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ABSTRACT 
We describe the application of the Smoothed Particle Hydrodynamics method to the fragmentation of 

rotating cloud and disk systems, allowing for molecular cooling due to H2 and CO. We also describe a novel 
approach to solving Poisson’s equation for disklike structures, which exploits the multigrid algorithm. 
Numerical studies are presented which investigate the evolution of both rotating clouds and Maclaurin disks, 
in each case with both an isothermal equation of state and with molecular cooling. Our results establish the 
influence of molecular cooling on the fragmentation of molecular clouds. The isothermal sequences, if they 
fragment at all, do so into far fewer lumps than the cooling sequences. This is not due to a cooling instability 
as such, but rather to the reduced thermal support. One of our sequences shows a remarkable similarity to the 
W49A star-forming region. 
Subject headings: hydrodynamics — interstellar: molecules — nebulae: individual (W49) — nebulae: structure 

1. INTRODUCTION 

It is generally believed that large clouds of molecular gas 
fragment and produce stars. However, the details of this 
mechanism are unknown. In the absence of reliable informa- 
tion about the structure of these clouds it is reasonable to 
examine simple geometries such as spheres, disks, cylinders 
etc., in order to gain some insight into the fragmentation 
process (see Larson 1985 for a review). The calculations are 
usually further simplified by the assumption of an isothermal 
equation of state. This last assumption is, however, unneces- 
sarily crude since molecular gas is expected to cool rapidly and 
appropriate cooling functions are known. 

In this paper we describe a Smoothed Particle Hydrody- 
namics (SPH) program which incorporates the cooling from 
H2 and CO molecules in the optically thin approximation. In 
addition, substantial improvements to our multigrid algorithm 
for determining the gravitational field allow us to follow the 
evolution of clouds through to disk systems with high accu- 
racy. 

The applications we describe include the evolution of rotat- 
ing clouds with and without substantial random perturbations, 
and with and without molecular cooling. We also study disk 
structures both with and without cooling. While our calcu- 
lations are extensive and give a clear picture of the changes 
induced by molecular cooling, they do not, nor are they 
intended to, give a comprehensive description of star forma- 
tion. Although the structures we consider here are only primi- 
tive models of real clouds, they provide us with a convenient 
numerical laboratory to investigate fragmentation. The calcu- 
lations described here illustrate the flexibility of the computing 
techniques which we plan to apply to the simulation of an 
entire molecular cloud complex. 

2. EQUATIONS OF MOTION 

We use the particle method SPH (for a review see Monagh- 
an 1988). The momentum equation 

becomes 

dvi 
~dt 

dv 
dt 

-- VP-\<I), 
p 

(2.1) 

m Pi 
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P, 

Pi 
2 (2.2) 

where particle j at position rj carries mass nip velocity Vj and 
thermal energy per unit mass up and j runs from 1 to N, the 
total number of particles in the calculation (henceforth all 
sums, unless explicitly stated, extend from 1 to N). The density 
pj at the position of particle j is given by 

Pj = Y*mk Wkj, (2.3) 
k 

and the pressure Pj is obtained from the equation of state 
using pj and the temperature 7} at r,. The function = 

— r^l, h) is the interpolating kernel. We use the spline- 
based kernel with compact support (Monaghan & Lattanzio 
1985) which is defined by 

h3W(v, h) 

'3_ 
2n 
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4n 
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0 < t; < 1 

1 < F < 2 

where v = r/h. 
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In equation (2.2) Vt denotes the gradient of taken 
with respect to the coordinates rf. Artificial viscosity is provid- 
ed by Tlij which has the form 

ny = ^-(-ccfiij Cij + ßfifj) (2.4) 
Pij 

where the notation = ^(>4, + Aj) has been used, c is the 
speed of sound and 

Pa 

hvU_ 
rfj + r¡2 ’ 
0; 

if Vij • Tij < 0 

otherwise . 
(2.5) 

where the notation = (a¿ — aj) has been used and 
r¡2 = O.Ol/i2 prevents the denominator from vanishing. n0 pro- 
duces both a bulk and a shear viscosity. The gravitational force 
at particle i is denoted by (V0),. The thermal energy equation 
with cooling function A is 

du P A 
_= __ V -r--, 
dt p p 

(2.6) 

where u is the thermal energy per unit mass. This becomes 

dUi 
~dt 

To deal with the “wall heating” effect in high speed colliding 
flows we add to equation (2.6) a thermal conduction term 

•(pq\u) 
P 

which can be approximated by 

V m Vt- Ifrfj 
7 ' PM + tl2) 

(2.8) 

(2.9) 

To see that this term is valid, convert the sum to an integral 
and Taylor expand all terms except about the point The 
expression (2.9) conserves thermal energy and increases the 
entropy. We base the thermal conductivity function g on a 
natural length and time scale and write 

Qi + qj = ghiCij - 4^), (2.10) 

where the term involving //,j was guessed from the similar 
expressions devised by Noh (1987) for gas dynamic problems. 
We take g = 0.25 which gives good results for shock tube colli- 
sion flows, although impacts at very high Mach number (> 10) 
require g = 0.5. 

