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ABSTRACT 
The density profiles and shapes of dark halos are studied using the results of AT-body simulations of the 

gravitational collapse of density peaks. The simulations use from 3 x 104 to 3 x 105 particles, which allow 
density profiles and shapes to be well resolved. The core radius of a typical dark halo is found to be no 
greater than the softening radius, € = 1.4 kpc. The density profiles can be fitted with an analytical model with 
an efiective power law which varies between —1 in the center to —4 at large radii. The dark halos have 
circular velocity curves which behave like the circular velocity contribution of the dark component of spiral 
galaxies inferred from rotation curve decompositions. The halos are strongly triaxial and very flat, with 
<c/a> = 0.50 and <h/a> = 0.71. There are roughly equal numbers of dark halos with oblate and prolate forms. 
The distribution of ellipticities in projection for dark halos reaches a maximum at e = 0.5, in contrast to the 
ellipticity distribution of elliptical galaxies, which peaks at e = 0.2. 
Subject headings: dark matter — galaxies: structure — numerical methods 

1. INTRODUCTION 

In hierarchical cosmologies, dark matter halos arise from the 
gravitational collapse of density peaks in a random pertur- 
bation field. The process of gravitational collapse includes the 
merging of substructure, tidal torquing by neighboring struc- 
ture, and the steady accretion of surrounding material. The 
result is a triaxial, slowly rotating, centrally concentrated dark 
halo (e.g., Efstathiou & Jones 1979; Quinn, Salmon, & Zurek 
1986; Barnes & Efstathiou 1987; Frenk et al. 1988). Calcu- 
lations of spherical infall in an Einstein-de Sitter universe 
(Q = 1) onto seed perturbations (Gunn 1977; Fillmore & 
Goldreich 1984; Bertschinger 1985) and onto density peaks in 
power-law cosmologies [P(k) oc k”] with n < —1 (Ryden 1988; 
Hoffman 1988) result in objects with characteristic power-law 
density profiles, p ccr~a, where 1.6 < a < 2.25. These profiles 
are remarkably similar to the isothermal profiles (pocr~2) 
derived from the observation of “ flat ” rotation curves in spiral 
galaxies (e.g., Rubin et al. 1985). The nonlinear problem has 
also been addressed using cosmological A/-body simulations. 
Simulations using the cold dark matter (CDM) model (Bond & 
Efstathiou 1984) and power-law models succeed in producing 
dark halos with “ flat ” rotation curves in fair agreement with 
the spherical calculations (Frenk et al. 1985; Barnes & Efsta- 
thiou 1987; Zurek, Quinn, & Salmon 1988; Frenk et al. 1988). 
However, these simulations have insufficient resolution to 
measure density profiles and circular velocity curves of dark 
halos over the observable range of the rotation curves of spiral 
galaxies (r < 30 kpc). In particular, the core radii of dark halos 
have not been reliably ascertained in either numerical simula- 
tions or analytical calculations. 

The dark halos of cosmological AT-body simulations are 
strongly triaxial objects showing a broad variation in shapes 
(Frenk et al. 1988). Frenk et al. displayed the distribution of 
axial ratios of dark halos, although the statistical errors were 
fairly large. They found that there were roughly equal numbers 
of halos with oblate and prolate forms. The triaxial nature of 
dark halos has important implications for the structure of 
elliptical galaxies. The qualitative similarities between the 

structure and kinematics of dark halos and elliptical galaxies 
are quite compelling. Elliptical galaxies are slowly rotating 
objects (Bertola & Capaccioli 1975; Illingworth 1977) sup- 
ported by pressure anisotropy and are triaxial (Binney 1976). If 
an elliptical galaxy forms at the same time and in an analogous 
way to its dark halo, i.e., a dissipationless collapse, one can 
hypothesize that the shape of an elliptical galaxy is the same as 
the shape of its dark halo. We can test this hypothesis by 
comparing the distribution of shapes of dark halos and ellip- 
tical galaxies. 

In this paper, we examine the structural properties of cold 
dark matter halos by measuring the core radii, the density 
profiles, and the distribution of shapes. We use AT-body simula- 
tions containing 32,000 particles allowing sufficient resolution 
to quantify shapes and density profiles accurately. In § 2 we 
discuss the numerical methods used to simulate the formation 
of dark halos. In § 3 we present the density profiles and rota- 
tion curves of dark halos and compare them with observa- 
tional data. We also calculate the distribution of axial ratios of 
dark halos and compare the ellipticity distribution of dark 
halos with that of elliptical galaxies. In § 4 we summarize the 
results and their implications. Although the dynamics of dark 
halos are also important in the understanding of the process of 
gravitational collapse and the dynamics of galaxies, we choose 
to defer the discussion of issues such as the rotation, velocity 
dispersion, and velocity anisotropy of dark halos to a sub- 
sequent paper for the sake of clarity. 

