated to 
be somewhat weak (Davis, Coe, & Wood 1989; Davies, Wood, 
& Coe 1990). In addition it is possible that the range of bottom 
fields of neutron stars is much larger than hitherto believed 
(Verbunt, Wijers, & Burm 1990; Bhattacharya & van den 
Heuvel 1990). 

The synthesis of theoretical understanding for the QPO 
sources that follow the Z color-color diagram (Lamb 1989) 
uses three different geometries for the accretion disk and mag- 
netosphere, one for each branch of the Z diagram. Equation (1) 
is sensitive to changes in geometry because its derivation 
involves estimating the radius of the magnetosphere. The 
picture of disk magnetosphere interaction that underlies equa- 
tion (1) has been most fully validated for binary X-ray pul- 
sars, that is, HMXB and not LMXB sources (Ghosh & Lamb 
1979a, b; Angelini, Stella, & Parmar 1989). Certain anomalies 
remain to be explained even in HMXBs that exhibit QPOs, in 
that the fastness parameter and the sign of the period deriv- 
ative are not in agreement with the predictions of the Ghosh 
and Lamb accretion torque model (Shibazaki 1989). 

All aspects having to do with an evolutionary link to radio 
pulsars are tentative because there are alternative ways to 
account for the origin of those radio sources. An alternative 
scenario for some globular cluster millisecond radio pulsars 
involving accretion-induced collapse of white dwarfs has been 
proposed by Grindlay & Bailyn (1988); however, Verbunt, 
Lewin, & van Paradijs (1989) have shown that this hypothesis 
encounters a number of serious problems. Alternative sce- 
narios involving stars with a common envelope are described 
by Rappaport (1989). 

Ultimate limits on spin frequencies derived from the CFS 
instability or candidate equations of state for neutron star 
matter are theoretical constructs, with no direct observational 
confirmation. 

Not all of these concerns are of the same weight. Individ- 
ually, most of them translate into factors of only a few in 
uncertainty concerning the period. However, some can 
combine constructively with one another to spread the allowed 
period range. Note also that the range of 104 in HMXB spin 
periods—69 ms to 13 minutes—is produced by combining 
widely varying accretion conditions with a comparatively 
narrow range of field strengths. While the long periods of 
HMXBs are not those expected for LMXBs, the scatter in 
those periods might be relevant. The scatter in radio milli- 

second pulsar periods represents another estimate. We con- 
clude that a thorough search for periods in LMXBs, while 
plausibly concentrating on the range from a few to 10 ms, must 
try to look at a much broader range, say 0.5-500 ms, in order 
to cover what our current knowledge allows. 

2.3. Drifts 
Discovery of faint coherent signals using Fourier transform 

methods depends upon having most of the power in a single 
channel of the transform. Frequency drifts are inimical to dis- 
covery unless they are known and can be removed in data 
analysis. Unknown drifts may be of two types in LMXBs: 
(1) intrinsic variation in the pulsar spin rate because of non- 
vanishing torques on the star and (2) drifts associated with 
orbital motion in the binary system. In the context of the stan- 
dard accretion model (Ghosh & Lamb 1979a, b) applied using 
magnetic moments of 1027-1028 G cm3, the expected intrinsic 
drifts will be very small. If the source is near the equilibrium 
period given by equation (1), they will be totally negligible. In 
strong contrast, drifts associated with binary orbital motion 
prove to be an important barrier to detection of faint milli- 
second pulsations in LMXBs. 

The basis for estimation of drifts is the knowledge of LMXB 
orbits. Parmar & White (1988) list 25 orbital periods for 
LMXB systems, ranging from 685 s for 4U 1820 — 30 to 9.8 
days for Cyg X-2. The orbital period range and distribution for 
LMXBs resembles that for cataclysmic variables. A large theo- 
retical literature exists on the origin of this distribution, includ- 
ing a well-known gap near orbital periods of 3 hr (e.g., 
Robinson 1983). 

In every LMXB the available information on the orbit falls 
far short of what would be needed to correct for it in milli- 
second pulsar searches. In MXB 1659 — 29 and EXO 
0748 — 676, orbital periods are now known to better than seven 
decimal places (Parmar et al. 1986; Cominsky & Wood 1989), 
and the center of eclipse serves as a good phase marker; 
however, even in these cases parameters such as the semimajor 
axis, inclination angle, and eccentricity are poorly constrained. 
The circularization resulting from gravitational radiation and 
tidal interactions at periastron is effective in reducing orbital 
eccentricity to a low value. Orbital periods determined opti- 
cally can have several places of accuracy while those estimated 
from dips typically give only two or three places. Finally in 
many LMXBs the orbit remains totally unknown. It is 
assumed for the present work that unknown LMXB orbital 
periods are distributed roughly like the known ones. As 
remarked above already, there may be associations of orbital 
periods with particular subclasses. Among the six Z sources 
Sco X-l and Cyg X-2 have known orbital periods, and both are 
relatively long (0.79 and 9.8 days, respectively). The known 
orbital periods among the atoll sources range between 0.2 and 
8 hr. 

The range of Doppler shifted drift rates that must be allowed 
for in millisecond pulsar searches follows from the known 
orbital periods and estimated semimajor axes. A long orbital 
period such as in Cyg X-2 will give drift rates of 2 x 10~9 s - ^ 
while a short period such as in 4U 1820 — 30 will give drifts of 
3 x 107 s-1. With data segments 20 minutes long (typical of 
data obtained from satellites in low Earth orbit) the minimum 
orbital period that allows a pulse search using our method if 
the entire data set is used is approximately 3 hr (see § 4). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1A
pJ

. 
. .

37
9.

 .
2 

95
W

 

SEARCHES FOR MILLISECOND PULSATIONS 299 No. 1, 1991 

2.4. Amplitudes 
Observational data and theoretical analysis provide some 

insight into expected pulse amplitudes. Previous searches for 
spin periods in LMXB sources include those done by Par- 
signault & Grindlay (1978), Cordova, Garmire, & Lewin 
(1979), Cominsky et al. (1980), Leahy et al. (1983), and Meregh- 
etti & Grindlay (1987). Upper limits established in these 
searches were on the order of 4%-10% of the DC flux for 
periods longer than 1 s. Searches for periods much shorter than 
1 s have yielded upper limits in the 0.3%-3% range (van der 
Klis et al. 1985; Middleditch & Priedhorsky 1986; Hasinger & 
van der Klis 1987; Stella, White, & Priedhorsky 1987; van 
Paradijs et al. 1988; Hasinger, Priedhorsky, & Middleditch 
1989). The present authors have also published earlier partial 
results of the kind presented here, reaching limits as low as 1 % 
(Wood et al. 1987; Norris & Wood 1987; Hertz et al. 1990). 
These results clearly show the desirability of searching below 
the 1 % level of pulsation. 

