
19
91

A
pJ

. 
. .

37
7.

 .
55

9R
 

The Astrophysical Journal, 377:559-580,1991 August 20 
© 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

COLLISIONS OF GIANT STARS WITH COMPACT OBJECTS: HYDRODYNAMICAL 
CALCULATIONS 

Frederic A. Rasio1 and Stuart L. Shapiro1,2 

Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 
Received 1990 November 26; accepted 1991 February 25 

ABSTRACT 
Encounters between a 0.8Mo giant star and a 1.4M0 compact object on a parabolic orbit have been calcu- 

lated using smooth particle hydrodynamics (SPH). Both the stellar core and the compact object are represent- 
ed by point masses interacting with the gas through gravity only. We find that all encounters with periastron 
distance rp < 2.5RG, where RG is the stellar radius, lead to significant disruption of the stellar envelope, includ- 
ing some mass loss. When rp/RG < 0.5, the envelope is completely destroyed during the collision. About 40% 
of the gas escapes, while the rest forms a massive disk around the compact object, leaving behind the bare 
stellar core on a highly eccentric orbit. Subsequent close passages lead to continuous extraction of gas from 
the disk at a large rate, and the binary orbit may eventually stabilize while still retaining a large eccentricity. 
For 0.5 < rp/RG < 2.5, complete destruction of the envelope is avoided during the first close passage. However, 
nonlinear effects tend to make the envelope expand by a large factor, so that subsequent close passages will 
likely destroy it. In particular, we confirm Bailyn’s prediction that all captures of a neutron star by a red giant 
in globular clusters are likely to result in the eventual destruction of the red giant envelope. We discuss the 
implications of our results in light of recent new detections of millisecond pulsars in globular clusters. Most 
importantly, we suggest that many globular cluster pulsars may have been spun-up by accretion from a 
massive disk rather than from a binary companion, thereby providing a possible solution to the birthrate 
problem. 

To support our findings, we present various new tests of our SPH treatment. In particular, we calculate 
tidal encounters between a polytrope and a point mass and find good agreement with semianalytic, linear 
perturbation calculations. Both head-on and off-axis collisions between a polytrope and a point mass are also 
examined, and our SPH results are compared to those of recent finite-difference calculations. 
Subject headings : hydrodynamics — pulsars — stars : binaries — stars : evolution — stars : stellar dynamics — 

X-rays: binaries 

1. INTRODUCTION 

The recent discoveries of several binary pulsars in globular clusters (Lyne et al. 1988; Anderson et al. 1989; Wolszczan et al. 1989; 
Anderson et al. 1990a, b; D’Amico et al. 1990; Lyne et al. 1990; Lyne 1991) suggest that it may be time to reexamine in detail the 
possible formation mechanisms of these sources. Two basic mechanisms have been proposed. One invokes a tidally dissipative, 
two-body encounter between a compact object and an ordinary main-sequence or giant star (Fabian, Pringle, & Rees 1975). The 
other, proposed by Sutantyo (1975), assumes that a direct physical collision takes place between a giant star and a compact object. 
Recently, Verbunt (1987) and Verbunt & Meylan (1988) used globular cluster data to calculate relative formation rates through 
various mechanisms and concluded that collisions with red giant or horizontal-branch stars provide the most efficient way of 
forming binary systems containing a neutron star and a white dwarf. Many detailed calculations of the Fabian, Pringle, & Rees 
mechanism have been performed (Press & Teukolsky 1977; Lee & Ostriker 1986; Giersz 1986; McMillan, McDermott, & Taam 
1987; Ray, Kembhavi, & Antia 1987; McMillan, Taam, & McDermott 1990). These calculations are all based on linear pertur- 
bation expansions in terms of the normal modes of oscillation of the star. However, few general calculations of collisions with a 
giant star have been attempted (see Tuchman 1985; Livne & Tuchman 1988), and all of them were very approximate. This is because 
of the highly nonlinear nature of the interaction and the difficulty of doing numerical hydrodynamics in three dimensions. 

In a previous paper (Rasio & Shapiro 1990, hereafter Paper I), we used simple N-body simulations to study the dynamics of 
collisions between a point mass and a giant star. The star was modeled as a point mass core surrounded by an envelope made of N 
individual particles interacting through gravity only. Since we used relatively small numbers of particles (N ~ 500), it was possible 
to explore rather systematically the entire parameter space of the problem. However, the detailed hydrodynamics of the interaction 
could not be treated correctly. Our approach in Paper I was very general. In particular, the mass ratio, impact parameter, and 
relative velocity at infinity were all allowed to vary independently and over a wide range of values. For globular clusters, however, a 
more restricted approach is adequate. The small stellar velocity dispersions imply that the initial orbit for any two-body encounter 
is quasi-parabolic. Moreover, the mass of giant stars is known to be ä0.8 M0, from the position of the main-sequence turnoff point. 
In this paper, we will therefore only consider parabolic encounters between a 0.8 M0 giant and a 1.4 M0 neutron star. Here our 
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discussion will be based on three-dimensional hydrodynamical calculations of such encounters, which we performed using smooth 
particle hydrodynamics (SPH). 

Our paper is organized as follows. In § 2 we describe our implementation of SPH and present the results of several test-bed 
calculations. In particular, we simulate tidal encounters with a polytrope and compare our numerical results to those obtained by 
semi-analytic methods. In § 3, we summarize calculations of collisions between a point mass and a polytrope. These calculations 
provide a first step towards the more realistic treatment of § 4, while still allowing comparisons with previous finite-difference 
calculations. In § 4, we construct a simple hydrodynamical model for a giant star and use this model to calculate parabolic 
encounters with a neutron star. Finally, in § 5, we discuss the astr©physical implications of our results. 

2. METHOD AND TEST CALCULATIONS 

In Paper I we used a simple AT-body method to simulate the dynamics of a giant star’s envelope via a small number (N » 500) of 
point masses interacting only through gravitational forces. This idealization had the advantage of simplicity, allowing us to perform 
a large number of fully three-dimensional calculations spanning a large parameter space. Here, instead, we seek higher accuracy at 
the expense of generality. The SPH method provides a natural way of achieving this goal, essentially by adding a new pressure 
gradient term to the equations of motion of the particles. It allows us to calculate with reasonable accuracy the dynamical effects of 
fluid phenomena such as shocks and rarefaction waves while still retaining a three-dimensional description. The much higher 
computational cost of the method, however, implies that we have to focus on a considerably smaller subset of values for the 
parameters of the problem. Namely, for a given stellar model, only parabolic encounters will be considered. High-velocity encoun- 
ters, considered in Paper I, will not be discussed here. Moreover, we are able to perform full-scale calculations for only a small 
number of representative cases. 

2.1. Smooth Particle Hydrodynamics 
Smooth particle hydrodynamics, introduced some time ago (Gingold & Monaghan 1977; Lucy 1977), has since been refined 

considerably and used to study a wide variety of astrophysical problems including galaxy formation (Shapiro, Kang, & Villumsen 
1989), supernovae (Nagasawa, & Miyama 1988), tidal disruption by a massive black hole (Evans & Kochanek 1989), and interstellar 
cloud collisions (Lattanzio et al. 1985), as well as stellar collisions (Benz & Hills 1987; Benz, Hills, & Thielemann 1989). Many 
different implementations of SPH have been employed (Evrard 1988; Hernquist & Katz 1989; Monaghan & Lattanzio 1985). Here 
we give only a brief description of our own implementation, referring the reader to the review article by Monaghan (1985) for a more 
general discussion. 

