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ABSTRACT 
We suggest a modified approach to the tidal circularization of short-period binaries with convective 

envelopes. The proposed model is based on Zahn’s old theory and is motivated by his recent comment about 
the reduction of stellar viscosity due to the fact that the tidal variation time scale is comparable to or shorter 
than the typical convection turnover time scale. In the modified approximation the circularization time scale 
for close binaries is proportional to the binary period to the power of 10/3. This exponent is smaller than in 
previously suggested theories. The presently available data, though admittedly sparse, are compared with the 
different approximations. The new exponent seems to fit the data better than those of the previous theories. 
Subject headings: stars: binaries — turbulence 

1. INTRODUCTION 

In recent years there has been renewed interest in the orbital 
evolution of close binary systems. This is mainly due to the 
availability of large samples of spectroscopic binaries, made 
possible by the new generation of stellar speedometers in full 
operation at several observatories (see Latham 1985). In partic- 
ular, the decay of the orbital eccentricity of binaries resulting 
from the tidal interaction between the two components has 
been studied. The circularization time scale strongly depends 
on the binary separation and stellar structure; however, its 
exact dependence on the binary parameters is still unclear. 

Three different theoretical approaches to the mechanism of 
orbital circularization have been suggested. The first approach, 
proposed by Zahn (1966), assumes that the tidal interaction 
between the stars in a binary system induces a localized tidal 
bulge on each of two stars. Because of the viscosity, the stellar 
bulges lag (or precede) the line connecting the centers of the 
two stars, inducing torques which tend to circularize the binary 
orbit. The first approximate calculations indicated that the 
tidal interaction through the stellar main-sequence phase is 
strong enough to circularize the short-period binaries (Zahn 
1966, 1977; Alexander 1973; Lecar, Wheeler, & McKee 1976; 
Hut 1981). Within this theory, the circularization time scale for 
late-type stars with convective envelopes is proportional to the 
orbital period of the binary to the power 16/3 (Zahn 1977; 
Mathieu & Mazeh 1988). 

Tassoul (1988) has suggested a completely different mecha- 
nism for the circularization of short-period binaries. It involves 
large-scale, transient meridional currents induced by the tidal 
distortion of the stellar axial symmetry. The proposed mecha- 
nism (Tassoul 1987) was originally suggested to account for the 
synchronization or pseudo-synchronization observed in early- 
type stars with radiative envelopes. Tassoul (1988) further 
claimed that, when applied to late-type binaries, this novel 
mechanism is more efficient than the one suggested by Zahn 
(see also Tassoul & Tassoul 1990). Within this theory, the 
circularization time scale is proportional to the period of the 
binary system to the power 49/12. 

A different approach to the orbital circularization was sug- 
gested recently by Zahn (1989). He noticed that the variation of 
the tidal stellar deformation occurs, in short-period binaries, 
on a time scale comparable to or shorter than a typical stellar 
convective turnover time scale. This effect tends to make the 

viscosity less effective and makes the circularization time scale 
much longer. Zahn & Bouchet (1989) followed this argument 
and claimed that for binary systems with masses ranging from 
0.5 to 1.25 M0, most of the orbital circularization occurs 
during the pre-main sequence phase. The subsequent decay of 
eccentricity on the main sequence is negligible. 

One way to confront the different theories with the observa- 
tions is to consider a coeval sample of binary systems with 
similar components. Tidal interaction will tend to circularize 
the orbits of the close binaries, while the wide binaries will 
retain their orbital eccentricities (see Koch & Hrivnak 1981). If 
the sample is large enough, the transition period between the 
circular and eccentric binaries can be easily observed. The cir- 
cularization time scale of the transition period can then be 
compared with the evolutionary age of the sample. Mayor & 
Mermilliod (1984) indeed discovered this effect in the binaries 
of the open clusters of the Hyades and Praesepe, with a tran- 
sition period of 5.7 days. 