3. THERMODYNAMICS 

We assume the gas is composed of He and H with mass 
fractions Y = 0.25 and X = 0.75, respectively. The cooling 
formula (see § 4) assumes the gas contains small quantities of 
CO, but this has a negligible effect on the thermal energy. 
Assuming the gas is unionized (for the temperatures reached in 
our simulations this is true) the thermal energy per unit mass is 

u(T) = M0T[^Xy + ^Y) + lxy 
Do | X(l-y)m2) 
mH 2mH 

(3.1) 

where mH is the mass of an H atom, D0 is the dissociation 
energy of H2 (4.477 eV), y determines the number of H atoms 
(see below), and £(H2) is the energy of an H2 molecule. 

The parameter y is defined by 

y = pX ’ 
(3.2) 

where />(H) is the mass density of atomic H and p is the mass 
density of the gas. Thus 

pX=p(H)+p(H2)9 (3.3) 

where />(H2) is the mass density of H2. From equilibrium 
theory 

r^=7Ye"52490/r’ (3-4) 

which fits the values given by Aller (1964, p. 119) to within a 
few percent. 

The energy of the H2 molecule is given by 

£(H2) = ffcT + rotation + vibration . (3.5) 

We take the rotation temperature 0rot = 85.4 K and the vibra- 
tion temperature 0vib to be 6100 K. From the para-partition 
function 

= Z (2j + -j(j+ Dörot/r 
7 = 0,2,4,... 

and the ortho-partition function 

we calculate 

z0 = £ (2j + l)e A/+1)0rot/r ; 
7=1,3,5,... 

2 dinz,, , T2 dinz,, 
Jp dT > Jo dT 

(3.6) 

(3.7) 

(3.8) 

The rotational energy is then kftot where (assuming statistical 
equilibrium) 

/tot = 
z„/p + 3z0/0 

Zp + 3z,, 

Finally 

£(H2) = k 

The equation of state is 

-T + f + —  
2 +Jlot + exp (dvib/T) - t]' 

P = 
pM0T 

(3.9) 

(3.10) 

(3.11) 

where the temperature is obtained from equation (3.1) and 

1 
f (! + y) + f p \_2 4 ]• 

(3.12) 

Each of our SPH particles therefore represents a piece of fluid 
containing, in general, H, H2 and He (with trace amounts of 
CO). 

4. COOLING FUNCTION 

The cooling function is based on the work of Hollenbach <& 
McKee (1979, hereafter HM) which allows us to include 
cooling from CO, CH, H20, HC1, and H2. In the calculations 
which follow CO and H2 provide the cooling. The other mol- 
ecules were not included because we do not have reliable esti- 
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mates of their number density. A good review of heating and 
cooling in molecular clouds is given by Hollenbach (1988). We 
have included a cosmic-ray heating term (Hollenbach 1988), 
but its influence is tiny. Substantial heating is mainly due to 
radiation from nearby stars, but the inclusion of this source 
would be inappropriate for our calculations. 

The cooling function is complicated, and our description of 
it is intended merely to provide a guide to the relevant parts of 
HM. 

Let n(H) be the number density of atomic hydrogen, and 
n(H2) the number density of molecular hydrogen; thus ntot = 
n(H) + 2n(H2) is the number density of H atoms in all forms. 
We write A (ergs cm “ 3 s _ x) in the form 

A = 8.5 x 10“ 5nt
2
ot L(CO) + n(H2)2L(H2) + n(H)n(H2)L(H) , 

(4.1) 

where we have assumed the number density of CO is 8.5 
x 10“5ntot (this number is uncertain). L(CO) is given by equa- 
tion (6.23) of HM where the parameters are given in Table 3 of 
HM. Thus 

where 

L(CO) = 
4(kT)2 x 9.7 x 10~8 

2.76ntotfc[l + Nrat + ’ 

iVrat = (3.3 x 106n'2)/nlot 

(4.2) 

(4.3) 

and T3 = T/1000. For T < 5 K we set L(CO) to zero. Contri- 
butions from L(H) and L(H2) can be obtained from equation 
(6.36) of HM. For example. 

H) = 
¿,(H) 

and Lr(H) and L^H) are given by equations (6.37) and (6.38) of 
HM. These and other expressions contain many exponentials 
which are costly to compute. We therefore constructed tables 
of the subsidiary functions of T and used interpolation to save 
time. The terms in the denominators of equation (4.4) are given 
by equations (6.39), (6.40), and (6.41) of HM. As an example 

tt»(rot) _ Lr(H) 
n(H) Lr(H, n -► 0) ’ 

where 

(4.5) 

Lr(H) = 
9.5 x 10 — 22 'tt'3.76 

n(H) IV 1+0.12T21 

-I- 3 x 10“24 

exp 
[-(f 

exp 
-0.51 

Lr(H, n -► 0) = 0.25[5y2 e~(E2~Eo)lkT(E2 - £0)] 

+ 0.15ih3e~iE3-Ei)/kT(E3 - Ei)] , 

(4.6) 

(4.7) 

The equation for Lv analogous to equation (4.7) above requires 
the energies 

E10 = 5860/c, E20 = 2E10 , (4.10) 

and the y’s that are given in equation (6.29) of HM. As noted 
above, the various y’s, the density-independent factor L,.(H), 
and terms such as equation (4.7) can be calculated by inter- 
polation in previously computed tables. 