As in the case of W-body simulations (Paper I), our code must solve the equations of motion of a large number N of particles, 

m.V. = + ^SPH) 

The SPH method allows us to calculate an effective pressure-gradient force acting on each individual particle. In addition to its 
position rh velocity vh and mass mh each particle carries two new, SPH-specific parameters: a physical parameter uh representing 
the internal energy per unit mass in the fluid at rh and a purely numerical “ smoothing length,” hh specifying the local spatial 
resolution. An estimate of the fluid density at rt is calculated from the masses, positions, and smoothing lengths of neighboring 
particles as a local weighted average, 

P¡ = lirnjW¡J. (2) 
j 

Symmetric weights are calculated following the method of Hernquist & Katz (1989) as 

Wtj = im I n -rj\, h¡) + W( I r¡ -rj\, hj)) . (3) 

Here W(r, h) is an interpolation kernel, for which we use the second-order accurate form of Monaghan & Lattanzio (1985), 

W(r, h) = 
nh3 

* 

0, 

°<7<1, 
h 

1 <r<2, 
h 

R2- 

(4) 

When the true density p(r) of the fluid is presented by an appropriate distribution of particle positions, masses, and smoothing 
lengths, one can show that p{ = p(r¡) + 0(h3) (see, e.g., Monaghan 1985). Since our calculations assume an adiabatic equation of 
state for the gas, the pressure at r* will be estimated as 

Pi = (y - i)p¡Ui, (5) 

where y is the constant ratio of specific heats. The local speed of sound is c¡ = (yPi/l>¡)1:2- 
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The hydrodynamical part of the force on particle i is calculated as 

(6) 

Here H0- is an artificial viscosity term, while the rest of the above expression represents one of many possible SPH estimators for the 
local pressure gradient force —(Vp/p)i (see, e.g., Monaghan 1985). This form has the advantage of being computationally convenient, 
while at the same time providing a natural set of conservation laws as described below. For the artificial viscosity we adopt a 
symmetrized version of the form proposed by Monaghan (1989), 

n¡j_zSilcu+M_ (7) 

Pij 
where = (/>, + pj)/2, c,j = (c¡ + c,)/2, and 

f (Vj - Vj) • (>•,■ - tj) 
ßij = \h,J{\ri-rJ\

2/hfj + ri2)’ 

10, 

when (», - Vj) ■ (r¡ - r,) < 0 , 

when (ti — vj) • (r¿ — rj) > 0 , 

(8) 

with hij = (hi + hj)/2. This represents a combination of the usual von Neuman-Richtmyer artificial viscosity and a bulk viscosity. It 
provides a good description of shocks when the constants satisfy a æ /? æ 2, and rj2 ~ 10“2 (Monaghan 1989; Hernquist & Katz 
1989). 

To complete the description of the fluid, we write the first law of thermodynamics at rf as 

(9) 

Here again, H^- is the artificial viscosity, while the rest of the expression represents one of many possible ways of estimating the local 
“pdt;”work, — (pV • r/pMcf. Monaghan 1985). 

The set of equations (l)-(9) provides three conservation laws, which we can identify with momentum conservation, energy 
conservation, and the second law of thermodynamics. If we define the total momentum of the fluid as P = Yuimivh then from 
equation (6), 

dP 
dt 

+ Hij v^-0, (10) 

since Vi Wij = — V,- Wji. Similarly we define the total energy of the fluid, in the absence of gravity, as £ = X¿(mí v2/! + mi u¡), and find, 
using both equations (6) and (9), that 

dE_l 
dt~2jj 

mtmfVi - Vj) • Vj Wi PL 
2 = 0, 

since the last three factors are all antisymmetric. Finally, the specific entropy at r,- is defined as Sj 
algebra, that 

(11) 

log (Pi/pJ) and we find, after some 

dSi 
dt 

= T-Zm]niJ{vi-»j)ViWi], 
¿ui j 

(12) 

which is zero when the artificial viscosity Hl7 = 0, and represents a discretized version of the second law of thermodynamics. We 
could have solved equation (12) instead of equation (9) to obtain the time evolution of the internal energy (as in Benz & Hills 1987). 
Note, however, that, in deriving equation (12), we have neglected terms proportional to the time derivative of h^ Therefore, even in 
the absence of artificial viscosity, the total entropy of the system will not be strictly conserved if the particle smoothing lengths are 
allowed to vary in time. Had we used equation (12) instead of equation (9) to evolve the system, the total entropy would then be 
strictly conserved, but not the total energy. There are many other equivalent forms of the basic SPH equations (l)-(9), i.e., many 
forms which all reduce to the correct fluid equations in the limit N -► oo, /Zj -» 0. However, most of them will satisfy their associated 
conservation equations only approximately, i.e., up to errors which only tend to zero in the limit AT -► oo, /Zj- -► 0. Instead, our choice 
of equations has the virtue of conserving energy and momentum exactly, independent of the number of particles used. Of course, in the 
numerical solution, errors will still be introduced by the time-integration scheme. 

To provide reasonable accuracy, the SPH method requires the use of large numbers of particles (typically N > 1000). This rules 
out a direct summation method (as that used in Paper I) for calculating the gravitational field of the system. In stellar dynamics 
calculations, tree-based methods have been used with great success to deal with large numbers of particles (see, e.g., Hernquist 1987). 
Hernquist & Katz (1989) have recently developed a SPH code where gravity is calculated using a tree-based method. From a 
fundamental point of view, however, calculating the exact gravitational field of the set of discrete SPH particles, viewed as point 
masses, does not appear desirable to us. Indeed, the physical system here is a fluid, not a collection of discrete entities. The exact 
gravitational field of the point masses contains all the small scale particle-to-particle interactions, which are in this case entirely 
spurious. For these reasons, we have turned instead to a grid-based method for calculating the smooth gravitational field of the 
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fluid. The SPH definition of the (smooth) density (eq. [2]) is used to calculate the values of the source term for Poisson’s equation at 
grid points. An FFT-based convolution algorithm (Hockney & Eastwood 1988; Wells et al. 1990) is used to solve for the 
gravitational potential on the grid. Forces at grid points are obtained by finite differencing and then interpolating onto the particle 
positions. 

The time-evolution equations (1) are integrated using an explicit leapfrog scheme. This provides second-order accuracy in time. 
Note that such a low-order scheme (instead of the direct IV-body code’s typical high-order scheme; cf. Aarseth 1985) is appropriate 
here because pressure gradient forces are subject to numerical noise. For stability, the timestep must satisfy a Courant condition 
with hi replacing the usual grid separation. For accuracy, the time step must also be a small enough fraction of the system’s 
dynamical time. In practice we calculate the timestep as in Monaghan (1989), i.e., Ai = Min (Ai1? Ai2) with 

Atx = k Minj 
h{ 

Ci + 1.2aCi + 1.2/? Max,- 
(13) 

where /c æ 0.1, and Ai2 = Min,- (hi/Vi)112. 
The use of time-dependent, individual particle smoothing lengths is essential in ensuring that the spatial resolution remains 

acceptable throughout a calculation. The local values of ^ must continually adapt themselves to expanding and contracting regions 
of the fluid. It is convenient, in practice, to continually update the values of hi so that the number of nearest neighbors, Nn, of any 
particle remains approximately constant (and >1). This number is a very important parameter in the calculation: it is directly 
related to the local level of numerical noise in the system. For three-dimensional calculations, we have found that Nn must be at 
least 64( = 43). In our code, nearest neighbor searching is done using the grid-based algorithm of P3M codes (Hockney & Eastwood 
1988). This algorithm proved extremely efficient, even for wide distributions of smoothing lengths, provided that one is careful to 
fine-tune the ratio L/^hi) of the grid separation L to the average particle smoothing length {hi}. For a typical collision calculation 
with Af ~ 104 and Nn ~ 102, the CPU time is ~ 10 hr on an IBM 3090-600J supercomputer. Depending on the parameters of the 
run, about 50%-90% of the CPU time is spent updating nearest neighbor lists, while most of the rest is taken by the calculation of 
the gravitational field. 

2.2. Test Calculations 
Here we present the results of several test calculations which we performed to verify the accuracy of our numerical method. Only 

the calculations which are directly relevant to the problem studied in this paper will be described here in detail. A more complete 
discussion of our method, together with a number of other test calculations, will be published elsewhere (Rasio & Shapiro 1991). 

2.2.1. Shock- Tube Calculations 

The one-dimensional Riemann shock-tube calculation of Sod (1978) has become a widely accepted standard test of numerical 
hydrodynamics codes. Figure 1 presents the results of this calculation using SPH with N = 3000 particles. At i = 0, an interface 
located at x = 0 separates two fluids. The fluid on the left has density /?z = 1.0 and pressure p¡ = 1.0, while on the right pr = 0.25 and 
pr = 0.1795. The figure shows the density and velocity profiles at i = 0.15. An adiabatic equation of state was assumed with y = 1.4. 
Employing the artificial viscosity of equation (7), we obtained a very good representation of the shock for a = /? = 2.0 and rj2 = 0.01. 
Discontinuities are smoothed over a width &2hif as expected, but no unphysical oscillations appear. The results were also best when 
the density was represented by varying the number density of equal mass particles, as opposed to varying the particle masses while 
keeping their number density uniform. The smoothing lengths were allowed to vary both in space and time, in order to maintain a 
constant number of nearest neighbors Nn æ 16 for all particles at all times. 

A quasi-analytic solution for this problem is easily constructed using standard techniques (see, e.g., Courant & Friedrichs 1976). 
At any time £ > 0, five regions of fluid with different thermodynamic states coexist. These regions are separated by the head and tail 
of the left-propagating rarefaction wave, and the right-propagating shock and contact discontinuity. The solution can be expressed 
as follows : 

rpl, 

+ (1 - ^2)]2/<1,'1) 

p(x, t) =<( pml, 

Pmr . 