In the last few years transition periods have been observed in 
a few samples of spectroscopic binaries : the pre-main- 
sequence stars (Mathieu, Walter, & Myers 1989), Hyades/ 
Praesepe (Mayor & Mermilliod 1984; Burki & Mayor 1986), 
the open cluster M67 (Mathieu & Mazeh 1988; Mathieu, 
Latham, & Griffin 1990), and the Galactic halo stars (Latham 
et al. 1988a, b; Jasniewicz & Mayor 1988). The observed tran- 
sition periods seem to increase with the sample age (Mazeh et 
al. 1990), indicating circularization processes which take place 
during the stellar main-sequence phase. However, the few 
observed transition periods do not seem to agree with either of 
the two exponents—16/3 and 49/12—suggested by the existing 
theories (see Fig. 2 of Jasneiwicz & Mayor 1988). 

In this work we propose a modified model for the circular- 
ization time scale, based on Zahn’s (1966) old approach and 
motivated by his recent comment (Zahn 1989). We take into 
account the reduction of the effective viscosity due to the fact 
that the convective time scale is comparable to or longer than 
the tidal time scale for short-period binaries. We show that the 
circularization time scale can still be approximated as a new 
power law of the binary period (§ 2). The new exponent, 10/3, 
is substantially smaller than that of the early theory of Zahn 
and is even smaller than the exponent derived by Tassoul 
(1988). We compare our results with the accumulated data 
(Mazeh et al. 1990). The data, though admittedly sparse, are 
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consistent with this new exponent (§ 3). The limitations of the 
present data are discussed further in § 4. 

2. THE MODIFIED MODEL 

2.1. Turbulent Viscosity 
The tidal interaction between two components of a stellar 

system induces a velocity gradient in the envelopes of the two 
stars. The viscosity in the envelopes causes a frictional force 
between adjacent fluid layers of different velocities, which leads 
to the synchronization of stellar rotation with the orbital 
period and to the circularization of the binary orbit. The time 
scales for these processes are inversely proportional to the 
stellar viscosity. Therefore, in any theory of circularization, the 
estimate of the viscosity is of prime importance. The basic 
source for viscosity, molecular viscosity, turns out to be too 
small to produce effective circularization and synchronization. 
However, the effective viscosity can be largely enhanced if there 
exists a turbulent velocity field. To discuss the induced turbu- 
lent viscosity in stellar envelopes, we turn first to consider very 
briefly some basic relevant aspects of turbulence. 

In a fully developed turbulence (see, e.g., Batchelor 1973; 
Hinze 1975), the turbulent velocity is composed of components 
with different spatial scales, each characterized by a wavenum- 
ber k. It can be (heuristically) visualized as a superposition of 
eddies, where the eddy corresponding to the wavenumber k 
rolls over a size ~/c-1 with a velocity ~v(k). The turbulent 
eddies interact among themselves. The interaction can be 
described in terms of the breakup of an eddy of wavenumber k 
into smaller eddies, resulting in a transfer of energy from the 
large-scale (small-Zc) eddies to the small-scale (large-/c) ones. 
The time scale for this energy cascade is the eddy correlation 
time scale, t(/c), which is of the order of a rollover time of the 
eddy, ~/c-1i;(k)-1 (Batchelor 1973; Hinze 1975). This time 
scale can be pictured as the lifetime of an eddy of wavenumber 
k before it breaks up into smaller eddies. 

For the turbulence to be in a steady state, there must exist 
some stirring mechanism that generates the turbulence. Typi- 
cally, the source feeds energy predominantly to the large-scale 
eddies with the largest scale kö \ determined by the character- 
istics of the source. At each k, part of the energy is cascaded to 
smaller eddies and part is dissipated by the molecular viscosity 
into heat. At small k the transfer into larger k’s dominates, but 
as k increases, the relative importance of the dissipation 
increases (see, e.g., Batchelor 1973). Consequently, the transfer 
of energy to smaller eddies terminates at some small enough 
scale. 

Consider now a nonturbulent velocity gradient introduced 
into a turbulent medium. An eddy of wavenumber k generates 
a dissipative interaction between two adjacent fluid layers, at a 
distance that have different velocities owing to the 
velocity gradient. The combined effect of all modes in the tur- 
bulence spectrum is to produce the effective drag force that can 
be represented in terms of an effective viscosity. As shown in 
Appendix A, the total turbulent viscosity v, is contributed 
mostly by the large-scale eddies and is given by 

v, = vt(k0)~v(k0)kó1 , (1) 

where k0 is the wavenumber of the largest eddy. The turbulent 
viscosity is thus a product of the velocity and size of the largest 
eddy. 

