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ABSTRACT 

Warped equilibrium configurations of galactic disks embedded in flattened haloes are considered. The rele- 
vant torques are calculated in their full nonlinearity, extending the results of linear-mode calculations. It is 
shown that for two specific examples, NGC 2841 and M33, it is possible to reproduce closely the observed 
warp shapes with these models. It is further demonstrated that the observed shapes of a galaxy’s warp and 
rotation curve do not suffice to determine the disk mass uniquely, but can only provide upper limits on the 
disk-to-halo mass ratio. In the case of M33, this limit is about one-third of a maximal disk decomposition of 
the rotation curve. 

Qualitative differences between the linear theory and the present work are discussed. 
Subject headings: galaxies: individual (M33, NGC 2841) — galaxies: internal motions — galaxies: structure 

1. INTRODUCTION 

The origin of galactic disk warps, a common phenomenon in 
the universe, is uncertain. Mechanisms involving tidal dis- 
turbances from nearby galaxies, intergalactic magnetic fields, 
or steady state oscillations of the disk have all been put 
forward as explanations, but unfortunately at present there is 
no clear consensus on which of them to choose. A promising 
model is one in which the warp represents an equilibrium con- 
figuration of a disk “ misaligned ” inside a flattened halo, with 
the disk precessing about the halo axis of symmetry. Models of 
this kind have been calculated with a linearized theory, in 
which it is possible to view a warped equilibrium as a standing, 
neutrally stable bending wave in the disk (Sparke & Casertano 
1988). 

The detailed investigation by these authors is built on a 
chain of work spanning more than 20 years, starting from 
Lynden-Bell’s (1965) suggestion that a stellar disk might have a 
bending mode analogous to the wobble of a spinning penny 
that is thrown into the air. Hunter & Toomre (1969) showed 
with a WKB analysis that most isolated stellar disk models do 
not in fact admit such a normal bending mode, however: 
unless the stellar density drops quite fast at the outer edge of 
the disk, bending waves traveling outwards will not be reflec- 
ted back towards the centre of the disk, and hence cannot form 
a standing wave. Later, when the evidence for massive halos 
surrounding galactic disks grew, it was realized that these 
might hold the key to long-lasting warps. Thus, Tubbs & 
Sanders (1980) showed that a massive spherical halo can slow 
down the differential precession (which tends to wind up and 
destroy warps) down to Gyr time scales, and Petrou (1980) 
showed that suitably adjusting the halo flattening as a function 
of radius can remove the winding altogether. In work present- 
ed at IAU 100, Toomre (1983) and Dekel & Shlosman (1983) 
considered self-gravitating disks embedded in a flattened 
potential (as provided by a massive distant ring, or by a flat- 
tened massive halo), and demonstrated that they can have a 
warped mode, without the strong restrictions on the sharpness 
of the outer edges of isolated disks found by Hunter & Toomre 
(1969). Sparke (1984) and Sparke & Casertano (1988) then 
investigated such models in detail, showing that they can look 

quite realistic, and discussed the criteria for existence of 
bending modes. 

Maintaining a warp in a galactic disk requires the disk to 
experience some external torque: without it, the warp would 
wind up into a spiral bending disturbance and disappear, 
Kahn & Woltjer (1959). Because the disk is spinning, this 
torque will cause a rigid precession of the whole warped disk. 
Since warps appear to be very common (in a sample of 20 
well-studied, nearby edge-on disk galaxies Bosma 1991 finds 
the H i disks of four galaxies unwarped, and 12 others 
“clearly” warped; Sánchez-Saavedra, Battener, & Florido 
1990 see warps in optical photographs of 49% of a sample of 
86 disk galaxies), they have to be excited regularly if they are 
not long-lived features. 

Many warped disks have no visible nearby galaxy that may 
be accused of having disturbed it in the recent past. In these 
galaxies, at least, there may not have been any interaction that 
could have set up a warp in the last several Gyr (assuming that 
there are no large “dark” galaxies roaming through space). 
Moreover, in most warped galaxies the line of nodes is quite 
straight, at least out to a certain radius (Briggs 1990), indicat- 
ing that differential precession has not been severe in the inner 
parts. This implies a long lifetime for the warp. If the only 
forces of relevance to the disk are gravitational, this then 
requires torques acting on the disk to halt, or at least slow 
down, the differential precession. 

Recently an intriguing correlation between the direction of 
the warps of disk galaxies has been found in a sample of gal- 
axies covering a large part of the sky (Battaner, Florida, & 
Sánchez-Saavedra 1990). Such large coherence in warp direc- 
tions cannot be explained in terms of the internal structure of 
galaxies, and, if true, argues for a larger-scale cause such as 
intergalactic magnetic fields. In this paper we will not investi- 
gate this nevertheless very interesting suggestion further. 

Another possible model for warps is discussed by Ostriker & 
Binney (1989). They argue that realignment of the angular 
momentum of a galaxy on a Hubble time scale is plausible in 
current models of secondary infall onto extant galaxies. While 
the galaxy realigns, it warps, providing a nice explanation for 
the ubiquity of warps which does not require flattening of dark 
halos. 
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In this paper, we concentrate on the possibility that the 
torques responsible for the warp are provided by a flattened 
dark halo whose plane of symmetry is misaligned with the disk 
plane. In particular, we extend the work of Sparke & Caser- 
tano (1988, hereafter SC) by performing calculations which are 
fully (nonlinearly) developed in the misalignment angles 
between the various parts of the disk and the halo equator 
plane. 