Pr - 

Pi > 

Pil-p2(x/c¡t) + (1 - ^2)]2W,y_1) 

Pm 5 

Pr, 

'0, 

(1 - p2)(x/t + c,), 

p(x, t) = 

v(x, t) = 

X < —Cit, 

— Cit<X< —vTt, 

— vTt<x<vmt, 

vmt < X <vst, 

X > vst, 

X < —Cit , 

— Cit<X< —vTt, 

— vTt<x<vst, 

X > vst, 

X < —Cit , 

— Cit<X< —vTt, 

10, 

— VTt<X<Vst, 

X > vst. 

(14) 

(15) 

(16) 
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X 

Fig. 1.—Density and velocity profiles for the one-dimensional shock-tube test. The solid line represents the analytic solution (eqs. [14]-[16]). The dotted line is 
the numerical result using one-dimensional SPH with 3000 particles of equal mass. The dashed line shows the density at i = 0. 

Here ¡j2 = {y — l)/(y + 1), ct = {yPi/Pi)1/2 and cr = (yPr/pr)112 are the speeds of sound, vT is the speed of propagation of the 
rarefaction wave’s tail, and vs is the shock speed. The postshock pressure pm is calculated by solving (numerically) the following 
nonlinear equation, obtained by matching the possible postshock states with the possible postrarefaction wave states, 

^-1 
Pr 

l-p2 

■  
i (y-iRL Vp/ 

(y-l)/2y- 
= o, (17) 

yiPjPr + P2) 

over the interval [pr, pj. The density on the left of the contact discontinuity is pml = Pi(pjp¡)lly, since the fluid there is adiabatically 
connected to the left. The postshock fluid velocity vm is obtained from the rarefaction wave equations as 

2c r, 
Vm (y-i)L VpJ J’ 

(18) 

and from equation (16), we then get vr = c, vj(l — /r). Mass conservation across the shock gives the shock velocity 

1 - Pr/P* 
(19) 

Finally, the postshock density pmr is calculated by the usual Hugoniot relation, 

P mr = Pr! 
Pm_+PV\ 
.Pr + P2PmJ 

(20) 

This analytic solution is also shown in Figure 1, for i = 0.15. 
For the above calculation we employed a special, explicitly one-dimensional version of our code. While such a calculation is useful 

to establish the validity of the method a priori, it does not present a realistic assessment of how accurate the results of an actual 
three-dimensional calculation will be. At issue is not only the much smaller number of particles per dimension and reduced spatial 
resolution in a three-dimensional calculation. Many sources of numerical errors, such as the interpenetration and diffusion of 
particles, are artifically reduced when motion with only one degree of freedom is allowed. 
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Fig. 2.—Results of the same one-dimensional shock-tube calculation shown in Fig. 1, but now using three-dimensional SPH with N = 104 particles of equal 
mass. One dot is plotted for each particle in the calculation (see text). 

To illustrate this point better, we now consider a different kind of test, which uses the fully three-dimensional version of our code. 
The physical problem, however, remains exactly the same : at i = 0, two semi-infinite regions of fluid are separated by a plane 
interface located at x = 0. The thermodynamic states in the two regions are the same as above. Periodic boundary conditions on the 
four planes y = ±L and z = ±L are imposed, adopting a technique often employed in molecular dynamics (cf. Allen & Tildesley 
1989). The condition L > Max, (ht) is satisfied throughout the calculation, so that the exact position of the boundary planes has no 
effect on the numerical results. 

Figure 2 shows the results of the calculation. Here we used N = 104 equal-mass particles, with a constant number of nearest 
neighbors Nn « 100. The calculation takes place in a cubic box with L = 1.0 and periodic boundary conditions are imposed on all 
sides. Just as would be the case in a typical simulation, the particles are randomly distributed within each constant-density region 
and the features we examine (shock front, rarefaction wave, etc ) involve only a small fraction of the total number of particles. It is 
clear that, in an average sense, there is still good agreement with the analytic solution, but the spatial resolution is rather poor and 
there is considerable numerical noise. Note that by placing the particles on a regular lattice at t = 0, one can easily reduce the 
numerical noise (cf. § 2.2.2 below). This is especially true if one is careful to align the plane of the discontinuity with a face of the 
lattice. However, we feel that such a set-up is very artificial and not representative of the particle distributions encountered in the 
course of a typical SPH calculation. 

We have performed several other one-dimensional test calculations involving simple waves, using both the one-dimensional and 
three-dimensional versions of our code. These included free expansion calculations, useful for testing the numerical method in cases 
where the fluid density decreases to zero, and head-on collisions of two fluid slabs, used to check the ability of our code to calculate 
strong shocks. We also designed a two-dimensional version of the code, which was tested on the classical problem of the interaction 
between a shock front and an oblique contact discontinuity. In all cases the numerical results were checked against analytical or 
semianalytical solutions and good agreement was found, with the level of accuracy similar to that which is shown in Figures 1 and 2. 
Since these calculations are not directly relevant to the problem considered in this paper, we do not describe them here in detail. 

2.2.2. Stability of a Polytrope 
We have checked very carefully the ability of our SPH code to maintain a given hydrostatic, self-gravitating structure in stable 

dynamic equilibrium. In particular, we performed extensive tests on a spherical, nonrotating polytrope of index n = 3/2; this 
configuration will be used again in the next two sections of the paper. In one calculation, the dynamical evolution of the polytrope 
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was followed all the way from time i = 0 to time i = 15 (here time is in units of [R3/GM]1/2, where M is the total mass and R is the 
radius of the configuration). No deviation from the initial profile was found, apart from a very small amplitude (</ii) oscillation of 
the surface. Numerically, the mass profiles at i = 0 and i = 15 were found to agree to within 2% everywhere. At i = 0, in this 
calculation, the exact density profile of the polytrope was constructed with a distribution of AT = 104 particles with equal masses, 
but varying number density. The internal energy per unit mass Ui of each particle was everywhere set according to the isentropic 
condition w* = Ap}-1/^ — 1), where A = p/py is a constant. The resulting entropy s* = log (Pi/pJ) is then exactly the same for all 
particles and remains strictly conserved in the absence of shocks (cf. eq. [12]). The smoothing lengths were adjusted so that each 
particle interacts with « 100 neighbors at all times. This number was found to provide an acceptable compromise between good 
spatial resolution and low numerical noise. 

Alternatively, one can construct the density profile at i = 0 by varying the individual masses of the particles, but keeping their 
number density uniform. This has the advantage of providing a uniform spatial resolution in the calculation. Moreover, by placing 
the particles on a regular grid at i = 0, we find that the numerical noise can be considerably reduced (cf. Monaghan 1985). We will 
use this approach in the following section, where we study the tidal perturbation of polytropes. In the rest of the paper, however, we 
will often be dealing with calculations of the long-term evolution of a system where the fluid is rather violently perturbed. In those 
cases, the carefully arranged distribution of particle masses is eventually destroyed and it proves better to work with particles of 
equal mass. 

2.2.3. Tidal Encounters between a Point Mass and a Polytrope 

Many analytical calculations of tidal encounters between a polytrope and a point mass have been performed using the method of 
Press & Teukolsky (1977, hereafter PT). These calculations (Lee & Ostriker 1986; Gierz 1986; McMillan et al. 1987; Ray et al. 1987) 
are based on linear perturbation expansions in terms of the normal modes of oscillation of the polytrope. A sensitive test for any 
hydrodynamical code used for studying stellar collisions is its ability to reproduce the analytical results of the PT calculations in the 
limit of large periastron separations. 

Here we set up an n = 3/2 polytrope with N = 104 particles as described in the previous section, with the density profile 
represented by varying the individual particle masses. This procedure maintains good spatial resolution throughout of the star. As 
before, we adopt units in which G = M = R = l.Ati = 0, a point perturber with mass m = 1 is placed on a parabolic trajectory, at 
a distance d = 5 from the center of the star. As the calculation proceeds, we monitor the transfer of energy from the orbit to the fluid. 
This is illustrated in Figure 3 for an encounter with periastron distance rp = 2. Note that throughout this paper, rp will be defined as 
the periastron distance of the unperturbed orbit on which the point mass is placed at i = 0. The minimum separation actually 
reached will therefore always be less than rp. The orbital energy is calculated as Eorh = pv?/2 + 0, where p is the reduced mass, vr is 
the relative velocity, and </> is the gravitational potential energy of interaction between the fluid and the point mass. When the 
perturber approaches periastron, the orbital energy rather suddenly drops by a certain amount A£orb = — AFfluid. This amount can 
be exactly calculated, in the tidal approximation, by using the PT method. To calibrate our numerical data, we used the results of 
Lee & Ostriker (1986) for an n = 3/2 polytrope to calculate A£orb analytically. 

