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ABSTRACT 
The accuracy of the timing argument mass estimate is examined using binary galaxies found in an N-body 

simulation of an Q = 1 cold dark matter (CDM) cosmology. Masses are calculated assuming the binaries are 
bound, for both purely radial orbits and orbits with angular momentum. The timing masses, Mf, are compara- 
ble to the total mass within two spheres, centered on each galaxy, of radii one half the separation between the 
two galaxies. These “two-sphere” masses, M2s, are estimated with little systematic bias for the angular 
momentum calculation. The corresponding radial orbit timing masses on average underestimate M2s by a 
factor of 1.7. The standard deviation of log10 (Mi/M2s) ranges from a minimum of 15% for nonradial 
approaching orbits to a maximum of 34% for approaching binaries assuming radial orbits and the same 
number of complete orbits as the best angular momentum timing mass. Eighty percent of the binary galaxies 
present in the simulation have completed less than one and a half orbits. The lack of binaries in advanced 
stages of their orbital history likely indicates that isolated binary galaxies merge quickly. If the timing argu- 
ment is indiscriminately applied to all of the binaries (bound and unbound) the timing masses do not correlate 
well with the measured masses. 

This analysis suggests that the radial orbit timing mass of the M31 Galaxy system is quite likely 50% of the 
two sphere mass, M2s with 1 g range of 0.2 to 1.3M2s if the system is bound. The mass within a radius of 50 
kpc (assuming a Hubble constant of 50 km s-1 Mpc-1) is of order 1/10 the timing mass for wide binaries that 
are similar to the M31 galaxy system. We conclude that the timing argument data for the M31 galaxy pair is 
consistent with an extensive massive halo in an Q = 1 universe. 
Subject headings: cosmology — galaxies: clustering — galaxies: interactions 

1. INTRODUCTION 

The masses of galaxies at large radii are not well established. 
Various methods of estimating the masses have yielded a con- 
siderable range of values for the amount of dark matter 
present. Mass-to-light ratio determinations range from ~ 3 in 
the disk of our Galaxy to 200 in clusters of galaxies (see the 
review by Trimble 1987). The major obstacle in determining 
the mass of the Galaxy and the extent of the dark matter halo 
is the paucity of luminous tracer particles at large radii. 

Mass determinations of the Galaxy within a radius of 
50-100 kpc have yielded values in the wide range of 2- 
30 x 1011 M0, (for a review, see Faber & Gallagher 1979; 
Trimble 1987). Hartwick & Sargent (1978) made an estimate of 
the mass of the Galaxy, M(R < 60 kpc) from the orbits of 
satellite galaxies. They found that the mass of the Galaxy 
within 60 kpc is 3.4+ 1.5 x 1011 M0 if the satellites are 
assumed to have radial orbits, while an isotropic velocity dis- 
persion yields a value of 7.6 ±2.1 x 1011 M0. Little & Tre- 
maine (1987) refined the satellite estimate by introducing a new 
statistical method and using more accurate radial velocities. 
The mass estimate they derived for an isotropic velocity dis- 
tribution is 2.4Í¿7 x 1011 M0, much lower than Hartwick 
and Sargent’s value. New data for the outer satellites (Zaritsky 
et al. 1989) raises the mass estimate to 12.5 x 1011 M0. If 
the satellites are on mainly radial orbits the estimated mass is 
lowered. 

The timing argument, a mass estimate at large radii, was first 
proposed by Kahn & Woltjer (1959) to determine the mass of 
the Local Group. The basic idea is that galaxies currently in a 
binary system were at approximately the same point in space 
shortly after the big bang. The Hubble expansion velocity 

between the two galaxies is slowed due to their mutual gravita- 
tional attraction, and their orbit is described by Newton’s 
equations of motion. In principle, if a pair of galaxies is well 
represented by point masses and isolated, their total mass may 
be determined by measuring their separation, relative velocity, 
and the time since the expansion of the universe began. 