There is some evidence that such misalignments are readily 
generated when disk galaxies form. Simulations by Katz (1990, 
private communication) show that inclusion of gasdynamicaí 
processes in calculations of primary collapse of density pertur- 
bations naturally leads to flattened halos with misaligned 
disks, since the gas forms quite a lumpy structure which can 
exchange angular momentum with the halo before finally set- 
tling into a disk. He reports typical misalignments of 30° and 
halo flattenings of 0.1 in the potential. Observations of the 
polar ring in NGC 4650A (Sackett & Sparke 1990) strongly 
suggest that this galaxy is embedded in a halo which is flat- 
tened like an E3-E7 galaxy, providing some confirmation for 
these models. 

Dubinski & Carlberg (1990) simulated the dissipationless 
collapse of cold dark matter halos with a high-resolution 
JV-body simulation, in the absence of any gas. They find that 
such halos are strongly flattened, quite triaxial, and (within the 
resolution of the calculation, which was 1.4 kpc) essentially 
coreless. It is not clear how the process of disk formation 
would affect the halo core, although it seems unlikely that, if 
the disks are very massive, the resulting potential would still 
have a core radius small compared to the disk scale length. If 
the bulk of the disk gas is accreted after the halo has formed, 
then strong misalignments might be expected to occur only in 
halos with quite spherical cores, otherwise the gas would 
quickly find the halo plane and only small misalignments could 
result. In any case, these cosmological simulations suggest that 
models such as will be considered here may be relevant to the 
structure of warped disks. 

Section 2 of this paper covers the basic equations, including 
some discussion of how far the linear approximations can be 
considered valid; § 3 contains discussion of some warp models 
of truncated exponential disks in flattened halos, and § 4 pre- 
sents comparison of models with Begeman’s (1987) observa- 
tions of the disk galaxy NGC 2841, and the data of Reakes & 
Newton (1978) on M33. Section 5 contains the conclusions. 

2. DETAILS OF THE CALCULATION 

The galactic disk will be taken to be completely cold, i.e., all 
stars will be assumed to move along closed orbits. It is 
expected that small radial excursions of stars would not grossly 
affect the structure of the disk. Numerical calculations of 
closed orbits in the potential of a uniformly processing disk 
have shown that in the processing frame the closed orbits 
remain remarkably round, as is the case for the so-called 
“ anomolous ” orbit families (which do not lie in any of the 
planes of symmetry of the potential) in tumbling elliptical gal- 
axies investigated by Heisler, Merritt, & Schwartzschild (1982). 
The same conclusion was reached by Zachilas & Petrou (1988, 
private communication), who studied orbits in the potential of 
a flattened halo and a tilted disk fixed inside it. It is therefore 
justifiable to follow the methods of Toomre (1983) and Sparke 
(1984), and calculate the dynamics of the disk in terms of a 
rigid-ring model, each ring representing a set of stars uniformly 
spread around their orbit. Further justification is provided by 

the work of Ostriker & Binney (1989), who demonstrate that to 
leading order in the precession rate of the potential rigid rings 
and stellar orbits respond identically. 

The potential <I>H of the flattened halo embedding the disk 
will be taken to be of the form 

®h(R, z) = jVc
2 In (R¿ + R2 + z2/q2) (1) 

in cylindrical polar coordinates (R, <f>, z). The flattening e of the 
potential is given by q = 1 - e, [/ is the asymptotic circular 
speed on the equator of the halo, and Ra is the halo core 
radius. The potential energy VH ¡ of a massive ring of radius R¡ 
and mass wif, inclined at angle 0i to the halo plane is given by 

„ Ç2n mi dé 
Vh,í ~ i ~27~ - R‘ sin2 °‘ sin2 'A)1/2> Ri sin e¡ sin t/r] 

= mi V2ln(l + ^1 + a,, sin2 0,) + constant, (2) 

where 

Ü: = Rj(q-2 - 1) 
Rh + R2 ' 

The torque LH ¡ exerted by the halo on the ring is therefore 

(3) 

Lh.í — de, 

= —-rrii V2 sin 29 i 
VÏ+ ai sin2 0f (1 + + a¡ sin2 0,) ’ 

(4) 
Note that in such a halo the torque felt by a ring at a given 
inclination approaches a constant value beyond a few core 
radii. Also, the flattening and the radial mass profile are 
described by the same core radius, something which need not 
apply to real galactic halos. This last point will be discussed 
further below. The halo potentials used in the calculations of 
SC have a similar coupling. 

In an equilibrium situation, the disk uniformly processes 
about the halo axis—there is therefore some advantage in 
moving to the reference frame which rotates about the halo 
symmetry axis at the disk’s precession frequency Í2. In this 
frame the figures of the disk and halo appear stationary, 
although the different rings that make up the disk still spin 
about their individual axes. If the ring i spins at a speed V¡ (in 
the positive sense as viewed down the halo’s symmetry axis), 
the coriolis force associated with the frame rotation subjects it 
to a fictitious torque Lc ¡ given by 

Lc,i = -m, Ri IjQ sin 0¡. (5) 
As will be seen below, and is also apparent from the calcu- 
lations of SC, the typical pattern speeds are small compared to 
the angular frequencies even in the outer parts of the disk, so 
that centrifugal terms can be ignored. 