2. NUMERICAL METHODS 

We have developed a method for following the expansion 
and collapse of a dark matter halo in isolation using cosmo- 
logical initial conditions and boundary conditions. Previous 
studies of dark halos (Frenk et al. 1988; Zurek, Quinn, & 
Salmon 1988; Barnes & Efstathiou 1987) used fewer particles 
with halos typically containing between a few hundred and a 
few thousand particles. Low particle resolution makes it diffi- 
cult to extract structural and dynamical quantities because of 
the poor sampling of phase space. The effect of two-body relax- 
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ation is severe when N is small, especially in the dense cores of 
halos where the local time scales are relatively short. Two- 
body encounters tend to scatter particles in random directions, 
so that the shapes and velocity ellipsoids tend to be more 
isotropic than they should be. We reduce these problems by 
using approximately 32,000 particles in a typical peak collapse 
simulation. An additional simulation using approximately 
280,000 particles is run for comparison to see whether the 
density profiles change at higher resolution. 

We assign the initial positions and velocities to particles in a 
spherical region surrounding a density peak selected from a 
discrete realization of a CDM density contrast field (H0 = 50 
km s-1 Mpc-1 and Q = 1) smoothed with a Gaussian filter 
with a filter length, Rf = 0.75 Mpc, a scale appropriate to 
bright galaxies. The density field is generated in an 8 Mpc 
periodic cube containing 643 cubic mesh points. The particles 
in a 2 Mpc radius sphere surrounding the peak in the unfiltered 
density field are perturbed in position from a uniform grid 
according to the Zel’dovich approximation (Zel’dovich 1970) 
to represent the density field around the peak. The triangular 
cloud scheme of Hockney & Eastwood (1988) is used to solve 
for the Zel’dovich potential on the mesh points of the periodic 
cube. Peculiar velocities are assigned assuming pure growing 
mode perturbations and added to the local Hubble flow. 

The choice of a vacuum boundary ignores some important 
physical effects in the evolution of the dark halo which must be 
taken into account. First, the vacuum boundary excludes the 
effect of tidal fields due to neighboring perturbations. The tidal 
field can be estimated and modeled in a reasonable way as 
described in the next section. Second, the material surrounding 
a density peak in an extended universe effectively retards a 
peak’s growth and deformation during its evolution. A vacuum 
boundary does not include this effect, so that the spherical 
region as a whole which surrounds the peak will deform and 
collapse prematurely potentially modifying the final state. This 
problem is minimized by choosing a spherical region which is 3 
times the filter radius used to select the peak. The majority of 
the substructure which conspires to form the peak is thus con- 
fined to the inner regions of the sphere, well removed from the 
boundary which will suffer the anomalous deformation first. 
We also surround the peak with a thick shell of particles con- 
taining no internal fluctuations which is perturbed self- 
consistently by the density fluctuations within the peak. The 
shell acts as a buffer between the edge of the region containing 
fluctuations and the vacuum, and models the retarding effect of 
the “ rest ” of the universe. 

2.1. Tidal Fields 

A density peak collapsing in a cosmological background is 
immersed in a tidal field generated by the surrounding fluctu- 
ating density field. The field induces a torque on a peak during 
collapse by coupling to the peak’s quadrupole moment 
(Peebles 1969; White 1984). Since the simulations described 
here use isolated systems to increase the resolution, we choose 
to model the effect of external tidal torques on collapsing 
density peaks by imposing a first-order external tidal field. 
Internal tidal torques are generated self-consistently by the 
density fluctuations within the simulation sphere. 

The magnitude of the external tidal field on the scale of the 
simulations can be estimated from the power spectrum. The 
first-order expansion of a tidal field due to material in a fluctu- 
ating density field outside a radius r0 expanded about some 

origin is described by the trace-free tensor 

TijK) = 
d2a> 

dx¡ dxj 

= ~GPb f ^ 
JK(>ro) Pb 

a) r3 

where ôp!ph is the density contrast. The tidal acceleration due 
to material outside r > r0 felt at the point Xj is Ti} Xj. The 
dispersion in a diagonalized element of the tidal field can be 
calculated from the power spectrum, P(k) = \ôk\2. The disper- 
sion in Txx, for example, is 

<T2
xx>(r0) = G2pl K 

(2k)3 d3kP(k)W2(kr0), 

where the window function is 

(2) 