There has also been theoretical discussion of pulse ampli- 
tudes to be expected, much of it stimulated by the beat fre- 
quency model for HBOs. Low intrinsic modulation depth may 
prevail in LMXBs because the weak field is ineffective at chan- 
neling plasma flow to polar caps. In comparison with accretion 
columns in the high-mass binary systems, those near polar 
caps in LMXBs may be poorly defined. They may also be at 
lower altitudes and may cover a larger fraction of the stellar 
surface. These conditions will be unfavorable to high modula- 
tion depth. In addition several mechanisms for pulse suppres- 
sion may operate in this environment including atmospheric 
scattering effects (Brainerd & Lamb 1987; Wang & Schlickei- 
ser 1987; Bussard et al. 1988) and gravitational lensing (Wood, 
Ftaclas, & Kearney 1988; Mészáros, Riffert, & Berthiaume 
1988). All of the above effects can operate simultaneously. 
Pulse suppression that depends on scattering in the hot 
material surrounding the neutron star can vary with the 
geometry. For the accretion geometries proposed by Lamb 
(1989) for the three branches of the Z diagram, it is likely that 
the horizontal branch is the most favorable to pulsar detection. 

In the case where the CFS mechanism is excited, Kluzniak & 
Wilson (1987) give estimates as high as 10“3 for the pulsed 
fraction of X-rays produced by the accretion flow interacting 
with the nonaxisymmetric neutron star. The pulsed amplitude, 
considering all types of coherent signals, is thus highly uncer- 
tain; from previous searches, we know that it is unlikely to 
exceed 1%. 

2.5. Summary 
Spin periods expected in LMXBs are about 1-10 ms, but 

caution concerning the standard picture favors a broader 
search, from roughly 0.5-200 ms. Orbital velocities dominate 
expected frequency drifts; where the orbit is unknown the 
observed spin period drift, P~p¡ndPspiJdt = v~1dv/dt, can be 
anywhere from zero up to 3 x 10_7s~1. The fractional pulsed 
amplitude, A, is expected to be less than 1%. For particular 
sources it may be appropriate to constrain the search using 
what is known of the binary orbit or by trying to observe it in a 
mode of activity favorable to pulse detection. It is not possible 
to search the full volume of interest in (Pspin, dPspiJdt, A) space 
using Ginga and HEAO 1 data, but it is possible to search 
regions that have never been searched before, thereby reducing 
limits on A to less than 1 % for a few of the brightest sources 

and for a large portion of the interesting range in Pspin and 
dPspJdt. 

3. COHERENCE RECOVERY TECHNIQUE 

Arrival times of pulses from a binary pulsar are delayed or 
advanced by source motion along the line of sight. Uncor- 
rected accelerations appear as period drifts and reduce the time 
over which coherence can be maintained in Fourier trans- 
forms. Incoherent summation of power spectra from short data 
segments is far less sensitive for finding faint pulsed signals 
than the optimal signal to noise achieved if coherence can be 
maintained over the full duration of the available data. In 
principle this can be done by removing accelerations from the 
data using a redefinition of the time coordinate followed by 
Fourier transforming the rebinned data. Lost coherence could 
be recovered for pulsars in LMXBs—given unlimited compu- 
tational resources—by a trial and error search of all realistic 
binary orbits. For circular orbits this means searching a three- 
dimensional phase space of orbital radius, orbital frequency, 
and phase. With a general elliptical orbit there are five param- 
eters. The computational cost of this procedure becomes pro- 
hibitive because it scales with integration time Tint as 
approximately T]nt for three parameters (Wood et al. 1987). 

If Tint is much less than the orbital period Porb, the exact 
sinusoidal correction to pulse arrival time may be approx- 
imated acceptably by expanding to second order in a power 
series. This reduces the unknown orbital parameter space from 
three dimensions to one, saving orders of magnitude in compu- 
tational cost. This procedure is the optimum single parameter 
coherence recovery technique (CRT), applicable when there is 
complete or near-complete ignorance of orbital parameters. A 
CRT search can be performed in the time domain using a 
family of quadratic time transformations to rebin the original 
time series, followed by a Fast Fourier Transform (FFT) for 
each rebinning. The number of time transformations required 
to search a fixed range of orbits now scales roughly as T?nt, 
which is manageable up to integrations of a few thousand 
seconds with millisecond data bins. Alternatively, CRT can be 
performed in the frequency domain by computing an optimal 
linear filter for each quadratic transformation while per- 
forming the FFT of the signal only once (see Appendix A). The 
sensitivity and end results for both methods are identical. 

The details of CRT implementation in the time domain are 
described in the remainder of this section. The defining approx- 
imations and the search grid are specified. Limitations on use 
of CRT in the time and frequency domains are given, with 
assessment of relative merits of the two approaches. We also 
compare the sensitivity achievable for CRT with that of the 
method of incoherent summations of short FFTs. In some 
cases precise information about the orbit affords the possibility 
of two-parameter searches that can extend integration times 
beyond those possible with single parameter CRT. We describe 
two special cases of this kind. 

3.1. Coherence Recovery in the Time Domain 
Let the varying distance between the solar system barycenter 

and the source be given by D(t) in the observer’s frame. Slow 
acceleration of the binary system with respect to the Sun is 
neglected. Only the periodic component due to orbital motion 
is treated. A photon emitted by the source at time t' is received 
at the detector at time t given by 

t = t' + D(t)/c , (2) 
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where c is the speed of light. The emitted signal is assumed 
periodic in the source rest frame, with period Ppul.

3 Intrinsic 
period drifts are small compared to those associated with the 
orbit, but if they were large enough to be of interest, the 
method would accommodate them. The derivative dPpJdt 
would add small contributions to the first three terms in the 
expansion of D(t\ in equation (4) below. 

Leahy et al. (1983) compared pulsar searches conducted with 
phase histograms and FFTs. If the pulsar waveform is reason- 
ably close to a sinusoid, the FFT is a much better compromise 
between sensitivity and computation cost. We assume that the 
signal is essentially sinusoidal. Ignorance concerning D(t) must 
be overcome by searching a grid sufficiently dense that some 
element of the grid concentrates power near the fundamental 
into one channel of the power spectrum. 