If the disk is to be stationary (in the rotating frame) then the 
total torque it experiences from halo and Coriolis forces must 
be zero. It then follows from equations (4) and (5) that, provid- 
ed 10¡ | < re/2, Í2 is negative in an oblate (e > 0) halo (i.e., the 
disk precession is retrograde), while the opposite is true in a 
prolate halo. It is also important to note that the coriolis and 
halo torques have different angular dependences: the approx- 
imate sin 20 dependence of the halo torque combined with the 
fact that Lc cc sin 0 mean that, to keep these two in balance, 
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^ approximately Q oc cos 0, where 6 here is some mean misalign- 
^ ment of the (warped) disk plane with the halo. Thus, increasing 
a the tilt of the midplane of the disk reduces the precession fre- 
^ quency of the entire pattern. 
2 Finally, to treat the self-interaction of the disk, it is necessary 

to calculate the torque between two concentric, mutually 
inclined rings. The mutual potential energy ^ between two 
rings i and j inclined to each other by an angle <5 is (see e.g., 
Ostriker & Binney 1989) 

with 

ViJ 
Grrij rrij 

2n2y/R~Rj 
chl/kK(k), 

4R¿ Rjy/l — sin2 xj/ sin2 Ö 

Rf + Rj + 2Ri Rjyfl — sin2 i¡/ sin2 Ö ’ 

(6) 

(7) 

and K(k) is the complete elliptical integral of the first kind. If 
the line of nodes in the halo equatorial plane is the same for 
both rings, then <5 = 0; — Oj. In this case, the torque on ring 
i from ring; is 

Ly = 
dVy 
de¡ 

Gm, m . 
—: sin 2d 

\6n2^Rjj ' f 
dlj/ 

k(2 - k2)E(k) sin2 ÿ 
(1 — k2Xl — sin2 <5 sin2 ij/) * 

(8) 

E(k) is the complete elliptical integral of the second kind, which 
satisfies d[kK(ky]/dk = E(k)/(1 - k2). In general, this integral 
cannot be simplified further, so that numerical approximations 
to it were needed for the calculations described below. 

Figure 1 shows the torque Lip in arbitrary units, as a func- 
tion of mutual inclination for two rings with radii in the ratio 
r:l. Evidently, the torque between two rings of similar radii 
peaks at very small angles—approximately, for r close to 1, the 
maximum occurs at the angle 0max ^ 1.21 r — 11 radians. So in 
a disk in which the warp angle 0 increases at a rate more 

Fig. 1.—Torques between two nearby concentric rings of radius ratio r: 1, 
as a function of their mutual tilt angle 0. Curves for (top to bottom) r — 1.1, 
1.04,1.02, and 1.01 are shown. Note the limited 0-extent of the linear regime as 
r -► 1. 

steeply than \dO!dR \ = 1.2/R, the self-gravity of the disk (at 
least the short-range portion thereof) is stretched to the limit. 
Therefore, a simple scaling up of 0(R) by a constant factor, 
which in the linear theory yields a new solution, produces a 
configuration in which the torques required for equilibrium 
cannot be provided by the local disk gravity, and at the very 
least the shape of the equilibrium warp of this amplitude must 
change significantly from the linear mode shape. In disks in 
which the linear mode has a very steeply changing 0(R) (mostly 
extreme fast warps, see below), this maximum slope can be 
reached at small amplitudes, where the halo and coriolis 
torques are still well-described by linear approximations. In 
some cases, therefore, it is the slope of the warp which is the 
limiting factor for the linear calculations, rather than the 
amplitude of the misalignment between the disk and the halo 
planes. This is also evident from the calculations for disks with 
massless outer regions which will be considered in § 3 along 
with full models of truncated exponential disk galaxies. 

In their calculations, SC identified two kinds of warp. The 
first, so-called type-I warps, occur in halos with small core 
radii. In these disks the massive inner part, hardly influenced 
by the weak torques exerted by the tenuous outer gas, feels a 
strong halo torque. This sets a high precession speed for the 
warp mode. The outer parts are forced to precess at the same 
speed if the galaxy is in a warp mode, so, because of their larger 
radius, they feel a larger Coriolis torque (assuming that the 
circular speed is approximately constant). The specific halo 
torque, on the other hand, is basically the same for inner and 
outer rings if the halo core radius is small. Thus in the outer 
regions the Coriolis term will dominate, lifting the rings there 
further out of the halo plane. Thus type-I warps (which I will 
call “ fast ”) bend steadily away from the halo plane. 

The type-II, or “ slow ” warps occur in disks embedded in 
halos with large core radii. In such disks, the halo torque rises 
through most of the massive regions of the disk, rather than 
quickly reaching a maximum as in the fast warps. Consequent- 
ly, the inner disk does not feel as strong a torque, and the 
galaxy precesses more slowly. In the outer disk, the halo torque 
can therefore dominate the Coriolis term, forcing the disk to 
bend down towards the halo plane. As R increases, though, 
eventually the Coriolis term will be largest once again and, if 
the disk is sufficiently large, its edge will turn up, away from the 
halo equator. 

Toomre (1990, private communication) has pointed out that 
halos are unlikely to remain inert in the presence of a process- 
ing stellar disk, but that instead dynamical friction will try to 
align these two components. This effect is more serious for 
more massive stellar disks and for higher precession speeds 
(fast warps). 

3. WARPING OF A TRUNCATED EXPONENTIAL DISK 

SC considered the linear bending modes of a truncated 
exponential disk in a flattened halo. The calculations presented 
in this section extend their results into the nonlinear regime, by 
requiring equilibrium of all the disk’s rings under the com- 
bination of the torques exerted by the other rings, the halo and 
the Coriolis force. As in the linear theory, in equilibrium all 
rings are required to have the same line of nodes in the halo 
equatorial plane. If the disk is modeled with N rings, there are 
N equations (the torque on each ring must be zero) to be 
satisfied, with AT + 1 unknowns, namely the angles of tip 0; of 
all rings, and the overall precession speed Q. After fixing the tilt 
0in of the innermost ring, the remainder of the unknowns can 
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Fig. 2. 
0.10,0.14, 0 ^72

e^riaVXPOren^dlSk h7OS ofvariouii.flattenings <see text for details). Halo flattening increases from top to bottom (e = 002 006 0.18,0.22, and 0.26 are shown), and the core radius increases from left to right (RH = 1, 5,9,13,17,21,25,29, and 33 kpc) ^ > 

be solved for, yielding equilibrium models at a range of inclina- 
tions of the inner ring. (Note that these models are still not fully 
self-consistent, since they replace the closed orbits with nearby 
circular paths. For very inclined rings in a very flattened halo, 
this assumption becomes less appropriate, although it is prob- 
ably not a serious concern in practice.) All calculations shown 
in this paper have N = 50-60 rings, concentrated towards the 
disk’s outer edge where warping was taking place. Experiments 
with models having 100 rings gave essentially the same 
answers. 