The masses that are calculated using the timing argument 
(^1012 M0) are considerably larger than the mass derived 
from methods using visible tracers such as satellites, not com- 
pletely unexpected since the timing masses sample to larger 
radii (100-500 kpc) than local methods. For the application of 
the timing argument to M31 and our Galaxy, Kahn & Woltjer 
(1959) argued that most of the observable mass is in the two 
main galaxies, and that the satellite galaxies are not dynami- 
cally important. They assumed that the system has a radial 
orbit and obtained 1.8 x 1012 M0 as a minimum estimate for 
the reduced mass of the system. Other determinations of the 
mass of the Local Group using the timing argument with 
radial orbits have been made by Gunn (1975), Gott & Thuan 
(1978), Lynden-Bell (1982, 1983), Mishra (1985), and Sandage 
(1986). The range of values from these authors is 2-6 x 1012 

M0 for the total mass of the Local Group. Einasto & Lynden- 
Bell (1982) included angular momentum in their timing argu- 
ment calculation and derived a total mass in the range of 
3-6 x 1012 M0. Raychaudhury & Lynden-Bell (1989) have 
estimated the effect of neighboring galaxies on the orbit of M31 
and the Galaxy and found that the radial orbit timing mass of 
the Local Group is not greatly affected. 

Peebles et al. (1989) have modeled the formation of the Local 
Group by gravitational accretion onto two seed masses. The 
velocities of the outer members of the Local Group are best 
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described by a model with a Hubble constant of 80 km s~1 and 
Q = 1. The mass estimate they derive for the entire Local 
Group is 5 x 1012Mo. 

The accuracy of the timing argument may be questioned due 
to the neglect of the effects of neighbors, the absence of mea- 
sured tangential velocities, and the assumption that two dis- 
tinct galaxies formed at i = 0 and have moved as single 
particles since then. The purpose of this paper is to compare 
the masses determined by the timing argument with the mea- 
sured masses in an Q = 1 CDM AT-body simulation. In the 
next section the theory of the timing argument is summarized 
for radial and elliptical orbits. The data are discussed in the 
third section. The results are presented in § 4. The last section 
contains a discussion of the results. 

2. theory: the timing argument 

If we approximate a curent epoch wide binary as two point 
masses, unaffected by surrounding material, that began 
expanding with the big bang then their orbits and the system’s 
mass are readily determined. This case is relevant to the deter- 
mination of the mass of the Local Group since we cannot 
presently measure the transverse velocity of M31. The mass 
calculated assuming a radial orbit, i.e., zero angular momen- 
tum, will be a lower bound if the orbit is actually elliptical. For 
completeness, the following section gives the previously 
derived equations for estimating timing masses. 

2.1. Radial Orbit Masses 
At the time of the big bang two isolated galaxies (or their 

corresponding protogalaxies) are at approximately the same 
place and begin to travel away from one another. Their Hubble 
expansion velocities are slowed by their gravitational attrac- 
tion and if there is enough mass present within the two galaxies 
they eventually stop and fall back along a bound orbit. In an 
assumed Keplerian potential the separation of the binary and 
time since pericenter are described by r = a(l—e cos x) and 
t = (a3/GM)i/2 (x~e sin /), where r is the separation, t is the 
time, a is the semimajor axis, e is the eccentricity, x is the 

eccentric anomaly, and M is the total mass of the binary 
system. Initially, at i = 0, r = 0, and for a radial orbit e = 1. 
Differentiating the above two equations with respect to x and 
dividing the results yields 

dr _ dr/dx _ ÍGM sin x _ r sin xix ~ sin x) ^ 
dt dt/dx v a 1 — cos / i(l — cos x)2 

Thus, given the separation, the radial velocity and the time 
since expansion began, we can find the eccentric anomaly, 
semimajor axis, and the total mass of the binary system. 

2.2. Orbits with Angular Momentum 
The orbit of a binary system is inevitably subjected to 

torques from other galaxies and surrounding matter. The 
timing masses for elliptical orbits were derived by Einasto & 
Lynden-Bell (1982), and the following summarizes their results. 

For the orbit of a binary we have the following equation 
h2/GMr = 1 + e cos 0, where (j) is the true anomaly (see Green 
1985), h = rVt, is the angular momentum per unit mass, and e is 
the eccentricity. 

