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ABSTRACT 
We develop practical methods for extracting the mass-density fluctuation field of a cosmological system, 

<5(x), from the peculiar velocity field smoothed on scales of a few Mpc. The methods are local. They are based 
on quasi-linear approximations to the gravitational equations of motion of a pressureless fluid and address 
density fluctuations in the range — 0.7 < <5 < 4.5. They are tested against exact solutions in special configu- 
rations and against cosmological V-body simulations with Q = 1 and with Q = 0.2. Two approximations are 
considered under the assumption of Zel’dovich displacements of particles with a universal time dependence: 
the exact solution of the continuity equation, <5C, and the exact solution of the dynamical Euler-Poisson equa- 
tion, <5d, which turns out to coincide with the linear approximation, ô0. A key new result is our derivation of 
the density fluctuation field, based on the Lagrangian ZeFdovich approximation, in terms of the partial deriv- 
atives of the Eulerian velocity field. We find that both 3d and ôc are tightly related to the true density, with a 
standard deviation <0.1. While öd systematically underestimates the true density, 3C is an excellent approx- 
imation to <5, with an rms error <0.1. Alternatively, we find an empirical third-order approximation for <5(<50) 
with a similar rms error. Corrections involving second derivatives are less successful, with an rms error ~0.3. 
The continuity density scheme is now being used in the POTENT analysis of the large-scale velocities. 

The tight relation between the true density and the linear approximation in the quasi-linear regime also 
suggests a method for the inverse problem of extracting the quasi-linear velocity from a given density field 
specified over a large region. This new inversion procedure can improve the prediction of the peculiar velocity 
field from galaxy redshift surveys such as the IRAS survey. 
Subject headings: cosmology — dark matter — galaxies: clustering — galaxies: formation 

1. INTRODUCTION 

One of the most interesting unknowns in cosmology today is 
the distribution of matter on large scales. The accumulating 
large galaxy redshift surveys provide information about the 
large-scale distribution of luminous matter, but we have no 
direct evidence for the distribution of dark matter that domi- 
nates the mass density in the universe. There is no reason to 
assume that the density of galaxies is proportional to the 
underlying mass density; galaxy formation might be biased 
toward certain regions (see, e.g., the review by Dekel & Rees 
1987). The only way to learn about the mass distribution is via 
its gravitational influence on test bodies whose velocities one 
can observe. This is how the rotation curves of galaxies are 
used to trace massive dark halos and how virial velocities are 
used to indicate dark mass in clusters of galaxies. The recent 
improvements of the techniques to measure distances to gal- 
axies independently of their measured redshifts (cf. Pierce & 
Tully 1988; Dressier et al. 1987) allow the compilation of large 
samples of galaxies with measured peculiar velocities (e.g., 
Lynden-Bell et al. 1988), which can be used to trace the under- 
lying smoothed velocity field. If the structure on large scales is 
generated by gravity, then these velocities can, in principle, be 
used to map the mass density perturbation field that is 
responsible for inducing them. 

Of the three components of the peculiar velocity, only the 
radial component, u, is directly observable. One method to 

obtain the two missing components is the POTENT analysis 
(Bertschinger & Dekel 1989; Dekel, Bertschinger, & Faber 
1990; Bertschinger et al. 1990). If the peculiar velocities are 
generated by gravity, and if the velocity field is smoothed suffi- 
ciently to remove small-scale orbit-mixing, the velocity is 
derived from a scalar potential: t>(jt) = —\(j)v(x). The velocity 
potential </>„ may be recovered by integrating the smoothed 
radial velocity component along radial rays, 

<£„(*) = - u(r\ 9, (p)dr', (1) 

and the transverse velocity components are computed by dif- 
ferentiation along & and cp. The outcome is the three- 
dimensional velocity field on a uniform Eulerian grid inside a 
given volume. This procedure is kinematical and is based only 
on the Ansatz of potential flow. Within the general framework 
of gravitational instability, after smoothing over regions of 
orbit-mixing, no further approximations are involved. 

In order to recover the associated mass density field out of 
the given velocity field, one needs to appeal to gravity more 
specifically—the dynamics is introduced via the cosmological 
Euler and Poisson equations. When the fluctuations are 
small, the linear approximation yields a simple, local rela- 
tion between the density contrast and the peculiar velocity, 
<5 oc — V • t>. However, the range of interest for phenomena like 
the Great Attractor or the large voids is slightly beyond the 
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linear regime, where, even when averaged over scales of order 
10 h'1 Mpc, the density fluctuations can be of order unity or a 
few. In this case, higher order contributions can be just as 
important. Unfortunately, already the second-order solution is 
not very useful for our purpose because it is not local any 
more—it involves integrals over a large volume (Peebles 1980). 

One hope for a local, quasi-linear approximation lies in the 
Zel’dovich (1970) approach, which follows trajectories of par- 
ticles from their initial, Lagrangian positions to their present, 
Eulerian positions. Unlike the linear approximation, the 
Zel’dovich approximation takes into account particle displace- 
ments, and it assumes that the displacements (rather than the 
density fluctuations) all grow at a universal rate. Trying to 
solve for the density assuming such approximate displace- 
ments (hereafter “ Zel’dovich displacements ”) one has a choice 
between different options. For example, if one requires mass 
conservation by solving the continuity equation, the approx- 
imation would, in general, violate momentum conservation. 
On the other hand, if one assumes momentum conservation by 
solving the equation of motion, the approximation would, in 
general, fail to conserve mass. Thus, given the velocity field, 
what is the best approximation for the density under the 
assumption of Zel’dovich displacements? Our major aim in 
this paper is to address this question and to come up with a 
practical algorithm for calculating the density. We also con- 
sider nonlinear corrections involving cubic polynomials or 
second derivatives, which we eventually test using A-body 
simulations. 