T 3x2 — r2 

W(kr0) = d3re~ik'r 5  
JKOro) r 

sin kr0 — kr0 cos kr0 

] 
(3) 

and Vu is the periodic cubic volume of integration. The window 
function, W(kr), is identical (other than the normalization) to 
the top-hat window function Wth(kr) used to measure the mass 
fluctuation <(<5M/M)2) in spheres of radius r (e.g., Peebles 
1980). The dispersion in the tidal field is therefore proportional 
to the mass fluctuation through 

<TL>1/2 = 1/2 _ ¿MV 1/2 
(4) 

Similarly, one can show that = (T2*). In practice, Txx 

and Tyy are independent Gaussian random variables. Since 7^ 
is a trace-free tensor, the value of Tzz = —(Txx+ Tyy). 

The time dependence of the tidal field in the linear regime is 
determined by equation (4). Since pbcct~2 and ÔM/M oc f2/3 

in the linear regime of the CDM model (Q = 1), the tidal field 
components decline as i-4/3. In the nonlinear regime, neigh- 
boring density peaks collapse into objects which are essentially 
point masses. The tidal field then results from an ensemble of 
point masses moving apart with the general expansion of the 
universe, so that the tidal field components decline more 
rapidly as i-2 (e.g., Peebles 1969). For simplicity, we choose to 
model the tidal field using the linear regime time dependence 
for the duration of the simulations. Therefore, in practice we 
are examining the coupling of a linear regime tidal field to a 
fully nonlinear collapse. After the collapse of a density peak, 
the tidal torque drops rapidly, since the moment arm rep- 
resented by the radius of the initially expanding region which 
the tidal field pushes against to produce the torque stops 
growing at the turnaround time (Barnes & Efstathiou 1987; 
Ryden 1987). The overestimate of the strength of the tidal field 
arising from the use of the linear time dependence into the 
nonlinear regime should have a minor influence on the total 
amount of angular momentum transferred to the peak, since 
collapse and thus decoupling occur approximately at the time 
when the field enters the nonlinear regime. Tidal coupling to a 
nearby virialized neighbor at late times after the collapse may 
also transfer angular momentum, but simulations show that 
the bulk of the angular momentum is acquired prior to col- 
lapse (Barnes & Efstathiou 1987). 
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The tidal field is modeled in the simulations using a tidal 
tensor with principal components Txx = 2ftat, Tyy= —ftati 

and Tzz = —ft<yt> where <7t = <T^X)
1/2 and ft is the number of 

deviations. We have chosen a value of « 1 for all of the 
simulations. This tidal field is oriented randomly with respect 
to the principal axes of the density peak. In a cosmological 
setting, however, the orientation of tidal fields should be 
weakly correlated with the orientation of density peaks. We 
checked for this effect by measuring the distributions of the 
cosine angles of the initial torque with respect to the principal 
axes of the perturbation for 30 density peaks in a 1283 mesh 
representation in a 16 Mpc box. These distributions were com- 
pared with the similar distributions measured assuming the 
tidal fields were oriented randomly. The two distributions are 
very similar, indicating that the choice of random orientations 
is a reasonable first approximation. The tidal acceleration is 
calculated at each time step and added to the acceleration due 
to internal gravitational forces. The validity of this method is 
tested by examining the rate of angular momentum growth 
and calculating the dimensionless spin parameter, 
A = J|£|1/2G_1M_5/2, of the halos after the simulations. In 
the linear regime, the angular momentum is observed to grow 
at a rate proportional to t as expected. We find that 
2 = 0.041 ± 0.024, consistent with numerical values found by 
other studies (e.g., Barnes & Efstathiou 1987). 

2.2. Simulation Parameters 
A total of 14 peak collapses were simulated with peak 

heights in the range of 1.5 a to 3.4 <r, with a mean value of 2.4 o. 
The peaks were chosen randomly from different realizations of 
the density contrast in an 8 Mpc box. The peaks were found by 
smoothing the density contrast field with a Gaussian filter 
of radius Rf = 0.75 Mpc, corresponding to a filter mass of 

= 4.6 x 1011 Mq. All of the simulations used approx- 
imately 33,000 particles in a sphere of radius 2.3 comoving 
Mpc. The number of particles varied in different simulations, 
since the spherical boundaries were chosen after the particles 
were perturbed from the grid. The typical particle mass was 
1.2 x 108 Mq. The CDM spectrum (Bond & Efstathiou 1984) 
was normalized to the value of the J3 integral of 211h~3 Mpc3 

measured for galaxies on a scale of 10/i-1 Mpc (Davis & 
Peebles 1983) assuming that the Hubble constant H0 is 50 km 
s -1 Mpc“ \ so that h = j. The bias parameter b was assumed 
to be unity. 