The ratio of radial and transverse velocity components is 
Vr/Vt = e sin </>/(! + e cos </>). The eccentric anomaly and the 
true anomaly are related by cos </> = (cos / —e)/(l —e cos /). 
Substituting for M, e, and a into the equation of the time since 

pericenter gives 

= r sin xjjjV? sin2 x + V?)1/2 ± K sin %] 
[ + (F(

2 sin2 x + Fr
2)1/2 + Vr cos /¥ 

where the negative (positive) sign corresponds to receding 
(approaching) binaries. 

Therefore, given the separation, relative transverse and 
radial velocities, and the time since the expansion began, the 
eccentric anomaly may be found and hence the total mass, 
period and eccentricity of the binary. 

3. DATA 

The data are from Carlberg & Couchman’s (1989) dissi- 
pative Af-body simulation. They examined the evolution of a 
CDM spectrum with a total density parameter, Q = 1, density 
parameter for baryonic matter, Qb= 1/11 and a Hubble con- 
stant of 50 km s_1 Mpc-1. Three cube sizes were used, 40, 80, 
and 200 Mpc. The 40 Mpc cube data are used in this analysis. 
This cube contains 524,288 particles. Half of the particles were 
baryonic, initially all labeled gas, and using a gasdynamical 
scheme they were allowed to cool and form stars. The remain- 
ing particles are dark matter. 

Scaling gives each gas and dark matter particle a mass of 
1.54 x 109 M0 and 1.69 x 1010 M0, respectively. The experi- 
ment was evolved to 42.99 time units (one time unit is 
3.03 x 108 yr), a time identified as the current epoch. In the 
simulation one grid unit is equal to 0.625 Mpc and the velocity 
scale is 2015 km s_ 1 at the current epoch. The unit of mass that 
is used throughout this analysis is the mass of a gas particle. 

The galaxies were found using a link method, with a link 
length of 0.1 grid units. The algorithm first starts a tree with 
any star particle (the method is independent of which particle is 
chosen initially), then finds the nearest particle that is unat- 
tached and less than one link length from nearest particle in 
the tree and joins it to the tree. This procedure is repeated until 
no more particles can be added to the tree. This process is 
continued for the remaining unattached paticles. The algo- 
rithm produces a minimal spanning tree which is unique. Trees 
containing five or more star particles form a galaxy. Eleven 
percent of the total of 89,224 star particles make up the 985 
galaxies found in the 40 Mpc box. The average galaxy contains 
10.4 star particles, has a mean half-mass radius of 0.069 grid 
units (43 kpc), and has on the average a virialized halo with ~ 5 
to 10 times as many dark particles. The minimum galaxy size 
corresponds to a minimum luminosity of MB=—18.5, 
assuming Mstar/L = 2. 

The algorithm for finding the binary galaxies is, for each 
galaxy : 

1. Find the closest neighbor galaxy and its distance, . 
2. Find the next closest galaxy to either of the two galaxies 

in the pair and its distance from the closer member of the 
pair, r2. 

3. Calculate the ratio r2/r1 to determine how isolated the 
pair of galaxies is and whether or not it should be considered a 
binary as opposed to part of a group. 

A limit of r2/ri > 2 is imposed to eliminate galaxies that are 
members of a group of three or more galaxies. A higher limit of 
r2/ri > ^ finds nearly the same results for bound systems. The 
binaries found are independent of the order in which the 
gaslaxies are examined, so that the list of binaries is unique. 
With this method 100 binary galaxies are found, of which 54 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
 9

1A
p J

 . 
. .

37
6 
 

IK
 

No. 1, 1991 ACCURACY OF TIMING ARGUMENT 3 

Fig. 1.—Example of a wide binary. The galaxies are indicated by a circle of 
half mass radius. The dark matter particles are also shown in this x-y projec- 
tion. The length of the side of the box is 2 grid units. 

are approaching and 46 are receding from one another. One of 
the wide binaries is shown in Figure 1. 