The inverse procedure of extracting the velocity from a given 
density field is very useful in complementary dynamical 
analysis of large, uniform redshift surveys, such as the IRAS 
survey (e.g., Strauss et al. 1990; Yahil et al. 1990). There, the 
mass density is taken from the observed galaxy density, cor- 
rected for sampling, under the assumption that galaxies trace 
the mass. This inverse procedure is intrinsically more difficult 
because, even in the linear regime, it involves a nonlocal inte- 
gral of the density over a volume which can be quite large. Still, 
one wishes to improve on the linear analysis used so far, and 
we suggest a practical method for incorporating quasi-linear 
corrections to this procedure. 

The paper is organized as follows. In § 2 we derive the 
approximations for getting densities from velocities. We then 
test them in simple toy models (§ 3) and using AT-body simula- 
tions (§ 4), and obtain empirical fits based on the simulations. 
In § 5 we briefly address the inverse problem of extracting the 
velocity field from the density field, and we summarize our 
recommended working procedures in § 6. 

2. QUASI-LINEAR DENSITIES 

Given the peculiar velocity field v(x, t0) (i.e., relative to the 
local Hubble-expanding frame), in Eulerian coordinates x at 
time t0, we wish to calculate the density fluctuation field 
<5(jc, i0) = [p(x, t0) — p(t0y]/p(t0), where p is the local density 
and p is the mean density in the universe. The range of interest 
is the quasi-linear regime, where Ô is of order unity, and 
perhaps up to values ~4.5—the turnaround value in the 
top-hat model for Q = 1. The goal is to avoid simulations or 
iterations and to use local information as much as possible. 

2.1. The Equations 
For the purpose of setting up the background and notations, 

let us start with the relevant basics of the standard theory of 
gravitational instability. Let x, v, and (/)g be the position, pecu- 

liar velocity and peculiar gravitational potential in comoving 
distance units; the corresponding quantities in physical units 
are ax, av, and a2(l)g, where a(t) is the universal expansion 
factor. The three equations governing the evolution of a pres- 
sureless gravitating fluid in a standard cosmological back- 
ground are then the continuity equation, 

<3 Ç 
— + V • » + V • (<5i>) = 0 , (2) 
Ot 

the Euler equation of motion, 

jt + 2Hv + (v\)v= -\4>g, (3) 

and the Poisson field equation, 

S2<t>g = f tf 2Q0 , (4) 

where H and Q are the Hubble parameter and the cosmo- 
logical density parameter, both varying in time. [See, e.g., 
Peebles 1980, § 9, but note that noncomoving velocity and 
potential are used there instead. With comoving coordinates, 
we have a factor of 2 in the second term of eq. (3), but a(t) does 
not show up explicitly except in JL] 

The pressure term is left out of equation (3), assuming that 
particle orbits do not cross. Note also that the second order 
term in equation (3) can be written as, 

(v . \)v = jWv2 -vx(\ xv), (5) 

so, if the velocity field has no vorticity, this term could be 
replaced by (i)Vt;2. By combining the Poisson equation and 
the divergence of the Euler equation we can eliminate the term 
containing the gravitational potential and replace equations (3) 
and (4) by the dynamical equation for the case of no pressure 
and no vorticity, 

'X s) 1 
- H2aô = -- (V • r) - 2H\ • t> - - VV . (6) 
2 ot 2 

It is sometimes useful to relate the gravitational and velocity 
potentials by the Bernouilli equation, which is derived here 
from the Euler equation assuming no pressure and no vor- 
ticity, 

d 1 
<l>g=jt<Pv + 2H<t>v-2v2’ (7) 

2.2. The Linear Approximation 
In the linear approximation, i.e., neglecting the terms involv- 

ing ôv and v2, equations (2)-(4) yield the standard linear time 
evolution equation for <5(x, t), 

ô + 2Hè = ftf2Q<5 . (8) 

The growing mode of the solution to this equation is denoted 
S oc D(t). It can be expressed in terms of the function/(Q), 

m) = 
D 

HD ’ (9) 

which is commonly approximated by /(Q)^Q0-6 (Peebles 
1980). [Lightman & Schechter (1990) have shown recently that 
near Q = 1 the linear term is actually /(Q) = Q4/7.] The 
dynamical equation can be written as 

-2/(n) + |n , (10) 
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and the continuity equation yields the well-known linear rela- The continuity equation, in the Zel’dovich language, can be 
tion between density and velocity : written as 

(11) 

The density is determined by the local current of matter. 

2.3. The ZeVdovich Approximation 
A quasi-linear approximation that is still local is provided 

by the Zel’dovich approximation (Zel’dovich 1970), which, 
unlike the pure linear approximation, takes into account the 
displacements of particles from their initial positions. Let q be 
the initial (i.e. Lagrangian), comoving position of a particle. 
The ZeFdovich approximation assumes that the comoving 
position of that particle at time t (i.e., the Eulerian position) is 

t) = q + D{t)^{q) . (12) 

The approximation is in writing the displacement, x(q, t) — q, 
as a product of a spatial perturbation function, ^f(^), and a 
universal time-dependent function, D(i). By taking time deriv- 
atives following the trajectory of each particle, the comoving 
peculiar velocity and acceleration are 

d 
v(q9 t) = Dÿ , g(q9 t) = — v = Dilfccv. (13) 

Note that, as in the linear approximation, the velocity vector is 
proportional to the acceleration vector, so the Zel’dovich 
motions, in comoving coordinates, are along predetermined 
straight lines. 

The Zel’dovich approximation provides an exact solution to 
the linearized equations where <5 and v are very small, with D(t) 
being the growth rate of the linear solution of S(t). Therefore, 
the universal growth of the displacements must be given by the 
linear D(t) of equation (9) under quasi-linear conditions as well. 
However, the particles move away from their initial positions, 
so the density at a given position does not necessarily evolve 
according to the linear growth rate. In fact, infinite density can 
develop in a finite time as a result of a convergence of particle 
trajectories into singular points. 

In general, the Zel’dovich approximation is not an exact 
solution of the set of equations (2)-{4). In particular, by substi- 
tuting the Zel’dovich expressions for v(x) and £(x) from equa- 
tions (12) and (13) alternatively in the continuity equation and 
in the dynamical equation (6), one obtains two different 
approximations for the density field ; the former conserves 
mass and the latter conserves momentum. 