In Figure 2, the resulting equilibria of one particular trun- 
cated exponential disk in a variety of dark halo potentials are 
shown. The disk has a mass of 7 x 1010 M0, with a radially 
exponential surface density profile of scale length 4 kpc out to 
the truncation radius of 20 kpc, beyond which it is smoothly 
tapered to zero at a radius of 24 kpc following the prescription 
of SC The dark halo has an asymptotic circular speed Vc of 200 
km s 1. The different panels of Figure 2 show the possible 
equilibrium configurations for the disk, in halos of different 
flattening e and core radius RH. In all cases the galaxy is 
viewed from the halo’s equatorial plane, edge-on to all the 
rings. The halo plane is horizontal. As already noted by SC, 
misalignment does not imply warping: quite a few of these 

models show little or no warping, even though they do not lie 
in the symmetry plane and the halo is quite flattened. 

In any given halo model, equilibrium solutions were sought 
for successively increased values of 0in, using multidimensional 
Newton-Raphson iteration. Each solution found was rescaled 
(linearly with 6m for the individual tilt angles 6h and with 
cos 0in for the precession frequency fi) for use as a starting 
approximation to the equilibrium with the next 0in. Usually, 
0in could be increased in steps of 10° and a new solution 
obtained; however, near regions of parameter space where the 
equilibrium solutions change rapidly or disappear, smaller 
steps needed to be taken. In practice, when the Newton- 
Raphson algorithm failed to converge the increment in 0in was 
halved and a smaller step taken. The first solution was 
obtained starting from the linear mode solution described by 
SC (which in turn was calculated by starting with a constant 
tilt solution and the precession frequency iilin given by SC in 
the low-e limit). The search ended when the step size dropped 
below Io, or 90° was reached. All solutions thus calculated are 
displayed in the figure. 

Empty panels in Figure 2 represent those halos in which 
there are no isolated linear modes for this particular disk (see 
SC). in these cases the solution to the linearized equations does 
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not converge as the number of rings is increased, but remains 
irregular and highly oscillatory near the disk edge. At fixed 
ellipticity, there may be a minimum core radius for which a 
linear mode can exist; this arises because halos with smaller 
core radii cause faster precession rates, which can eventually be 
so fast that bending waves of this frequency propagate to the 
disk edge rather than reflect and form a standing wave. With 
halo core radii slightly above the minimum (e.g., the e = 0.10, 
RH = 9 kpc model) a (highly warped) linear mode does indeed 
exist. However, once the nonlinear terms are included in the 
torque calculations, it is found that the maximum amplitude of 
the tilt, set by 0in, is quite small. For larger amplitudes, no 
equilibrium exists, as the disk’s self-gravity is unable to main- 
tain a uniform precession of the entire disk. 

3.1. A Simple Example: Test Particles Around a Massive, 
Precessing Disk 

Many of the features of these results can be demonstrated 
qualitatively with a very simple model. Consider a disk galaxy 
consisting of two regions: a massive flat inner disk, and a series 
of massless “ test rings ” in the outer regions. The whole system 
is embedded in a flattened halo as above, with core radius well 
inside the inner disk’s edge. If e is not too large, then 
Lh(R, 6) ^ -ieFc

2 sin 20 in the region of the test rings. If the 
plane of the massive disk is now tilted at an angle 0d, it will 
precess about the halo axis at a frequency of Q0 cos 0d, with the 
constant Q0 determined by the rotation speed of the disk and 
by the halo potential. Such a galaxy can have a linear mode of 
sorts, although the absence of self-gravity in the outer parts 
precludes propagation of energy by bending waves, so that 
these waves are kinematic only. 

This model has the advantage that the outer rings only inter- 
act with the inner disk and the halo, and their equilibrium 
positions do not depend on each other, making the system 
much easier to solve. We now study such kinematic modes at 
radii large compared to that of the massive inner disk. This 
should at least be a reasonable approximation to galaxies, 
because typically the inner (optical) disk is virtually un warped, 
while the gas disk extending to larger radii is essentially mass- 
less for present purposes. 

The linearized specific torques due to disk, halo, and 
Coriolis force on a ring of radius R and tilt 0 are 
—f2(R)(0 - 0d), -eV20 and —RVQ0 0, which sum to zero pro- 
vided that 

0(R) = f2(m 
VQ0R + €V2 A f2(R)' 

(9) 

Here/2(R), which governs the torque due to the inner disk, is a 
positive, decreasing function which tends to 0 as R -► oo, and e 
and Q0 V have opposite signs. 0(R) is continuous and the solu- 
tion stable provided that the denominator is positive, which it 
is for all R less than some radius Rcrit. At this radius, there is 
a resonance between free vertical oscillations about a circular 
orbit in the halo plane (i.e., precession of the ring) and the 
periodic forcing due to the precessing massive disk. Thus, in 
spite of the lack of self-gravity which could propagate bending 
waves out through the distant gas, energy is being deposited at 
a resonance of the disk’s precession. This is analogous to the 
distinction in the theory of spiral structure between kinematic 
response to a potential perturbation in a planar disk, which 
requires a forcing to be put in by hand, and tightly wound 
density waves which can reflect and form standing waves. The 

latter can be described by the WKBJ approximation (Hunter 
1969), being driven by local gravity; the former cannot. 