5. TIME STEPPING 

The time stepping for the momentum equation and the par- 
ticle shift equation is the predictor-corrector scheme (Anzer, 
Börner, & Monaghan 1987) which conserves linear and 
angular momentum when the gravitational force is calculated 
by direct summation. Because we use a grid there is a small 
error in the momentum conservation (<0.1%) and a small 
error in the angular momentum conservation (<0.01%) after 
200 time steps. Because of the cooling it is necessary to use an 
implicit scheme for the energy equation (Monaghan & Varnas 
1988; Hernquist & Katz 1989). Writing the energy equation for 
particle i in the form 

f(T}) = uJiTf) - u(Tf) - ötQl12 + ôt A(T|1;/2
n|1/2) = 0 , (5.1) 

Pi 

where ß* = — (PV • v/p)i plus viscous dissipation (the summa- 
tion term in eq. [2.7] is the SPH equivalent) and superscripts 0, 

1 denote the beginning, midpoint, and final values for the 
time step. Equation (5.1) is a nonlinear equation for T¡. The 
Newton scheme is inappropriate to solve (5.1) because A is 
discontinuous (it is set to zero for T < 5 K and some terms are 
set to zero for T < 50 K). In any case, A is so complicated it is 
an advantage to avoid calculating derivatives. The procedure 
we used is a combination of bisection and the secant method. 
The initial guess for Tf is Tf. Iff(T¡) > 0 we halve the guessed 
value until we find a Tf which gives/with the opposite sign. If 
f(T¡) < 0 initially we double T¡. This works because A 
increases with T. In this way we get two values of T\ which 
straddle the correct value. Our root calculation then starts 
with one bisection step followed by cycles each of which consist 
of two secant steps and one bisection. The bisection step pre- 
vents convergence by the secant method from slowing down 
badly. We found that it was more efficient to use a fixed cycle 
rather than test to decide whether to have more secant or 
bisection steps. The stopping procedure was that 

f{T\) 
ui(T?) + StQl 1/2 <0.001 or AT < max I 0.1, IL\ 

1000/’ 
(5.2) 

where AT is the change in T¡ during the iteration. The second 
test was needed because / is discontinuous. About four or 
five evaluations of / were needed for convergence. Where 
the midpoint energy is required we use the approximation 
0.5MTD + Wl.(T?)]. 

and from equation (6.31) 

7? = (1 + 10_12T3)t°-33 + 0.9e-<'-3'5'0'9>2] . 

(4.8) 

The energy levels (in ergs) in equation (4.7) are 

Eq = 0 , Ei = 1.185 x 10“14 , E2 = 6E1, E3 = 12Eí. 

(4.9) 

6. GRAVITATIONAL FIELD CALCULATION 

To find the gravitational force on the particles their mass is 
assigned to a grid and Poisson’s equation is represented on the 
grid by finite differences and solved by iteration. Forces are 
then calculated on the grid and assigned to the particles. We 
use a fourth-order scheme and iterate using a multigrid algo- 
rithm (Monaghan 1985; Monaghan & Varnas 1988). This solu- 
tion requires that the surface potential is known. In previous 
work the surface potential was calculated by using the multi- 
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pole moments of the particles, a valid procedure because the 
grid formed a cubical box. In the present calculations we want 
sufficient resolution to study disk structures and this cannot be 
achieved if cells are wasted in a largely empty cubic box. A 
more efficient procedure is to use a rectangular grid that fits 
snugly around the matter, but this rules out finding the surface 
potential by multipole moments. For the disk system, expres- 
sions exist for the potential away from the matter, but they 
involve disproportionate amounts of computation. The pro- 
cedure we finally adopted exploits the flexibility of the multi- 
grid method. 

A coarse grid (cell length scale twice that of the grid we 
eventually use) in the form of a cubical box was placed sym- 
metrically around the matter. The mass of the particles was 
assigned to the vertices of this grid, using a resolution length 
appropriate to the scale of the box, and the surface potential 
calculated by multiple moments and the solution found by 
multi-grid iteration (Monaghan & Lattanzio 1985). 

The solution on the coarse grid is then interpolated to the 
vertices of a fine grid which forms a rectangular box fitting 
snugly around the matter. The values of the potential on the 
coarse cubical grid, where they match the fine rectangular grid, 
provide both the surface potential and starting values for a new 
multigrid iteration based on the fine grid. 

On a Vax 11/780 or Vax 8700 we typically use a maximum 
of 80,000 cells. For a cubical array this implies ~43 cells in a 
coordinate direction. Because the method is fourth order the 
multigrid cell width can go up to 2h (h is the length used in 
while still providing accuracy comparable to the SPH part of 
the calculation. The equivalent grid, if the typical second-order 
finite difference scheme is used, is therefore at least (86h)3. 

We allow for a minimum number of vertices in any direction 
of 17. For a disk configuration this leaves ~4700 vertices 
for the plane of the disk and typically 68 vertices across 
a diameter. The equivalent for a second-order scheme is at 
least 136 vertices across a diameter and a total of 
34 x 136 x 136 = 630,000 cells. 