Once positions and velocities were assigned to the particles, 
each model was evolved under its self-gravity with an JV-body 
tree code modified to incorporate the influence of a tidal field 
(Barnes & Hut 1986; Dubinski 1988). We used a tolerance 
parameter 9 = 1.0, and all cell-particle forces were calculated 
to quadrupole order. The softening radius, €, was 1.4 kpc. All 
simulations were started at z0 = 42.2 and finished at zf & 1.0 
(zy = 0 for 6 = 2), at which time the halos were virialized (Fig. 
1). The simulations were not run any further, since the objects 
were not evolving significantly at this time. 

3. THE STRUCTURE OF DARK HALOS 

3.1. Measuring Shapes and Density Profiles 
The shape of an ellipsoidal mass distribution is defined 

through the axial ratios of the density surface contours. With 
the assumption that the density distribution is stratified in 
similar ellipsoids, it is possible to determine the axial ratios 
without knowledge of the radial density distribution. The 

Fig. 1.—Time evolution of the formation of a dark halo from the collapse 
of a density peak. The panels viewed from left to right and down represent the 
state of the collapse at z = 7.7,4.7, 3.4,2.6,2.1,1.0 with b = 1. The boxes are all 
430 kpc wide. The strongly inhomogeneous collapse of the density peak leads 
to the formation of a centrally concentrated, triaxial dark halo. 

density of an ellipsoidal distribution is 
/ 2 z2\l/2 

P = fAa) with a = lx2 + ^2 + ^2) > (5) 

where a is the elliptical radius and q and s are the axial ratios 
with s < q < 1. It is simple to show that the axial ratios can be 
derived from the tensor 

Mi! = I 
Xj Xj 

„2 (6) 

through 

(7) 

where Mxx, MyT and Mzz are the principal components of the 
tensor, with Mzz < Myy < Mxx. This scheme has the advantage 
that there is an equal weight for each particle in the tensor, 
independent of radius. With the large number of particles in 
the dark halos presented here, accurate axial ratios can be 
determined. 
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In practice, the value of the elliptical radius a in Mi7 for a 
given particle is not known in advance, since it depends on q 
and s (the quantities we are hoping to determine) through 
equation (5). The axial ratios are therefore determined using an 
iterative procedure. On the first pass, M0- is calculated 
assuming that the contours are spherical, so that g = s = 1 and 
a = r. The particle positions are first rotated into the diagonal- 
ized frame of MtJ. The values of q and s determined from 
are then used to recalculate a in this new frame and fed back 
into the relation to determine new values of q and s. When 
the input values match the output values within a certain toler- 
ance, convergence to the true axial ratios is achieved (see also 
Katz 1991). 

The accuracy of the method was tested by measuring the 
axial ratios in a particle realization of the density distribution 
p cca~2 with different values of q and s. Axial ratios deter- 
mined from distributions containing 250, 1000, and 5000 par- 
ticles have random errors of about 10%, 4%, and 2%, 
respectively, scattered about the true axial ratio values, provid- 
ed that q, s < 0.8. For more sperical distributions with q, s> 
0.8, there is a bias toward underestimating the axial ratios. 
Measurements of spherical distributions (q = s = 1) of 250, 
1000, and 5000 particles gave mean values of s of 0.8, 0.9, and 
0.95, respectively, with q slightly larger and similar percentage 
errors to those above. 

Dark halos are generally not perfect ellipsoids; rather, they 
exhibit a definite gradient in the axial ratio profiles. We have 
chosen to measure representative axial ratios instead of the 
profiles by using all particles within ellipsoidal volumes with 
elliptical radii of 25, 50, and 100 kpc. The axial ratios measured 
this way represent a “ mean ” value within the volume. Density 
profiles are then determined by counting particles in ellipsoidal 
shells of the fixed axial ratios calculated using the 100 kpc 
radius ellipsoidal volume. 