In the notation of SC, the outer gas can join in the disk’s 
precession out to the radius Rcrit at which its free precession 
frequency — (/zt

2
ot — Q2)/2Q becomes equal to the disk’s pre- 

cession speed. Here ptot is the vertical oscillation frequency of 
the gas in the plane of the halo, and Q the circular frequency. 
As long as the galaxy has radius below Rcrit, it has a contin- 
uous linear bending mode. Although self-gravity will 
undoubtedly affect the detailed structure of a warped disk, in a 
fast warp the strongest bending does occur in the outer regions 
where the density tapers to zero, and a large part of the torques 
influencing the outer rings is nonlocal in that case. Thus it 
appears that the outer vertical resonance is at least as impor- 
tant an ingredient as the local self-gravity for understanding 
the structure of warped disks. This picture is supported by the 
calculations set out above for the truncated exponential disk. 

To investigate the nonlinear equilibria, consider the quadru- 
pole approximation, in which the disk exerts a torque on a ring 
at radius R of -i/2(R) sin 2(0 - 0d);/

2 oc R~3. Then putting 
the total specific torque on such a ring to zero yields 

L(R, 0) = -y2(R) sin 2(0 - 0d) 

- ^eV2 sin 20 - RFQ0 sin 0 cos 0d = 0 . (10) 

Figure 3 shows, for different values of 0d, the curves 
L(R, 0) = 0, for the specific case D0 = —0.1, € = 0.1,/2 = R 3, 
and Vc = V(R) = 1. This galaxy displays a fast warp. At a given 
value of 0d, there is a maximum radius Rcrit(0d) for which stable 
solutions exist. At that point, a stable and an unstable (not 
shown) root of equation (10) merge. The dotted curves show 
the result of the linearized equation (9). There clearly are 
marked differences between the linearized and full results, espe- 
cially in the regions where the disk is most strongly warped, 
which is where observations would carry most weight. The 
maximum radius of a warped configuration is largest at small 
amplitudes (which the linear theory applies to), and decreases 
as the inner disk’s inclination grows. (In this example, for an 
inner disk tilt of only 10° the maximum radius is 0.9Rcrit, 
shrinking further to 0.8Rcrit at a tilt of 30°. Conversely, a galaxy 
with a radius 90% of Rcrit can only be in equilibrium if its inner 
disk is tilted by less then 10°.) Thus, in galaxies with very steep 
warps in the outer parts, the linear theory should be used with 
caution, particularly in the region of steepest warping. This is 
true even at modest angles of inclination. 

If the precession frequency is reduced, slow warps result : the 
outer regions of the galaxy lie closer to the halo plane than the 
inner disk. Figure 4 illustrates one such case, for Q0 = —0.03. 
There still is an upper limit on the size of the galaxy, and rings 
just inside this resonance radius bend up away from the plane 
again. Note that once the tilt of the inner disk exceeds 50°, the 
maximum outer radius starts to increase again; this is due to 
the reduction in precession speed of the galaxy with 0d, and is a 
general feature of this model. For slow warps, these 
“ kinematic ” models are likely to be a worse approximation to 
reality than for the fast warp shown above, since the steepest 
portion of the warp now occurs further in towards the centre of 
the galaxy, and hence self-gravity cannot be ignored safely. 
Nonetheless, they reproduce the general features of the expo- 
nential disk calculations. As discussed in § 2, very steep warps 
cannot be supported by disk self-gravity, but rather are a 
balance primarily between coriolis and halo torques. 
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Fig. 3.—Approximate warp models of a solid disk surrounded by massless test 
results of the linear one. Models have high precession speed, giving a fast warp. -rings. Solid lines show results of the nonlinear calculation, dotted lines show 

Inclusion of the 4th-order harmonics in the potential of the 
disk does not change these results qualitatively, although in 
detail the equilibrium solutions are different. The effect of the 
extra terms is to confine the warp more strongly to the disk 
plane just outside the edge of the disk, resulting in a steepening 
of the warp shape further out. However, this simple model is 
still useful as a description of what happens in the full problem. 

[For an exponential disk of scale length h and cutoff at 4h it 
can be shown that at small amplitudes the precession fre- 
quency Í20 in a coreless halo is ~ -eVc/(1.5h), which places the 
resonance radius RcrU calculated with eq. (9) very close to, or 
even inside, the edge of the disk; in these regions the quadru- 
pole approximation is quite insufficient anyway.] 

Similar calculations to these, but ignoring the effects of disk 

Fig. 4.—Same as Fig. 3, but with a reduced precession speed to yield a slow warp 
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precession, were carried out by Zachilas & Petrou (1988, 
private communication). 

3.2. A Model-Independent Approach 
It is possible to treat the observations in a more model- 

independent way than the method that has been used in this 
paper so far. Rather than fitting the observed warp parameters 
of a disk with model grids such as the ones constructed and 
shown here, and hence deducing the likely parameters of flat- 
tened halos surrounding these disks, instead one can start from 
the observed radial dependence of the disk surface density and 
inclination to calculate the self-torque of the disk, as a function 
of radius. Requiring equilibrium (apart from a steady precess- 
ion of the pattern about some axis perpendicular to the line of 
nodes) then allows the radial run of the external (halo) torque 
on the disk to be derived as a function of the precession fre- 
quency and the angle 0in between the inner disk plane and the 
precession axis. 