We have also introduced some technical refinements. The 
algorithm now uses four grids (others may be added easily) 
each of which uses a cell width twice that of the next finest. The 
coarsest grid therefore has 1/512 of the cells on the fine grid. A 
typical solution by iteration takes work equivalent to about 
eight sweeps on the finest grid. 

The iteration is stopped when the maximum change of the 
potential on the fine grid is < 10-5(47rG/?H2), where H is the 
cell width. Coarser grids use a similar rule with 4nGpH2 

replaced by the appropriate source term. 
The algorithm has been tested by using analytical density 

distributions with known potentials, by calculating the forces 
on small sets of particles and by following binary systems. A 
binary system serves as a severe test, since it involves a sharply 
varying density and the assignment to and from the grid. The 
computed force has typical errors relative to the exact value of 
2 x 10“5. 

7. INITIAL STATES AND STABILITY 

In this paper we follow the evolution of gas clouds and disk 
systems. The clouds are initially spherical with mass M = 104 

M0 and radius R = 12.6 pc. For some of the sequences the 
initial density is uniform. In others the density is given a 
random perturbation. For most of the cloud calculations the 
initial temperature is 70 K, although we ran three sequences at 

65, 117, and 184 K to sample the three regions delineated by 
Miyama, Hayashi, & Narita (1984, hereafter MHN). We 
discuss this further below. 

The disk system we evolve is a perturbed Maclaurin disk 
with radius R, constant angular velocity and surface density 
oc (1 — r2/R2)112. 

It is useful to recall what theory tells us about the isothermal 
collapse. From Larson’s (1985) review and discussion of frag- 
mentation, the critical wavelength Àc for fragmentation from a 
uniform medium of density p is 

where c is the isothermal sound speed and y is the adiabatic 
index. The critical mass Mc given by Larson (1985) is 

During isothermal collapse both 2C and Mc decrease. This is 
the basic idea behind Hoyle’s (1953) theory of fragmentation 
which predicts that, as Mc is reduced, smaller fragments will 
separate from the collapsing cloud. In practice, this does not 
occur because the fragments do not have time to separate out 
in a purely spherical collapse. 

For an initial spherical cloud with constant density, mass M, 
and radius R it is convenient to write 

= 3.63V7C, Mc = 17.45(vC)3/2M , (7.3) 

where 

TRVl0 

GMp 
= 0.0019 - 
ß 

( type \ 
Vm/iooo mJ ' 

The ratio of thermal to gravitational energy is 

(7.4) 

a = 
5£ 

3(7 - 1) ’ 
(7.5) 

where the adiabatic index y is ~ 1.4 for T < 80 K. The ratio of 
rotational energy to gravitational energy, when the angular 
velocity is constant, is 

ß = 
1 Rv2

e 

3 GM 
0.077! 

K/pc 
M/1000 M0/\km s 

(7.6) 

where ve is the equatorial velocity. 
The regions delineated by MHN are (1) a/? > 0.2 which can 

form an equilibrium cloud if there is an external pressure; (2) 
0.12 < a/? < 0.2 when contraction occurs to a non- 
fragmentating disk system; and (3) a/? < 0.12 which produces a 
fragmenting disk. By taking ve = 1.7 km s_1 and T = 65, 116, 
and 184 K we sample each of these aß regions if the gas is 
isothermal. The results of an isothermal evolution of these 
sequences (see § 10.2) generally confirm the results of MHN. 

For a sequence starting with T = 70 K, standard M (i.e., 104 

M0, as quoted above) and Æ (12.6 pc), p = 2.33, and ve = 2.2 
km s-1, the stability parameters are C = 0.073, M/Mc = 0.74, 
a = 0.30, ß = 0.47, and a/? = 0.141. We therefore expect the 
cloud to collapse and form a nonfragmenting disk if T is con- 
stant. This evolution is discussed in §§ 10.3 and 10.4. 

The ultimate fate of any isothermal cloud depends crucially 
on the rotation and this is incorporated in the criterion of 
MHN. An alternative description of fragmentation of any disk 
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state that occurs is given by Toomre’s (1964) estimate of the 
relative effects of rotation, pressure (or velocity dispersion), and 
self-gravity. 

For a nonrotating infinitely thin disk the critical mass (see 
Larson 1985) is 

y^4 

Mc = 1-17 7-r- > (7.7) U O 

where o is the mass per unit area. For a rapidly rotating cloud 
we estimate a by M/{nR2) where R is the initial cloud radius. In 
this case 

M 
^ = \Alny2C2 = 0.02 , (7.8) 
M 

if C = 0.073, which shows, as expected, that many more frag- 
ments can form in the disk configuration than form in the 
spherical distribution with the same M, R, and T (for which 
MJM = 0.34). 