0 2 4 6 8 10 
time 

Fig. 3.—Tidal dissipation of orbital energy for a parabolic encounter of a point mass with a polytrope of equal mass and index n = 3/2 (units defined by 
G = M = R = 1). The periastron separation of the unperturbed orbit was rp = 2. The solid line shows the orbital energy ^orb- The dotted line shows A£tot = £tot(i) 
— £tot(0), a measure of the numerical error in maintaining the conservation of total energy during the calculation. 
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Fig. 4.—Amount of orbital energy A£orb dissipated during the parabolic encounter of a point mass with a polytrope of equal mass and index n = 3/2 (units 
defined by G = M = R = 1), as a function of periastron distance rp. The solid curve is based on the semi-analytic calculations of Lee & Ostriker (1986). The triangles 
give our numerical results using SPH. 

In Figure 4, we show a comparison between our numerical results and the analytical calculation. In the limit of large periastron 
distance, the agreement is excellent. One should realize that for such distant encounters, the effect we are trying to measure is of very 
small magnitude, i.e., I AFfluid/Ffluid | ^ 10“2. Note that one must use the calculated AForb, as we have done, and not A£fluid, to 
measure the amount of energy dissipated. This is because the numerical error in Ffluid is usually larger than that in £orb, which is 
calculated independently. Empirically, we found that it is in fact quite possible to continue the calculation beyond the point where 
AEoth becomes comparable to A£tot, the numerical error in the conservation of total energy, and still obtain good agreement with 
the semianalytical results. For the most distant encounter in Figure 4, with rp = 2.6, the analytical and numerical results agree to 
within » 10%. For encounters with rp > 2.6R numerical errors start contaminating the estimate of A£orb and the agreement 
becomes worse. 

Apart from providing a crucial test of our code, this calculation also gives new information on the onset of nonlinear effects in 
tidal encounters with polytropes. Figure 4 shows that significant deviations from the PT calculation are already apparent for rp & 2. 
The onset of detectable mass loss from the star occurs at rp ä 1.5. However, since the critical periastron for capture in a globular 
cluster is rp ~ 3 (see, e.g., Lee & Ostriker 1986), it is possible for a main-sequence star in a globular cluster to tidally capture a 
compact object of comparable mass without being immediately disrupted (this does not appear to be the case for giant stars, as we 
show in § 4). The long-term evolution of the binary after such a nondisruptive tidal encounter depends on how efficiently the tidal 
energy deposited in the star is thermalized (Ray et al. 1987). This clearly takes place on an internal dissipation timescale and is 
beyond the scope of our (adiabatic) calculations. 

3. COLLISIONS BETWEEN A POINT MASS AND A POLYTROPE 

We now extend our study of encounters between a point mass and a polytrope into the regime of direct physical collisions, where 
nonlinear effects such as shocks and mass transfer dominate the dynamics. Polytropes cannot be used to represent a giant star in 
any reasonable way. However, preliminary SPH calculations of collisions with polytropes are important, because comparable 
finite-difference calculations exist. Most recently, Rozyczka et al. (1989) have performed high-resolution finite-difference calculations 
of head-on (axisymmetric) collisions between a polytrope of index n = 3/2 and a point mass, and Puffert & Müller (1990, hereafter 
RM) have treated the more general, off-axis case. 

Our assumptions here will be similar to those made by RM. A polytrope of index n = 3/2 and mass M is placed on a parabolic 
orbit with a point mass m = M. The polytrope is constructed as in § 2.2.2, using particles of equal mass. A softened gravitational 
potential is used to calculate the interaction between the point mass and the fluid. The softening length is chosen equal to the 
average particle smoothing length and remains constant throughout the calculation. No special boundary condition is otherwise 
imposed near the point mass. This is consistent with the fact that the physical size of a compact object could never be resolved in the 
calculations. Note, however, that the individual particle smoothing lengths do become smaller in the high density region typically 
found around the point mass. We have studied numerically the importance of the softening length and have found, as did RM, that 
varying it changes the maximum temperature and density reached very near the point mass, but has practically no influence on the 
overall dynamics. We have also neglected possible effects due to nuclear burning and radiative cooling. A detailed analysis by 
Rózyczka et al. (1989) indicates that they are indeed dynamically unimportant. The equation of state in the code used by RM was 
that of a perfect gas plus radiation. Instead, we employ a simple adiabatic equation of state with y = 5/3 for our SPH calculations, 
since radiation pressure was found to be negligible. Specifically, we can write the ratio ß = aT^ßlpu) of radiation to gas pressure at 
ti as ßi = 1.2 x 10“ 3(M/MQ)2wf//?,-, with Ui and pt in units where G = M = R = 1. We find that the total mass of particles with 
uf/Pi > 102 (i.e., for which the radiation pressure would represent more than a ~ 10% correction to the equation of state) was always 
< 10“ 2 in our calculations. 

We can extend to collisions the point of view adopted for tidal encounters, i.e., study the transfer of orbital energy to the fluid (Fig. 
5). However, the concept of “ orbital ” becomes meaningless here after a true collision. Indeed, consider a sequence of encounters 
with decreasing periastron distances rp (recall that “periastron distance” here refers to the unperturbed parabolic orbit). The 
sequence can be divided into two regimes, according to the qualitative outcome of the collision. For encounters with 0.6 <rp< 1.5, 
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time 

Fig. 5.—Transfer of orbital energy to the fluid for parabolic collisions between an n = 3/2 polytrope and a compact object of equal mass (units defined by 
G — M = R = l). The solid, long-dashed, and short-dashed lines correspond to collisions with rp = 0, rp = 0.5, and rp = 1, respectively. In each case, the upper curve 
shows the total fluid energy £f,uid, while the lower curve shows the orbital energy Eorh. 

which we will call “ near-grazing ” encounters, we find that the star is not entirely disrupted. Only a small quantity of gas is extracted 
from the outer layers. Part of the extracted gas remains bound to the point mass perturber, while the rest escapes to infinity. Three 
components are therefore produced in this type of encounter: (1) the perturbed star; (2) the point mass, now surrounded by a 
gaseous disk; and (3) an expanding shell of gas. Since the initial orbit is parabolic, components (1) and (2) will be bound on a very 
eccentric elliptic orbit. All three components have acquired some of the lost orbital angular momentum. For encounters with 
0 < rp < 0.6, which we will call “ near-head-on ” collisions, the star is completely destroyed and only two components remain after 
the encounter. A significant fraction of the gas remains bound to the point mass, forming a massive disk around it, while the rest 
escapes and forms an expanding shell. Our calculations reveal that the transition between the two types of encounters is rather 
abrupt : between rp = 0.75 and rp = 0.6, the amount of gas captured by the perturber increases by more than an order of magnitude 
(cf. below). The same two basic types of encounters were identified by RM, though they did not attempt to locate the transition 
accurately. 

Figure 6 shows density contours and the velocity field at various times for a head-on collision. Time is in units of (R3/GM)1/2, or, 
equivalently, 1.6 x 103 s (R/RQ)312 (M/M0)_ 1/2. Velocity vectors are calculated on a regular grid, in the center of mass frame of the 
system. At t = 0.25, just before impact, the two objects are approaching each other with velocity \v(t = 0.1)| = 360 km s-1 

(R/R0) 1/2(^/^o)1/2 (the velocity scale remains the same in all frames). There are 16 density contours, spaced logarithmically, and 
covering eight decades down from the maximum. At i = 0.5 the point mass enters the star, and by i = 0.75 a bow shock is clearly 
apparent. The opening angle of the bow shock is » 90°, which is expected, given the relatively low Mach numbers > 1 reached 
during parabolic impacts. Gas that has passed through the shock reexpands behind the point mass. Part of it simply accelerates 
away from the star along the axis of the collision, but part of it also spreads rapidly around the star in the forward direction, 
catching up with the shock. The geometry of the outflow agrees well with that found in finite-difference calculations (cf. Fig. la of 
RM). When the shock reaches the center of the star, the character of the flow around the point mass is changed. The direction of the 
flow near the axis is reversed, from backward to forward, so that the point mass is now almost comoving with the fluid in its vicinity. 
Simultaneously, two counterrotating vortices appear on each side of the point mass. This begins to be apparent at i = 1.0 but is seen 
most clearly at i = 1.25 in Figure 6. An identical behavior is found in finite-difference calculations by Rôzyczka et al. (1989; cf. their 
Fig. 2c) as well as investigations of axisymmetric accretion flows by Fryxell, Taam, & McMillan (1987) and Shima, Matsuda, & 
Inagushi (1986). It is encouraging to see that in spite of its low spatial resolution, our SPH calculation does reproduce correctly such 
small features of the flow. By i = 1.5, the shock has propagated through the entire star and most of the fluid is now accelerating 
radially outwards. The particle plots on Figure 7 illustrate the long-term evolution of the system. 