We derive the one-dimensional search grid for circular 
orbits. The circular approximation is used because (1) as noted 
in § 2, orbits in LMXBs should be close to circular, (2) it sim- 
plifies the notation, and (3) the procedure for rebinning and 
transforming is unaffected by details of how the quadratic coef- 
ficient is expressed in terms of orbital parameters. 

The maximum advance or retardation of pulse arrival time 
is given by a± = a sin (i)/c, where a is the orbital radius and i is 
the inclination angle; a± is the projected orbital radius 
expressed in light seconds. If the binary system revolves with 
angular frequency Qorb = 2n/POTh9 then the advance or retar- 
dation of the pulse phase <5</>pul is given by 

Hpul = Mpul D(t)/c 

= £0pul a± sin (Qorb t + 0O), (3) 

where a>pul = 2n/Ppul is the angular frequency of the pulsed 
signal and <f)0 is the orbital phase at time i = 0. Note that (j)0 is 
measured from quadrature. Expanding c></>pui to second order 
in powers of t about f = 0 gives 

^^pul = aLœpu\ 
x [sin (<j>0) + i2orb cos (4>0)t - ino

2
rb sin (</>0)t2] . (4) 

The second term in equation (4) represents an average Doppler 
shift for the interval of observation. This term does not 
broaden the peak in the power spectrum since it is linear in 
time; however it may shift the peak to another frequency bin. 
The third term, in which phase is quadratic in time so that 
frequency broadens linearly with time, constitutes the lowest 
order broadening effect in frequency space. This term attains 
its greatest magnitude when the argument of the sine is ± tü/2. 

We define a new time coordinate, ta, in which phase delays 
are (nearly) compensated : 

¿a = * + Sin W>0)i2 

= í + ai2 , (5) 

where ot = a± Q2
rb sin (</>0)/2- The new time coordinate £a was 

derived as the coordinate in which the dependence of pulse 
phase, 0pul = a>pul t + <5</>pui, on time is (nearly) linear. At most 
orbital phases, the first neglected term in the expansion of 
equation (3) approximates the instantaneous residual phase 
error, £(</>). This term is representative of the typical error 

3 The CRT method described here does not require that pulses be due to a 
spinning neutron star, hence the distinction between Ppul and Pspin in this 
section. 

when the orbit is unknown : 

E(<l>) = 6«1 fflpul ^orb COS (</>o)i3 . (6) 

Numerical simulations show that more than 90% of the pulse 
fraction is recoverable in principle for all orbital phases if 
Tim < P0rb/4n, provided the a-grid is sufficiently dense (see 
§ 3.3). The search algorithm is now clear: for each value of a, 
we perform a time transformation on the data, as in equation 
(5), followed by a FFT. 

3.2. Grid Characteristics for Binary Orbits 
We now derive the critical increment for the quadratic 

parameter a and express the extreme values of a in terms of 
orbital parameters. We then estimate the effective number of 
independent frequencies searched in performing the full set of 
quadratic transformations, a quantity needed to determine the 
sensitivity of the technique for faint signals. 

Consider a signal with period Ppul broadened over two bins 
in the power spectrum by frequency drift. We wish to find the 
increment ôoc which will recover all power in one bin. For this 
purpose let us assume the a approximation is exact. The phase 
lag <5</>pul in a pulsed signal at frequency vpul = 1/Ppui caused by 
a time delay at2 will be 

Wpul = 2roxt2vpul, (7) 
and the frequency broadening associated with this accumulat- 
ing phase residual over the interval [0, 7]nt] will be 

2n dt2 mt 

= 2avpul Tjnt. (8) 
The frequency interval corresponding to a shift of one channel 
in the power spectrum is vNyq/Nf, where Nf is the number of 
bins in the power spectrum or half the number of data points, 
the Nyquist frequency is vNyq = 1/(2t), and t is the width of a 
time bin. The bin width in frequency space is 1/Tint. We want 
Sv0(X, defined as the frequency expansion or compression 
associated with going from a to a + <5a, to correspond to the 
width of one power spectrum channel, that is, 1/Tint, hence 

Tint 
= <5v ôa 

or 

d(Sv) 
dec 

0(X 

= 2vpul Tintôa , (9) 

Ô0L = 
1 

2Vpul Tint 
(10) 

Because we do not know the pulse frequency, the worst case 
value, vNyq must be used. This means that at frequencies much 
lower than the Nyquist frequency there is oversampling, as 
described below. 

Inspecting equation (5) we find that the extreme values of a 
occur when sin (</>0) = ± 1, that is, at the times when the source 
is at opposition or conjunction and its velocity is perpendicu- 
lar to the line of sight. The grid must be large enough to cover 
this case, hence the largest value of the quadratic parameter 
which must be searched is 

^max ^.L ^orb/^ í (H) 
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and the total number of quadratic transformations which must 
be performed is 

= 2<xmJ0oc 

= 2a± vNyqi2„rb Tf„t. (12) 

The quadratic dependence on integration time in equation (12) 
combined with the fact that the number of operations in the 
FFT scales as Tint log2 (7¡nt) justifys the statement made earlier 
that the computational cost of this one-dimensional CRT 
scales roughly as T?nt. 

From Kepler’s third law the semimajor axis of the neutron 
star orbit is 

a± = 1.175//comp(Porb/l hr)2/3(Mtot/M0)1/3 sin (i) lt-sec , (13) 

where Mns and Mcomp are the masses of the neutron star and 
binary companion, respectively, Mtot = Mns + Mcomp is the 
total mass of the binary system, and jucomp = Mcomp/Mtot is the 
mass fraction of the companion. The maximum value for a in 
terms of these parameters is 

amax = 1.79 X 10-Vcomp^orb/l S'1 . 
(14) 

The number of independent frequency and acceleration 
combinations in all power spectra covered in the grid, Aftot, is 
needed to evaluate the probability of detected signals and 
establish modulation levels corresponding to upper limits. This 
number is a function of signal strength. Near threshold it is 
straightforward to estimate. The increment in the quadratic 
parameter, c)a, was chosen such that the Na searches for pulsa- 
tions are independent for a signal at the Nyquist frequency. 
From equations (10) and (12), it is clear that the number of 
independent accelerations at some other frequency Vj is 
(vJ/vNyq)iVa. More a-values than that may be computed in the 
grid, but frequency-dependent redundancy is required at lower 
frequencies in order to achieve the needed grid density at the 
Nyquist frequency. For the frequency v/corresponding to the 
y'th bin in the power spectrum, v, = j¡T{ni and vyvNyq = j/Nf. 
The total number of combinations at all frequencies is then 