2.4. Continuity Density in the ZeVdovich Approximation 
In the following, we shall assume that there is a one-to-one 

correspondence between jt and q, i.e., no orbit-mixing. To 
achieve this in practice, and to avoid very large values of Ô, we 
will be dealing with the velocity field that has been smoothed 
over a large enough scale. The assumed one-to-one correspon- 
dence allows us to write the Zel’dovich approximation (12) in 
Eulerian space, 

q(x) = x- Dil/[q(xy] . (14) 

Note that this is an unusual way to write the Zel’dovich dis- 
placements, because the Zel’dovich approximation is com- 
monly understood as a Lagrangian scheme in which one 
follows the trajectories of individual particles. But this way of 
expressing the approximation is exactly what we need if we 
want to obtain the density from a given Eulerian velocity field. 

Px(x)d3x = pqd
3q , (15) 

where px is the Eulerian density and pq is the Lagrangian 
density (i.e., the universal mean density). The density contrast 
is therefore 

ôc{x) = 
dq 
dx 

- 1 

dd/ 
i~djl 

ox 

_x dv 
dx 

(16) 

where the double vertical bars denote the Jacobian determi- 
nant and / is the unit matrix. Note that this is a nonlinear 
expression which still involves only the first partial derivatives. 

If we assume that the velocity field is a potential flow, with no 
vorticity, then the deformation tensor dÿ/dx is symmetric (just 
like dÿ/dq), and it can therefore be diagonalized locally. 
Denote the eigenvalues of the Eulerian deformation tensor 
plx\ where i = 1, 2, 3 correspond to the eigenvectors. The 
continuity density is then 

ôc=(l- Dp^l - Dp2Xl - Dp3) - 1 . (17) 

This can be written as a third-order power series in D, 

ôc = -DMi + D2M2 - D3M3 , (18a) 

Mi = /¿i + + /¿a > M2 = + p2p3 , 

M3 • (18b) 

2.5. Dynamical Density in the ZeVdovich Approximation 
If we substitute the Zel’dovich approximation (14) into the 

dynamical equation (6) instead, we find, after some algebra, 
that the second-order terms involving second derivatives 
exactly cancel each other, leaving 

ôd(x)=-(Hf)-1V-v=-DMl9 (19) 

exactly as in the linear approximation, i.e., Sd = ô0. (This is 
independent of the assumption of no-vorticity.) Thus, the 
linear relation between velocity and density is of interest in the 
quasi-linear regime as well; it relates the velocity field associ- 
ated with Zel’dovich displacements with the density fluctua- 
tion field that would have generated such velocities via real 
gravity. The fact that ôd = ö0 becomes trivial by noting that the 
two terms v + (v • Y> in equation (3) represent the acceleration 
of a particle (that particle that is at position x at time i), which, 
by equation (13) of the Zel’dovich approximation, is pro- 
portional to its velocity. Therefore, by substituting the diver- 
gence of equation (3) into equation (4), we must get ôd oc 
-\-v. 

The difference between the two approximations, the contin- 
uity density and the dynamical density, 

ôc-ôd = D2M2 - D3M3 , (20) 

can be interpreted as an estimate for the “error” associated 
with the Zel’dovich approximation (cf. Shandarin, Dor- 
oshkevich, & Zel’dovich 1983). It is of order 0(D2), and indeed 
it vanishes when D <0. 
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2.6. Second-Order Corrections 
The full second-order solution to the equations (2)-(4) for 

Q = 1 is (see Peebles 1980, eq. [18.8]) 

try to use the simulations to obtain empirically the best-fit 
(positive) coefficient to a general correction term of the sort 
oc W. 

, , 5 ,2 2 
ô = S0+-00+W2 (¿AXW + 

(21a) 

where 

= - 
3ff2Q 

Sn 
f d3x'ô(x') 

J i*-*r 
(21b) 

and the summation rule applies for ij = 1, 2, 3. This, unfor- 
tunately, is less useful than the linear approximation or the 
Zel’dovich scheme because of the nonlocal terms involved; 
they require calculating the gravitational force by integration 
over a large volume, which suffers from boundary effects. 

Since the application of the full second-order solution is 
impractical, one might be tempted to try various second-order 
corrections to the linear solution, hoping for partial improve- 
ment in the approximation. Note that the only unknown quan- 
tity in the dynamical equation is the time derivative; v in 
equation (6), or equivalently, (j)v in the Bernoulli equation. One 
might hope that by substituting a known lower-order approx- 
imation for the time derivative in equation (6), keeping the 
explicit term — (i)^2^2, the approximation might improve. 
This correction involves second derivatives of v, while the 
Zel’dovich approximation includes only powers of the first 
derivatives. 

Unfortunately, this procedure is not unique. Take, for 
example, the linear time derivative expressed in terms of V * t? 
(or ¿o), i.e., d(V • v)/dt = ( — 2 + 3Q/2f)HV • v. Then the solu- 
tion of equation (6) is 

3. TESTING IN SYMMETRIC TOY MODELS 

3.1. Prototypical Configurations 
It is instructive to investigate the errors of the approximate 

densities under the Zel’dovich approximation in various 
generic cases of special symmetries, which can be classified by 
the relations between the eigenvalues of the deformation 
tensor. 

Consider a one-dimensional collapse or expansion, where 
one eigenvalue dominates, | /¿i | M /¿21 — I 1 • can ^orm a 

pancake or an antipancake (i.e., a cylindrical void expanding 
along its height). In this case, 

<5c - ¿d --^i - ¿o • (24) 

Thus, in the pure one-dimensional case (ß2= Pz = 0), the 
Zel’dovich scheme is exact (cf. Zel’dovich 1970). The two 
density estimators coincide, and they are both an exact solu- 
tion of the equations. 