Rotation changes this picture. Larson (1985) proposed, in 
agreement with Toomre, that the stability indicator is 

Q 
KC 

nGa ’ 
(7.9) 

where c is the isothermal sound speed and k the epicyclic 
frequency, defined by 

k2 = 2Q( w -—b 2Q 
dm 

(7.10) 

where m is the radial coordinate in the disk. The instability 
indicator is Q < Qc where Larson (1985) estimates (using 
results from Goldreich & Lynden-Bell 1965) that Qc ~ 0.55. An 
alternative argument by Hachisu, Tohline, & Eriguchi (1987) is 
based on the idea that fragmentation will occur in a disk if two 
conditions are met. These are that the ratio of the gravitational 
free-fall time iff to ts = Inm/c is sufficiently small, and the ratio 
of iff to the epicyclic period iep is also sufficiently small. With 
suitable averaging Hachisu et al. (1987) show that (iff/is) 
(iffAep) G- 

For the Maclaurin disk 

3M 
* " 2%R2 Q = 

'3G7rMl1/2 

. (4R3) J 
(7.11) 

so that 

Q ~ 
2C1/2 

[1 - (r2/R2)]1/2 ‘ 
(7.12) 

For a disk with T = 70 K, M = 104 M0, R = 12.6 pc, 
Ç = 0.073 so that Q - 0.54/(l - r2/R2)1/2. We therefore expect 
the isothermal disk to be just unstable in the central regions 
and stable in the outer regions. With molecular cooling the 
disk temperature can drop to 5 K, so that Q<QC and frag- 
mentation is expected over most of the disk. 

In practice none of the instability indicators are entirely 
satisfactory because the collapsing cloud does not necessarily 
pass through near-equilibrium states. 

We may estimate the cooling time scale tcoo1 from CO mol- 
ecules (the dominant source) quite simply. Consider one of our 
standard clouds composed of pure hydrogen, except for trace 
amounts of CO in ratio n(CO)/ntot = 8.5 x 10“5. Then 

pu /l.5/cT\r 1 
~ A mH ;LM,2„t^CO)8.5 x 1(T5 

Using equation (4.2) we get 

1 2 x 1011   
Tcool -   J  ^ + + L5V NrJ 

where /Vrat = [3.3 x 106(T/1000)1/2]/ntol ~ 1.7 x 104 initially. 
So the initial cooling time is 

tool - 106 yr • 
This is to be compared with the initial free-fall time-scale 

and the rotation period of 

P = — ^ 3.5 x 107 yr . 
Ve 

Thus we expect the cooling to have significant effects on the 
dynamics. 

8. PARTICLE CONFIGURATION 

For the uniform spherical clouds the (equal mass) particles 
are arranged on a lattice and those within R of the origin are 
retained. In the past we have used a lattice with cubical cells, 
but in the present calculation we use a body-centered cubic 
lattice. The reasons for doing this are that it is equivalent to the 
centroid method of numerical integration (Good & Gaskins 
1971), and that it is the best distribution for transmitting infor- 
mation from a continuum set of data (Sloane 1986; the two- 
dimensional equivalent, hexagonal cells, shows up naturally in 
two-dimensional particle schemes, e.g., Daly, Harlow, & Welch 
1964, p. 47). 

The randomly perturbed uniform sphere is produced by 
choosing three random numbers q2, and g3 in 0 < ^ < 1, 
then calculating the spherical polar coordinates r, 0, and </> 
according to 

r = Rg}/3 , cos 9 = 2q2 — 1 , 0 = 2nq3 . (8.1) 

For the Maclaurin disk the particles, again each of equal mass, 
are positioned randomly within a circle of radius R in such a 
way that the average density is oc (1 — r2/R2)112. We did this 
in two ways. In the first two random numbers ^ and q2 in 
0 < < 1 were calculated and the plane polar coordinates 
determined by 

r = R(l- ql13)112 » 0 = 2^2 • (8.2) 

A random configuration in the Maclaurin disk can also be 
produced by the rejection technique (e.g., Hohl & Hockney 
1969). In this case sets of three random, numbers ql,q2, and q3 
in 0 < < 1 are generated and accepted if 

<2i + <z! < 1 , q3< Vil -4i - ql) ■ (8.3) 

If they are accepted then the particle is given the Cartesian 
co-ordinates 

x = 2qi - 1 , y = 2q2 — 1 , z = 0 . (8.4) 

The two methods give different perturbations and different 
fragments. 

9. SCALING 

The unit of mass is M, the total mass of the cloud or disk. 
The unit of length is R, the initial radius of the cloud or disk. 
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The unit of energy is then GM/R and the unit of density is 
M/R3. The unit of time t is (R3/GM)1/2 so that the free-fall time 
is 1.1t. To allow easy conversion of computed values into cgs 
units we provide the following conversion formulae : 

with R* = R/(5 pc) , M* = M/(1000 M0) 
then 

t = 1.658 x 1014(K*3/M*)1/2 s , 

velocity = 9.303 x 10*(M*/R*)1/2 cm s“1 , 

density = 0.544 x 10~21(M*/R*3) g cm-3 , 

energy = 8.652 x 109(M*/Æ*) ergs . 

The scaled pressure P is given by 

pT (R%\ 
p \GM J 

where p is the scaled density. 

(9.1) 

(9.2) 

10. THE SIMULATIONS 

10.1. Maclaurin Disks 
We begin with the Maclaurin disk (see § 7) because it pro- 

vides a convenient test of the ability of our algorithm to handle 

disk systems, and shows clearly how cooling affects the evolu- 
tion. 