AT,«, = Z NJjlNf) 
j=i 1 

= Nx(Nf + l)/2 , (15) 

or, to good approximation, 

NXoi = NaNf/2. , (16) 

In using equation (16) it is essential to recognize that the 
CRT method is necessary only when the signal is faint enough 
that pulse broadening from orbital modulation renders the 
signal power small compared to the noise level produced by 
Poisson fluctuations. Adjacent frequency channels are strictly 
independent (orthogonal) in any of the individual power 
spectra produced for a particular value of a, but no analogous 
independence exists between power spectra in the sequence of 
quadratic time transformations, that is, when v is fixed and a is 
varied. One can appreciate the point by considering strong 
signals. If a strong, strictly periodic signal is present at the 
central frequency of channel i, no excess power is seen in the 
adjacent channel i + 1. However, if a quadratic time trans- 
formation characterized by a is applied to the same data, the 
signal in channel i will persist to very high values of a. Without 
noise, the signal would persist to arbitrarily high values of a. If 

a noise fluctuation were able to give such large power, it would 
necessarily also show up in many of the Ntot trials, reducing the 
effective number of independent trials in which to produce 
such a large spurious signal. 

Equation (16) can be used to determine rigorously the 
threshold detectable signal at a given statistical significance. 
Since no incoherent summations of power spectra are per- 
formed, the power in each of the Na spectra is distributed as %2 

for 2 degrees of freedom (vdof = 2). For an FFT power spec- 
trum of Poisson-distributed fluctuations, with local power nor- 
malized to unity, the probability that the power spectrum 
amplitude in any frequency bin exceeds power P is e~p. The 
probability of no power spectrum amplitude exceeding P in 
Ntot independent searches is 

ß(*2 > P) = 1 - (1 - e-y™ ^ Ntote-
p . (17) 

If a signal is actually detected using CRT and is considerably 
higher than threshold, the chance expectation calculated using 
equation (17) will be a conservative estimate (overestimate) of 
the true chance expectation. In fact, the correct value of Ntot 
will decline as signal strength increases, reaching an asymptotic 
limit of Nf for very strong signals, that is, those that could have 
been detected without a-shifting no matter what the orbital 
parameters were. 

3.3. Determination of Pulse Amplitude Limits 
It is necessary to express detected signals in terms of their 

chance expectation of occurrence, whereas upper limits must 
be expressed as fractions of the source DC level. This problem 
has been treated by Leahy et al. (1983). What follows is the 
adaptation of their general formulae to the CRT situation, 
including treatment of the number of independent frequency 
and acceleration combinations. 

In the absence of a detected signal we determine the search 
sensitivity by calculating the expected power obtained from a 
sinusoidal signal of average intensity r0 and modulation depth 
A, that is, r(t) = r0[l + A sin (copuli + 0O)]. In calculating Pj, 
the power in the jth power spectrum bin, we adopt the normal- 
ization 

pJ = ^\aj\2’ (18) 

where the complex Fourier amplitudes a,- are given by 

aj= Z Xke‘^. (19) 
fc=l 

Note that this normalization is half the normalization adopted 
by Leahy et al (1983). Here Xk is the number of counts in data 
bin k of the light curve, tk = /ct is the time of the kth light curve 
bin, (Oj = InVj = 2nj/Tint is the frequency of the jth frequency 
bin, N = 2Nf = Tini/T is the number of data bins, and Ny is the 
total number of photons in the data set. In practice the mean 
count rate is usually subtracted from the data Xk. Leahy et al. 
(1983) calculate the expectation value of the power in the 
power spectrum bin with frequency coj closest to the signal 
frequency a>pul, taking into account the loss in power due to 
finite binning and the expected mismatch between signal fre- 
quency and any of the discrete frequencies searched by the 
FFT. Using our normalization the expectation value <Pj) for a 
single FFT is 

<p.) = 1 + 0.773Aiy 
4 

sin2 (ojj TinJ4N f) 
(cOjTtJANf)2 ' 

(20) 
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We choose the modulation depth A such that 95% of the 
time x2 exceeds a value P. Also the chance expectation to 
exceed P (in Ntot frequency times acceleration trials) is set equal 
to 1 — 0.95. These choices correspond to C' = C = 0.95 in the 
notation of Leahy et al. (1983). Following the prescription 
given there for solving for the amplitude and using the simplifi- 
cation that Q(x2 > P) = exp ( — P) for our case, the first esti- 
mate of the upper limit to the pulse amplitude at frequency œ is 

A0(œ) 4- lN 
.2 (a)T¡nJ4N r)2 

Ny sin2 (toTJANf) 
log 

0.5NfNaC 1/2 
(21) 

(see also Lewin et al. 1988, § 2.2.2). 
A0(œ) is not the quantity we require because there are 

further correction factors for power lost to approximations in 
CRT. Because we use discrete values of the search parameter a, 
we must account for the possibility that the optimum value of a 
differs from any value in our trial sequence by an amount Aa, 
and then average over values of Aa. This calculation is per- 
formed in Appendix B. The expected loss of power is frequency 
dependent and grows with frequency. The upper limit on 
modulation depth is A((d) = ^40(co)Aloss(o)), where Aloss(co) is the 
desired correction factor. For small values of frequency, 
yliossM is near unity. It achieves its maximum value of approx- 
imately 1.1 at the Nyquist frequency. 

There are two additional effects that must be taken into 
account. These may best be described as incomplete signal 
recovery. First, even if the actual value of a for a particular 
orbit falls exactly on a trial a value, we do not completely 
recover the signal because we are approximating a sinusoid 
with a quadratic. Second, we suffer additional loss of power 
because of information lost when we rebin data before per- 
forming the FFT. 

The power lost from both of these additional effects has been 
evaluated with numerical simulations. In the simulations, pul- 
sations with known pulse fraction A and frequency copul, and 
with sinusoidal frequency variations of known frequency Qorb 
and phase </>0, were placed in a data set and recovered using 
CRT, that is, with a quadratic approximation to the sinusoidal 
orbit. The data is rebinned by assigning the counts in the 
original bin centered at time t to the transformed bin centered 
at time ia. This binning scheme, as opposed to dividing the 
counts in the original bin among two transformed bins, pre- 
serves the Poisson characteristic of the data. 