Consider, next, two-dimensional cases, where | /¿i I ^ I 1 ^ 
I //31. When pi1 and p2 have the same sign, the configuration is 
a filament or an antifilament (i.e., a cylindrical void expanding 
parallel to its base), and then 

^ -2DMí ^ ¿o 

- -20^ + D2jul - ¿o + . (25) 

The relative “ error ” estimate is A = (c)c — ôd)/ôd ~ <50/4, i.e., 
25% at <50 = ±1. When /n1 and ß2 have opposite signs, the 
configuration is a combination of a pancake and an anti- 
pancake, and 

¿ = ¿0- 
1 

3H2Q 
w. (22) 

The same result is obtained if we use the linear relation (¡)v = 
(3QH/2f)(j)v in the Bernoulli equation. But take, instead, the 
linear time derivative expressed in terms of <5, i.e. d(V • v)dt = 
{If — 3Q/2)H2ô. Then, in equation (6), 

(23) 

The correction terms in the two cases differ both in the numeri- 
cal factor and in the Q dependence. Hence, the result is quite 
arbitrary, for an obvious reason; the linear approximation for 
the time derivative neglects terms oc \2v2, so one should not 
expect to obtain a meaningful correction of that order even if 
the explicit term of this sort in equation (6) is not neglected. 

Recall that if we use the Zel’dovich approximation for the 
time derivative in equation (6), as in § 2.5, the V2i;2 terms cancel 
each other and we get back the dynamical density S = ôd = ô0 
with no quadratic correction. This is probably a better second- 
order approximation than equations (22) or (23). 

In fact, the corrections obtained using linear time depen- 
dence might be in the wrong direction altogether. Consider, for 
example, a top-hat model, in which the density is uniform and 
the velocity is a radial “ Hubble ” flow, i; oc — r. In this case 
V2v2 is positive, so the “correction” terms in equations (22) 
and (23) are negative—actually pushing the approximation 
away from the true nonlinear solution. We shall see below that 
this is the typical behavior in the AT-body simulations and will 

ôd~0~ôo 

ôc c —D2fi\ . (26) 

Here dc is not a simple function of 00. 
Finally, consider the case of three eigenvalues of similar 

amplitudes, I /¿i I — I /¿21 — I /G I. When the three eigenvalues all 
have the same sign, we get a spherical cluster or a spherical void, 
with 

ôd^-3DMl^ô0 

ôc ^ -3DP, + 3D2fi2 - D3h\ + i¿2 + . (27) 

The relative error is A = ó0¡3 4- <5o/27, i.e., 37% at <50 = 1 for a 
collapsing cluster, and a maximum of 30% at <50 = — 1 for an 
expanding void. 

When one eigenvalue is of an opposite sign, /¿i ^ /¿2 — —/¿a, 
we have an expanding pancake or an expanding filament, with 

öd ~ ~ ö0 , 

ôc ^ -Dßi- D2fil + D3ßl ~ <50 Sq <5q . (28) 

In this case A ^ — (c),, + <5o)- The case of an expanding filament 
(<50 > 0) carries the worst relative error: 100% at ô0 = 0.62 and 
200% already at <50 = 1. The maximum relative error for an 
expanding pancake (<50 < 0) is 25%, at S0 = —0.5. 

3.2. Top-Hat Model 
In the spherically symmetric case, we have an exact solution 

to compare to. Assume Q = 1 and H = 1. In a top-hat model 
of uniform density embedded in an Einstein-de Sitter universe, 
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one can find a parametric solution for the density contrast at 
time t, Sth(t). First express the cosmological time in terms of the 
local arc parameter fy. For positive and negative density pertur- 
bations respectively, denoted fc = ± 1, 

t = ka*[ri - Sk(ri)] , (29) 

were a* characterizes the amplitude of the given perturbation 
at a given time, and Sk stands for sin for k = +1 and sinn for 
k = —1. The top-hat density contrast at time t is 

9klr, - Skm
2 

2[1 - QO/)]3 - 1 , (30) 

where we use Ck for cos or cosh. At early times, both for 
positive and negative perturbations, t ^ (a*/6)/y3 and | <5th I = 
(3/20)rj2. Therefore, for comparisons of equivalent positive and 
negative perturbations in a cosmological context, where 
<<5> = 0 at any given i, we would rather choose the same a* for 
k = ill. 

Next, calculate ôd and Sc of the Zel’dovich approximation in 
this case, as functions of rj. The peculiar velocity in the top-hat 
model is 

Vth(n, r) = 
1 2[i - ckm

2 y 

So, its divergence gives 

öAv) = <50 = -V • t>th 
?kSMä - 

2[1 - CMI2 

(31) 

(32) 

On the other hand, using the continuity equation, we get after 
some algebra 

= ¿0 + 3^0 + T7<5o , (33) 
with ô0 defined by equation (32). This, not surprisingly, coin- 
cides with the result (27) for the spherical case in the ZeFdovich 
approximation, with fi1 = fi2= fi3. 

Figure 1 compares öc and ôd for the spherical case with the 
exact <5th. The densities in the ZeFdovich approximation always 
bracket the true density, ôd < ôth < öc. At ôth = —0.8, —0.5, 
1.0, 4.5, we obtain, respectively, ôd — ôth = —0.2, —0.7, —0.14, 
— 1.5 and <5C — Sth= +0.09, +0.05, +0.14, +2.4. Thus, the 
two ZeFdovich approximations seem to carry errors of similar 
magnitudes and opposite signs. A practical good approx- 

imation to the exact top-hat solution is given by the arithmetic 
average 

EE 0.5(<5C + ôd). (34) 

It deviates by less than 10% from the top-hat solution over the 
whole range -0.9 < <5th < 4.5. 

The top-hat model can be used to follow the evolution of 
any spherical perturbation of an overdensity profile <5(r) as long 
as shells do not cross. This is the case outside a collapsed core, 
provided that the mean density contrast inside a sphere of 
radius r, (5(r), is a decreasing function of r. A shell at radius r 
evolves like a top hat of density contrast ÔM = At a 
given time, equation (30) defines the corresponding rj(r). The 
radial velocity of that shell, t;[?y(r)], is then given by equation 
(31), and ô^r) is given by its divergence, taking into account the 
r dependence of rj. 