Our disk has a mass of 104 M0 and radius R = 12.6 pc. The 
initial temperature was T = 70 K and we used both 4000 and 
32,000 particles. The equilibrium Maclaurin disk has a surface 
density 3M(1 — r2/Æ2)1/2/(27LR2) and constant angular velocity 
Q = [3G7rM/(4R3)]1/2. The Q factor for stability is (see eqs. 
[7.8] and [7.9]): 

Q 
2C1/2 0.54 

(1 - r2/R2)112 ~ (1 - r2/R2)1/2 (10.1) 

so that, if the disk remains isothermal, we can expect some 
fragmentation in the central regions, but the other regions 
should remain stable. When molecular cooling occurs, most of 
the disk should fragment. In our units the equilibrium Q = 
[(3tc/4)]1/2 = 1.53. 

Figure 1 shows the development of fragments in a disk with 
molecular cooling and N = 32,000. The fragmentation is 
extremely rapid and occurs over most of the disk. The overall 
appearance is that of clumps connected by filaments with 
many voids. The filaments appear to be the natural response of 
the rotating disk to clump formation (Julian & Toomre 1966). 

H= 0.017 1= 2.2735E-01 0.017 1= 3.5292E-01 

H= 0.017 1= 4.4104E-01 H= 0.017 L= 5.8688E-01 

Fig. 1.—A Maclaurin disk with molecular cooling. The resolution length is H, and the time is given in units of r = (R3/GM)1/2. 
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H= 0.019 1= 4.4L15E-01 H= 0.017 7.7249E-01 

H= 0.015 L= 1.0284E+00 H= 0.009 L= 1.3954E+00 

183 

Fig. 2.—Same as Fig. 1, but for the isothermal equation of state 

If the gas is kept at 70 K then equation (10.1) predicts that 
the central regions may just be unstable to fragmentation but 
the outer regions will remain stable. Figure 2 shows an isother- 
mal evolution (with N = 32,000) with the same field of random 
perturbations that produced Figure 1. (Similar results were 
seen with N = 4000, in contrast to the cooling sequence.) It is 
clear that fewer and weaker fragments occur, and they are 

H= 0.017 L= 5.8688E-01 

Fig. 3.—] 

closer toward the center than was the case for the cooling 
sequence. The isothermal sequence produces maximum den- 
sities which are lower than the cooling sequence at equivalent 
times. Indeed, the time scale for the collapse in the cooling 
sequence is lower by a factor ~ 3. Figure 3 shows that roughly 
equivalent densities are reached 3 times later in the isothermal 
sequence. 

H= 0.009 L= 1.3954E+00 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

37
5.

 .
17

7M
 

184 MONAGHAN 

That the cooling sequence results in more fragments is 
expected since the length scale of maximum growth 

nGa 

is proportional to the temperature. Thus the fragments seen in 
Figure 2 are expected to be of a scale ~ 14 times the fragments 
seen in Figure 1, which is roughly what is found. However, the 
Fragments in Figure 1 are not described accurately because 
their scale is comparable to the resolution length h. 

When the perturbations are set up by the rejection method 
the fragments are fewer in number and the filaments are longer. 
These results are similar to those found by Hohl & Hockney 
(1969). In their calculation, however, the particles simulated a 
collisionless system, whereas in our simulation the particles 
represent a noninterpenetrating gas. For cold disks with 50,000 
particles and a 64 x 64 grid their calculation produces more 
filaments in the outer parts of the disk. These differences are 
probably due to the fact that the outer parts of our disk are 
stable. When Hockney & Hohl introduce velocity dispersion 
the number of filaments and fragments reduces as the disper- 
sion increases. 

10.2. Isothermal Sequences with ocß = 0.047,0.14,0.21 
These sequences were run to compare with the calculations 

of MHN. They differ from those calculations in three ways : we 

1 g 0 - « • -f -   i * * - • ***-1*--»—-—£  
’-1.0 -0.5 0.0 0.5 1.0 

x position 

& LATTANZIO Vol. 375 

use more particles (6912 compared to 4000), we do not include 
a surface pressure, and we use a resolution length h which is 
fixed in space (but varies with time). This fixed h is adequate to 
resolve the ring-mode instability which develops, but it is not 
able to resolve structures an order of magnitude smaller. 

All sequences have M = 104 M0 and start with a spherical 
cloud of radius R = 12.6 pc. The particles are placed randomly 
according to the procedure described in § 8. The equatorial 
velocity is 1.7 km s-1, so that initially ß = 0.28. The tem- 
perature for the three sequences are 65,117, and 184 K. 

The sequence with initial aß = 0.047 is expected to fragment. 
In Figure 4 we show the particle positions projected on to the 
x — y and x — z planes at i = 1.92 = 2.1iff. The disk is highly 
flattened, and a nonaxisymmetric dense inner disk is forming. 
The inner region becomes unstable as indicated by the density 
plot of Figure 5, and the velocity and particle position plots of 
Figure 6. Figure 6 suggests the ring mode instability predicted 
by Goldreich & Lynden-Bell (1965) although their analysis 
assumes uniform rotation which is only a crude approximation 
to the actual rotation seen in the disk prior to ring formation. 
They also assume an external pressure, but this can be taken to 
be small and should not have a strong effect on the dynamics. 
The ring mode has a maximum instability for a wavelength 
Ac ^ 2nzd, where zd is the half-thickness of the disk, we find 
zd ~ 0.05 and estimate 2C ~ 0.3 which is in satisfactory agree- 
ment with our results. 