Even for small rp9 the dynamics of off-axis collisions appears very different from the head-on case. This is because the orbital 
angular momentum is transferred very effectively to the fluid. Moreover, the angle of incidence of the trajectory onto the stellar 
surface, i = sin-1 (rp/R)1/2, increase rather rapidly with rp. The geometry of the flow will therefore be modified by even small 
deviations from the precisely head-on situation. Figure 8 shows the hydrodynamics of the impact for a trajectory withrp/R = 1/4. 
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Fig. 7.—Particle plots for the same head-on collision shown in Fig. 6. All particles shown are in the orbital plane, i.e., have zi < Ih^ 

Conventions are as in Figure 6. Note that the reexpansion of the shock-heated gas is no longer symmetrical with respect to the 
direction of motion of the point mass. As in the head-on case, the gas also flows along the stellar surface, but here this occurs only on 
one side. At i = 1.5, the point mass has reached periastron, in the sense that its velocity vector has been rotated by 90° since t = 0. 
We see that a single large vortex has formed around it. About half of the star has been disrupted at this point. By i = 2.0, the shock 
has propagated through the remaining half, and the star is completely destroyed. The particle plots of Figure 9 better illustrate the 
final state of the system, which consists of the point mass embedded in a massive, rapidly rotating, thick disk of gas (see below). 

For the off-axis collision also, the SPH results agree well qualitatively with those of a finite-difference calculation (cf. RM, Fig. 2). 
However, comparing our Figures 6 and 8 with Figures 9 and 10 of RM (which show their calculations repeated with grids of varying 
sizes) clearly indicates that a finer spatial resolution can be obtained with a finite-difference code. To achieve the same overall spatial 
resolution as that of a finite-difference calculation on a 1283 grid, SPH would require a number of particles N > 106, which is clearly 
not feasible with present computers. Finite-difference calculations are therefore best suited to a detailed study of the hydrodynamics 
of the impact. However, because SPH allows the evolution of the system to be calculated over a much longer time scale, the final 
values of many global properties of great astrophysical interest, such as the amount of mass ejected from the system, can be 
accurately determined. In the finite-difference calculations of RM, these quantities could only be determined very roughly by 
extrapolating from a very early stage in the evolution. Moreover, the particle smoothing lengths in the SPH calculation can 
adaptively decrease in the high-density region around the point mass so that, as we noted above, the spatial resolution obtained in 
that region of the flow can in fact be quite good. 

Consider the determination of these global properties for the various components that result from the collision. First, we must 
decide to which component a given SPH particle should be assigned. This turns out to be a nontrivial problem. Even in cases where 
one can easily separate “ by eye ” the various components (as in Fig. 9, where the rotating gas cloud can be clearly identified), this 
assignment proves difficult in practice. The general method which we have adopted is as follows. For each particle i and each 
component m, we calculate the “ enthalpy per unit mass ” of the particle with respect to that component as 

h\n) = i(»i - i>cm)2 + r«¡ + ^"V.) • (21) 

Here is the center of mass velocity for component n, and </>(n) is the gravitational potential due to the mass in component n. If h\n) 

is negative for only one n, we assign the particle to that component. If is negative for more than one component, we assign the 
particle to the component for which is minimum. If h\n) is positive for all components, the particle is part of the escaping gas. 
Clearly, this assignment must proceed by interations, since quantities such as and </>i”) depend on which particles have been 
assigned to component n. Convergence is reached when the distribution of particles among the various components no longer 
changes from one iteration to the next. This method is not unique, but we find that it works very well, in the following sense. First, 
when the various components are well separated spatially, the assignment always agrees with the distribution that one would 
choose “ by eye.” Secondly, its predictive power is very good : in most cases it can reliably identify the various components well before 
they are well separated spatially. Note, however, that the method does have some restrictions. In particular, we need to specify a 
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Fig. 8.—Same as Fig. 6, but for an encounter with rp = 0.25 

priori how many components there are, and we need to start with a good guess as to where to find them. In practice, we always use 
the results of the previous time step to determine initial guesses. The method then usually converges in just a few iterations, and 
never more than about ten. 

Table 1 summarizes the results of our long-time calculations. For each bound component, we give the total mass (M„), angular 
momentum with respect to the center of mass (J„), and rms particle separations, both in the orbital plane (r„ = 0.5<x? + y?)^2) and 
perpendicular to the orbital plane (z„ = <zf>„1/2). The two components in this case are the massive disk around the compact object 
(n = 1) and the gas that remains bound to the star (n = 2). When M2 ^ 0, i.e., when the star is not completely disrupted, the orbital 
parameters of the binary are also given. These calculations were typically 5-10 times longer than those shown in Figures 7 and 8. 

TABLE l 
Numerical Results for n = 3/2 Polytrope3 

Disk Star Orbit 
rpb Jl ri Z1 J 2 r2 Z2 ^oib e rp 

0.0. 
0.25 
0.50 
0.60 
0.75 
1.0. 
1.50 

0.72 0.00 
0.81 0.41 
0.84 0.71 
0.87 1.00 
0.06 0.05 
0.03 0.03 
0.003 0.003 

0.7 
1.0 
1.2 
1.4 
1.0 
1.0 
0.6 

0.7 
0.7 
0.7 
0.7 
0.7 
0.5 
0.2 

0.00 
0.00 
0.00 
0.00 
0.84 
0.93 
0.98 

0.09 
0.13 
0.08 

0.8 
0.6 
0.4 

0.6 
0.4 
0.3 

0.67 0.58 
0.70 0.81 
0.77 1.45 

3 Units are such that G = M = R = 1. 
b Periastron separation of the unperturbed initial orbit. 
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Fig. 9.—Same as Fig. 7, but for an encounter with rp = 0.25 

The relative rates of change of the masses and angular momenta listed in Table 1 have typically become < 10~2 by the end of the 
calculations. The rms separations, however, are not really global conserved quantities and may still be varying slightly. They are 
given only as a crude indication of the geometric shape of the components. 

In order to determine how sensitive our results are to the number of particles used in the code, we have repeated a “ standard ” 
calculation with an increasing number of particles. Specifically, the amount of mass loss in a head-on collision was recalculated 
several times with different particle numbers. The results appear in Table 2. If we estimate the error by taking the difference between 
the results obtained with the two largest numbers of particles, we conclude conservatively that 30% ± 1 % of the stellar mass is 
ejected. For comparison, RM could only determine a lower limit of 12%, based on finite-difference calculations with a 643 grid. 

From the point of view of binary formation, an important consequence of these results is that even for near-grazing collisions, 
with 0.7 < rp/R < 1.5, a significant expansion of the star takes place during the first close passage. Moreover, the periastron distance 
of the subsequent orbits decreases as more and more orbital energy gets transferred to the gas. Complete destruction of the star is 
therefore expected to occur after just a few orbits. We conclude that for polytropes, only the more distant tidal captures, with 
rp/R > 1.5, could lead to the formation of a long-lived binary (see, however, the discussion in § 5). We did not calculate the long-term 
orbital evolution of the system in order to verify this directly, but we did so for red giants, as described in the next section. 

4. COLLISIONS BETWEEN A POINT MASS AND A GIANT STAR 

In this section, we present the results of our calculations of parabolic encounters between a giant star and a point mass. Our basic 
approach will be very similar that of § 3 for collisions with a polytrope. Here, however, because we are primarily interested in binary 
formation, we will place more emphasis on the long-term and orbital evolution of the system. We performed two types of 
calculations: one using large numbers of particles, up to A = 4 x 104, and focusing on the detailed hydrodynamics of the initial 
interaction, the other type using a smaller number of particles, N = S x 103, and focusing on the long-term evolution following the 

TABLE 2 
Influence of particle 

NUMBER 

N Mi 

2500  0.757 
5000  0.735 
10.000   0.716 
20.000   0.703 
40.000   0.698 
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initial impact. In one case we were able to follow the evolution of the binary for seven complete orbital periods, calculating all the 
subsequent encounters between the two components. If a large enough number of successive encounters can be calculated, one can 
then try to extrapolate the evolution and determine the final state of the binary. In Paper I, because of the very small number of 
particles (N ~ 500) and simple method used, we were able to follow the evolution of the binaries for a very large number of orbits 
(~ 100) and directly calculate their final dynamical state. This has not been possible here. 