3.2. Density Profiles 

A convenient and remarkably good fit to the density profiles 
(Fig. 2) of the dark halos is Hernquist’s (1990) density distribu- 
tion modified for an ellipsoidal system, 

P(r) = 
MsOs 1 
2nqs r(r + as)

3 ’ (8) 

where we identify r with the elliptical radius a, and q = b/a and 
5 = c/a are the axial ratios of the halo. The axial ratios are 
calculated as described above. We fit the model with two free 
parameters: the effective mass, Ms, and the scaling radius, as. 
We use a nonlinear least-squares method with equal weighting 
for each point to determine the fits. Since the axial ratios are 
different for various models, we compare the geometric mean 
of the scaling radius, rs = (a^s)1/3, instead of the scaling radius 
directly. The mean scaling radius of the fits is <rs> = 
l()i.43±o.o7 kpc, while the mean effective mass is Ms = 
1Q12.33±o.23 jn ikg spherical top-hat model, the density 

contrast of a mass shell at the time of virialization is /V/?c « 
IStt2 » 177. If we define the virialized “ edge ” of a dark halo at 
this density surface {p/pc >125 in these measurements), we 
find a'mean halo mass Mhai0 = io12-18±0-22 M0. Even though 
the effective mass is a fitting parameter, it agrees well with the 
“ virialized ” mass of the halos. 

Figure 2 shows the least-squares fit of a Hernquist profile to 
the dark halo density profiles. Each set of data points has 

log a/kpc 
Fig. 2.—Density profiles of dark halos. Density is in units of the critical 

density pc, and the elliptical radius a is in kpc. Thirteen points were used for 
the two-parameter fit of Hemquist’s profile for each of the 14 halos. Each set of 
points has been renormalized to the fiducial Hernquist profile, with rs = 28 kpc 
and Ms = 2.1 x 1012 M0 represented by the solid line. The lines in the upper 
right-hand comer present power-law slopes of — 1, —2, and — 3, respectively. 

been renormalized to the fiducial Hernquist profile of the mean 
mass and scaling radius of the simulations. The fit is very good, 
with a dispersion in log p of 0.09. The density profiles are 
slightly shallower than the Hernquist profile in the center of 
the halos, though the density is still increasing fairly steeply at 
the softening radius equal to 1.4 kpc. We conclude that the core 
radii of dark halos are effectively zero. The density profiles are 
not simply described by a unique power law as predicted by 
spherical infall models. Rather, the power law varies from 
about — 1 in the center to about — 4 at large radii. The behav- 
ior at large radii in the simulations is dubious because of the 
use of approximate boundary conditions. However, the trend 
for a steepening power law at intermediate radii is still appar- 
ent. The effective power law for the models is approximately 
— 3 at 60 kpc, well within the virialized “edge” (/?//?c > 125) of 
the halos at approximately 150 kpc. The central behavior of 
the simulations may be modified by two-body relaxation 
effects. We tested for these effects using an additional simu- 
lation containing »280,000 particles and using the same 
initial conditions as a small simulation. Figure 3 reveals 
that the density profiles are virtually identical in the center 
to the softening radius, suggesting that relaxation effects are 
negligible. 

The differences between the density profiles of the dark halos 
and the profiles of spherical infall models are probably due to 
the effects of tidal torques. The tangential accelerations 
induced by tidal fields place particles on nonradial orbits, 
increasing the isotropy of the velocity ellipsoid. Isotropic 
systems permit shallower density profiles than radial systems. 
For example, spherical systems with power-law density pro- 
files, p oc r_a, in hydrostatic equilibrium have a radial velocity 
dispersion profile given by 

a?(r) = 
(7 2 rO 

(3 — «X« — /? — 1) 
(9) 

where ß = l — af/aj is the anisotropy parameter with ß = 0 
for isotropic orbits and ß = 1 for purely radial orbits (e.g., 
Ryden 1991). The only permitted solutions are those with 
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therefore appear fairly constant, at least out to the scaling 
radius. 

Figure 4 presents the circular velocity curves of the dark 
halos. The mass was binned in spherical shells of roughly equal 
mass to estimate the circular velocity, vc(r) = [GM(r)/r]1/2. The 
second-order effects of the flattened potential have been 
ignored for simplicity. All of the curves have been renormalized 
to the fiducial Hernquist profile described above. The rotation 
curves of the simulations are fairly constant in the range 10-60 
kpc, consistent with expectations of the Hernquist profile, 
though there is a tendency for them to decline. Figure 5 pre- 
sents the rotation curve of the dark halo resulting from the 
280,000 particle simulation. Also shown is the rotation curve 
derived from the Hernquist profile fit to the density profile with 
Ms = 2.4 x 1012 M0 and rs = 29 kpc. The Hernquist profile 
rotation curve is given by 

log a/kpc 

Fig. 3.—Density profiles of the 32,000 and 280,000 particle simulations. 
The same density contrast field is used to generate initial conditions. The 
squares joined by the dashed line follow the density profile of the large simula- 
tion. The crosses joined by the solid line follow the density profile of the small 
simulation. The profiles are virtually identical to within the softening radius of 
1.4 kpc, where they level off, and Poisson noise due to a lack of particles begins 
to dominate in the smaller simulation. 