The simulations reveal several subtleties of CRT. First, the 
best value of a, that is, that value for which the recovered pulse 
fraction Arcc is highest, is slightly different from the theoretical 
best a given by equation (5). The difference in a is typically less 
than 1%, but can be a few times <5a. This is because the best a 
minimizes the total error introduced by the quadratic approx- 
imation to the sinusoidal frequency modulation, not just the 
error in the quadratic term of the expansion of the sinusoid. 
Thus the error term given in equation (6) is an upper limit to 
the error in the best quadratic approximation. 

Second, the quadratic approximation becomes progressively 
worse as the fraction of the orbit traversed by the pulsar during 
the observation increases. We find that Arec exceeds 90% at all 
orbital phases as long as 7;nt < PorJAn. For long integration 
times, Arec drops quickly. Third, for a fixed ratio TinJPOTh, Arec 
is a function of the orbital phase </>o at which the observation is 
made. From equation (6) we see that F((/)0), the residual error 
from the quadratic approximation, is minimized at stellar con- 
junction or opposition (</>0 = ± n/2). The maximum error due 

to the quadratic approximation occurs at quadrature (0O = 0). 
We show this effect in Figure 1. Here we have plotted, for 
various orbital phases, the difference between the quadratically 
corrected pulse period and the true pulse period during the 
observation. For these simulations, we have taken Mcomp = 0.6 
M0, Mns =1.5 M0, Porb = 3 hr, Ppul = 4.3 ms, t = 1 ms, and 
Tint = 103 s. The pulse period difference is calculated for four 
orbital phases ranging from 0O = 0 to 7r/2; here </>0 is measured 
at the center of the observation. In Figure la we use the pre- 
dicted a from equation (5), while in Figure Ih we use the best- 
fitted a. 

The final effects result from rebinning of the data using the 
quadratic time transformation of equation (5) and is a function 
of both frequency, copul, and quadratic coordinate, a. The 
rebinning loss is small compared to the loss due to the finite 
binning of the initial data, which is included in A0 (see eq. 
[21]). In our simulations the additional loss due to rebinning 
as a function of copul was negligible. This loss also depends on a, 
varying approximately linearly with a, or sinusoidally with 
phase (eq. [5]), but it is small, being less than 3% for simula- 
tions with Tint < Porh/4n. 

Figure 2 illustrates the increase in sensitivity of CRT over 
the method of incoherent summation (IS) of short FFTs, for 
the case when the orbit is unknown. Figure 2a shows the sensi- 
tivity achievable with the IS method as a function of M, the 
number of FFTs summed, for a fixed total data length, 
N = 220 ^ 106. In the absence of a signal, the left ordinate, /2, 
is the threshold power needed to exceed a 2 <7 chance expecta- 
tion level; this takes into account the number of candidate 
frequencies in the incoherently summed power spectrum, x2 is 
essentially the average noise power normalized to unity (see 
Leahy et al. 1983 for a detailed discussion). Thus the expecta- 
tion value is 

Els = NfQ(x2/vdo( = 2M)9 (22) 

where Nf = N/M is the number of frequency bins in each 
individual FFT. The corresponding limit on pulse fraction A 
attainable is shown on the right ordinate for a sinusoidal 
signal. The upper limit obtained for A for a given expectation 
level with associated x2 and total counts Ny is (ignoring effects 
of finite binning) 

where x2 is that in equation (22). At larger M the increase in 
sensitivity is less dependent on M, a conclusion apparent from 
the asymptotic approximation for x2 f°r many degrees of 
freedom (e.g., eq. [26.4.13] of Abramowitz & Stegun 1968). 
Figure 2b illustrates the sensitivity of CRT as a function of 
total points N for one long FFT and for the same expectation 
level and signal strength as in Figure 2a. In this case 

£cRT = NtotßCf2|vdof = 2), (24) 

and the associated upper limit obtained for A is 

a(Ecrj) = ■ (25) 

As can be seen from Figure 2, achievable sensitivity is greatly 
enhanced with long coherent FFTs, even taking into account 
the larger number of independent frequencies and a values. No 
effects of finite binning as described by Leahy et al (1983) are 
incorporated in Figure 2. 
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Fig. 1.—Residual error in predicted pulse period due to quadratic approximation of sinusoidal variation in frequency. The difference between the predicted pulse 
period and the true pulse period is plotted for (a) the quadratic parameter a given in eq. (5) and (b) the best-fitted quadratic parameter a. Period differences are plotted 
as a function of time during a 1024 s observation for four different orbital phases. Details of the calculation are given in the text. Small notches in the curves are due to 
computational roundoff errors. 

The search of possible binary orbits can also be implement- 
ed in the frequency domain (see Appendix A). It involves 
taking only a single FFT of the data and generating all of the 
power spectra for the a-variation in the frequency domain. For 
the applications to X-ray pulsar searching, the time domain 
approach is computationally more efficient. 

3.4. Searches with Partial Knowledge of the Orbit 
A well-established orbital period and phase reference make 

possible two-parameter searches with integration times of 
order twice those possible using one-parameter CRT. A tech- 
nique for performing such searches is by means of a cubic time 
transformation taken at quadrature, when the quadratic term 
vanishes. 

Equation (3) gives the phase delay caused by a circular orbit. 
At quadrature, 4>0 = 0 or n. Taking (ßo = 0 and expanding 

arrival time t' about i = 0 we obtain 

t' = t + a± sin (Qorb t) (26a) 

= t + «X «orb t - K ü0
3
rb í3 + TÍS«1 fio5rb Í5 + • • • (26b) 

^t + ßt3 . (26c) 

Once again we have ignored the linear term since it introduces 
no frequency broadening. We can recover coherence with a 
sequence of ß values. Varying ß is essentially the same as 
varying the projected orbital radius aL through a sequence of 
values. 

Even for a source with a precisely determined orbital period 
there is a small uncertainty in phase, making it necessary as a 
practical matter to search a grid of trial </>0 values as well as 
^-values. The <ß0 grid spacing is determined by considering 
equation (3) with | </>o I < <50. One obtains the grid spacing for ß 
or aL from equations (26b) and (26c) by the same method that 

Fig. 2.—Sensitivity to pulse fraction (a) for incoherently summed FFTs and (b) for the method of trial quadratic time transformations (CRT), both for 2 <t 
detection criterion (see text). Values on right ordinates are for an assumed count rate (5000 count s_1) typical of a bright LMXB source observed with Ginga's LAC 
experiment. 
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was used to find ôoc in a-shifting CRT. The results are 

and 

0(1) = 
1 

a± ß^orb VNyq T fnt 

öß = 
1 

3VNyq T 3 * 
int 

(27) 

(28) 

The number of aL (or ß) values is found by calculating 
maximum and minimum reasonable radius values. Note that if 
we do not know whether the source is moving toward or away 
from us, then it is necessary to consider both positive and 
negative aL or /?-values; if we do know, then the size of the 
search grid is cut in half. These relations also assume a circular 
orbit. Significant eccentricity will limit the practical integration 
time or force search of a larger grid. 