4.1. Giant Model 
Dynamically, a giant star can be treated as a two-component system : a high-density, degenerate core, surrounded by an extended 

envelope with a rather flat density profile. The distribution of mass in the star is the essential feature here. Other properties, such as 
temperature and opacity in the envelope or energy generation at the core boundary, can be safely ignored since they will not 
influence the behavior of the star on a dynamical time scale. We must therefore construct numerically a stable hydrostatic 
equilibrium configuration whose mass distribution correctly represents that of a giant star. A further simplification arises from the 
very large density contrast between core and envelope (typically pjp ~ 1010) and small core radius (typically RcorJRG ~ 10 ~4). 
These characteristics justify the use of a single point mass to represent the core. 

Stars evolving from the main sequence toward the giant branch describe a one-parameter sequence of models. Joss, Rappaport, & 
Lewis (1987) have conveniently represented this sequence in terms of a core mass versus radius relation. It would be prohibitively 
expensive, however, to repeat the calculation of all encounters for many different models along the sequence. Fortunately, for 
encounters in globular clusters, it will be sufficient to concentrate on just one generic “ subgiant” model, representing stars near the 
base of the giant branch. Indeed, stars evolving off the main sequence will spend a much longer time as subgiants than as evolved red 
giants, typically tsg/tTg ~ 100. Moreover, the small velocity dispersion of stars in globular clusters implies that cross sections are 
dominated by gravitational focusing and scale only linearly with radius. The ratio of time scales therefore largely compensates for 
the larger physical size of more evolved stars (typically RTg/Rsg ~ 20), so that encounters with subgiants are much more frequent 
than encounters with evolved red giants (see Verbunt & Meylan 1988 for a detailed calculation). This motivates our decision to 
work only with a “ subgiant ” model. However, when expressed in terms of nondimensional quantities, our numerical results are in 
fact little influenced by the details of the giant star’s internal structure. 

Our generic subgiant star is defined by its core to envelope mass ratio, Mcore/Menv = 1/3. For a typical globular cluster giant 
today, the total mass MG = Mcore + Menv = 0.8 M0, so that Mcore = 0.2 M0 and Menv = 0.6 M0. The radius of such a star should 
be Rg ä 6 Rq (cf. Joss et al. 1987). Throughout this section, we adopt units such that RG = Menv = G = 1. The natural unit of 
velocity for the problem is then 

140 km s ' Menv y/y Ro V1/2 

0.6 Mj \6rJ 

while the unit of time (dynamical time scale) is 

t = Rg/v = 8.4 hr ' *G Y'Y Me,v yi/2 

,6rJ \0.6 Mq) 

(22) 

(23) 

Next, we need to construct the density profile of the envelope. This turns out to be nontrivial for an adiabatic equation of state. A 
natural solution, given that giant star’s envelopes are largely convective, would be to “ generalize ” the polytrope used in § 3, i.e., to 
place gas with constant specific entropy in hydrostatic equilibrium around the point mass core. The singularity at r = 0 can be 
handled as before by softening the gravitational interaction. Unfortunately, for an adiabatic equation of state with y = 5/3, a very 
steep density profile (roughly pozr~5) results, which does not describe well at all the distribution of mass in an actual giant 
envelope. Instead, the density profiles of red giant envelopes tend to be fairly flat. In Paper I, we adopted the simple p oz\/r profile 
suggested by Tuchman, Sack, & Barkat (1978). Another possibility would be to impose this same p oz\/r profile here, and to 
calculate the corresponding pressure resulting from hydrostatic equilibrium. The problem with this approach is that the solution is 
unstable : a large zone of convective instability exists near the stellar surface. Our three-dimensional calculations can very well trigger 
the unstable gr-modes, thereby requiring us to use a stable initial configuration. 

Fortunately, a simple modification to the density profile of Paper I will make the solution stable. This can be seen as follows. We 
impose a density profile near the stellar surface such that p(r) -> const x (R — r)v as r -► R, while requiring hydrostatic equilibrium 
and a constant ratio of specific heats y. A straightforward calculation then gives for the Brunt-Väisälä frequency (see, e.g., Cox 1980) 
near the surface a>Bv = (GM/R2)(l/cp)(ds/dr) -> (GM/R2)(R — r)_1[(vy — v — l)/y] as r -► R. Clearly, if v > l/(y — 1), then œ^y > 0 
and convective stability is guaranteed. For y = 5/3, this requires v > 1.5. The multiple requirements of a flat density profile, 
hydrostatic equilibrium and convective stability, as well as analytic simplicity, lead us to the following choice for the density profile 
of the envelope : 

P(r) = 
3 \ (1 - r)2 

2n) r 
(24) 

The normalization is such that the total envelope mass Menv = 1. The corresponding pressure and internal energy profiles can be 
easily determined by solving the hydrostatic equilibrium equation analytically. Figure 10 shows the mass profile of our simple red 
giant model. For comparison, we also show the mass profile obtained from a realistic stellar structure calculation (from Schwarz- 
schild 1958, Table 28.7). Clearly, the agreement is excellent. 
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r/RG 
Fig. 10.—Mass profile of our simple red giant model (solid line). Note that mass here is in units of the total envelope massMenv. For comparison, the dashed line 

shows the mass profile for the realistic giant model of Schwarzschild (1958, Table 28.7). The small, nearly constant shift between the two curves is entirely due to the 
slightly larger core mass in the realistic model (Mcore/MG = 0.26 instead of Mcore/MG = 0.25 adopted in our case). 

In the calculations of this section, the density profile of equation (24) is represented by varying the number density of a 
distribution of SPH particles with equal masses. There are now two point masses in the calculation: the compact object and the 
giant’s core. Here we take Mc = 7/3 for the mass of the compact object, corresponding to the case of a 1.4 M0 neutron star colliding 
with the 0.8 M0 subgiant described above. Both point masses interact with the gas through a softened gravitational potential, as 
explained in § 3. The gravitational interaction between the two point masses themselves is calculated exactly, without softening. 

4.2. Numerical Results 
Consider the response of the giant envelope to its penetration by a point mass. For near-grazing collisions, the presence of the 

stellar core has little influence and the hydrodynamical behavior of the envelope is very similar to what we observed for a polytrope. 
The small binding energy of the giant envelope, however, allows gas to be extracted more easily and larger deformations of the 
envelope are generally observed for a given rp. As the periastron distance decreases, we again observe a transition to a qualitatively 
different regime where the envelope is completely destroyed by the impact. The hydrodynamics of such an encounter is illustrated in 
Figure 11. Here the point mass was placed on a parabolic orbit with rp = 0.05, one stellar radius above the stellar surface at i = 0. 
Note that a true head-on collision, with rp = 0, is not possible here since the gravitational force between the two point masses would 
diverge. Conventions are as in Figure 6. Time is in units of t (cf. eq. [23]). Up to periastron, at t « 0.7, a comparison with the 
corresponding encounter with a polytrope (Fig. 6) reveals no qualitatively new feature in the hydrodynamics. The moment when the 
core passes through the shock practically coincides with periastron. After periastron (t = 0.8 and t = 1.0), the core is quickly ejected 
from what remains of the star. However, its motion through the shocked gas remains very subsonic. In fact, throughout the 
calculation, the core appears to comove with the fluid without perturbing it much. Immediately after periastron, a large vortex 
forms around the perturber. No such vortex appears around the core, even though some gas will eventually remain bound to it (see 
below). 

As was shown in Paper I, high-velocity, hyperbolic encounters can lead to core ejection on a much smaller time scale than 
envelope disruption (see also Tuchman 1985 and Livne & Tuchman 1988). This does not happen for parabolic encounters. Figure 12 
shows how the core ejection takes place for the same collision as in Figure 11. Clearly, the time scales for core ejection and for the 
disruption of the envelope are comparable. Note that very little gas remains bound to the ejected core. This is a typical example of 
the “ exchange mechanism ” discussed in Paper I : the intruder point mass appears to have replaced the core inside the envelope. 