Writing the specific torque LJnii as J2?i, and keeping the 
same subscripts as used in § 2, the equilibrium condition on 
ring i can be written as 

^H,i + ^c,í+ I ^o = °- (n) 
j*i 

The last term can be calculated from the observations after 
assuming a mass-to-light ratio, and the second depends on the 
inclination (0in + 0¿) and circular rotation speed of ring i and 
on the global precession frequency Q. Thus, assumption of 0in 
and Q allows the halo torques experienced by the disk to be 
calculated. This shows that in principle there are equilibrium 
solutions at any precession rate and inclination, although in 
such cases the torques required of the halo may well be impos- 
sible to produce with a realistic (or even realizable) mass dis- 
tribution. For example, at zero precession, the specific halo 
torque on each ring is simply equal and opposite to the specific 
disk torque: since the latter must change sign at some radius 
within the disk, (otherwise the disk exerts a net torque on 
itself), so must the former. Then choosing 6in such that the disk 
does not intersect the halo plane or meridian results in a halo 
potential whose flattening changes sign. At the other extreme, 
it is possible to pick such a large precession speed that the 
counterbalancing halo torques cannot be realized. 

Incidentally, the fact that the total self-torque of the disk 
zero leac*s to a simPle derivation of the SC 

formula for the precession frequency at small amplitudes, since 
it implies that 

X m^Hii + = 0 ; (12) 
i 

hence the precession frequency is given by 

n0 = W;^H)jI(x mfR¡ V, sin . (13) 

Writing Qh and pH for the circular and vertical oscillation 
frequencies in the halo potential at z = 0, and Q for the circular 
frequency of the total potential, it is easy to show that 
<£H i(fi) = (Q¿ - pjJRfO/l to 0(6). Thus, linearizing the 
torques in equation (13) in 0, substituting the leading-order (in 
e) solution 0¿ = 0in and proceeding to the continuum limit 

= 2nRI(R)dR, for disk surface density £, then yields 

Q0= dRR3m2
H - pi)/2 

which is identical to the SC formula (21). 

dRR3m , (14) 

It is unnecessary to know the exact expression of the torque 
between two massive rings for this calculation, only Newton’s 
third law (which translates into the self-adjointedness of the SC 
operator their eq. [16]) which implies that the disk cannot 
exert a total torque on itself. 

4. SPECIFIC GALAXIES 

4.1. The Warped Disk Galaxy NGC 2841 
Assuming that warps are indeed caused by misaligned, flat- 

tened halos, to what extent can the observed warp of a galaxy 
constrain the shape and mass of the halo surrounding it? In 
this section, that question is investigated with the aid of the 
galaxy NGC 2841. This galaxy has optical photometry by 
Kent (1986) and Wevers (1984), and has been observed exten- 
sively in the 21 cm H i line by Bosma (1978) and Begeman 
(1987). Assuming a distance of 9 Mpc, the gas disk extends to 
at least 43 kpc from the centre, as compared to a luminous disk 
scale length of between 2 and 4 kpc. Begeman fitted a tilted- 
ring model to the observations, from which he derived the 
rotation curve of the gas, and deduced that the disk of this 
galaxy is warped by up to 16°. This is in good agreement with 
Bosma’s (1978) earlier results. Apart from this distortion, the 
velocity field of the galaxy is symmetric, and in the plane of the 
inner disk the lines of nodes of all the rings are within 30° of 
each other (Briggs 1990). Thus this galaxy comes quite close to 
fitting the requirements for being in a steady state warp. Even if 
it is not quite in a steady state, the fact that the line of nodes is 
quite straight suggests that differential precession of the outer 
rings is at least substantially slowed down, which may imply 
that the galaxy is close to a steady state solution. The warp of 
NGC 2841 is displayed in Figure 5, both as 0(R) and as an 
edge-on projection of the disk plane. 

As is well-known, the rotation curves of typical disk galaxies 
do not suffice to derive the mass-to-light ratio YD of the disk if 
the core radius of the halo is unknown (van Albada & Sancisi 
1986; Lake & Feinswog 1989). A maximum value can be 
derived, though, by requiring that there is no dark matter in 
the inner parts of the galaxy. For NGC 2841, this “maximum 
disk” value is about YD= 11, depending slightly on the bulge 
mass fitted, which would imply a halo core radius of 25 kpc. 
Lower mass to light ratios of the disk require lower halo core 
radii. 

In the model for warped galaxies presented here, the 
observed warp depends on two parameters which do not affect 
the rotation curve of the disk (which is a measure of the mono- 
pole component of the potential): the halo flattening and the 
misalignment between the disk and halo planes. Thus, unless 
the warp shape and amplitude depend quite strongly on these 
quantities, the halo properties (assuming that the halo is of the 
form of eq. [1]) will not be well-constrained by the warp 
shapes, and conversely the observed shape of the warp will not 
be a very discriminatory test of the model. 

A grid of warped equilibria for the disk of NGC 2841 is 
shown in Figure 6. Each panel corresponds to a different halo, 
and is analogous to a panel of Figure 2. The halo core radius 
was derived by fixing T^, calculating the radial disk mass 
profile from the observed light and H i distributions, and fitting 
the rotation curve. This halo was then flattened to varying 
degrees. As can be seen, small core radii (which correspond to 
small disk masses in these models) do not allow an equilibrium 
warp, even at very moderate halo flattenings. The disk is forced 
to precess fastest in these halos, and its self-gravity is weakest; 
both these facts reduce its ability to maintain a coherent warp. 
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Fig. 5.—Observed warp of NGC 2841, from Begeman (1987). Angles are referred to the plane of the inner disk. 

After interpolating these solutions over the inner disk tilt 
angle, the best-fit to the observed warp can be found for each 
panel. [Note that the orientation of the halo plane is not 
observed directly, so the fit has to be made to 0(R) - 0(0).] The 
best overall fit is for an (e = 0.22, R„ = 20.4 kpc) halo, for 
rD = 10, which reproduces the observations with an rms 
scatter of 1?5. Halos with e > 0.13 and RH > 20 kpc (TD > 10) 
give reasonably good fits, with rms scatters below 3°. The flat- 
tening e refers to the isopotential surfaces; the flattening of the 
density is about 3 times this value. Therefore within this grid of 
models the warp of NGC 2841 can be reproduced only in halos 
which are flatter than E4 or so, and whose core radius exceeds 
about 20 kpc. The halo and disk planes are inclined to each 
other by 18°. 