The energy drained from the velocity gradient into the tur- 
bulence is transferred to smaller scales by the turbulence 

cascade and is dissipated at the smallest scales by the molecu- 
lar viscosity. In Appendix B we show that, for the case under 
consideration here, the rate of energy drained into the turbu- 
lent convection from the tidal velocity gradient is much smaller 
than the original rate of energy cascade in this turbulence; thus 
the turbulence is essentially unchanged by the interaction with 
the tidal velocity gradient. 

2.2. Reduction of the Turbulent Viscosity 
for Short Orbital Periods 

Let us consider a close binary with a small eccentricity in 
synchronous rotation. In this case the tidal velocity gradient 
varies on a time scale of the orbital period P. The above 
description of the interaction between the turbulence and the 
tidal velocity gradient tacitly assumed that the time scale for 
variation of the tidal velocity gradient is much larger than the 
convective time scale. Consider now a situation where this 
assumption does not apply, because the orbital period P is 
comparable to or shorter than t(/c0), the time scale for the 
interaction of the largest eddies with the tidal velocity gradient. 
Thus, over a time shorter than the period P, there will not be 
enough time for the interaction to take place. On the other 
hand, over a time comparable to t(/c0), the large eddies will 
effectively interact with some time average of the tidal velocity 
gradient. Thus, either way, one expects that the effective turbu- 
lent viscosity exerted on the velocity gradient will be drasti- 
cally reduced. Zahn (1989) was the first to realize that such a 
reduction is relevant for the problem of circularization of close 
binaries, since the orbital periods are indeed comparable to or 
shorter than the time scale of the largest eddies of the convec- 
tion in stellar envelopes. 

To account for the reduction factor in binaries with P < 
t(/c0), Zahn (1989) proposed (following Zahn 1966) that the 
effective free path of the largest eddy is now v(k0)P/2 instead of 
kö1. This follows from the assumption that the largest eddies 
interact with the tidal velocity gradient on a time scale P/2. 
Within this time span, the viscous interaction can take place 
between stellar layers separated by a distance v(k0)P/2. The 
resulting reduction in the turbulent viscosity is proportional to 
P/t(/c0). Goldreich & Keeley (1977) faced a similar problem in 
the context of the damping of solar pulsations by the turbulent 
convention. Their approach to the problem was quite different : 
they suggested that when the pulsation period Pp is smaller 
than t(/c0), no eddies with t(/c) larger than Pp could contribute 
to the effective turbulent viscosity. Taking the turbulent spec- 
trum to be of the Kolmogorov form (see Appendix A), they 
found a reduction proportional to [Fp/t(/c0)]2. Note that the 
two different suggestions imply different functional dependences 
of the circularization time scale on the binary period P. 

We find the suggestion of Zahn (1966, 1989) unconvincing, 
since the largest eddy does not break before rolling over a 
distance comparable to its size, in a time ~ t(/c0). Therefore, we 
agree with Goldreich & Keeley (1977) that the largest eddies 
will not contribute to the turbulent viscosity. The presence of 
the tidal velocity gradient does not change this fact, since, as 
noted above, the turbulence in the present case is effectively 
unchanged by the energy it drains from the tidal velocity gra- 
dient. 

To clarify this point further, let us use an analogy with 
molecular viscosity, which is due to transfer of momentum by 
molecules over a distance comparable to their mean free path 
(see, e.g., Reif 1965). Consider a velocity gradient that changes 
on a time scale P shorter than the mean free time between 
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collisions T. Molecules with an intercollision time comparable 
to or larger than P will interact with the average velocity gra- 
dient and will not contribute to the viscosity. Therefore, the 
molecular viscosity will be contributed only by those molecules 
that spend time between collisions small compared with P. 
This corresponds to a reduced mean free path of ÀPv, with v 
being the mean molecular thermal velocity and 2 an arbitrary 
constant smaller than unity. This mean free path is reduced by 
ÀP/t compared with the mean free path vt. This is analogous to 
Zahn’s (1966,1989) suggestion (choosing À = j). However, it is 
important to remember that an average molecule will not suffer 
a collision after a time shorter than t. Only a fraction 

(1 - e-
XPIx) - /IP/t 

of the molecules will do so. As a result, the molecular viscosity 
will be reduced by a factor of (ÀP/t)2. Thus, if one is willing, like 
Zahn (1966, 1989), to consider a breakup of the largest eddies 
in time scales shorter than r(k0), the probability for this to 
happen cannot be taken equal to unity. A more detailed calcu- 
lation that considers the contribution from molecules with all 
possible values of the time between collisions (taking into 
account the probability distribution of this free time) yields the 
same result. 