One can show that ÔJr) relates to <5(r) in exactly the same 
way as the uniform top hat öd(rj) relates to ôth(rj) {i.e., <5[f/(r)]}, 
even though ô(rf) = <5[rç(r)] and ôd(r') = ód[r¡(rf\ for some r' < r. 
One can also show that <5c(r') is typically similar to the uniform 
top-hat value of öc[rj(rj]. Thus, Figure 1 can be regarded as 
describing the relations between the densities in a general 
spherical perturbation, where the abscissa is <5(r), ôd is exact, 
and ôc is an approximation. So ôm is a good approximation in 
the general spherical case. 

We have also calculated, semi-analytically, the densities of 
the ZeFdovich approximation in a cylindrical uniform collapse 
model. For a given true value of <5, the cylindrical ôc and Sd are 
systematically better approximations to ô by about 10% rela- 
tive to the spherical case; so the cylindrical Sm is still a very 
good approximation. 

Since ôm is an exact solution in a pancake-like configuration 
and a good approximation in the spherical and the uniform 
cylindrical cases, one might hope that it would be a good 
approximation in the general case as well. This is to be tested 
below using AT-body simulations. 

4. TESTING WITH iV-BODY SIMULATIONS 

4.1. Testing the Densities in the ZeVdovich Approximation 
In order to evaluate the approximations for the density 

within the ZeFdovich approximation under more general con- 
ditions, we now test them using cosmological iV-body simula- 

Fig- L—Densities as calculated from the velocities under the ZeFdovich approximation in comparison with the exact solution in a top-hat model. The line 
marked linear denotes the density due to the linear growth rate at the time when the top-hat density is what it is; this line does not correspond to the appropriate 
top-hat velocity. 
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dons. We use a pardcle-mesh code (written by E. B.), with 643 

grid cells and 643 particles in a cubic, comoving box with 
periodic boundary conditions. At each time step the distribu- 
tion of particles is translated to density at the grid points using 
cloud-in-cell interpolation (CIC) and the force at the grid 
points is then calculated directly from the Fourier transform of 
the density using fast Fourier transforms (FFTs). The force is 
interpolated to the particle positions using CIC, and the par- 
ticles are moved using the standard leapfrog algorithm. The 
output at the final time is given as positions and velocities of 
the particles. Using CIC we calculate the density and velocity 
fields on the points of the cubic grid. The resultant velocity 
field is a mass-weighted average over the grid-cell scale. We 
then smooth the density and velocity fields further on a larger 
scale, using a spherical Gaussian window, to smooth over local 
inaccuracies of the AT-body code below the Nyquist wavelength 
and to avoid orbit-mixing and too severe nonlinearities. This 
smoothing represents volume-weighted averaging. For the 
purpose of testing the Zel’dovich approximations we consider 
these smoothed fields to be exact solutions of the equations, 
but we will return to discuss the limitations of this assumption. 

11 

We simulated two alternative cosmological models of initial 
Gaussian density fluctuations: standard cold dark matter 
(CDM, spectrum as in Davis et al. 1985) and standard hot dark 
matter (neutrinos, spectrum from Bond & Szalay 1983), 
assuming first £2 = 1, h = 0.5, and normalizing such that 
ÖM/M = 1 at 8 Mpc based on the linear power spectrum. 
These two models span the range of plausible fluctuation 
power spectra within the framework of Gaussian fluctuations 
(but non-Gaussian initial conditions are not tested here). The 
comoving box size is 160 h-1 Mpc, so the simulation grid 
spacing is 250 km s~1—on the order of the comoving scale of a 
big galaxy. 

Figure 2 shows the particle distribution and the unsmoothed 
velocity field in one slice of the simulated box, in the two 
simulations. Figure 3 shows the smoothed density contours 
and the smoothed velocity vector field in the same slice out of 
the CDM simulation (<5nb), and the corresponding Zel’dovich 
approximations dd and dc deduced from the smoothed iV-body 
velocity field. The velocities, and the actual densities, were 
smoothed with a Gaussian window of radius 1000 or 500 km 
s-1—scales similar to or larger than the galaxy correlation 

COSMOLOGICAL VELOCITY-DENSITY RELATION 

Neutrino 
vp^T1 

7\ \ t r / / ' 'rV\ \ t f \W \ Is, fV\ \ 1 f s   , 

, r t r / y 

-5000 5000 

Fig. 2.—Slices of the 64J cosmological iV-body simulations before smoothing. Length scales are measured in km s ^ Slice thickness is 1250 km s 5 The time is 
chosen such that ôM/M = 1 on a scale of 800 km s"1 as predicted by linear theory. Top: standard GDM. Bottom: standard HDM. Left: particle distribution. Right: 
peculiar velocity field. 
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Actual 

Actual 

5000 
Fig. 3b 

Fig. 3.—Peculiar velocity and density-contrast fields in a slice from the CDM iV-body simulation smoothed with a Gaussian of radius 1000 km s-1 (a) and 500 
km s-1 (b). Top right: the true density. Bottom left: dynamical density in the Zel’dovich approximation. Bottom right: continuity density in the Zel’dovich 
approximation. Contour spacing is 0.2. The thick line marks <5 = 0, solid lines mark overdensities, and dashed lines mark underdensities. 
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Fig. 4b 
Fig. 4.—Densities in the Zel’dovich approximation vs. true densities in the JV-body simulations. CDM (a) and neutrino (b) cosmologies. 1000 km s“1 (top) and 

500 km s 1 (bottom) Gaussian smoothing. 
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length that typically corresponds to a few galaxies in the field 
or to groups or clusters. The partial derivatives of the velocity 
field, used in computing öc and <5d, are calculated using cubic 
splines on the grid of 250 km s -1 spacing. 

In general, both ôd and ôc approximate reasonably well the 
actual density field for | <51 < 1, but ôc is a better approximation 
for <5 > 1 and dd is slightly better for ô < —0.3. 