1.0 L*—»->■•«» »—:• i»r. I rj?.: •• V • 
-1.0 -0.5 0.0 0.5 1.0 

x position 

1.0 

-i.01 1 1 : 1  
-1.0 -0.5 0.0 0.5 1.0 

x position 

Fig. 4.—Evolution of isothermal spheres of initial aß = 0.047. The upper figures are at t = 1.55 (left) and 1.92 (right). The lower figure is an x-z projection for 
i = 1.55. 
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1.0 

0.5 
c o 
J*> 
œ 0.0 o a 
ID 

-0.5 

-1.0 
-1.0 -0.5 0.0 0.5 1.0 

x position 
Fig. 7.—Particle positions in the x-y plane at t = 3.44 for the smooth 

isothermal sphere. 

-1.0 -0.5 0.0 
x position 

Fig. 5.—Density plots for the isothermal spheres with cnß = 0.047 at 
t = 2.16 {upper) and <xß = 0.14 at t = 3.04 (lower). 

These results are in general agreement with MHN, but they 
find fragmentation into clumps occurs earlier than our calcu- 
lations predict. These differences are not due to the better 
resolution provided by the spatially variable resolution used 
by MHN, because we have adequate resolution to see the 
clump formation. We are currently exploring the possibility 

0.3 

0.2 

0. 1 

> 0.0 

-0. 1 

-0.2 

-0.3 
-0.3 -0.2 -0. 1 0.0 0.1 0.2 0.3 

X 

1.26E+00 

that the differences are due to the different artificial viscosities 
used. It is already clear from other calculations (Gingold & 
Monaghan 1983) that the spiral clumps found by MHN occur 
when the artificial viscosity is large, and MHN state that the 
nonaxisymmetric perturbation grows during the “m-bounce,” 
when the viscosity is at its largest. Also, the solid-body rotation 

3.0 

2.5 

2.0 
x c E 
H l.D 
O' 

1.0 

0.5 

0 12 3 4 
Time 

Fig. 6.—Velocity in the x-y plane for the ctß = 0.047 case at r = 2.66. Only 
particles near the origin are shown. 

Fig. 8.—Run of maximum density with time (in r) for the smooth isother- 
mal sphere (upper) and cooling sphere (lower). 
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1.0 

-1.0 L——-1 ‘ ; ■—-— 
-1.0 -0.5 0.0 0.5 1.0 

x position 
Fig. 9.—Particle positions in the x-y plane at t = 3.13 for the smooth 

cooling sphere. 

seen in their fragments may be another indication that the 
viscosity is large (see Lattanzio & Henriksen 1988). Certainly 
the fragmentation observed in this paper is qualitatively differ- 
ent. MHN find that a spiral forms and then fragments, whereas 
in our calculations the fragmentation occurs first. 

The sequence with a/? = 0.14 behaves similarly to those 
described by MHN. A disk forms, but it is much thicker than 
the previous disk. No ring forms. 

The sequence with aß = 0.21 continually expanded during 
the time we followed it. If we had included an external pressure 
we would have expected this cloud to reach an equilibrium, in 
agreement with the results of MHN. 

Taken together, the results for these sequences and for the 
Maclaurin disks show that our calculations give results in 
agreement with theory (Hachisu & Eriguchi 1985; Stabler 
1983; Larson 1985) and other numerical experiments (MHN). 
In the following sections we describe the evolution of a stan- 
dard cloud under different conditions. 

10.3. A Smooth Spherical Cloud 
Our standard cloud has M = 104 Mö, R = 12.6 pc, T = 70 

K, and ve = 2.2 km s-1 : thus initially a = 0.30, /? = 0.47, and 
a/? = 0.141. The rather high value of ve and therefore ß was 
chosen to ensure that, for temperatures appropriate to molecu- 

^ 3.92E-01 
1  1 ^  

-1  1 ^^  
-2 -1 0 1 2 

X 
Fig. 11.—Velocity field in the x-z plane through the rotation axis of the 

smooth cooling sphere at t = 1.24. 

lar clouds, the initial a/? ~ 0.15 and we should not expect the 
isothermal sequence to fragment. Since we expect a cooling 
sequence to be more unstable and to fragment, the differences 
are highlighted. The cloud was started in the smooth state 
(particles on a body-centered lattice) with 12,912 particles and 
two sequences were run : one isothermal and one with molecu- 

Fig. 10.—Temperature vs. vertical height (z) for the smooth cooling sphere 
at t = 1.24. 

Fig. 12.—Radial velocity {upper) and rotational frequency (lower) vs. radius 
for the smooth cooling sphere at t = 3.13. 
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lar cooling. From the results described in § 10.2 we expect the 
isothermal cloud to collapse to form a disk which does not 
fragment. The molecular cooling causes the cloud to rapidly 
pass through states which can only be reached, if at all, by 
isothermal clouds at much lower temperature. 