The isolation of a binary may also be tested by determining 
the tidal influence of a third galaxy. Assuming circular orbits 
and a constant mass-to-light ratio the fractional perturbation 
in deduced mass due to a third galaxy,/, may be expressed by 
the following inequality (Schweizer 1987) 

/> (3) J ~(Ml+ M2)D3 

where M1? M2, and M3 are the luminous masses of the galaxies 
and D is the distance from the center of mass of the binary to 
the perturber. For all of the binaries with r2/r1 > 1 the largest 
value of 

3M3r? 
(M, + M2)rl 

(4) 

is found, where M3 is the galaxy with the largest tidal influence 
on the binary, not necessarily the nearest galaxy. Note that/ is 
approximately equal to or larger than the right-hand side of 
equation (3) since r2 is not the center of mass distance to the 
perturber but the distance from the perturber to the closest 
galaxy of the binary. All but four of the binaries with r2/r1 > 2 
have/ < 0.6. 

The measured mass of a binary is defined in four different 
ways. The stellar mass of the galaxies is added to the dark 
matter mass (the amount of gas in the galactic halos is 
negligible) within: (1) two spheres centered on each galaxy with 
radii equal to 50 kpc, M50, (2) two spheres of radii 100 kpc, 
iVÍloo» (3) two spheres of radii rjl, one half the separation 
between the two galaxies, M2s; (4) one sphere of radius the 
separation, centered midway between the two galaxies, M1S. 

To determine if the binary is bound the sign of the energy is 
calculated using the formula for the total energy of a two body 

system, 

M1M2 2M r1 
9 w 

where E is the total energy of the binary, Mx and M2 are the 
masses of the individual galaxies in the binary, and M = M1 
+ M2 is the total measured mass of the binary as measured by 
one of M50, M10o» Af2s, or M1S. Of course this total mass is 
easily measured in the simulation but is inaccessible to obser- 
vation. The individual galaxy masses, M1 and M2, are not 
defined for measured mass M1S, therefore the right-hand side 
of equation (5) will be evaluated to ascertain whether or not the 
binary is bound for all of the measured masses. In this analysis 
the timing masses are calculated assuming that the binaries are 
always bound, which may not be the case. If the energy of the 
binary is known to be positive the correct radial orbit calcu- 
lation uses a somewhat different set of equations, containing 
hyperbolic functions instead of the trigonometric functions. 
The binding energy is calculated as a theoretical tool for iden- 
tifying binary systems that satisfy the binary selection criteria 
but which are expected to give grossly inaccurate mass esti- 
mates. We emphasize that this indicative binding energy is 
calculated assuming point mass potentials and is dependent on 
the total measured mass. Approaching binaries that are mar- 
ginally unbound by this criterion are likely to be bound when 
mass beyond the imposed measurement spheres is included. 

The bound approaching binaries on average are more iso- 
lated than the unbound approaching binaries. The mean r2/r1 
is 4.33 (2.24) for the bound (unbound) approaching binaries 
with a minimum separation of 1 grid unit (625 kpc). If the 
minimum separation is decreased to 0.5 grid units the mean 
r2/r1 is 6.50 for the bound approaching binaries and 2.96 for 
the unbound approaching binaries. 

The binary galaxies may be at various phases in their orbits. 
The radial orbit timing mass, Mtr and the angular momentum 
timing mass, Mth for each binary are found assuming 0, 1, and 
2 complete orbits. The eccentric anomaly, /, for an approach- 
ing binary that has not completed one orbit has a value 
between n and 2n. If the binary has orbited once (twice) the 
eccentric anomaly will be between 3n and 4tc (5;: and 6n). The 
eccentric anomalies for receding binaries are between 0 and n 
for zero complete orbits, 2n and 3n for one complete orbit and 
4n and 5n for two complete orbits. 