In the key Figure 4 we plot ôd and Sc versus <5nb for 104 

random grid points of the simulations. The impression from 
the visual inspection of the contour plots of Figure 3 is now 
confirmed and quantified. The agreement for | <51 1 is very 
good in both cases, with a slight tendency for ^ ^nb < 

For CDM with 1000 and 500 km s-1 smoothing, respectively, 
the rms deviations are ^0.02 and 0.05. At the high positive 
peaks, ôd underestimates the density but ôc approximates the 
density remarkably well at least up to ^ = 4.5. The rms errors 
are c^0.05 and 0.1 for the two smoothing lengths. In deep 
underdense regions, the typical situation is àd ^ ^nb < with 
ôd being a somewhat better approximation to ônh. For CDM 
with 1000 km s-1 smoothing, at ô = —0.5 the typical errors 
are ^0.06 and —0.03 for ôc and ôd, respectively. 

Two questions come to mind when one tries to interpret the 
AT-body results in comparison with the exact solutions in the 
limiting cases discussed earlier. First, what is the reason for the 
small deviations of Sd from <)nb at | <51 1 ? In the linear epoch, 
when the perturbations are small everywhere, ôd and öc should 
both approach the exact solution. Figure 5a, which is similar to 

Vol. 379 

Figure 4, with the same CIC and Gaussian smoothing but at 
the initial stage of the simulation, confirms that. But why do öd 
and ôc not exactly vanish at all points where <5nb = 0? One 
reason might be the intrinsic inaccuracies in the Af-body 
method on scales comparable to the grid-cell size, and, prob- 
ably more important, the additional CIC smoothing of the 
velocity field onto the grid at the end of the simulation. Figure 
5b shows ôc versus <5nb at the initial time, after the CIC smooth- 
ing but before the Gaussian smoothing. The initial displace- 
ments are performed by the Zel’dovich approximation itself, so 
ôc should be an exact solution. The scatter in Figure 5b must 
therefore be a measure of the CIC inaccuracies, which are 
apparently nonnegligible. (Note that this is not a problem in 
the simulated time evolution itself. The CIC errors are 
expected to be especially large at the beginning of the simula- 
tion because the particles are barely displaced from a uniform 
grid. Although these errors show up strongly in Fig. 5b, they 
have little effect in the simulation itself because an optimal 
Green’s function is used to correct the gravitational potential 
and because the initial velocity field is computed using FFTs 
with no CIC interpolation.) 

Another point related to the same issue is whether ô oc 
— V • t> is indeed a solution at a point where | <51 1 but at a 
nonlinear epoch, when the density is nonlinear at other points. 
In particular, is <5 oc — V • t> valid at a point where today <5 = 0, 
but where, most likely, ô was nonzero at some other time? The 
key point is that linear theory is inapplicable if there are non- 

NUSSER ET AL. 

CDM 500 

^NB ^NB 

Fig. 5.—Densities in the Zel’dovich approximation vs. true densities in the initial time of the CDM N-body simulation. Top: Gaussian smoothed with 500 km 
s “1. Bottom : unsmoothed. 
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linear density fluctuations in the vicinity of a point. The non- 
linear time dependence is not given by either of the linear 
modes and the time and position dependence do not separate 
as they do in the linear regime. Thus, nonliner evolution may 
introduce a nonzero div v even at points where <5 = 0 today. 

Finally, the scatter near <5 = 0 might reflect the error made 
when we assume zero pressure and zero vorticity. 

The second question is how does the performance of the 
ZePdovich approximation in the N-body simulations at points 
of large | <51 compare to its performance in the spherical case, 
for example. They agree quite well for negative perturbations, 
but for large positive perturbations, while the order <5d < <5C is 
typically kept, both <5C and <5d tend to be smaller in the iV-body 
case; öd by about 10% and <5C by about 20% at <5^3, for 
example. We can blame some of this effect on the CIC smooth- 
ing of the velocities discussed above (e.g., Fig. 5b). For example, 
if in some regions the velocity is anticorrelated with the 
density, this mass-weighted smoothing might result in a sys- 
tematic underestimate of the velocity field, and therefore in its 
derivatives. This might be the case in the high density regions. 

Another difference is the presence of collapsed regions in the 
AT-body system, as in the real world, e.g., in galaxies or in the 
cores of clusters. In such regions orbits cross and the CIC 
velocity is an average over particles that may move in opposite 
streams. The result might therefore be smaller velocities and 
their partial derivatives relative to the velocity and derivatives 
in the spherical toy model where shell crossing was neglected. 
The Gaussian smoothing then carries the efifect to large dis- 
tances away from the collapsed cores, which results in a 
general reduction of the velocity gradients preferentially in 
regions of relatively high density. As long as the extent of the 
collapsed regions in the simulation is comparable to that in the 
real universe, and as long as the CIC smoothing scale is com- 
parable to this scale, we believe one can regard the A-body 
simulations as a good nonlinear approximation for the real 
universe and use it as a reference for testing the densities in the 
Zel’dovich approximation and other quasi-linear approx- 
imations. Based on the different power spectra and smoothing 
lengths tried here, we conclude that the results are not very 
model-dependent. But more tests with different grid-cell sizes 
are required in order to quantify the exact sensitivity to the 
CIC smoothing in collapsed regions. 

The bottom line is that the Zel’dovich approximations can 
provide a very useful estimate for the smoothed <5(jc) given the 
smoothed v(x), all computed in Eulerian space. Based on the 
comparison with the smoothed A-body simulations we find 
that the rms error of the densities in the Zel’dovich approx- 
imation is less than 0.1 over the extended range 
— 0.7 < <5 < 4.5 for <5C, and over the more limited range 
— 0.75 < <5 < 0.7 for <5d. Thus, <5C is a very sensible approx- 
imation over the range of interest. A slightly more fancy 
approximation for <5 < 0 is given by (<5C + <5d)/2, for which the 
rms deviation from the smoothed A-body results is less than 
0.05. 

In the original POTENT papers (e.g., Dekel et al. 1990) we 
calculated the density field using an elaborate iterative scheme 
based on the Lagrangian Zel’dovich displacements. This calcu- 
lation was time-consuming, and it suffered from occasional 
convergence problems. The smoothed density was then com- 
puted using a very slow interpolation with a Gaussian point- 
spread function. We have now adopted <5 = <5C as our working 
scheme in the POTENT analysis. It gives similar results, but it 
is about 100 times faster, allowing the use of a finer spatial grid 
and many Monte Carlo noise simulations. 