A special case of another kind is that of 4U 1820 — 30, where 
a short and well-determined orbital period again makes search 
of a grid in a± and </>0 a practical possibility. In this instance the 
data extend over many orbital periods so that one must use 
equation (26a) and not the cubic approximation in equation 
(26c). Equation (26a) is still valid and the increment of a± is 
given by 

SaL 
^orb ^Nyq ^int 

(29) 

4. OBSERVATIONS AND RESULTS 

4.1. Observations 
We have searched for millisecond pulsations with drifts in 

several low-mass X-ray binaries by applying the coherence 

recovery technique (CRT) to high time resolution data 
obtained with proportional counter arrays on board the 
HE AO 1 and Ging a satellites. The Ging a data provide long 
data segments on several LMXBs at 1 ms time resolution. The 
HE AO 1 data provide supplementary data segments with time 
resolution of 7 //s in the primary data, binned up to 300 //s for 
the present searches. 

All Ginga data used in this study were taken in the PC 
telemetry mode at high bit rate during pointed observations 
with the Large Area Counter (LAC) array (Makino 1987; 
Turner et al 1989). The LAC consists of eight sets of pro- 
portional counters in two groups, LAC-A and LAC-B, which 
together provide a total effective area of 4000 cm2. The energy 
bandpass is set separately for LAC-A and LAC-B, each of 
which has one high- and one low-energy channel in PC mode. 
Low-energy-channel data are stored in 1 ms bins and high- 
energy-channel data in 2 ms bins in the onboard Bubble Data 
Recorder (BDR). The BDR can store up to 42.3 minutes of 
data at high bit rate. The data rate is limited by the telemetry 
that can be transmitted and received during 10 minute contacts 
with the ground station in Kagushima, Japan; contacts occur 
five times daily. 

Sco X-l, GX 5-1, Cyg X-2, GX 340 + 0, GX 17 + 2, and GX 
9 + 1 were the Ginga targets used in this study. All are bright 
LMXBs, and all except GX 9+1 are QPO sources of the Z 
type (Hasinger & van der Klis 1989). In each of these sources it 
was possible to obtain at least 220 points of continuous data 
and sometimes more. In Table 1A we give specifics of the 
observations. 

During the 1977-1979 HEAO 1 mission the HEAO A-l 
Large Area Sky Survey (LASS) Experiment was used for 
pointed observations in addition to its primary scanning work. 
Modules 1-6 of the LASS instrument were located on the — Y 

Source 

TABLE 1 
A. Log of Ginga Observations3 

Fujitsu 
Connection 

Machine 

Observation Date 
Count Rate 

(s"1) N„ 
Tint 
(s) N„ 

Tint 
(s) 

Sco X-l   

GX 340 + 0. 

GX 5 — 1 ... 

GX9 + 1 ... 

GX 17 + 2 .. 

Cyg X-2 .... 

1989 Mar 9 
1989 Mar 10 
1988 Mar 30 
1988 Apr 6 
1987 Apr 20 
1987 Apr 27 
1988 Mar 29 
1988 Mar 31 
1988 Mar 28 
1988 Apr 1 
1987 Jun 7 
1987 Jun 8 

14000 
10000 
2200 
2200 
7000 
5000 
3000 
3250 
3500 
2700 
3400 
3400 

100 
100 
215 
215 
215 
857 
215 
215 
215 
215 

7 
7 

1024 
1024 
1024 
1024 
1024 
2048 
1024 
1024 
1024 
1024 
1024 
1024 

121 
121 

2957 
2957 

2048 
2048 

2048 
2048 

B. Log of HEAO 1 Observations 

Source Observation Date 
Count Rate 

(s“1) 
T 

(ms) 
Tint 
(s) 

4U 1820-30. 
CygX-3   

Cyg X-2 

1978 Oct 6 
1978 Jun 1 
1978 Dec 2 
1978 Dec 1 

2075 
265 
425 

2800 

5 
0.3 
5 
5 

960b 1310 
90 164 

1080 2620 
4 2620 

3 t = 1 ms for all Ginga observations. 
b Number of transformations is NA x for 4U 1820—30. 
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side of HE AO 1 while module 7, which was coaligned with the 
HE AO A-2, A-3, and A-4 experiments, was located on the + Y 
side. Module 7, used for the observations included here, pro- 
vided 1900 cm2 of open collecting area with sensitivity between 
0.25 and 25 keV. For the present observations, gain and dis- 
criminators were set so that the effective bandpass was 0.5-25 
keV. HE AO A-l was able to obtain long data segments with 5 
ms timing resolution and could obtain shorter segments, up to 
10 minutes, with a high bit rate that provided 7 jus timing 
resolution. The instrument itself is described in Wood et al. 
(1984) while further detail on the high time resolution telemetry 
features used for these searches may be found in Meekins et al. 
(1984). 

The HEAO 1 searches reported here cover three objects in 
which partial knowledge of the binary orbit is available. These 
are Cyg X-2 (Porb = 9?8), Cyg X-3 (Porb = 4.8 hr), and 4U 
1820 — 30 (Porb = 685 s). The Cyg X-2 period is established 
optically while the others are observed in X-rays. 

4.2. Simulations 
As discussed in § 3.3, we performed extensive simulations of 

pulsars in binary systems in order to verify both our technique 
and our programs. In the simulations, pulsations with known 
pulse fraction A and Ppul, and with sinusoidal frequency varia- 
tions of known period Porb and phase </>0, were placed in a data 
set. The expected count rate was determined and used as the 
mean in a Poisson deviate generator. The data was generated 
with bin size t comparable to the data sets analyzed. 

A total of 55 simulated data sets were generated. For these 
simulations the range of parameters used was t = 1/1024 ms, 
Porb = 0.95-30 hr, Ppul = 1.9 ms—1 s, A = 0.03, and </>0 = 
0 — tc/2. We set the integration time at Tint = 1024 s and the 
mean count rate at r0 = 25 count bin-1. In every case, the 
recovered frequency and amplitude was as expected. See § 3.3 
for complete details of the simulations. 