The analysis of the various subsystems produced by the encounter is somewhat easier here than it was for polytropes. This is 
because there are always exactly three components in the final state of the system. Indeed, the star is never completely destroyed in 
the present case, since at the very least its core remains intact. In particular, for parabolic encounters, a long-lived binary system is 
always formed. Table 3 summarizes the properties of the various components, as well as the orbital parameters of the binary. The 
procedure used to determine these numbers was described in § 3. Notations are as in Table 1, except that here the subscript 2 
identifies the gas that remains bound to the stellar core. The transition to “ near-head-on ” encounters is less abrupt than in the case 
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Fig. 11.—Density contours and velocity field in the orbital plane for a near head-on parabolic encounter between a compact object and a giant star. The solid 
triangle represents the compact object. The solid round dot represents the giant’s core. Time is in units of t (eq. [23]). At i = 0, the compact object was placed on a 
parabolic orbit, one stellar radius above the surface. The periastron separation of the initial (unperturbed) orbit was rp = 0.05. 

of a polytrope and occurs for a somewhat smaller value of the periastron distance, rp » 0.5. In all encounters with rp < 0.5, most of 
the gas remains bound to the neutron star, forming a massive disk, while the ejected core ends up practically bare. For encounters 
with rp> 0.5 the envelope is not completely disrupted by the first interaction with the perturber but will be destroyed during 
subsequent interactions since the compact object keeps returning on bound orbits with smaller and smaller periastron distances. 
Moreover, the outer layers of the envelope keep expanding because of tidal deformation and induced rotation. These nonlinear 
effects are still present for encounters with periastron separation as large as rp ä 2.5. One might worry that for such distant 
encounters, the poor spatial resolution of the calculation in the outer region of the envelope could lead to large numerical errors. To 
check the validity of our results in this regime, we repeated the calculation of the rp = 2 encounter, increasing the number of 
particles to V = 4 x 104, and representing the envelope by a uniform distribution of particles with varying masses (cf. § 2.2). We 
found that the results were practically unchanged. For example, the mass captured by the compact object was = 0.027, in 
agreement with the 3% quoted in Table 3. 

The orbital period of the binary has a minimum for some 0 < rp < RG along the sequence of parabolic encounters. This is because 
the ejection velocity of the core and the amount of energy transferred to its subsequent orbital motion increase rapidly as rp 
approaches zero. We find that the minimum occurs for a collision with rp « 0.2 (cfi Table 3). For such an encounter the orbit formed 
by the two components after the initial interaction has a period P æ 4 (in units of t) which is small enough for us to be able to follow 
the subsequent orbital evolution of the system. We tracked a total of seven consecutive encounters for this case. Figure 13 shows 
particle plots at successive periastra and apastra. After each encounter, we redetermine the properties of all components using the 
procedure of § 3. The results of this calculation are presented in Table 4. Figure 14 shows the time evolution of the orbital energy 
and angular momentum. It is clear that after just a few orbits, no gas remains bound to the core. About half of the original envelope 
mass has been lost, while the remaining half now forms a massive disk (Mi » 0.3 M0) around the neutron star. The periastron 
distance of the binary remains about an order of magnitude smaller than the equatorial radius of the disk. As a result, the persistent 
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Fig. 12.—Sequence of particle plots in the orbital plane for the same encounter as in Fig. 11 

drag force exerted on the core as it moves through the gas causes both the orbital period and the eccentricity of the binary to decay. 
Note that mass loss from the disk also persists at a steady and rather rapid rate: about 6% of the mass is removed after each 
passage. From the numbers in Table 4, we see that the time scale for mass loss is much smaller (by about an order of magnitude) 
than the time scale on which the orbital eccentricity decays. If the mass losses continue at the same rate for just about 10 more 
orbits, virtually no gas will be left in the binary system. In the absence of a dissipation mechanism, the orbital decay will stop (on a 
dynamical time scale). In this case the orbit could stabilize while still retaining a large eccentricity (e « 0.7 if it keeps decaying at a 
constant rate). This is exactly what we found in Paper I, where we were able to follow the orbital evolution much longer, until 
practically all gas particles had been ejected from the binary. Very near the compact object, of course, some small amount of gas is 
likely to remain. The thermal evolution of this gas is rather uncertain (see Krolik 1984 for a discussion). In particular, it is unclear 
whether the radiation pressure generated by the accretion of a small fraction of the gas might blow away the rest of the disk. Note, 
however, that even the accretion of a very small amount of gas (~1CT2 M0) can be sufficient to spin-up a neutron star to 
millisecond periods (see, e.g., van den Heuvel, van Paradijs, & Taam 1986). 

5. DISCUSSION 

What are the implications of our results for binary formation in globular clusters? To answer this question, we must first know 
the critical periastron separation for tidal capture. This turns out to be much more difficult to calculate for giants than for 
polytropes. Indeed, in the tidal limit, the energy dissipation depends critically on a precise treatment of nonadiabatic processes 
(McMillan et al. 1987). Recently, McMillan et al. (1990) have performed PT calculations of tidal capture for realistic stellar models 
of a 0.8 M0 star. For the capture of a 1.4 M0 neutron star with a relative velocity at infinity of 10 km s~ \ they found that the critical 
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separation for capture decreases as the star evolves, from 2ARG at the base of the subgiant branch to 1.45RG at the onset of helium 
burning. This significant reduction from the typical value of »3R found for polytropes was also predicted by Bailyn (1988) on the 
basis of a simple argument. An important consequence of the results presented in Table 3 is that even for distant encounters, with 
periastron separations as large as rp « 2.5RG, nonlinear tidal distorsions of the envelope, including mass transfer, are apparent. 
Therefore, we must conclude, in agreement with Bailyn (1988), that tidal capture of a neutron star by a giant in a globular cluster is 
likely to result in the destruction of the giant. 

The number of binary pulsars detected in globular clusters has increased dramatically over the past few months. Table 5 lists all 
presently known globular cluster binary sources, both low-mass X-ray binaries (LMXB) and binary radio pulsars, with a measured 
orbital period. 

Several binary pulsars with long orbital periods (P > 1 day) have recently been discovered. The standard formation scenario for 
these sources involves the tidal capture of a neutron star by a giant (Verbunt 1990; Romani 1990). Following the capture, the orbit is 
assumed to circularize, with the giant star remaining undisturbed. Normal stellar evolution would then lead to envelope expansion 
and Roche lobe overflow, forming an X-ray binary. When the giant envelope is exhausted, a recycled pulsar with a low mass 
degenerate companion would remain. Based on this scenario, McMillan et al. (1990) have calculated in detail the orbital evolution 
of the wide binary in M4. They concluded that the system could have been formed by the tidal capture of a neutron star by a 

TABLE 3 
Numerical Results for Giant Star3 

Disk Star Orbit 

0.05. 
0.20. 
0.50. 
1.0.. 
1.5.. 
2.0. . 
2.5.. 

0.68 0.19 
0.62 0.50 
0.32 0.46 
0.10 0.11 
0.05 0.08 
0.03 0.05 
0.01 0.03 

1.0 
1.4 
2.5 
1.7 
1.5 
1.8 
2.1 

0.8 
0.7 
1.0 
0.6 
0.4 
0.4 

0.003 
0.06 
0.50 
0.84 
0.92 
0.96 

0.5 0.98 

0.0002 
0.004 
0.07 
0.12 
0.08 
0.06 
0.03 

0.6 
0.1 
0.4 
0.6 
0.5 
0.5 

0.6 
0.1 
0.3 
0.4 
0.4 
0.4 

0.4 0.3 

27. 
3.7 
6.8 

38. 
130. 
440. 

1600. 

0.98 
0.86 
0.85 
0.83 
0.88 
0.93 
0.96 

0.05 
0.16 
0.24 
0.86 
1.4 
1.9 
2.47 

3 Units are such that G = Menv = RG= 1. 
b Periastron separation of the unperturbed initial orbit. 

TABLE 4 
Numerical Results for the Orbital Evolution of the Binary3 

Number 

Disk Star Orbit 

A M, 

0.0 
0.62 
0.63 
0.62 
0.59 
0.56 
0.53 
0.49 

0.50 
0.54 
0.52 
0.48 
0.46 
0.44 
0.40 

1.4 
1.9 
2.3 
2.5 
2.7 
2.9 
3.0 

0.7 
1.1 
1.3 
1.5 
1.7 
1.9 
2.0 

1.0 
0.06 
0.02 
0.006 
0.0 
0.0 
0.0 
0.0 

0.0 
0.004 
0.0006 
0.0002 

0.3 
0.1 
0.06 
0.05 

0.3 
0.1 
0.06 
0.05 

3.7 
2.6 
2.0 
1.6 
1.5 
1.4 
1.3 

1.0 
0.86 
0.83 
0.81 
0.80 
0.79 
0.78 
0.77 

0.2 
0.16 
0.14 
0.13 
0.12 
0.12 
0.12 
0.12 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

37
7.