1 + /? < a < 3. Spherical infall models with purely radial orbits 
(ß = 1) (e.g., Fillmore & Goldreich 1984) are constrained to 
density profiles steeper than r~2. However, if the orbits are 
isotropic, then density profiles as shallow as r"1 are permitted. 
We are currently investigating the kinematics of the dark 
halos, which will be discussed in full in a subsequent paper. 
Preliminary results show that ß < 0.2 in the center of the dark 
halos, supporting the claim that shallow central density pro- 
files require a nearly isotropic velocity ellipsoid. Ryden (1988) 
also obtained a shallower density profile (a = 1.6) in her ana- 
lytical calculations of peak collapse when incorporating the 
influence of tidal torques. Another fundamental assumption in 
spherical infall models is that radial orbits are self-similar (e.g., 
Fillmore & Goldreich 1984). This assumption eliminates a 
scale for the problem, so that power-law density profiles must 
arise a priori. The action of selecting a density peak of a certain 
scale (i.e., the filter radius) breaks the self-similar assumption, 
so there is no reason to believe that the density profile should 
follow an exact power law. The scale of the simulation is finally 
characterized by the scaling radius of the Hernquist density 
profile. 

Hernquist’s profile was motivated by the desire for a simple 
analytic potential-density pair to account for the de Vaucou- 
leurs luminosity profile of elliptical galaxies. The surface 
density profile of Hernquist’s function resembles a de Vaucou- 
leurs profile with effective radius Re = 1.8rs (Hernquist 1990), 
suggesting the naive interpretation that elliptical galaxies and 
dark halos are one and the same. However, the resemblance of 
dark halos to elliptical galaxies in this case is only circumstan- 
tial. The effective radius for dark halos is Rc = 50 kpc, a factor 
of 8 larger than the observed value for bright elliptical galaxies 
of 6 kpc (h = (Kormendy 1977). At first glance, the Hern- 
quist profile of dark halos seems to contradict the standard 
isothermal picture of dark halos. However, the effective power 
law of the profile varies from — 1 to — 2.5 within the scaling 
radius of the model. The resulting rotation curves should 

vc(r) = 
(GM.r)1'2 

r + rs 
(10) 

reaching a maximum at r = rs. The model rotation curve over- 
estimates the rotation at large radii, reflecting the tendency for 
the Hernquist profile to overestimate the density in the center. 
However, the agreement is fairly good. We turn the problem 
around by fitting a Hernquist rotation curve to the data to 
derive the mass and the scaling radius. This fit gives the param- 
eters Ms = 2.0 x 1012 Mö and rs = 26 kpc, which compare 
well with the values derived from the density profiles. 

The dark halo rotation curves are in reasonable agreement 
with observations of rotation in spiral galaxies. We fitted the 
Hernquist model rotation curve to the data for NGC 3198 (van 
Albada et al. 1985) and determined the parameters rs = 12.2 
kpc and Ms = 2.1 x 1011 M0 assuming that the dark halo 
dominates (Fig. 6). The curve is particularly successful at fitting 
the inner regions of the rotation curve, though it may decline 
more rapidly than an extrapolation of the data would suggest. 
However, the fit is as good as those determined with isother- 

o 

r (kpc) 
Fig. 4.—Rotation curves of the dark halos. Each curve has been renormal- 

ized according to the density profile fit to the fiducial spherical Hernquist 
profile, with rs = 28 kpc, Ms = 2.1 x 1012 M0, and vmsiX = 290 km s"1. The 
curves are fairly constant between 10 and 60 kpc, though they do decline 
slightly. 
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Radial Dependence of the Mean Axial Ratios 

501 No. 2, 1991 

o 

r (kpc) 
Fig. 5.—Rotation curve of the 280,000 particle simulation. The asterisks 

are the points measured from the dark halo. The dashed line is the rotation 
curve derived from the Hernquist profile fit to the density profile, with rs = 29 
kpc and Ms = 2.4 x 1012 M0. Note that the curve overestimates the rotation 
velocity at large radii, showing that the Hernquist profile slightly overestimates 
the density in the center. The solid line is the fit of a Hernquist rotation curve 
to the data. The scaling radius and effective mass of this fit are rs = 26 kpc and 
Ms = 2.0 x 1012 M0, in reasonable agreement with the density profile fit. 

mal models of dark halos with /? oc (r2 + a2)-1 (e.g., Kent 
1987). 