The above models suggest, among other things, that the 
mass of the disk of NGC 2841 is close to its “maximum disk” 
value. This is an artifact of the halo parameterization that was 
chosen: since NGC 2841 is clearly a slow warp (the steepest 
portion of the 0(R) curve occurs far from the disk edge), this 
means that the specific halo torque needs to be rising through- 
out most of the disk (see discussion at the end of § 2), which in 
the halo models used here implies that the circular velocity due 
to the halo also rises slowly, which in turn necessitates a large 
disk mass to make up the rest of the radial acceleration in the 
inner regions of the galaxy. If instead this extra radial force is 
made up with spherically distributed matter, leaving the halo 
torques unaffected, a lower disk mass is allowed. Thus, remo- 

ving the coupling between the core radius of the quadrupole 
and monopole components of the halo allows the warps to be 
fitted for lower disk masses too. This is shown in Figure 7, 
which is a grid of models of the NGC 2841 disk, with YD = 3.’ 
In these calculations a halo potential of the form 

<&„(/?, z)=l- V? ln(R2„ + R2+ z2/q2) 

+ -2V?ln 
R2 + R2 + z2\ 
R2

h + R2 + z2) (15) 

was used, with Rc < Ru. Effectively, this gives one halo core 
radius (Rc) for the rotation curve fit, and a different one (RH) 
for the halo torques. It is readily verified with Poisson’s equa- 
tion that the density of such a halo is everywhere positive 
provided that q > 2~1/2. 

The best fit that can be obtained in this way occurs at 
e = 0.22, Rh = 22 kpc, misalignment angle 18°. It has a stan- 
dard deviation of 0.9°, slightly better than the YD = 10 solution 
shown above. The region of acceptable solutions (standard 
deviation < 2°) is shown in Figure 8, and extends down to 
e = 0.08. Once we admit these more general halo models, the 
disk mass is very poorly constrained by the warp shape. In fact, 
not even a minimum can be set on the disk mass without 
assuming some form of halo potential, since from any equi- 
librium it is possible to construct a series of different ones with 
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the same rotation curve but arbitrarily small disk mass : to do 
this one reduces the potential of the flattened halo proportion- 
ally to Md, and again makes up the extra circular speed 
required to fit the rotation curve with spherically distributed 
halo material. This reduces the specific torques due to halo and 
disk by the same amounts, and hence also the precession fre- 
quency of the entire pattern. Thus, the shape of a warped disk 
and its rotation curve cannot provide lower limits on the disk 
mass. Upper limits may arise, though, since if the above scaling 
is performed to a higher disk mass, spherically distributed halo 
matter needs to be removed which may lead to negative space 
densities. In other words, the required flattening of the halo 
potential may be unrealizable with a positive mass distribu- 
tion. The galaxy M33, discussed below, may be an example of 
this. 

Repeat calculations for the (unrealistically low) YD = 1 (not 
shown) do indeed show that the warp and rotation curve of 
NGC 2841 can be modeled well with a halo of the form of 
equation (15). The observations have an rms scatter of 0?8 

about the best fit in this grid of models, which occurs at an 
inclination of the inner disk plane of 20°. Since the disk is less 
coherent in these models, it requires less flattening in the halo 
to produce the observed warp : the minimum value of e which 
gives a scatter below 3° is 0.05. If YD = 1 the core radius of the 
flattening must exceed 15 kpc to produce a slow warp which 
resembles the observations. 

Irrespective of the disk mass, the misalignment between the 
halo and disk planes is about 20o-30° in the best-fit models. 
This is caused by the fact that the outer disk of NGC 2841 is 
quite flat, which can only be reproduced by making these 
orbits lie close to the halo equatorial plane. Thus this plane is 
almost fixed by the observations. In galaxies which do not have 
such flat outer regions, this will not apply in general. In the 
best-fit Yd = 3 model, the precession period of the disk of 
NGC 2841 disk is 4.5 Gyr (this scales approximately inversely 
with the disk mass). The largest radius at which there are stable 
test-ring orbits is about 79 kpc, independent of YD. This outer- 
most ring is inclined 9?5 to the halo equator. If more sensitive 

Fig. 6.—Equilibrium solutions for the disk of NGC 2841 in a variety of halos. The core radius is derived by fitting the rotation curve after assuming a value for 
the disk M/L ratio YD. Left to right: TD = 5, 6, 7, 8,9,10,11. The halo flattening increases downwards (e = 0.02,0.06,0.10,0.14,0.18,0.22, and 0.26). 
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Same as F>g- 6> but with a fixed value XD = 3. The halo monopole core radius is fitted to the rotation 
varied (left to right: RH = 5,10,..., 45 kpc). e is as in Fig. 6. curve, while the core radius of the flattening is 

observations show that a coherent gas disk extends to radii 
beyond this point, then this model for the warp will have been 
disproved. 

4.2. Messier 33 
It has long been known that the local group galaxy M33 has 

a very pronounced warp in its outer gas disk. This is already 
evident from the “hat-brims” seen in spatial H i maps of the 
galaxy. Kinematic data confirm this picture (Rogstad, Wright, 
& Lockhart 1976; Reakes & Newton 1978): the H i line pro- 
files across most of the face of M33 are split, which is naturally 
explained if the disk is warped and so oriented that it intersects 
our line of sight several times. Based on their H i data, Rogstad 
et al. (1976) constructed a model in which the outer edge of the 
disk is edge-on to us, and about 45° out of the central disk 
plane of M33. The change in warp angle is very steep here, 
occurring in the radius range R = 5—9 kpc (assumed distance 
690 Mpc). Subsequently, Reakes & Newton (1978) obtained 
more sensitive observations, which revealed that the gas dis- 
tribution is more extended than found by Rogstad et al. (1976); 
they constructed a new tilted-ring model, in which the warp 
shape is basically the same, but occurs between R = 7.5-14 

instead. This last model will be compared to the calculations 
here. 

