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ABSTRACT 

Combining a model of the mass distribution in the gravitational lens Q0957 + 561 with measurements of the 
velocity dispersion of the primary lensing galaxy and the time delay between the two images, the Hubble 
constant has been recently estimated to be H0 = 37 ± 14 km s_1 Mpc-1. The result depends weakly on the 
assumed value of q0 and may have systematic errors due to nonuniqueness of the model. It is shown here that 
the quantity that is most directly measured using a gravitational lens system is not H0 but rather the angular 
diameter distance dOL from the observer to the lens. The determination of dOL requires neither a knowledge of 
the distance to the source nor any cosmological assumption other than local isotropy and homogeneity trans- 
verse to the line of sight, again with possible systematic effects. In the case of Q0957 + 561, where the lens is at 
a redshift of zL = 0.36, the result is dOL = 1700 ± 600 Mpc. If the mass distribution of the cluster surrounding 
the primary lens in Q0957 + 561 can be determined through independent observations, then it may be possible 
to estimate both H0 and q0. 
Subject headings: cosmology — dark matter — galaxies: distances — gravitational lenses 

1. INTRODUCTION 

Long before the discovery of the first gravitational lens, 
Refsdal (1964, 1966) proposed that a measurement of the time 
delay between the multiple images produced by such a lens 
could be used to measure the Hubble constant H0 and possibly 
the deceleration parameter q0. With the discovery of 
Q0957 + 561 (Walsh, Carswell, & Weymann 1979), and subse- 
quently several other examples of lensing, this idea has now 
become a practical possibility. Most of the attention has been 
focused on Q0957 + 561, in part because this has been the most 
promising source for the measurement of time delay but also 
because VLBI observations (e.g., Gorenstein et al. 1988) have 
provided reasonably strong constraints on the mass model of 
the lens. 

Using a simple but realistic model of Q0957 + 561 that fits 
all the observations, Falco, Gorenstein, & Shapiro (1991, here- 
after FGS) provided the following formula for the Hubble con- 
stant, where H0 is expressed in terms of observables, 

"«-(90± 10)(390kms-)I(i^) 

Here, a is the velocity dispersion of the lensing galaxy (which is 
at a redshift of zL = 0.36) and At is the time delay between the 
two lensed images of the background quasar (at redshift zs = 
1.41). The error estimate includes uncertainties in the mass 
distribution of the lens model (however, see Kochanek 1991). 
Recent measurements indicate that <r = 303 ± 50 km s "1 

(Rhee 1991) and Ai = 536 ± 12 (95% confidence) days (Lehar 
et al. 1991; Press, Rybicki, & Hewitt 1991). These measure- 
ments give H0 = 37 ± 14 km s-1 Mpc-1, though Kochanek 
(1991) and Roberts et al. (1991) argue that the velocity disper- 
sion of the halo of the lensing galaxy may be larger than that of 
the stars by a factor of up to (1.5)1/2 (cf. Turner, Ostriker, & 
Gott 1984), in which case H0 = 56 ± 20 km s -1 Mpc - ^ In any 
case it seems that Refsdal’s original proposal has finally 
become a reality. 

Although it is usual in this subject to express the results in 
terms of H0, it is well known that what is in effect measured is 
an angular diameter distance, which is then converted to H0 

through a cosmographie model. The obvious question then is 
the following. Exactly which angular diameter distance, or 
combination of distances, does one measure through gravita- 
tional lensing? There are at least four candidates: the angular 
diameter distance from the observer to the lens dOL, the 
observer-source distance dos, the lens-source distance dLS, and 
the following effective distance which appears frequently in the 
theory of gravitational lensing, 

^eff = ^ol ^os/^ls • (2) 

It is shown in this Letter that gravitational lensing uniquely 
determines the observer-lens distance dOL and that the result 
requires neither a knowledge of the distance to the source nor 
any assumption regarding the cosmological model of the uni- 
verse. The proof of this result is given in § 2, and some conse- 
quences are explored in § 3. 