15 

4.2. Empirical Second- and Third-Order Corrections 
The surprisingly small scatter of <5d about its mean, as seen 

for the A-body simulation in Figure 4, and the fact that its 
deviation from the true density is not too sensitive to the differ- 
ences between the power spectra simulated or the smoothing 
lengths used, calls for an analytic fit to the scatter plot of <5d, 
which can serve as an empirical nonlinear correction. Guided 
by the fact that the continuity density in the ZePdovich 
approximation is a good approximation over the whole quasi- 
linear regime, and that in almost all the special configurations 
studied in § 3.1 it can be expressed as a third-order polynomial 
of <50, we find that the function 

<5 = <50 + 0.2<5;- + 0.05<5¿ (34) 

is a good practical fit in the range — 0.8 < <5 < 4.5, to an accu- 
racy better than ±0.1, both for the CDM and neutrino simula- 
tions with either 500 or 1000 km s_1 smoothing. As an 
illustration, this function is drawn in Figure 6 on top of the 
scatter plot corresponding to the CDM simulation with 500 
km s -1 smoothing. This empirical result could indeed be inter- 
preted as an appropriately weighted average of the relations 
between <5C and <50 in the prototypical cases of generic sym- 
metries in § 3.1; it is consistent with the structure being domi- 
nated by a mixture of filaments and pancakes. A similar 
approximation, to second order, can be derived analytically 
under the assumption that the local dimensionality of the flow 
remains constant (Nusser, Dekel, & Lynden-Bell 1991). 

We also use the A-body simulations to test nonlinear correc- 
tions involving second derivatives of the sort oc \2v2, as dis- 
cussed in § 3.6. A good fit on the average is obtained for <5 = <50 
+ 0.33V2z;2, as shown in Figure 7 for the CDM simulation 
with 500 km s-1 smoothing. (Note that this is just opposite to 
the “correction” obtained in eq. [22], demonstrating the fact 
that we could not have obtained a meaningful correction using 
a linear approximation for the time derivative.) But here, the 
rms scatter is much larger than in the Zel’dovich approx- 
imations, on the order of 0.3 over most of the quasi-linear 
range. This scatter, and the numerical disadvantages associ- 
ated with the need to calculate second derivatives, make this 
empirical approach much less appealing than the continuity 
density of the Zel’dovich approximation (16), or the empirical 
approximation (34). Second-order corrections that include 

^NB 
Fig. 6.—The empirical polynomial fit <5 = <50 + 0.2<5o + 0.05<5o (dashed) and 

its approximate inverse <50 = ô/(l + 0.18<5) (solid) on top of the scatter plot of 
the dynamical density of the Zel’dovich approximation ôd ( = <50) vs. the true 
density <5 from the CDM iV-body simulation with 500 km s -1 smoothing. 
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^NB 
Fig. 7.—The empirical approximation <5 = <50 + 0.33V2i;2 vs. true density 

in the N-body simulation; CDM with 500 km s -1 Gaussian smoothing. 

pressure effects may do better, but they are more complicated 
to implement and, besides, why work hard when the simple ôc 

does so well? 

4.3. The Validity of the Approximations in an Open Universe 
To test the validity of some of the approximations discussed 

above in an open Friedmann universe, we have applied them 
to a CDM simulation of an open model, in which the present 
density parameter is Q = 0.2 and the amplitude of the fluctua- 
tions is normalized as before. 

Vol. 379 

In the expressions for the densities in the Zel’dovich approx- 
imation, equations (16) and (19), we have substituted 
/(Q) = Q0'6. Figure 8 is the Q = 0.2 equivalent of Figure 4a. It 
shows Sd and ôc versus the true <5nb at 104 random grid points 
for two different smoothings: 1000 and 500 km s_1. The 
behavior of the approximations is quite similar to the Q = 1 
case; both the systematic deviations and the scatter are of 
similar magnitude. A closer look reveals that | <5C | tends to be 
slightly larger than in the Q = 1 case for large | ô \ values, which 
makes it a slightly better approximation at negative fluctua- 
tions and slightly worse at large positive fluctuations. 

Also plotted in Figure 8 is the empirical third-order poly- 
nomial of equation (34), which has been determined by eyeball 
fit in the Q = 1 case (Fig. 6). It turns out that with the simple 
oc/(Q)-1 dependence of <50, the same polynomial still provides 
a very good fit in the Q = 0.2 case. Since, even with 500 km s ~1 

smoothing, the systematic deviation of the points from this fit 
is only on the order of the scatter, we conclude that the same 
polynomial can serve as a practical good approximation for 
Q = 0.2 as well. This result will be found particularly useful in 
the inverse analysis discussed in the following section. 

5. VELOCITY FROM DENSITY 

In some cases one wishes to reverse the process and recover 
the velocity field from a given density field. This is done, for 
example, in the iterative analysis of the IRAS galaxy redshift 
catalog, where the galaxies are assumed to trace the mass 
(Yahilet al. 1990). 

NUSSER ET AL. 

CDM 1000 n=0.2 

Fig. 8.—Densities in the Zel’dovich approximation vs. true densities in an open-model AT-body simulation of CDM with Q = 0.2 today. Also shown is the 
polynomial fit of Fig. 6. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
..3

79
 ..

..
6
N

 

No. 1, 1991 COSMOLOGICAL VELOCITY-DENSITY RELATION 17 

In the linear regime the solution is simple (but not local). 
Given 

\ -v(x)= -Hfô0(x), v = —V(t>v, 

the general solution is an integral over all space : 

(35) 

(36) 

where </>' vanishes for a perturbed Robertson-Walker universe. 
In practice, as long as the power spectrum drops steeply 
enough toward large scales, in particular if the power index of 
the density power spectrum is n> — 1, the gradient of (j)v is 
dominated by some finite neighborhood of x. Based on the 
analysis of the iV-body simulations (Fig. 4), we can tell that in 
the range | <51 < 0.7, the linear approximation <50 typically 
approximates the real Ô with an accuracy of about 10%. 