In the alternative approach (Goldreich & Keeley 1977) an 
eddy of wavenumber k interacts with the velocity gradient on a 
time scale comparable to its correlation time scale t(/c). There- 
fore, only the part of the turbulence spectrum with t(/c) small 
enough compared with P will contribute to the effective turbu- 
lent viscosity. Since the correlation time scale is typically a 
decreasing function of k (Batchelor 1973), only eddies smaller 
than some size k"1 will contribute to the turbulent viscosity. 
Consequently, the effective turbulent viscosity in short-period 
binaries, vt short, will be given not by equation (1) but instead by 
an analogous expression with k* replacing k0 : 

V(,short = ~ V(kjk~1 . (2) 
We will denote by vt(k0) the nonreduced turbulent viscosity 
given in equation (1). 

For short-period binaries with P < t(/c0) the value of k* is 
determined by setting 

T(/g = ÀP, (3) 

with 2 < 1 a dimensionless coefficient; 1/(2tc) was adopted by 
Goldreich & Keeley (1977). The specific functional dependence 
of the reduced turbulent viscosity on P is determined by the 
form of the turbulence spectrum. In Appendix A we argue that 
for turbulent convection in solar-type stars, and for the values 
of the orbital periods relevant here, the spectrum is of the 
Kolmogorov form yielding (see eq. [A 10]) 

v< = v«,short = A¿2v,(k0)[P/T(k0)]2 , XP < T(fc0), (4a) 
while for long orbital periods 

Ví = vt(k0), P > t(/c0) . (4b) 

Here A ~ 3, because at k0 the slope of the turbulence spectral 
function is smaller than that of the Kolmogorov spectrum. 
Since the circularization time scale Tcirc is proportional to 
vi

_1P16/3, we get 

TcircxP10'\ ÀP < T(fc0), (5a) 

and 

rCircxP16/3, P>T(k0). (5b) 

Equation (4a) was used to express the reduced short in terms 
of the nonreduced v^ko). 

The periods of the binaries with circularized orbits con- 
sidered here are distributed between 2 and 20 days (see Zahn 
1989; Mazeh et al. 1990). In order to find out which of the 
above equations apply to these binaries, we have to estimate 
the convective time scale T(k0). The estimate is complicated by 
the fact that this time scale is a function of depth in the convec- 
tion layer. However, the weighted average of the convection 
time scale will be close to its value at the lower part of the 
convection zone. This is so, since the tidal energy dissipated per 
unit volume is proportional to the gas density times the turbu- 
lent viscosity, both of which increase with depth. For solar- 
type stars the convective time scale at the deepest part of the 
convective zone is estimated to be ^20 days in the model of 
Spruit (1974), while the corresponding value in the model of 
Goldreich & Keeley (1977) is ^ 12 days. Thus, it seems plaus- 
ible that i(k0) is in the range 10-20 days. For À < 0.5, equation 
(5a) applies to all binaries with periods shorter than 20-40 
days, and therefore 10/3 is the relevant power law for the dis- 
cussion of the circularization time scale. 

The absolute value of the circularization time scale depends, 
of course, on the turbulent viscosity vt(k0), the value of which 
depends on the specific model used for the convection layers. 
In particular, it depends on the ratio between the mixing length 
and the pressure scale height, and also on whether the model 
includes the possibility of overshooting of the convective 
eddies into the radiative stellar interior (VandenBerg & Poll 
1989). (Andersen, Nordstrom, & Clausen 1990 recently found 
the overshooting effect to be very important also in more 
massive stars with convective cores.) Different models yield 
different values for the depth of the convection zone and for the 
convective velocities, and therefore different values for the 
turbulent viscosity. 