2. PROOF 

Consider a reference null geodesic that reaches the observer 
after passing through the center of the lensing galaxy (defined 
to be a projected point with no gravitational deflection). Erect 
a “ source plane ” perpendicular to this geodesic, and represent 
the position of the source by the transverse vector rs on this 
plane. In the absence of lensing, the angular position of the 
source as seen by the observer will be 0S = rs/dos. Consider 
now a light ray that travels from the source to a point at 
transverse position rL on the “lens plane” and then travels 
from there to the observer. The observer sees the ray arriving 
along the direction Oj = rL/dOL (we use / for image). The excess 
“ geometrical ” time delay along this ray, compared to the ref- 
erence ray, may be written under quite general conditions of 
isotropy in the form (see the Appendix) 

te'Om = (ljy^d'if(0i-0s)2. (3) 

Note that here and below we use units such that c = 1. 
Consider next the “gravitational” time delay igrav intro- 

duced by the lens. Following FGS let us model the lens as 
consisting of a lensing galaxy plus dark matter associated with 
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a surrounding cluster. We may then write the gravitational 
time delay measured by a clock in the lens frame as 

¿grav = — ö'2^Ol[z(^/) + iQsiOl ~ ^s)2 + 2^a(^I ~ ^s)2] • W 

The first term on the right-hand side of equation (4) is the 
time delay due to the galaxy written in a general form that 
encompasses most cases of lens modeling. The function /(#/), 
which represents the angular “shape” of the line-of-sight- 
integrated two-dimensional potential of the galaxy, will nor- 
mally be known to within a few adjustable parameters, either 
from an assumed model (e.g., a King profile with an additional 
central point mass as in the FGS model of Q0957 + 561) or 
from an observed surface brightness distribution coupled with 
the assumption of a constant mass-to-light ratio (e.g., the 
model by Schneider et al. 1988 for Q2237 + 031). To convert 
the dimensionless x(Qi) t° a two-dimensional potential, one 
needs to normalize first by dOL to go from an angular scale to a 
physical linear scale and second, by another factor that charac- 
terizes the dynamical mass of the galaxy. The latter factor is 
written as a2, where a represents an observable velocity. If the 
galaxy is an isothermal system, then a is simply the velocity 
dispersion of the stars and dark matter. In more complicated 
models, a will represent some characteristic velocity of the 
system, for instance the rotation velocity or velocity dispersion 
at some fiducial angular position relative to the center. 
Although the details will depend on the particular model used 
to describe the mass distribution of the galaxy, nevertheless, 
the form written in equation (4) must almost always be valid, as 
can be seen purely from a dimensional argument. 

The rest of equation (4) corresponds to a simple model of the 
dark matter associated with the cluster (FGS). The second 
term on the right-hand side describes an isotropic focusing 
term, while the third term represents shear introduced by the 
dark matter. Both terms are scaled by cr2dOL for later conve- 
nience. This model of the dark matter is not as general as the 
galaxy model considered above but is arguably adequate so 
long as the cluster is smooth on the scale of the image separa- 
tion. Note that in equation (4) qs is a scalar parameter while qA 

is a traceless symmetric 2x2 matrix described by two param- 
eters which may be taken to be the magnitude and orientation 
of the shear. All three parameters are assumed to be essentially 
unconstrained by the observations, except for the requirement 
that qs>0 since dark matter cannot have negative mass den- 
sity. The term involving qA in equation (4) is a quadratic form 
that should technically be written as (Oj — 0S)R qA(0j — 0S)C dis- 
tinguishing row and column vectors of (07 — 0S); an abbreviat- 
ed notation has been used for simplicity. Another minor point 
is that FGS express the dark matter time delay in terms of Oj 
rather than (07 — 0S)2 as written here. It is easily shown that 
this difference is irrelevant since it merely redefines the unob- 
servable “true” position of the source. (Gorenstein, Falco, & 
Shapiro 1988 call this a “ prismatic ” transformation.) 

The total time delay at the observer is given by 

^tot ^geom F (1 H- Z^Jígrav 

= (1 + z^dodiaOj - es)2 - /(07) - i^(07 - 0S)2] , (5) 

where the scalar parameter C is defined by 

~<ls- (6) 

1985; Blandford & Narayan 1986). Setting dt^JdOj = 0, we 
thus obtain the lens equation that must be satisfied by each of 
the multiple images, 

(Í - - 0S) = dx/dOj . (7) 

Note that dx/dOj = <x(07)/<72, where <x(07) is the usual deflection 
angle due to the primary lensing galaxy at impact parameter 
dOL 07. Differentiating equation (7) once more with respect to 
0S gives the magnification matrix at each image. 