4.3. Results 
Data analysis for Ginga observations was conducted using 

computers at the Institute for Space and Astronautical Science 
in Sagamihara, Japan, and at the Naval Research Laboratory, 
Washington, DC. Using standard FFT algorithms it was pos- 
sible to perform 220 point FFTs in approximately 11s and 221 

point FFTs in 25 s with the Fujitsu computers at ISAS. Using 
the Connection Machine CM-2 at NRL it was possible to 

perform 220 point FFTs in 0.9 s and 222 point FFTs in 3.6 s. 
The implementation of the CRT algorithm on the Connection 
Machine utilizes the parallel architecture of that machine and 
is described elsewhere (Hertz 1990; Hertz et al. 1990). HEAO 1 
data was analyzed using a VAX 11/785 at NRL. 

For Sco X-l and Cyg X-2 the known orbital periods (0Í787 
and 9?8, respectively) were used to constrain the number of 
values of a. With the exception of 4U 1820 — 30, the orbit was 
unknown for the other sources, and amax was selected to allow 
for the shortest period orbits consistent with the length of the 
data stream, that is POTh > 4nTint ^ 3 hr for 1024 s data seg- 
ments. While MXB 1916 — 05 (Porb = 50 minutes) and 4U 
1820 — 30 (Porb = 685 s) have orbital periods shorter than this 
limit, most known LMXB orbital periods are consistent with 
it. For 4U 1820 — 30 itself a search was done using the methods 
derived for that special case in § 3.4. To allow for orbital 
periods as short as that of 4U 1820 — 30 in the sources with 
unknown orbits would require using much shorter data seg- 
ments. 

No millisecond pulsations were seen. Table 2 gives upper 
limits obtained for each source at the chosen 95% confidence 
level. The best upper limits obtained in the range below 10 ms 
were several tenths of a percent, in GX 5 — 1 and Sco X-l. The 
next section discusses implications of these limits. 

5. DISCUSSION 

In § 2 we summarized the basis for the view that LMXB spin 
periods should be in the millisecond range. The present obser- 
vations constrain the region of the observational parameter 
space in Ppul, dPpul/dt, and pulse fraction A for which pulsa- 
tions may be detectable in these sources. 

As Table 2 shows, results cannot be expressed simply as 
upper limits on A. For each source the upper limit is a function 
of the pulse period both because of instrumental limitations 
(telemetry time resolution imposes a maximum frequency 
above which we cannot search) and because of the frequency 
dependence in the expressions given in § 3 for upper limits. In 
general the higher the frequency, the higher the modulation 
depth A that remains consistent with the present observations. 
It is also true that if the orbital period is shorter than 3 hr, then 
the limits in Table 2, except for those pertaining to 4U 
1820 — 30, must be replaced with substantially higher number; 
that is, an orbital period 3 hr is another way that a milli- 
second pulsar could have escaped detection in this search. In 

TABLE 2 
Limits on Pulse Fraction in Low-Mass X-ray Binaries3 

AAA Minimum Porh 
Source “Other” Name (50 Hz) (400 Hz) (1600 Hz) (hr) 

Sco X-l   X1617 —155 0.0019 0.0026 ... b 

GX 340 + 0  X1642 —455 0.0069 0.014 ... 3 
GX 5 — 1   X1758 —250 0.0039 0.0077 ... 3 

0.0031 0.0042 ... 6 
GX 9+1   X1758 —205 0.0057 0.011 ... 3 
GX 17 + 2   X1813 —140 0.0055 0.011 ... 3 
4U 1820-30   XI820 —303 0.006 
Cyg X-3   X2030 + 407 0.012 0.040 0.065 d 

Cyg X-2   X2142 + 380 0.0051 0.010 
a Modulation depth upper limit at 95% confidence level. 
b Known period (19.2 hr). 
c Known period (685 s). 
d Known period (4.8 hr). 
e Known period (9d8). 
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a source with an unknown orbital period, such as GX 5 — 1, 
one must conclude that either the pulse period is within the 
searched range but the pulsed fraction is below 0.004, or that 
the pulsed period is shorter than 2 ms, or that the orbital 
period is substantially shorter than 3 hr, or a combination of 
these possibilities. 

In the absence of a detected periodicity the indirect methods 
described in § 2 remain the best information on LMXB spin 
periods. Shorter pulse periods are both harder to detect, as 
reflected in the variation of upper limits with frequency, and 
easier to obliterate with scattering. Thus, our results may be 
characterized as being consistent with low pulse amplitudes 
and very short pulse periods in these objects, but they provide 
only weak support because there remain ways to hide a longer 
period. The importance of knowing the spin periods directly 
will undoubtedly motivate further searches. 

These limits are lower than most of those in the earlier 
published literature because of the large collecting areas 
involved and the utilization of CRT. It may be useful to sum- 
marize ways that future searches can reach still lower limits. 
First, using higher telemetry resolution, even with the same 
detector area, allows one to achieve lower limits on A, even at 
the frequencies that have been searched here. Higher time 

resolution will also give further access to shorter periods, espe- 
cially those below 2 ms where the present data are limited to 
the HEAO 1 observation of Cyg X-3. Second, additional com- 
puter power will make it possible to use CRT on longer data 
segments. The maximum segment length N that can be search- 
ed grows roughly as the one-third power of CPU time or 
linearly with available RAM. Note however that integration 
time must not become a large fraction of the orbital period. 
Third, it must be recognized that the only way to reach much 
lower levels of modulation is with larger collecting area. An 
increase by a factor of 100 would be desirable. 
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APPENDIX A 

COHERENCE RECOVERY IN THE FREQUENCY DOMAIN 

Instead of rebinning the data in the time domain, the analysis can be implemented in the frequency domain by means of an 
optimal linear filter. This filter has an especially simple form if the noise spectral density is independent of frequency (i.e., white 
noise). The optimal filter M*(co) is the Fourier transform of a specified function, S(t), a trial source signal modified by orbital 
modulation. M*(a>) depends on the trial signal frequency co, and the quadratic parameter a, both of which are unknown; hence a 
two-dimensional grid of trial values must be searched. If a is zero, the problem reduces to computing the power spectrum of the 
input data. In the following, S(t) is assumed to be real. M*(a>) is approximated by its discrete Fourier transform and is the complex 
conjugate of the Fourier transform of the trial source function, 