4. RESULTS 

Approaching binary galaxies that have not completed one 
orbit in a Hubble time are of interest since (1) no halo stripping 
will have taken place so the masses may provide an estimate of 
the total halo mass; (2) M31 and our Galaxy are thought to be 
on their first approach. The criteria for a “ wide ” binary are a 
crossing time greater than the time since the expansion began 
and a free-fall crossing time greater than half that time. There- 
fore the following equations are used to determine whether or 
not an approaching binary is “ wide ” : 

tc = 
I dr/dt I 

> ^ 5 ¿ffc _ ^ 2GM > 2 ’ 
(6) 

where tc is the crossing time, M is the total measured mass of 
the galaxies and iffc is the free-fall crossing time. The free-fall 
crossing time is equal to idyn/2

1/2, where idyn is the dynamical 
time. The approaching binaries are placed into five categories. 
The widest binaries are those that satisfy both equations (6). 
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Fig. 2.—£/M1M2 vs. the ratio of Mth and measured mass M2s assuming 
one complete orbit for the receding binaries. The filled squares represent the 
bound binaries and the open squares the unbound binaries. The dashed line to 
the left (right) of the solid line indicates where the timing mass is 2/3 (3/2) of the 
measured mass. 

The next three categories satisfy the following successively 
relaxed conditions but do not contain binary galaxies in any of 
the previous categories, 

for (7) 

The fifth category contains the binary galaxies that do not fit 
into any of the above. 

Receding binaries with a negative energy according to equa- 
tion (5) may be unbound if there is insufficient mass to reverse 
the expansion. In Figure 2 the quantity E/Mj M2 is plotted 
versus the ratio of Mth (assuming one complete orbit) and 
measured mass M2s for the receding binaries. There is a group 
of binaries for which the timing mass is too large below the 
zero binding energy line. The corresponding plot with mea- 
sured mass M1S also shows a similar group. The calculation of 
the energy assumes a 1/r external potential which is incorrect 
for a more extended mass distribution. Therefore, a receding 
binary with a crossing time that exceeds the age of the universe 
or a free-fall time larger than half that age, i.e., a receding 
binary that satisfies either of equations (6) will be considered to 
be unbound. Imposing this restriction eliminates almost all of 
the binaries that have both a large timing mass and a negative 
energy. The bound binaries are indicated by filled squares and 
the unbound binaries by open squares in Figure 2. 

A plot of the relative radial velocity versus the separation is 
shown in Figure 3. The filled symbols represent the binaries 
that are bound and the open symbols the unbound binaries. 
The binaries that are wide or have a high relative radial veloc- 
ity tend to be unbound. 

In order to determine which measured mass is closest to the 
timing mass the timing masses for the approaching bound 

binaries, Mtr and Mth for 0, 1, and 2 complete orbits are com- 
pared with the four measured masses. The corresponding com- 
parisons are made for the receding bound binaries, but only for 
1 and 2 complete orbits. It should be noted that very few 
receding binaries have solutions for % in the range 0 to n. Most 
receding binaries are traveling apart too fast to be bound for 
their separation and the age of the universe. 

An unsuccessful attempt was made to discover the orbital 
history of the wide binaries by looking at the simulation data 
at earlier times. The major problem is that galaxies are contin- 
ually being created from pre-existing smaller galaxies and sub- 
galactic fragments. It is therefore difficult to trace the orbits of 
two distinct galaxies in a binary system. This emphasizes one 
of the limitations of this analysis, the assumption of distinct 
galaxies from the beginning. Nevertheless the purpose of this 
analysis is not to trace the orbits of the binary systems but to 
determine how accurately the current epoch data estimates the 
mass of the current epoch galaxy systems. 

For each binary the timing mass closest to each of the mea- 
sured masses is found and is called the best timing mass. The 
best timing mass is the one which produces the ratio of the 
timing mass to the measured mass closest to unity. The mean 
and standard deviation of the logarithm of the ratio of the 
angular momentum timing mass to the measured mass are 
displayed in Table 1 for the approaching, receding, and all of 
the bound binaries. In the three samples the standard deviation 
is smaller for measured mass M2s than for M1S. The F-test (see 
for instance Pollard 1977) is applied to the M2s and M1S data 
to determine if the difference in the variances is significant. It is 
found that for the approaching binaries the probability of 
obtaining the variances given if the samples actually have the 
same variance is 14%, for receding binaries 98%, and for all of 
the bound binaries 26%. Application of the F-test indicates no 
significant preference for one or the other of these two masses. 