To estimate the absolute value of the circularization time 
scale, we consider a binary consisting of two 1 M0 stars with a 
period of 5.7 days—the transition period of the Hyades and 
Praesepe. For the convection model used by Zahn (1989) and 
the standard approach of equation (4b), we find (see his eq. 
[15]) that the circularization time scale for such a binary is 
1.5 x 109 yr. A similar value of 1.6 x 109 yr was obtained for 
these parameters by Mathieu & Mazeh (1988; see their Table 
1). With regard to the crudeness of our estimate of the turbu- 
lent viscosity, these values are surprisingly close to the age of 
the Hyades, which is estimated to be 0.8 x 109 yr. Other con- 
vection models would yield different values. In particular, 
incorporating overshooting into the model will increase the 
effective width of the convective zone and thus increase (see eq. 
[1]) the turbulent viscosity and shorten the circularization time 
scale. Moreover, even a small amount of overshooting can be 
important, since the rate of energy dissipation per unit volume 
is proportional to the density, which is higher in the radiative 
interior. 

The reduction of the turbulent viscosity in equation (4a), 
compared with the standard value of equation (4b), depends 
quadratically on the (unknown) values of À and i(k0). Here we 
present this factor normalized to 2 = 0.5, P = 6 days, and 
r(k0) =10 days, as 

4(±Y2(~L\-2l^ho_ 
\0.5J \6 days/ 10 days 

We see that the reduction factor is not necessarily large for 
the binaries discussed here; for the adopted parameters of 
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equation (6) it is of the order of 4. Therefore, if we adopt the 
crude estimates of the nonreduced viscosity discussed above, 
the discrepancy between the circularization time scale of the 
modified approach and the evolutionary age of the Hyades is 
somewhat less than a factor of 10. Given the uncertainties of 
the theory, we find this difference acceptable. 

3. COMPARISON WITH THE OBSERVATIONS 

The proposed modified approach for circularization of 
short-period binaries with convective envelopes predicts that 
Tcirc oc P10/3. This model as well as the previous ones, should 
be tested against the presently available data. The rapidly 
accumulating data about spectroscopic binaries have revealed 
so far distinct (albeit different) transitions between circular and 
eccentric orbits at three coeval samples of late-type main- 
sequence close binaries. In the three samples, all binaries with 
substantial eccentricities have periods longer than the tran- 
sition period. The results for the three samples taken from the 
compilation of Mazeh et al. (1990) are summarized in Table 1; 
see also Jasniewicz & Mayor (1988). 

The transition periods given in Table 1 are preliminary, 
since the distinction between eccentric and circular binaries as 
a function of their period is not sharp. The samples include two 
binary systems—G65-22 in the Galactic halo (P = 18.74 days) 
and J331 in the Hyades (P = 8.5 days)—with circular or nearly 
circular orbits. The interpretation of these outliers is not clear 
(Zahn & Bouchet 1989; Mazeh et al. 1990). In addition, a few 
binaries with small, yet nonzero, ecentricities are found with 
periods shorter than the transition period (Mazeh et al. 1990). 
Mazeh (1990) noted, however, that these eccentricities could be 
due to a third star in the system (Mazeh & Shaham 1979). We 
therefore need large samples of binaries to detect the correct 
transition periods, and the present table should be regarded as 
a very preliminary result. 

The fourth coeval sample discussed by Mazeh et al. (1990) 
is the pre-main-sequence sample of known spectroscopic 
binaries of Mathieu, Walter, & Myers (1989), with an indica- 
tion for a transition period of about 4 days. This sample is very 
different from the other three and therefore cannot be used to 
find the correct functional dependence of the circularization 
time scale on the binary period. Despite the fact that we are left 
with only three late-type main-sequence samples, it would be 
of interest to compare the theoretical approach introduced 
here with the present observational results. 

Following Jasniewicz & Mayor (1988), we plot in Figure 1 
the three transition periods on the (log Ptrans, log Age)-plane. 
The transition periods of the M67 and halo samples were taken 
at the center of the period range of Table 1. No error bars were 
attributed to the age of the samples or to the transition periods. 
Assuming that the age of each sample is equal to the circular- 
ization time scale of a binary with the observed Ptrans, we plot 
on the same figure our proposed power law, together with the 
other two previous functions. All functions were calibrated to 

TABLE 1 
Main-Sequence Samples with Transition Periods 

Evolution Age Transition Period 
Sample (109 yr) (days) 