 .
55

9R
 

578 RASIO & SHAPIRO Vol. 377 
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Fig. 14.—Long-term evolution of the system for the same rp = 0.2 encounter shown in Fig. 13. Binary separation, orbital energy, and orbital angular momentum 
are shown as a function of time. 

Rg = 24 R0 giant with rp/R = 1.7-2. Clearly, our results indicate that this formation scenario is very unlikely, since the envelope of 
the giant would already be disrupted significantly after the first close passage of the neutron star. Apart from being in conflict with 
our theoretical calculations, the standard formation scenario also has problems explaining the observations. Romani (1990) has 
calculated the expected distribution of binary periods corresponding to this scenario and found it difficult to explain the large 
number of long period binaries. 

Instead of the standard scenario involving tidal capture followed by circularization of the orbit and normal stellar evolution of the 
giant, our results suggest that cluster pulsars in wide, circular binaries may be formed as follows. A close encounter (1 < rp/RG < 2) 
takes place between a neutron star and a giant. After at most a few orbits, the envelope is completely destroyed. A stable (on a 
dynamical time scale) binary system results, consisting of a low-mass degenerate core in orbit around a neutron star surrounded by 
a massive disk. Eventually, on a much longer time scale, the orbit circularizes (at a ~ RG) and an accretion disk forms, giving rise to 
a (possibly short-lived) LMXB-like phase. Finally, after the disk has been either exhausted or expelled, a spun-up pulsar in a wide, 

TABLE 5 
Binary Sources in Globular Clusters 

Source Cluster pp (ms) /ÏM0) (days) References 

X 2127 + 119  
4U 1820-303 ... 
PSR 1620-26... 
PSR 2127+11C. 
PSR 1516+ 02B . 
PSR 1310+18... 
PSR 1744-24A. 
PSR 1802-075 . 
PSR 0021-72E . 
PSR 0021-72H 
PSR 0021-721.. 
PSR 0021-72J . 
PSR 0021-72K 

M15 
NGC 6624 
M4 
M15 
M5 
M53 
Terzan 5 
NGC 6539 
47 Tue 
47 Tue 
47 Tue 
47 Tue 
47 Tue 

(LMXB) 
-(LMXB 

11.1 
30.5 

7.95 
33.2 
11.6 
23.1 

3.54 
3.21 
3.49 
2.10 
1.79 

? 
? 

0.007 
0.145 

? 
0.0098 
0.00032 
0.0097 

? 
? 

0.35 
0.008 

191 
0.34 
6.9 

256 
0.075 
2.62 

«2 
?(long) 
?(long) 

0.12 
? 

? 
? 

0.025 
0.674 

>0.1 
<0.01 
Small 

0.22 
? 
? 
? 
? 
? 

1 
1 
2 
3 
4 
5,6 
7 
8 
9 
9 
9 
9 
9 

References—(1) Parmar & White 1988; (2) Lyne et al. 1988; (3) Anderson et al. 1990b, (4) Wolszczan et al. 1989; (5) 
Anderson et al. 1989; (6) Kulkarni et al. 1991 ; (7) Lyne et al. 1990; (8) D’Amico et al. 1990; (9) Lyne 1991. 
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circular binary remains. Note that if most of gas in the massive disk around the neutron star is lost rapidly enough after the initial 
encounter, the binary may retain a large eccentricity (cf. § 4), as observed in the NGC 6539 and M5 binaries. Calculations by 
Rappaport, Putney, & Verbunt (1989) indicate that such a large eccentricity is unlikely to have been induced by three-body 
encounters, given the very moderate central concentration of these clusters (cf. Chernoff & Djorgovski 1989). Alternatively, 
formation scenarios involving primordial binaries (which are now believed to exist in significant numbers in globular clusters; cf. 
Pryor 1990) have been proposed, which could explain the presence of wide-orbit binary pulsars even in very sparse clusters, such as 
M53 (see Kulkarni et al. 1991). 

For the ultrashort period systems, such as the 11 minute binary in NGC 6624, the standard formation scenario involves a collision 
between a neutron star and a giant (Verbunt 1987, 1990). Following the collision it is assumed that the orbit circularizes inside the 
envelope and that subsequent “ slow spiral-in ” can lead to a very short binary period. This scenario also appears to be in conflict 
with our results, which show that the envelope is disrupted well before circularization occurs, let alone any secular spiral-in. 
However, our calculations assumed a mass ratio characteristic of conditions in globular cluster today. Slow spiral-in of a neutron 
star inside the envelope of a giant might be possible when the giant is much more massive (MG/MC >10) than the neutron star 
(Taam, Bodenheimer, & Ostriker 1978). If the age of the binary system is comparable to the age of the cluster (as in the model 
proposed by Rappaport et al. 1987 for the 11 minute binary), then it is possible that the formation may have taken place at an early 
epoch in the history of the cluster, when the masses of giants could still have been > 1 M0. However, the lifetime of such massive 
giants may be too short for any collision to occur at all. Moreover, hydrodynamical calculations by Bodenheimer & Taam (1984) of 
the response of the envelope to the deposition of frictional energy during spiral-in indicate that even for very massive giants 
(Mg/Mc = 16 in their study), ejection of the envelope probably occurs well before an ultrashort binary period is reached. Our results 
suggest that the collision of neutron star with a more massive giant might lead to a system where the degenerate core orbits the 
neutron star inside a massive disk. After circularization of the orbit, however, the degenerate core and the disk are corotating, and it 
is not clear whether a spiral-in can occur. 

For binaries with orbital periods of a few hours, such as 47 Tue J, the standard formation scenario involves the tidal capture of a 
neutron star by a main-sequence star (Verbunt 1990; Bailyn & Grindlay 1987). Following the capture, the orbit would quickly 
circularize, and then decay by loss of angular momentum. The main-sequence star is assumed to remain unperturbed throughout 
the orbital evolution, until the onset of mass transfer. Note that systems with orbital periods of a few hours could also be formed by 
a collision between a neutron star and a subgiant. Indeed, the calculations of § 4 indicate that the size of the orbit can be as small as 
~0.1Rg (see also Paper I). For a subgiant of radius RG « 10 R0 this implies a binary separation a ~ 1 R0 

and an orbital period 
P < 1 day. While our own dynamical calculations do not rule out the standard formation scenario for these short-period binaries 
(cf. § 3), a recent study by Ray et al. (1987) of the long-term effects of tidal energy dissipation in main-sequence stars indicate that 
here also, the star could be disrupted well before mass transfer begins. Moreover, if all tidal captures of neutron stars by 
main-sequence stars were to result in the formation of short-period binary pulsars, a large cluster population of such objects would 
be expected. These could have remained undetected in pulse searches, given the large Doppler smearing in short-period binaries. 
Sensitive images of five globular clusters made recently with the VLA by Kulkarni et al. (1990a) revealed that such a population 
does not exist, leading these authors to conclude that the tidal capture of a neutron star by a main-sequence star must indeed lead to 
the complete disruption of the main-sequence star and the formation of an isolated millisecond pulsar. 

It is clear from our discussion that the standard formation scenario for globular cluster pulsars may need substantial revision. In 
particular, it appears that accretion from a massive disk, rather than accretion from a stellar companion, could be the prevalent 
mechanism for the formation of spun-up pulsars. The duration of the accretion phase in this case is the lifetime of the disk, which 
could be much shorter than the corresponding LMXB lifetime in the standard scenario. Indeed, studies of the population of cluster 
pulsars indicate that the birthrate of these objects may exceed that of LMXBs by a factor > 100 (Kulkarni, Narayan, & Romani 
1990). Moreover, a shorter accretion phase could also explain why many cluster pulsars have rather long pulse periods (of the 28 
cluster pulsars presently known, 11 have a pulse period > 10 ms; cf. Lyne 1991). Detailed physical studies of the thermal evolution of 
massive disks around neutron stars appear highly desirable at this point. 

Close encounters may also be of considerable importance for the evolution of the globular clusters themselves. Indeed, if, as 
suggested above, all tidal captures and collisions (with main-sequence stars as well as giants) lead to the disruption of the star, then 
the total rate of mass loss from globular cluster cores may be much higher than previously estimated, possibly providing an efficient 
mechanism for halting core collapse (see, e.g., Goodman & Hut 1989). Clearly, a reexamination of this problem also seems desirable 
at this point. 
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University, which receives major funding from the National Science Foundation and IBM corporation, with additional support 
from New York State and members of its Corporate Research Institute. 
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