Hernquist’s profile succeeds in fitting the dark halos, since it 
is coreless (/? oc r_1 in the center), and the effective power law 
declines monotonically with radius. The theoretical rotation 
curve is also fairly constant in the range rjl <r < 2rs. The 
scaling of the CDM model makes this range compatible with 
the observations of rotation curves in spiral galaxies. However, 
the success of Hernquist’s profile at modeling dark halos 
should be viewed with some caution. The density profiles were 

o 

Fig. 6.—Best-fit Hernquist rotation curve to the NGC 3198 data assuming 
the dark matter halo dominates. The scaling radius is rs = 12.2 kpc, and the 
mass is Ms = 2.7 x I0li MQ. 

a 
(kpc) b/a c/a 

25  0.56 + 0.12 0.42 + 0.06 
50  0.64 + 0.14 0.45 + 0.08 

100  0.71 +0.13 0.50 + 0.09 

only fitted out to the radius which contained roughly 60% of 
the mass determined in the fit, 3.5rs. The total mass, Ms, of the 
halo in the model should be interpreted as a fitting parameter 
only and not necessarily the true mass of the halo. Also, the 
density profile may drop off too rapidly at large radii because 
of truncation caused by an artificially high tidal field or a lack 
of secondary infall due to the vacuum boundary. For this 
reason, a conservative estimate of the radius where the fit is 
reliable is about 2rs. 

3.3. Shapes of Dark Halos 
The axial ratios of each dark halo are determined with the 

tensor method described above, using all particles within three 
ellipsoidal volumes with semimajor axes of 25, 50, and 100 kpc. 
A range of radii is chosen to test for spurious effects introduced 
by a radial gradient in the axial ratios. Depending on the 
degree of central concentration and the semimajor axis, 
between 2000 and 30,000 particles are used for the halo shape 
determination. 

The dark halos are very flat, triaxial objects, as shown by the 
mean values of their axial ratios at different radii (Table 1). 
There is also a tendency for the halos to be rounder at larger 
radii, as shown by the systematic increase in the mean axial 
ratios with larger radius. Figure 7 displays the distribution of 
axial ratios. The central regions of halos ( < 25 kpc) are gener- 
ally more prolate than oblate, with 12 of 14 halos having c/ 

Fig. 7.—Distribution of axial ratios for the dark halos. Axial ratios mea- 
sured from particles within 25 kpc (asterisks), 50 kpc (circles), and 100 kpc 
(crosses) are displayed. The solid lines represent ellipsoids with cja = 0.4 and 
0.5. Note that the inner regions ( < 25 kpc) of the halos are very flat and prolate 
as shown by the cluster of stars in the lower right-hand corner. The shapes 
measured at larger radii represent oblate and prolate forms in approximately 
equal numbers. 
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b > b¡a. Measurements using a large radius (100 kpc) reveal no 
strong preference for either oblate or prolate types, with 6 of 14 
halos having c/b > b/a. The extreme flattening of the halos is 
purely the result of pressure anisotropy, with rotation having a 
negligible effect, as shown by the mean value of 2 = 0.041. The 
degree of velocity anisotropy will be discussed in a subsequent 
paper on the dynamics. 

It is interesting to compare these results with those of other 
authors (Frenk et al. 1988; Warren et al. 1990). Frenk et al. 
found that halos are rounder in the inner regions than the outer 
regions, opposite to the conclusions of this study. Our distribu- 
tion of intrinsic shapes is similar at large radii (i.e., roughly 
equal numbers of prolate and oblate shapes), though the halos 
are flatter than their results. The axial ratio c/a for most of the 
halos appears to settle to a value between 0.4 and 0.5 regardless 
of the intrinsic shape (Fig. 7). Perhaps two-body relaxation 
effects are acting to give rounder dark halos in the Frenk et al. 
simulations, since these halos only contain a few hundred par- 
ticles. The axial ratios of the 140 dark halos in Warren et al.’s 
(1990) simulation are also considerably rounder. Warren et al. 
used a different method to determine the axial ratios, and this 
may be the source of the different axial ratio distribution. 
Monte Carlo testing shows that the random errors in the axial 
ratios using our technique are generally less than 5% as dis- 
cussed in § 3.1, and are unlikely to account for the difference. In 
summary, we believe we have accurately simulated and mea- 
sured the shapes of CDM halos, the greater accuracy being a 
consequence of larger V, realistic cosmological boundary con- 
ditions, and a robust measurement technique. 