Hyades/Praesepe   0.8 5.7 
M67   5 10.3-11.0 
Halo   15 12.4-13.7 

log T (109 yrs) 
Fig. 1.—Transition period as function of sample age T. Filled squares: 

Observed transition periods of Table 1. Solid line: Present theory ; exponent of 
10/3. Dashed line: Tassoul (1988); exponent of 49/12. Dotted line: Zahn (1977), 
Mathieu & Mazeh (1988); exponent of 16/3. 

fit the 5.7 day transition period of the Hyades/Praesepe. We 
could obtain this somewhat arbitrary calibration only by 
assuming for our proposed model a nonreduced viscosity 
larger than the one assumed for the Zahn original theory, as 
discussed in § 2. The figure suggests that the 10/3 exponent fits 
the data better than the other exponents. 

4. DISCUSSION 

Several words of caution should be emphasized here. We 
note first that in order to make the comparison between the 
theoretical graphs and the observations meaningful, the circu- 
larization processes have to take place during the main- 
sequence phase. This point was discussed in length by Mazeh 
et al. (1990). They argued that overall evidence suggests that 
the tidal circularization is effective throughout the main- 
sequence phase of stellar evolution. On the other hand, Zahn 
& Bouchet (1989) claimed that all circular binaries have been 
circularized during the pre-main-sequence phase of those 
systems. Their argument is based on Zahn’s (1989) revised esti- 
mate of the absolute time scale of tidal circularization, for 
which he used the mixing-length theory and the prescription 
for the reduced turbulent viscosity mentioned in § 2. However, 
we have pointed out that the crudeness of our present under- 
standing of stellar convective layers, that somewhat arbitrari- 
ness of the scale-height parameter, and the lack of 
confrontation with the observations, except in the case of the 
Sun, make the absolute calibration of the circularization 
uncertain. In any case, the observations do not seem to support 
the Zahn and Bouchet argument (Mazeh et al. 1990). We there- 
fore prefer to assume that the circular binaries of the samples 
considered here were circularized during their main-sequence 
lifetime. In our proposed theoretical approach we chose to 
concentrate on the functional dependence of the circularization 
time scale on the binary period, which can be tested observa- 
tionally, and leave the absolute calibration for later stages of 
the study. 

Another crucial point for the comparison of the theory with 
the observed transition periods is the similarity of the stars of 
the three different samples. The relevance of this point was 
addressed by Mathieu & Mazeh (1988), who considered the 
effect of varying the spectral type and metallicity on the circu- 
larization time scale. They have found that as long as the 
spectral type of the components of the binary system is later 
than F, the spread in the circularization time scale is less than a 
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factor of 2. In this preliminary stage of the study, even such a 
factor can drastically change the conclusions. Hence, we have 
to assume for now that the three samples consist of similar 
stars. Figure 1 should therefore be regarded only as a very 
preliminary step toward a real confrontation of the different 
models with observations. 

The different models for circularization should be compared 
in the future with more extensive data. More main-sequence 
binaries are one source of observational importance. Another 
source is the chromospheric active binaries with short periods. 
As Hall & Henry (1990) have convincingly shown, these 
systems can also test the circularization and synchronization 
theories, despite the fact that the different stars in the sample 

have different ages. After finding the correct theory of circular- 
ization, we can turn the reasoning backwards and use the 
observed transition period as an independent “ clock ” to esti- 
mate the sample age, as suggested by Mathieu & Mazeh (1988). 
This method can, in principle, be used to check stellar evolu- 
tion models. 

We thank J. Andersen, B. Carney, D. Latham, R. Mathieu, 
J.-L. Tassoul, and the referee for very useful comments on the 
manuscript. This work was supported by the US-Israel 
Binational Science Foundation grant 86-00238, and the Fund 
for Basic Research at Tel Aviv University. 