The mean and standard deviation of the logarithm of the 

separation (Mpc) 
Fig. 3.—Relative radial velocity vs. the separation, for all binaries. The 

filled markers represent the binaries that are bound for measurement mass 
M2s, the open markers the unbound binaries. 
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TABLE 1 
Timing Mass Accuracy3 

Group Mass Number 

Radial Orbits 

Mean0 <r 

Radial Orbits5 

Mean a 

Angular 
Momentum 

Mean a 

Approaching 
Approaching 
Approaching 
Approaching 
Receding  
Receding  
Receding  
Receding  
All  
All  
All  
All  

M2s 

Mioo 
m50 

M2s 
M1S 
^100 
m50 

m2s 
M1S 
Mioo 
Msn 

34 
43 
31 
14 
17 
22 
16 
9 

51 
65 
47 
23 

-0.059 
-0.170 
-0.161 

0.156 
0.019 

-0.207 
-0.212 

0.007 
-0.033 
-0.182 
-0.178 

0.098 

0.183 
0.244 
0.341 
0.370 
0.216 
0.248 
0.270 
0.149 
0.196 
0.244 
0.317 
0.307 

-0.262 
-0.302 
-0.307 
-0.055 
-0.164 
-0.288 
-0.318 
-0.165 
-0.230 
-0.298 
-0.311 
-0.098 

0.337 
0.327 
0.439 
0.573 
0.310 
0.253 
0.252 
0.298 
0.329 
0.302 
0.382 
0.479 

0.025 
-0.031 

0.013 
0.243 
0.078 

-0.061 
-0.050 

0.166 
0.043 

-0.041 
-0.008 

0.213 

0.151 
0.193 
0.299 
0.355 
0.183 
0.184 
0.211 
0.220 
0.162 
0.189 
0.272 
0.306 

1 For bound binaries only. 
’ Same number of complete orbits as best Mth. 
Mean of logarithm of ratio timing mass and measured mass. 

ratio of the timing mass and measured mass are also shown in 
Table 1 for the best radial orbit timing masses and for the 
radial orbit timing masses with the same number of orbits as 
the best angular momentum timing mass. The best timing 
masses that are obtained with only the radial velocity informa- 
tion for the bound binaries are on average 0.93 of the measured 
mass M2s with ala range of 0.59-1.46. The radial orbit timing 
masses that correspond to the best angular momentum timing 
masses are on average 0.59 of the measured mass M2s with a 1 
a range of 0.28-1.25. Assuming that all the approaching 
(receding) bound binaries are on their first (second) orbit gives 
a mean of 0.39 (0.58) and ala range of 0.13-1.16 (0.25 to 1.31). 
The measured mass inside of 50 or 100 kpc does not correlate 
well with the timing argument mass, having nearly twice the 
dispersion in mass ratio of either M2s or M1S. 

The timing mass calculation with angular momentum will 
be considered in the following discussion. If M2s is the best 
measured mass 79% of the approaching binaries are on their 
first approach and 82% of the receding binaries have com- 
pleted one orbit. If the best measured mass is M1S only 44% of 
the approaching binaries are approaching for the first time and 
23% are approaching for the second time. Most of the receding 
binaries are on their third orbit (64%). 

A dynamical argument can be used to suggest which of the 
two measured masses is the best by calculating the time scale 
for frictional orbit decay of a satellite galaxy. The halo of the 
parent galaxy may be approximated by an isothermal sphere. 
The orbital radius of the satellite galaxy decreases as 
(Tremaine 1981), 

r2(t) = r2(t0) - 0.605 In A , (8) 
a 

where r is the orbital radius, ms is the mass of the satellite, t is 
the time, a is the one-dimensional velocity dispersion, A » r/rs, 
and rs is the size of the satellite. If we assume the orbit is 
circular and the rotation curve of the parent galaxy is flat with 
a velocity vc — 2jg, the above equation is rewritten as 