M33 has a nice exponential luminosity profile of scale length 
1.6 kpc (de Vaucouleurs 1959), probably with a cutoff at about 
4-5 scale lengths (which is where the warp sets in—the Rogstad 
et al. 1976 model would require the warp to start at a radius of 
three disk scale lengths, which would be unusually small). The 
line of nodes in the plane of the inner disk is quite straight : for 
the Rogstad et al. (1976) model it deviates by about 50° from 
straightness, and for the Reakes & Newton (1978) model by 
30°. Therefore M33 also is not severely affected by differential 
precession. 

Following the same method as applied to NGC 2841 above, 
the equilibrium warps of M33 were calculated in a variety of 
model halos. The disk mass-to-light ratio was taken as 1 in the 
B band, one third of its maximum disk value. This will turn out 
to be close to the allowed maximum, otherwise too great a 
flattening of the halo potential will be required. 

Does the warp of M33 fit the misaligned halo model? First, 
it is clear that if M33 is a slow-warp case, the halo and disk 
planes must be misaligned by at least 50°. If M33 has a fast 
warp, then it has an unusually large amplitude which is diffi- 
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Fig. 8.—Contours of constant rms dispersion about the observations of NGC 2841 for the best-fit model in each panel of Fig. 7 (YD = 3). The gray scale is lightest 
at good fits, and the contours shown are at Io, 2°,... rms dispersion. 

cult to reproduce in the model calculations. Since at large tilt 
the torques from halo and Coriolis force act in the same direc- 
tion, the equilibrium of the outer ring is precarious; nonethe- 
less, if the halo flattening is kept sufficiently small it is possible 
to construct large-amplitude fast warps. The best-fit fast warp 
occurs for a halo flattening of 0.01, core radius 1.2 kpc, and 
inner disk misalignment of 37°. However, the fit is not great: 
the warp is both steeper and sets in at greater radius than the 
observations of Reakes & Newton (1978) show, and its ampli- 
tude is not quite as large. The comparison is shown in Figure 9. 

Slow warps provide a better description, since they are not 
destroyed at large amplitudes. The rms scatter of the best-fits 
in various halos is contoured in Figure 10, again for a disk with 
mass-to-light ratio 1.0. The best-fits, at e > 0.20, RH > 10 kpc 
require that the inner disk is tilted 61° out of the halo plane. As 
discussed above for NGC 2841, the required halo flattening is 
reduced roughly in proportion to YD if the disk mass is 
decreased. The value used here is already about one-third of 
the maximum disk value, and cannot be increased significantly 
without spoiling the positivity of the halo density; on the other 
hand, it is unlikely that YD is much lower than the value 
adopted, from the nature of stellar populations. (We note that 
a maximum-disk model for M33 allows, but does not imply, 
formation of m = 2 structures, whereas a disk mass less than 
two-thirds of the maximum inhibits such structures 
(Athanassoula, Bosma, & Papaioannou 1987). No strong two- 
armed spiral pattern is seen in M33.) This model can reproduce 

X [kpc] 

Fig. 9.—Warp of M33 (solid line), and the best-fit fast warp to it (dashed 
line). The observed warp extends over a larger range in radius than fast models. 
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Fig. 10.—Contours of constant rms dispersion between models (TD = 1) and observations of the warp of M33. The gray scale is lightest at good fits, and the 

contours shown are at 2°, 3°,... rms dispersion. 

the observations with an rms scatter of only 2°, as shown in 
Figure 11. Test rings out to a radius of 50 kpc could take part 
in the warp; once again, if the disk of M33 were found to 
extend much further than this while taking part in the global 
warp, this would be a serious problem for this model. 

The large amplitude of M33 makes it a good test case for a 
comparison between linear and nonlinear models. The best-fits 
between the observations and freely scaled linear modes 
(constrained only to have the tilts of the inner and outer rings 
less than 90° in magnitude) have larger tilts of the inner disk 
than the full calculations, and are rather poor. The main effect 
responsible is the reduction of precession speed with increased 
inner disk tilt, which the linear models do not include. Also, the 
linear approximation to the disk self-torque is always stronger 
than the true value (§ 2), making the disk stiffer; thus it cannot 
reproduce the sharp change in warp angle exhibited in the 
outer regions of the stellar disk of M33. 

5. CONCLUSION 

The calculations presented here demonstrate that (1) equi- 
librium models of uniformly processing, differentially rotating 
galactic disks tipped with respect to the equator in flattened 
halos can resemble observed warped galaxies, specifically 
NGC 2841 and M33; (2) compared to the linear calculations 
(Sparke & Casertano 1988) of these equilibria, there are some 
qualitative differences, notably the disappearance of sharply 
bent “fast” warp solutions at quite small disk/halo misalign- 

X [kpc] 
Fig. 11.—Best-fit slow warp (dashes) to the M33 data (solid line) 
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ment angles; (3) there is a relation between the core radius of 
the quadrupole component of the halo and the existence of 
warped equilibrium solutions, which need not, however, trans- 
late into a relation involving the halo core radius derived from 
rotation curves ; (4) simple models in which the optical, massive 
disk is not allowed to warp, and in which the surrounding gas 
is taken as massless test particles, qualitatively reproduce the 
important physics in these models; and (5) the warp inferred 
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