M^ = C-qA 
SOs C-qA- d2x/d0f 

(8) 

Fermat’s principle states that the images are located at the 
positions 07 at which ttot is an extremum for fixed 0S (Schneider 

Equations (5)-(8) are the basic relations needed for the mod- 
eling and interpretation of multiply imaged quasars. Except for 
equation (5) which has the dimensions of time, the others are 
dimensionless. The data to be fitted are the positions 07 of the n 
images of the source, and n — 1 relative magnifications. In 
favorable cases such as Q0957 + 561 observations provide the 
complete 2x2 relative magnification matrix, but more often 
one merely obtains the determinants of the matrices. The 
parameters at the disposal of the modeler are the scalar Ç (one 
parameter), the matrix qA (two parameters), the source position 
0S (two parameters), and the internal degrees of freedom of 
x(0j) which, in the case of the FGS model of Q0957 + 561, 
consist of two dimensionless parameters, viz., an angular core 
radius and the relative strength of the central point mass. 
Having solved for the parameters, if one also has a measure- 
ment of the differential time delay between images and/or the 
dynamical velocity a, then various deductions can be made as 
discussed below. Points (l)-(4) are already known, but points 
(5)-(7) seem to be new. 

1. Following Refsdal, suppose we do not include any dark 
matter in the model. Setting qs = 0,qA = 0, equation (6) shows 
that the model-fitted value of f directly gives cr2, provided that 
d0s/dLs is known (from zs and an assumed q0). Substituting this 
into equation (5), one can then use a measured time delay to 
obtain H0 (corresponding to the assumed q0). Alternatively, if 
At is not available but a is measured, then equation (6) gives 
dos/dLS, which may be used to deduce q0. Finally, if Ai and cr 
are both measured, then H0 as well as q0 may be obtained. 

2. If a more realistic model including dark matter is con- 
sidered, then equation (6) reveals the fundamental degeneracy 
identified by Falco, Gorenstein, & Shapiro (1985). The expres- 
sion for C involves two parameters, cr and qs. This means that 
the solution for ( obtained from the lens model corresponds 
not to a unique model but rather to a one-parameter family of 
models in which the mass in the galaxy (described by cr) and the 
mass in the cluster (given by qs) are mutually adjusted. Conse- 
quently, since the time delay depends on a, a measurement of 
At does not provide a unique solution for H0. Nevertheless, 
since qs cannot be negative (dark matter cannot have negative 
density), equation (6) may still be used to estimate the 
maximum value of a and hence the maximum value of H0 

(Borgeest & Refsdal 1984). For the FGS model of Q0957 + 561, 
the results are <7max = 390 km s -1 and (H0)max = (90 ± 10)(Ai/l 
yr)-1 km s_1 Mpc-1 for q0 = j. Using the measured Ai, this 
gives(H0)max = 61 ± 7kms“1 Mpc-1. 

3. Equation (5) shows that if the time delay is measured, 
then one obtains an estimate of G2dOL. It is easy to verify that 
this quantity determines the mass distribution of the lens 
expressed in angular coordinates. Thus, one can obtain the 
surface mass density per unit solid angle across the lens or the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1A
pJ

. 
. .

37
8L

. 
. .

5N
 

No. 1, 1991 GRAVITATIONAL TENSING L7 

mass enclosed within any angular contour in the lens. These 
estimates will depend of course on the assumed “ shape ” of the 
mass distribution, which goes into the assumed x(@i\ but 
not require any knowledge of H0,q0, or the mass of the cluster. 
This interesting result was discovered by Borgeest (1986). 

4. If both Ai and a are measured, then the model degeneracy 
discussed in point (2) above is broken and a unique mass 
model is obtained. This leads to a specific solution for H0 
corresponding to an assumed q0, as discussed in § 1. 

5. If cr is measured and Ç, qA and the internal parameters in 
/(Oj) are all obtained through the lens modeling, then the only 
unknown in the right-hand side of equation (5) is dOL. There- 
fore, a measurement of the differential time delay between a 
pair of images provides a unique solution for dOL. This proves 
the main result claimed in this paper. The key point is that the 
other angular diameter distances, dos and dLS, enter the rele- 
vant equations only in the particular dimensionless com- 
bination (• Therefore, once ( is fitted in the model, the actual 
value of these distances is unimportant. Equation (1) from FGS 
may now be recast into the following result for the angular 
diameter distance to the lensing galaxy in Q0957 -1-561, 

¿oL - (700 ± ‘(^) Mp* . (9) 

For a measured <7 = 303 ± 50 km s-1 and Ai = 536 ± 12 days, 
this gives dOL = 1700 + 600 Mpc, or d0L = 1100 ± 400 Mpc if 
one includes the correction factor of 1.5 (Kochanek 1991; 
Roberts et al. 1991). It should be emphasized that equation (9) 
is independent of q0. It is even independent of the quasar red- 
shift ! 