M*(ù)n) = XI S(tj) exp (-Inijn/N). (Al) 
j=i 

The time i, is /r, where t has been chosen to have unit value by convention. The parameter n is an index for the value of <x> and runs 
from 0 to N/2. For a source function which is linear in frequency, quadratic in phase, S(t) is of the form 

S(tj) = A cos [cos(tj + atf) + (pj . (A2) 

This expression embodies the quadratic time transformation of equation (2). Substituting S(tj) in equation (Al) and letting t0 = 
Tint/2, we can write 

M(co„, ms, m) = - e** X exp 
Z J 

n + s + msj\ 
N2 Z exP 

n — s — msj\ 2nij 
Ñ2 J lv” 

where s is an index for cos in analogy with n. 
The output obtained when the filter is applied to the input data in the frequency domain is given by 

Ff(cos, m) = Z F(œn)M*(œn, œs, m), 

(A3) 

(A4) 

where F(con) is the FFT of the input data and m = at AT2. The range of m is therefore ±NJ2. For m = 0, F f(cos, 0) = F(cos\ provided 
that M is properly normalized, and the FFT of the original data is recovered. 

Notice that the expression for M* in equation (A3) consists of two sums. Since n and s are both restricted to the range [0, N — 1], 
the first sum will always be small compared to the second sum. The second sum peaks near n = s + ms/N and has a width about this 
value of order An = 2ms/N. Thus we will ignore the first sum and approximate the filter function by 

M(co„, cos, m) = - X exp 
Z j 

(A5) 
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The phase factor e has been dropped since the power spectrum is unaffected by the choice of phase : 

P(cos9 m) = Z W(cy,I)M*(av <ws, m) 
2 

(A6) 

In principle, M must be computed for all possible values of s and m. An efficient way to do this is to directly compute the FFT of 
the source function given by equation (A5) for each value of m. Then the power spectrum defined in equation (A6) can be computed. 
In general the right-hand side of this equation requires 2N multiplications and N additions for each value of m. However, because 
the filter function M* is strongly peaked over a narrow frequency range, the computation of the power spectrum in practice depends 
on m and s, requiring of order 4ms/N N multiplications and additions. The essential number of operations vanishes as s (i.e., 
frequency) approaches zero ; this reflects the fact that for CRT performed in the time domain, the set of quadratic transformations 
results in identical power spectra near the DC channel and (completely) independent spectral channels only near the Nyquist 
frequency. For s corresponding to vNyq, the number of multiplies required is ^ 2iVa. 

An additional computational savings is achieved by recognizing that equation (A5) implies the scaling rule 

M(con, cos+As, m) = M[iün_As, cos, m(l -h As/s)] . (A7) 

If a particular value of s is chosen, say N/4 (the center frequency bin of the FFT), then M can be computed for any other value of s 
from the above scaling relation. 

The computational cost of constructing the filter array scales as ATa Anog2 (N); that is, the cost is roughly the same as performing 
CRT in the time domain for Na quadratic time transformations and FFTs. However, since application of the filter requires a small 
number of operations (and the FFT of the input data is computed only once), a large savings results if several segments of input data 
are processed with identical CRT parameters and therefore make use of the same filter array. 

APPENDIX B 

LOSS OF POWER DUE TO FINITE GRID EFFECTS 

We now consider the loss of power due to mismatch between the optimum value of a and the nearest value in the sequence of a 
values. Consider a purely sinusoidal signal. Ignoring the effects of finite binning, the signal is described by rj = r0 sin (a>pul tj), in the 
absence of any orbital motion. Here tj = /r, where t is the finite time bin size. We make the approximation that the signal is 
completely recovered for the optimum a value. If the optimum value of a differs from the nearest value in the sequence by an amount 
Aa, the observed signal, to lowest order in Aoe, will be 

(Bl) 

(B2) 

(B3) 

(B4) 

The power, P(copul), is then 

rj = r0 sin lœpul(tj + Aat;)] = r0 sin (copuljT + œpulAccj2T2) . 

^Ku,) = /“ |/X r0 sin (copuljz + ®pul Aa7'2T2)<?í“pul'ÍTJ 

Rewriting the sum as an integral and separating the sine and cosine contributions, we obtain 

Tint 
P(ojpJ = I [sin ("pui * + "pui Aaî2) cos (wpul () + i sin (ojpul t + ojpu, Aat2) sin (a>pul t)]Jt 

Expanding the sine and ignoring the rapidly oscillating odd terms yields 

P("pu.) 
10 if 
Ny [jo 

[cos2 (a>pul t) sin (a>pulAaí2) + i sin2 (ft>puli) cos ((opill Aat2)]dt 

Because Aat 1 (typically Aa ~ 10“9 s-1 and Tint ~ 103 s), the sin (copul Aat2) and cos (fupu| Aat2) terms are envelopes for the rapidly 
oscillating even terms cos2 (cupu| t) and sin2 (copul t), respectively. We can thus replace the sin2 (iupul t) and cos2 (a>pul t) terms with their 
averages, namely j. We are left with 

p("Pui) - { |o 
sin ("pui Aat2)dtJ + ^ cos (ojpu| Axt2)dt 

These can be rewritten as Fresnel integrals (e.g., § 7.3 of Abramowitz & Stegun 1968), 

C(z) = 
Jo 

cos ( ^ t2 )dt, 
-JM^ 

With appropriate substitutions we have 

where x = TiM(2ojpvllAa/n)111 . 

^"pul) 4Ny I 

S(z) 

C2(x) + S2(x) 

t2 )dt . 

(B5) 

(B6) 

(B7) 
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Fig. 3.—(a) Power recovered from quadratic transformations (CRT) as a function of quadratic parameter mismatch. Power is normalized to unity at zero 
frequency and is plotted as a function of scaled frequency x. (b) Loss of pulse amplitude due to quadratic parameter mismatch as a function of pulse frequency for the 
Ginga pulsar searches described in § 4. 

In Figure 3a we plot P(x) normalized to unity at zero frequency, that is, P(x)/P(0) where x is given above. The pulse amplitude 
correction factor Aloss(a>pul) is defined to be 

^loss(^pul) 
1 

VP(copul)/P(0) 

C2(x) + s2(x)J 1/2 

(B8) 

Figure 3b shows Aloss as a function of signal frequency vpul = a>pul/2n. To obtain Aloss we fix vpul and average over Aa from —ôoc/2 
to + c)a/2, where ôoc = P^yq/(2Tfn^, the value used in our searches. Note that as in the case of finite binning, the effect becomes more 
pronounced at higher frequencies. The loss of power is IMiossi^pui)2 • 
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