In Figure 7 we show the particle positions from the isother- 
mal sequence, projected onto the x-y plane. Although the effect 
of the initial lattice structure is clearly seen, there is no frag- 
mentation. At this stage the cloud has formed a differentially 
rotating disk with a half-thickness of 0.07. In Figure 8 we show 
the maximum density as a function of time. 

187 

The particle positions from the cooling sequence are shown 
projected onto the x-y plane in Figure 9 at i ^ 2.0iff. A ring 
has formed and, as before, we associated this with the ring- 
mode instability of Goldreich and Lynden-Bell. The time 
variation of the maximum density /?max is shown in Figure 8. 

The strong effect of cooling is clear from Figure 10 which 
shows the run of temperature with z along the rotation axis. 
Figure 11 shows the velocity field in an x - z slice through the 
center of the cloud. The shocks above and below the disk are 
evident. 

In Figure 12 we show the radial velocity and angular veloc- 

FRAGMENTATION OF COOLING MOLECULAR CLOUDS 

H= 0.069 2.2758E+00 H= 0.048 1= 3.3674E+00 

z: o 

C/0 o CL 
> 

X POSITION x POSITION 

H= 0.030 t= 4.0166E+00 H= 0.030 4.0166E+00 

FIG. 13.—Particle positions in the x-y plane for a perturbed isothermal sphere 
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ity of the disk which forms from the cooling cloud. A small 
fraction of the matter beyond r ^ 1.5 is expanding outward, 
and the bounce is clearly seen. The angular velocity Q is given 
very roughly, by Q ^ 1/r for r > 0.25. This gives an azimuthal 
velocity variation with r similar to that observed for spiral 
galaxies. 

The angular velocity z for the isothermal sequence shows 
more variation for a given r than is the case for the cooling 

sequence. The formula for Q for the isothermal sequence is 
Q ^ 0.5/r for r > 0.5, but for r < 0.5 there is too much scatter 
and Q cannot be considered, even approximately, as a function 
of r. 

10.4. A Perturbed Spherical Cloud 
In these sequences we take the same M, R, ve, and initial T 

as before but choose the particle positions at random (see § 8). 

H= 0.055 t= 1.3660E+00 H= 0.037 L= 2.0446E+00 

z: o 

0- 

-1 

-2 -1 0 1 
X POSITION 

H= 0.039 t= 2.2208E+00 H= 0.041 t= 2.3960E+00 

H= 0.037 • t= 2.5371E+00 H= 0.015 1= 2.7373E+00 

Fig. 14.—Same as Fig. 13, but for an isothermal equation of state evolutions 
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There is now an initial field of density perturbations with a 
standard deviation of 14%. The isothermal sequence forms a 
differentially rotating disk (see Fig. 13). The ratio of the final 
(calculated) maximum density (at t ^ 4iff) to the initial density 
/?0 is 40. This value is strongly dependent on the resolution 
because a small amount of matter at the center reaches the 
highest density, and the resolution is controlled by the bulk of 
the matter. Fragmentation does not occur. 

The cooling sequence behaves quite differently. The develop- 
ment of a set of dense filaments is shown in Figure 14. Similar 
configurations of filaments and knots are seen in cosmological 
calculations, though here they arise from a collapsing differen- 
tially rotating cloud rather than in an expanding universe. At 
the time the calculations were stopped the filaments had not 
fragmented, but they can be expected to do so. By the time of 
the conclusion of calculations the temperature is ~ 5 K, and 
the ratio of the initial critical mass Mc (see eq. [7.2]) to the 
critical Mc at this stage is 1600. The maximum density rises 
from its initial value of 3/(4tc) rather slowly at first. It increases 
rapidly at t ^ 2.5, and by t = 2.8 the maximum density is 
~2800 giving an increase by a factor of 104, due to the 
runaway collapse which has been initiated in the lumps. 

The configuration shows a remarkable similarity to the star- 
forming region W49A (Welch et al. 1987). The knots in the ring 
are gravitationally unstable, and we would expect star forma- 
tion to occur in these condensations. We identify these with the 
H ii regions in W49A. Note that we form a ring quite naturally, 
with no need for a central mass. This complex will be the 
subject of a future investigation. 

11. CONCLUSIONS 

The results of the calculations show that the inclusion of 
molecular cooling is essential for the understanding of the frag- 
mentation of rotating clouds. The cooling is so effective that 
the gas is typically cooled to 10 K in one-free-fall time. Pres- 
sure forces are then small by comparison with gravity, and the 
fluid behaves like an AT-body system which, however, retains 
the essential fluid property of non-penetration of colliding 
streams. 

The cooling clouds invariably collapse to differentially rotat- 
ing disks. If the initial state is very smooth a ring-mode insta- 
bility occurs. With random perturbations the instability is 
more complicated. The rotation law in the disk is similar to 
that for a galaxy. 

We thank Rod Whitaker of Los Alamos National Labor- 
atory for making available to us the routine he has used 
(Hunter et al. 1986) for flows with molecular cooling. Although 
we wrote our own routine for use on the Cray we are indebted 
to him for convincing us that it was easy to compute molecular 
cooling. 
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