_ Lr2(t0) - r2(t)-]vc 

0.428Gms In A ' 1 j 

To estimate the merger time of a binary we take In A ä 1 and 
define / by i »/r(i0)/pc: 

.. r(to)vf 
X 0.43 Gms ' 

(10) 

If it is also assumed that the satellite and parent galaxies have 
approximately the same mass, then 

v 2 
Gms 

r(t0) * 
(11) 

Substituting equation (11) into equation (10) at the time of the 
merger yields x ~ 2.3. From this rough calculation it can be 
seen that most of the binary galaxies will merge quickly and 
that one would not expect to see a large number of binaries 
that have completed 1 or more orbits. The study of mergers 
using N-body simulations has also shown that isolated 
binaries merge quickly (White 1978; Carlberg 1982). From the 
results of this approximation and the lower variances in M2s it 
will be assumed M2s is the measured mass that best represents 
the timing mass. 

In Figure 4 the best Mth and the Mtr with the same number 
of complete orbits as the best Mth (not the best Mtr) are plotted 
versus the measured mass M2s for the bound galaxies. The 
corresponding plot is shown for all the binaries in Figure 5. 
The skeletal markers represent the radial orbit calculation 
(Mtr) and the filled markers the angular momentum calculation 
(Mth). The number of vertices on a marker represents the 
number of complete orbits offset by three. Figure 5 reinforces 
the need for the restriction that the binaries are bound. 

The distribution of eccentricities for isotropic orbits 
assuming a Keplerian potential is n(e, e + de) = 2Nede, where 
N is the total number of binary systems (Binney & Tremaine 
1987). The/2 test shows that there are no significant differences 
between the eccentricities for the best angular momentum 
timing masses and an isotropic distribution. It should be noted 
that in the most radial bin (e = 0.9 to 1.0) there is a weak 
tendency for more binaries to be present than for an isotropic 
distribution. 

The isolation of the binary and the crossing time do not 
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log(timing mass) 

Fig. 4.—Best timing mass vs. the measured mass M2s for the bound gal- 
axies. Filled markers represent the best Mth and skeletal markers represent the 
Mtr that has the same number of complete orbits as Mth. The standard devi- 
ation of log10 (Mth/M2s) is 0.162. 

seem to be important in determining whether or not the timing 
masses are accurate for the sample with r2/r1 > 2. All but two 
of the bound binaries have a tidal parameter ft < 0.095 
(r2/7*1 > 2). The angular momentum timing mass is a good 
estimate of M2s ifft < 0.13 for the sample with r2lr1 > 1. There 
is a strong dependence of increasing timing argument mass 
accuracy with separation, free-fall crossing time, and relative 
radial velocity. 

There is a correspondence between how wide an approach- 

log(timing mass) 

Fig. 5.—Same as Fig. 4 except all binaries are plotted. Note that the 
restriction that the energy of the binary be negative is important to reduce the 
scatter. 

ing bound binary is (eqs. [6] and [7]) and how many orbits 
have taken place. The timing masses that are most accurate for 
the widest binaries are those found assuming the galaxies are 
approaching each other for the first time. The binaries for 
which the first orbit calculation underestimates their mass are 
not present until the fourth widest category (n = 3) is included. 
This may indicate that those binaries have orbited at least once 
and/or are in the process of merging. 

There are five wide approaching binaries, 14, 30, 50, 53, and 
63 which are approximate analogs of the M31 Galaxy system. 
Binaries 14 and 30 are definitely unbound. The timing masses 
that are found for 14 are too large by a factor of at least 20. 
Binary 14 has the largest separation, 2.36 grid units or 1.48 
Mpc. Binary 30 has the second largest separation and the 
timing masses found are again quite high. Both of these wide 
binaries are unbound according to equation (5). In a straight 
line orbit the closest approach of binaries 14 and 30 are 0.94 
and 1.07 Mpc, respectively. The large separations and high 
relative velocities of these two binaries precludes them as good 
analogs to the M31 galaxy system. A third binary, 63, is prob- 
ably also unbound since E/Ml M2 is very close to zero. For the 
first approach Mtr is 0.730 x 1012 M0 and Mth is 2.67 x 1012 