APPENDIX A 

In what follows we derive equation (4a). Let us consider a fully developed, homogeneous, and isotropic steady state turbulent 
velocity field characterized by the spectral function F(k)9 which equals twice the turbulent kinetic energy per unit mass per unit 
wavenumber, at the wavenumber k. The averaged squared velocity of an eddy of size 1 is (Hinze 1975) 

V2(k) = F(k')dk'. (Al) 

The turbulent viscosity due to all wavenumbers larger than k is given by 

v,(k) = 1°° r(k')F(k')dk', (A2) 

and results in energy transfer (cascade) to wavenumbers larger than k. Here, t(/c) is the eddy correlation time scale given by 
(Heisenberg 1948) 

T(k)~ F(ky1/2k-3/2. (A3) 

From equation (A2) it follows that the turbulent viscosity is a decreasing function of k. Moreover, from equations (Al), (A2), and 
(A3) it can be shown that most of the contribution to vt(k) is from wavenumbers close to k and that vt ~ t;(/c)k“ L In this paper we are 
interested in the interaction of the turbulence with a velocity gradient (more precisely a velocity shear) coexisting in the same 
volume. For a shear with a length scale larger than ko 1> vi(^o) is the effective viscosity acting on the shear (Hinze 1975). The energy 
drained from the shear is transferred into the turbulence cascade and is dissipated at the small scales by the molecular viscosity. In 
our specific problem, the scale length of the shear is ~R, the stellar radius (Lecar et al. 1976). The latter is indeed larger than the 
turbulence length scale, which is of the order of the pressure scale height, and even at the bottom of the convective zone is less than 
0.3R. 

The time scale of the turbulent convection, t(/c0) ~ 10-20 days (depending on the specific modeling of the solar convection zone) is 
comparable to or larger than the orbital periods under consideration ( ~ 2-20 days). As argued in § 2, only eddies smaller than some 
size, k~1, such that 

r(/g = 2P , (A4) 

with 2 < 1 [~ 2-V(27r)], will contribute to the turbulent viscosity. Their contribution is obtained by taking the lower limit in 
equation (A2) to be k*. To derive the effective viscosity, we need to know F(k). For a power-law spectral function 

F(k)ock“m, (A5) 

one gets, by using equations (A2) and (A3), 
T(k*) rc k{™~3)12 (A6) 

and 

v((fc*)cc fc*,m+1,/2. (A7) 
Therefore, 

v,(kJocT(kJ(1+m)/(3-m). (A8) 

In a typical case the turbulent spectral function does not have a power-law shape through the whole range of wavenumbers 
(Hinze 1975). However, in the case of turbulent convection in a solar-type star, F(k) takes the Kolmogorov form 

F(k) oc k _ 5/3 (A9) 

for k > (2-3)k0 (see, e.g., Canuto, Goldman, & Chasnov 1987). This power-law range corresponds to r(k) < it(k0), and therefore 
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includes t(/c^), which appears in equation (A4). We can, therefore, use equation (A8) with m = 5/3 to get 

vt(K) = Avt(k0)^PKk0)Ÿ9 (A10) 

with A a dimensionless constant. Since the actual F(k0) is smaller than the value obtained by extrapolating the Kolmogorov inertial 
spectrum back to k0, A > 1. Using spectra for convective turbulence from Canuto et al. (1987), we estimate ,4 ~ 3. 

APPENDIX B 

We show here that the turbulence is unchanged by the interaction with the tidal shear, since eshear e. (Here e is the total energy 
per unit time and per unit mass fed into the turbulence by the source generating it, and eshear is the energy drained from the shear per 
unit time and per unit mass.) In order to do so, note that (Canuto, Goldman, & Chasnow 1988 and references therein) 

e~v,(/ío)T(/cor2. (Bl) 

From the Navier-Stokes equations it follows (Monin & Yaglom 1971; Hinze 1975) that the energy per unit mass per unit time 
drained out from the shear into the turbulence, eshear, is given by 

6shear = I Tij ^ij > (B2) 

where t0- and iSl7 are the turbulence stress tensor and the velocity shear, respectively. It is usually assumed following Boussinesq 
(1877,1879; cited in Monin & Yaglom 1971), Taylor (1915), and Prandtl (1925) that 

resulting in 

where 

Ty = v< Sij > 

Eshear = 2V(S2 - 

S = (S^.S,/'2 . 

is the absolute value of the velocity shear tensor. Using equations (A 10), (Bl), and (B4), we get 

eshear/* ~ ^[^A(^)]2[^(/c0)]2 . 
The amplitude of S for synchronous rotation is estimated from Lecar et al. (1976) to be 

so that 

eShear/e ~ (2nX)2e2(R/a)6 < 1 , 

where R is the stellar radius, a is the semimajor axis, and e is the orbital eccentricity. 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 
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