Elliptical galaxies are believed to be triaxial bodies (Binney 
1976) supported by pressure anisotropy not unlike the dark 
halos of this study. Although dark halos and elliptical galaxies 
have different density profiles as seen above, it is still instruc- 
tive to compare their shapes. If elliptical galaxies form dissi- 
pationlessly (e.g., van Albada 1982; Aguilar & Merritt 1990) in 
the center of dark halos ab initio, they may have the same 
shape distribution as the dark halos. We can examine this 
hypothesis by comparing the distribution of projected axial 
ratios of elliptical galaxies to that of dark halos. 

The probability distribution function of projected axial 
ratios is given by 

-If 
P(qa) = \f(q, s)P{qa\q, s)dqds (11) 

where P(qa | q, s) is the conditional probability distribution 
function of the projected (apparent) axial ratio qa given the true 
axial ratios q and s (Binney 1985), under the assumption that 
the density surfaces are similar ellipsoids and f(q, s) is the 
intrinsic distribution of shapes. Since the sample of dark matter 
halos is assumed to be random, we can approximate P(qa) 
using 

P(.qa) = - ÎP(qa\q„Si)- (12) n i=1 

Figure 8 shows the distribution of ellipticities, e = 1 — qa9 for 
the halos using the axial ratios measured at 25, 50, and 100 
kpc, along with the renormalized frequency histogram of ellip- 
ticities of elliptical galaxies (Binney & de Vaucouleurs 1981). 
The ellipticity distribution of the dark halos peaks sharply at 
6 = 0.5 and lacks round objects, in stark contrast to the ellip- 
ticity distribution of elliptical galaxies which peaks at 6 = 0 
and drops to zero at e = 0.6. The distributions of Benacchio & 

e 
Fig. 8.—Probability distribution of ellipticities for elliptical galaxies and 

dark halos. The histogram is the renormalized data by Binney & de Vaucou- 
leurs (1981). The three curves are the probability distributions derived from 
axial ratios measured out to 25 kpc {dotted line), 50 kpc {dashed line) and 100 
kpc {dashed-dot line) from the center of the dark halos. Note that the elliptical 
galaxies are considerably rounder than the dark halos. 

Galetta (1980) and Djorgovski (1986) have fewer round objects, 
with the distribution peaking at e = 0.2. Nevertheless, a com- 
parison of the distributions reveals that dark halos are much 
flatter than elliptical galaxies. A projection of axial ratios 
found from Couchman’s (1991) data analyzed with our shape 
algorithm produce ellipticity distributions remarkably similar 
to those presented in Figure 8. Both distributions rise steadily 
to € = 0.5 and drop off* rapidly at e = 0.6. Very flattened virial- 
ized structures apparently arise generically in simulations of 
the collapse of Gaussian density peaks despite different choices 
of the power spectrum. 

Although the shapes of elliptical galaxies are in strong 
discord with the shapes of dark halos, objects which were more 
likely to form in a purely dissipationless collapse are in better 
agreement. The ellipticity distributions of nonnucleated dwarf 
ellipticals peak at e = 0.4 and have a much larger fraction of 
flattened objects in comparison with those of bright ellipticals 
(Ferguson & Sandage 1989). West, Dekel, & Oemler (1989) 
estimated the ellipticities of a sample of 55 rich clusters and 
discovered that the ellipticity distribution of clusters also peaks 
at e æ 0.4 and reveals a paucity of rounder objects. 

4. CONCLUSIONS 

We draw the following conclusions from our analysis of the 
density profiles and shapes of dark halos: 

1. The core radii of these CDM dark halos are no greater 
than the softening radius of the simulations. 

2. Hernquist’s density distribution is a good description of 
the density profile of dark halos out to approximately 2 scaling 
radii. 

3. The circular velocity curves of CDM dark halos agree 
with the inferred dark halo contribution to rotation curves in 
spiral galaxies over the observed range of radii (r ^ 30 kpc). 

4. Dark halos are very flat, with <c/a> = 0.50. The central 
regions of dark halos (r < 25 kpc) are flatter than the outer 
regions. The shapes of the central regions are predominantly 
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prolate, while the shapes of the outer regions are divided 
equally between prolate and oblate forms. By implication, very 
flat dissipationless structures arise in the collapse of density 
peaks in hierarchical Gaussian random fields of perturbations 
derived from a power spectrum with a power index n & —2. 

5. Elliptical galaxies are much rounder than dark halos, as 
shown by a comparison of apparent ellipticities, suggesting 
that simple dissipationless pictures of elliptical galaxy forma- 

tion fail in the CDM model, or more generally in hierarchical 
models with n & —2. 
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