6. Given a and Ç, equation (6) provides a lower bound on 
dos/äLS, viz., dos/dLS > o% In the FGS model, C/c2 = 
1.10 X 10"5 (kms-1) 2, hence 

1.671 
390 km s' 

(10) 

In favorable cases this might be translated into a bound on q0. 
For a - 300 km s“1 as measured by Rhee (1991), there is no 
useful bound. However, if the true (7 of the halo of the lensing 
galaxy is 300(1.5)1/2 km s-1 (Kochanek 1991; Roberts et al. 
1991), then dos/dLS > 1.50, which correponds to q0 > 0.1. 

7. If the dark matter density parameter qs is measured, for 
example by mapping the spatial distribution of the galaxies in 
the cluster and measuring their velocity dispersion, then equa- 
tion (6) would provide a unique solution for dos/dLS rather than 
merely a bound. One would then have a solution for both H0 
and q0. 

3. DISCUSSION 

The main result of this Letter is that a gravitational lens 
model coupled with a measured time delay gives an estimate of 
the angular diameter distance dOL from the observer to the 
lens. The estimate is independent of cosmological parameters 
such as H0,q0, or À and is valid so long as the geometrical and 
gravitational time delays may be written in the forms assumed 
in equations (3) and (4). Equation (3) is applicable, provided the 
universe is isotropic and locally homogeneous transverse to 
the line of sight (see the Appendix), while equation (4) requires 
that the cluster dark matter be sufficiently smooth on the scale 
of image separation (§ 2). In the case of Q0957 + 561, using the 
FGS model and current observations, it is estimated that 
dOL = 1700 + 600 Mpc provided one assumes that the mea- 
sured velocity dispersion reflects the mass distribution of the 

whole galaxy including its halo. If one introduces a correction 
factor of (1.5)1/2 (Kochanek 1991; Roberts et al. 1991) between 
the velocity dispersion of the stars and the halo, then dOL = 
1100 + 400 Mpc. The quoted error estimates are dominated by 
the uncertainty in the measured value of cr. Improved observa- 
tions would be most useful. 

Interestingly, the estimation of dOL from observations of a 
gravitational lens requires no knowledge of the distance to the 
source. This is somewhat obvious in retrospect. The point is 
that the component of the dark matter that is described by the 
parameter qs behaves exactly like a perfect converging lens. 
Since qs is considered a free parameter, this means that the 
effective focal length of the dark matter lens is undetermined. 
Consequently, the distance to the source too is unconstrained. 
Instead, it is the particular combination of parameters making 
up £ that turns out to be important, but this is determined 
directly in the model-fitting process. 

The fact that one can measure the angular diameter distance 
to the lens without knowing the distance to the source means 
of course that it is not necessary to know the redshift of the 
source. This may turn out to be a useful feature of the method. 
The most promising lens candidates for cosmography are 
likely to be radio-loud sources because (1) they tend to have 
extended structure such as rings (e.g., MG 1131+0456; Hewitt 
et al. 1988), and (2) VLBI observations, where possible, can 
potentially provide much more detailed information on the 
magnification matrix than one normally obtains with nonradio 
sources. This Letter shows that a radio source with no optical 
identification could still be a powerful tool for cosmography 
provided the redshift and velocity dispersion of the lens are 
measured, and a time delay is obtained. 

The insensitivity to source distance also means that any 
deviation of the universe from homogeneity can be tolerated so 
long as it occurs on the far side of the lens and the deviations 
are on a sufficiently large angular scale that the concept of 
angular diameter distance survives over the scale of the image 
separations (~10", ~100 kpc). In the case of Q0957 + 561, 
there are unconfirmed reports of a second cluster of galaxies 
behind the primary lens. According to the result proved in this 
Letter, the presence of such a cluster makes no difference to the 
determination of dOL so long as its effect is merely to introduce 
an additional convergence, i.e., another contribution to the 
unknown qs. In fact, a stronger statement can be made. Even if 
the second cluster contributes both convergence and shear— 
indeed, even if there are several clusters at different redshifts 
behind the lens contributing variable amounts of convergence 
and shear—these will be absorbed into qs and qA, and the 
determination of dOL is unaffected. Only if the universe has 
inhomogeneities between the lens and the observer is there a 
significant effect. In this case, if the additional contribution is a 
pure convergence, then the present analysis continues to be 
valid, but gravitational lensing will now measure the local 
angular diameter distance along the line of sight to the lens, 
which will in general deviate from the global average for the 
universe as a whole. However, if there is also shear, then even 
the concept of a scalar dOL breaks down and one must replace 
it by a 2 x 2 matrix. This will introduce two additional param- 
eters in the model. (It is sufficient to restrict attention to a 
symmetric matrix for dOL, since the antisymmetric part corre- 
sponds to an unmeasurable and irrelevant rotation). The 
necessary extension of the modeling procedure is straightfor- 
ward, but the additional parameters will require more observa- 
tional constraints for a reliable solution. 
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An interesting sidelight of the present analysis is that 
Q0957 + 561 may already be on the verge of setting weak limits 
on q0 (see § 2, point [6]). One may in fact be able to do better. 
If the mass distribution of the surrounding cluster in 
Q0957 + 561 can be observationally determined, then one may 
be able actually to determine both H0 and q0. Detailed obser- 
vations of the spatial and velocity structure of the cluster 
would be very useful. 