In the quasi-linear regime, the “ linear ” solution (36) is still 
valid for the dynamical density in the Zel’dovich approx- 
imation. However, we learned that for <5 > 1 the continuity 
density of the Zel’dovich approximation is a much better 
approximation to the true density. Then, one could, in prin- 
ciple, solve for v(x) and </>(jc) in the more complicated set of 
equations 

<5« = 
dv 
dx -1, (37) 

Unfortunately, we do not see an easy solution to this nonlinear 
set of elliptic differential equations and their boundary condi- 
tions. 

A more practical approach is suggested as follows. We have 
noted in Figure 4, based on the smoothed N-body results, that 
the linear ô0 (identical to the dynamical ôd) and the true <5, both 
associated with the same velocity field, show a relatively tight 
correlation. A simple approximate inverse of the polynomial fit 
(34) is 

<50 = 0/(1 + 0.18(5) . (38) 

This is a good practical fit in the range — 0.8 < <5 < 4.5 (and 
beyond), to an accuracy better than ±0.1, for all the simula- 
tions and the various smoothing tested. This function is also 
shown in Figure 6. 

The proposed procedure would be to first use the correlation 
(38) to translate the given true ö to an equivalent <50 at all 
points, and then solve for v(x) using <50 in the linear solution 
(36). This procedure will be tested in detail elsewhere. 

6. SUMMARY AND CONCLUSIONS 

Given the peculiar velocity field of a quasi-linear gravitating 
system, v(x), in comoving coordinates x, alternative density 
fields can be computed locally under the assumption of 
ZeFdovich displacements, using the first partial derivatives of 
the velocity components in Eulerian space: the continuity 
density, 

<5c = 
dv 
dx 

(39) 

which ensures conservation of mass, and the dynamical 
density, 

Sd=-(Hfr1\-v, (40) 

which conserves momentum and actually coincides with the 
linear approximation, ô0. 

Studying the difference between ôd and ôc in several generic 
configurations we find that both coincide and provide an exact 
solution in the case of a pure pancake, they differ at | <501 ~ 1 by 
about 25% in the most common case of a filament, and by 
30%-40% in the spherical case. The worst difference is 
obtained in the case of an expanding filament, 100% already at 
<50 = 0.62, but such a configuration is rare, and it reaches high 
densities only at a late time. 

A comparison of the densities under the Zel’dovich approx- 
imation with the exact solution in the top-hat model yields that 
<5C and ôd carry errors of similar magnitudes and opposite signs 
such that Sd < <5th < <5C. The relative errors are about 14% at 
<5 = 1, 34%-53% at <5 = 4.5, and 13% at <5 = -0.5. The arith- 
metic average 0.5(<5C + <5d) is a practical good approximation to 
the top-hat solution over the range — 1 < <5 < 4.5. 

The results fr more generic configurations, as derived from 
AT-body simulations of CDM and neutrino cosmologies with 
Q = 1 and Q = 0.2, smoothed with a Gaussian of radius 500 or 
1000 km s_1, are consistent with a certain mixture of the 
results for pancakes, filaments and spherical cases and are 
somewhat different from the top-hat results (mainly because 
the collapse is never really spherical, and mostly because of the 
smoothing over regions where shell-crossing occur). A useful 
(and elegant) working approximation is given by <5C over the 
range — 0.7 < <5 < 4.5, with rms deivation from the A-body 
results of less than 0.1 everywhere. The average (<5C + ôd)/2 has 
an rms deviation better than 0.05 for negative perturbations. 

The exact second-order solution is much less useful because 
it is nonlocal. However, a third-order correction, motivated by 
the Zel’dovich approximation in the cases of special configu- 
rations, and by the “dimensionality” approximation (Nusser 
et al. 1991), has been determined empirically from the AT-body 
simulations to be 

<5 = <50 + 0.2<5g + o 05^3 ? (41) 

with an rms scatter better than 0.1 over the range 
— 0.8 < <5 < 4.5. The same polynomial provides a good 
approximation for Q values in the range 0.1-1. 

Attempts to apply linear time evolution in the dynamical 
equation which explicitly include a second-derivative term gen- 
erally fail. The best correction proportional to V2i;2 has been 
determined empirically to be <5 = <50 + 033\2v2, but with a 
large scatter on the order of 0.3 everywhere. 

The continuity density derived from the Zel’dovich displace- 
ment field, or the empirical third-order polynomial given here, 
thus provide useful tools for reconstructing the mass density 
field from the quasi-linear velocity field. The three-dimensional 
velocity field itself can first be obtained from radial peculiar 
velocities using the potential flow analysis of Bertschinger & 
Dekel (1989). These approximations complete the POTENT 
analysis, allowing us to reconstruct all of the dynamical fields 
from the observed radial peculiar velocities of galaxies all the 
way to the total (dark plus luminous) mass density distribu- 
tion. 

The mass density fluctuations can be compared directly with 
the predictions of competing theoretical scenarios, indepen- 
dently of questions about biasing. These tests should constrain 
models of the fluctuation generation in the early universe and 
may clarify the nature of the dark matter. Even more impor- 
tantly, a comparison of the distribution of mass with that of 
luminous galaxies on large scales can constrain the poorly 
understood process of galaxy formation. 

The inverse problem of extracting the velocity field from a 
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given density field involves non-local integrals even in the 
linear approximation. The relatively tight correlation seen in 
the different A/-body simulations between the true and the 
dynamic ( = linear) densities that are derived from the true 
velocities under the Zel’dovich approximation, with an rms 
width of less than 0.1, suggests the following practical quasi- 
linear scheme. Use an empirical fit based on the AT-body simu- 
lations to translate the given density to an equivalent 
dynamical density and then solve for the velocity using the 
linear procedure. A useful empirical fit of this sort, good to an 
accuracy of about 0.1 in the range — 0.8 < <5 < 4.5 for 
0.1 < Q < 1, is given by 

— V • v = <5/(1 +0.18¿). (42) 

This method will be tested carefully in another paper. 
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