Mq (the eccentricity is 0.290). The angular momentum calcu- 
lation gives a value which is significantly higher than the mea- 
sured masses M2s = 1.19 x 1012 M0 and M1S = 1.70 x 1012 

Mq. 
The timing argument works well for binaries 50 and 53. The 

measured masses M2s and M1S of binary 50 are 1.36 x 1012 

Mq and 2.38 x 1012 M0, respectively. The timing masses Mtr 

and Mth are 0.935 x 1012 M0 and 1.04 x 1012 M0 (e = 0.921) 
for zero complete orbits. The argument in favor of mass M2s 
being closer than M1S to the timing mass is strengthened by the 
fact that the mass M1S is too large by more than a factor of 2. If 
one complete orbit has taken place the timing masses are 
~4.6 x 1012 Mq. It is obvious that for this wide binary the 
galaxies are on their first approach. Binary 53 has a mass 
M2s = 0.882 x 1012 Mq and mass M1S = 1.07 x 1012 Mq. 
The timing masses are approximately the same (0.676 x 10^2 

Mq and 0.681 x 1012 M0) for both calculations since the orbit 
is nearly radial (e = 0.995). The timing masses for the second 
approach again are near 4.6 x 1012 M0. The two widest 
bound binaries, 50 and 53, are well isolated, approaching each 
other for the first time, and have timing masses that are within 
30% of the measured mass M2s. 

5. CONCLUSIONS 

The accuracy of the timing argument for binary galaxies is 
examined using data from an AT-body simulation of an Q = 1 
CDM cosmology. Modeling the binary galaxies as two point 
masses proves to be a remarkably good approximation even in 
the presence of tidal fields and continuing infall of surrounding 
material. The timing masses of the bound galaxies are most 
comparable to M2s, the mass within two spheres centered 
upon each galaxy with radius equal to half the separation of 
the two galaxies. The masses inside of 50 and 100 kpc under- 
estimate the timing masses and show a poor correlation with 
the timing argument masses. 

The best angular momentum timing masses are on average 
1.10 of the measured mass M2s with aid range of 0.76-1.60. 
The radial orbit timing masses that correspond to the best 
angular momentum timing masses are on average 0.59 of the 
measured mass M2s with aid range of 0.28-1.25. The orbits of 
the binaries are consistent with an isotropic distribution. 
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Wide approaching binary galaxies are examined in detail. 
Two of the five binaries are unbound and consequently have 
erroneously excessively large timing masses. A third binary is 
near the zero binding energy limit and is probably unbound, 
since the angular momentum timing mass is too high by a 
factor of more than 2. The timing argument works well for the 
two remaining binaries; the timing masses are within 30% of 
the mass M2s. 

The timing argument, assuming the binaries are on their first 
approach, does not work well if the separation is too small or 
too large. If the binary has a separation less than ~200 kpc 
there is some ambiguity in how many orbits have taken place. 
On the other hand if the separation is greater than ~ 1 Mpc 
the binary may have been influenced by other galaxies earlier 
in its history. The average r2/r1 is lower for unbound binaries 
with a large separation than for the bound galaxies. The rela- 
tively close neighbors can add angular momentum to the 

system, and there will be a large tangential velocity that will 
cause the binary to be unbound. Therefore the timing argu- 
ment can be applied to isolated approaching binaries that have 
moderate ( ~ 200 kpc to 1 Mpc) with some confidence. 

From this analysis we expect that the radial orbit timing 
argument applied to the M31 galaxy pair gives a slight under- 
estimate of the M2s mass of the system, that is, the timing mass 
is likely to be ~0.53 of two sphere mass, with a 1 <j confidence 
interval ranging from 0.2 to 1.3 about that mean value. 
Because the approximately isothermal galaxy halos in this 
model universe typically extend out several megaparsecs, it is 
not surprising that masses measured on the scales of 50 kpc are 
up to an order of magnitude smaller than those indicated in 
binary systems with separations of 500 kpc. 

We would like to thank Scott Tremaine for his comments. 
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