Another point worth highlighting is that the surface mass 
density of the lens per unit solid angle can be estimated from a 
measured time delay without knowing the distance to the lens, 
the velocity dispersion of the galaxy, or the mass of the cluster 
(Borgeest 1986, § 2, point [3]). This means that one can obtain 

Vol. 378 

the absolute mass of the galaxy out to any isophote, the relia- 
bility of the estimate being limited only by the degree of 
uniqueness of the lens model. Unfortunately, this cannot be 
translated to a mass-to-light ratio for the lens because one 
cannot estimate the luminosity of the galaxy—the “light”— 
without knowing the distance to the galaxy. 
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NARAYAN 

APPENDIX 

Consider a ray traveling from the point rL on the lens plane to the point r0 on the “ observer plane.” The excess geometrical time 
of this ray as measured by the observer, compared to a reference ray that travels from rL = 0 to r0 = 0, may be written rather 
generally in the form (note c = 1) 

ÍolK, *l) - 2 ydi 

r2 ro rj\ 

d2 dj 
(Al) 

In the lens plane, the same ray has a travel time equal to t0J(l + zL). In writing equation (Al), it is assumed that the distances dl5 d2, 
d3 are simple scalars (their physical meaning is given below), which requires that the medium be isotropic. Further, by employing a 
quadratic dependence of the time delay on r0, rL, it is being assumed that the medium is homogeneous transverse to the ray over the 
region of interest (~10", ~100 kpc). However, no assumption of homogeneity is made along the direction of the ray. In the 
language of geometrical optics, t0L(r0, rL) is the so-called point characteristic corresponding to the two end-points of the ray (cf. 
Born & Wolf 1980). 

In the observer frame, the angle between the above ray and the reference ray is 

0QL = 0j — dr0 
(A2) 

This shows that dx is the “ parallax distance ” from O to L and that d2 = dOL is the observer-lens angular diameter distance. The 
angle made by the ray in the lens plane is 

01.0 — 
1 dtn 

(1 + zL) drL (1 + zL)d2 (1 + zL)d3 
(A3) 

Thus, (1 + zL)d3 is the parallax distance from the lens to the observer. 
We may similarly write the geometrical time as measured in the lens frame for a ray traveling from rs (in the source plane) to rL as 

rs) — 
1 
2U 

rl 2»jJ_rs r|\ 
d5 dj ' 

(A4) 

As before we find that d5 = dLS is the lens-source angular diameter distance. 
The total geometrical time as measured by the observer is ígeom = íql + (1 + zl)íls- In the absence of any deflection by the lens, 

the trajectory of the ray that goes from rs to #*0 = 0 may be found by minimizing rgeom with respect to rL (Fermat’s principle). If we 
define the angle made by this ray at the observer as 0S, we find 

rs — d2 d* 
1 _1_ 

A +(1 + zL)d3_ 
= dos 0S (A5) 

This expresses the observer-source angular diameter distance dos in terms of the other distances defined above. 
It is now a simple matter to compute the excess geometrical time for a ray to travel from rs = dos 0S to rL = dOL 0I and then to the 

observer at r0 = 0. The result, as measured by the observer, is 

igeom(0/j 0s) 
(1 + Zl) doL^os 

(0/ - 0s)2 (A6) 

which is the formula used in the text. 
To interpret equation (A6) physically, note that the deflection angle a of the ray in the lens plane and its lateral offset ArL are given 

by 

* = (0, - 0S), Art = dOL(0, - 0S). (A7) 
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Thus equation (A6) becomes 

igeom = -- +2 — A»-l • « . (A8) 

This result is self-evident when one thinks in terms of wavefronts (cf. Kayser & Refsdal 1983) and remembers that these are 
assumed to be quadratic. Apart from the redshift factor, equation (A8) is no more than a restatement of the trivial result that, if 
f(x) = ax2/2, then/(x) = x/'(x)/2. 

If there is anisotropy, then the inverse distances dl 
1-d6 

1 in equations (Al) and (A4) have to be replaced by (2 x 2) matrices. The 
present analysis continues to be valid provided the equations are appropriately generalized to allow for the matrices (see Kovner 
1987). 
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