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ABSTRACT 
We compare two different methods, classical and Bayesian, for determining confidence intervals involving 

Poisson-distributed data. We are specifically concerned with cases where the number of counts observed is 
small and is comparable to the mean number of background counts. We give our reasons for preferring 
the Bayesian over the classical method. Tables of confidence limits calculated by the Bayesian method are 
provided for quick reference. 
Subject headings: gamma rays: general — numerical methods — X-rays: general 

1. INTRODUCTION 

We compare two different methods for calculating con- 
fidence intervals for counting experiments in the presence of a 
nonzero background, when the total number of counts 
detected is low enough so that the appropriate probability 
distribution is Poissonian rather than Gaussian. The problem 
of obtaining correct upper limits and confidence regions for 
experiments with no background has been discussed recently 
by Gehrels (1986). Helene (1983, 1984) discusses the case of 
nonzero background. 

These authors use fundamentally different approaches. The 
method described by the Gehrels is called the classical method, 
and the confidence intervals calculated using this technique are 
often called Neyman-Pearson confidence intervals. Helene 
used a different approach based on Bayes’s theorem. Bayes’s 
theorem is used to compute the probability distribution func- 
tion describing the relative probability that each value of the 
known parameter could lead to the observed experimental 
outcome. This probability distribution is integrated to deter- 
mine the confidence intervals. The two methods are both sta- 
tistically valid, and they give similar or identical results in most 
instances. However, we find significant differences in some 
cases. 

The differences between the results obtained with these two 
methods arise from the underlying philosophies of these sta- 
tistical approaches. In classical statistics, one assumes that 
there is a “true,” but unknown, value which we attempt to 
measure (in our case, a source flux), and that our measure- 
ments represents a small sample of possible measurements 
taken from a “parent” probability distribution whose mean 
value is the true source flux we are attempting to determine 
(Bevington 1969). If we could make an infinite number of mea- 
surements, we could determine the parent distribution exactly 
and therefore obtain the desired value of our measured quan- 
tity. Given a finite set of measurements, we only obtain a 
sample of the parent population. This allows us to estimate the 
true flux with some uncertainty which can be expressed in 
terms of a confidence interval. Another observer making the 
same set of observations would obtain a different random 
sample of the parent population and would therefore make a 
different estimate of the true flux and confidence interval. The 
classical definition of confidence levels is the fraction of ob- 
servers who obtain confidence intervals containing the true 
flux at the given confidence level. 

The Bayesian approach, on the other hand, assumes that the 
observer can constrain the experimental hypotheses by using 
both the measured data and a priori knowledge about the 
physical system being measured. Rather than asking what frac- 
tion of observers detecting different numbers of counts from a 
given source would obtain confidence intervals that include the 
true rate, the Bayesian approach inverts this question to deter- 
mine the probabilities that sources of different flux could 
produce the observed rate. Thus, the Bayesian confidence 
interval is making a statement about the source population 
rather than one about the population of observations. 

It is not our intent to enter the philosophical debate between 
advocates of classical statistics and advocates of Bayesian sta- 
tistics. We will, however, argue that the Bayesian definition of 
confidence intervals reflects common astronomical usage 
better than the classical definition does, and that the Bayesian 
method provides a more intuitively satisfying result for the 
case of interest to our discussion than does the classical 
method. Our motivation is twofold: to bring this problem and 
its correct resolution to the attention of the astronomical com- 
munity and to provide more complete tables of Bayesian con- 
fidence limits than those given by Helene. In § 2 of this paper, 
we discuss both methods as they apply to the problem of inter- 
est (low numbers of counts in the presence of nonzero 
background) and give our reasons for preferring the Bayesian 
method used by Helene over the classical method used by 
Gehrels. Our presentation is not meant to be mathematically 
rigorous, but it will give the reader the essence of each tech- 
nique. We expand the results of Helene by calculating con- 
fidence limits over a more complete set of parameters. In § 3 we 
apply the Bayesian method to the problem of determining 
upper limits on the soft X-ray flux from SN 1987A. Section 4 
contains a brief summary and conclusions. 

2. CALCULATION OF UPPER AND LOWER LIMITS 

2.1. The Classical Method 
If the flux of photons from a source is Poisson-distributed, 

the probability of detecting N photons in the observation time 
i is 

where S is the mean number of counts from the source in time 
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t. Equation (1) is often called the distribution function or the 
conditional probability distribution function for the random 
variable N. 

In any real observation there is always some background 
contribution. Assuming the background is also Poisson- 
distributed, the probability of detecting N counts in this case is 

P(N) = X 
Ns,Nb Ac! Nbl 

e-
(S+B\S + B)N 

AM (2) 

Ns + Nb = N 

where B is the mean number of background counts observed in 
time t. Ns and Nb are the detected number of source counts and 
background counts, respectively. Although we cannot deter- 
mine Ns and Nb from the observation, their sum must be the 
observed number of counts, N. 

At this point, we assume that the mean number of back- 
ground counts, B, is known to a high degree of precision (e.g., B 
could be well sampled in an off source spatial region or off-line 
spectral region), and we neglect any uncertainty in the mea- 
surement of B.1 However, the particular number of back- 
ground counts, Nb, in a given observation cannot be 
determined, because they are the result of Poisson fluctuations. 
Given the observationally determined values of N and Æ, what 
can we then say about SI 

The technique used to constrain a model parameter for a 
given set of data is called the method of confidence intervals. In 
classical statistics a confidence interval is defined in the follow- 
ing manner. Two statistics, called Smax and Smin, form a con- 
fidence interval at confidence level CL (0 < CL < 1.0) if the 
probability that Smin < S < Smax is greater than or equal to CL, 
independent of S (Larson 1974). These two statistics, Smax and 
Smin, will depend on N and B. The confidence interval is 
defined in such a manner that if many observations are made 
and confidence intervals are assigned to each measurement, 
100 x CL% of the observations would generate lower limits 
less than the true value of the unknown parameter and upper 
limits greater than the true value of the parameter. Any given 
set of confidence limits may or may not actually contain the 
true value of the unknown parameter, since there is always a 
probability 1 — CL that the true value lies outside the interval. 

Applying the formal classical definition of confidence limits 
to the problem of determining limits for counting experiments 
with negligible background (B = 0), the single-sided lower limit 
on S is given by 

N-l 
1 (3) 

while the equivalent expression for an upper limit is 

N 
I = 1 - CL (4) 

(Cramér 1945; Gehrels 1986 and references therein). Here Smax 

and Smin are the single-sided upper and lower confidence limits, 
respectively, and CL is the confidence level of the limits. Equa- 
tions (3) and (4) cannot, in general, be solved analytically for 

1 This assumption is very important below when we extend the classical 
method to cases of nonzero background. If the background rate is uncertain, 
the classical method cannot be readily extended to obtain confidence limits 
satisfying the classical definition. 

Smax and 5min, given CL and N. Gehrels (1986) has solved them 
numerically for a wide range of CL and N, and provides analyt- 
ic approximations for several limiting cases. 

Figures la and lb graphically illustrate this calculation. The 
Poisson distribution is plotted for mean values of 2.202 and 
13.06. These are the single-sided lower and upper limits on the 
mean number of source counts at confidence level 0.975 for an 
experiment in which 6 counts were detected. The shaded area 
under each curve is equal to the confidence level, and corre- 
sponds to the sums of equations (3) and (4). 

Double-sided confidence limits are commonly defined (e.g., 
Gehrels) by replacing CL with 7(1 + CL) in equations (3) and 
(4) and solving for Smax and Smin to obtain limits with con- 
fidence level CL'. This choice of confidence limits is called the 
central confidence interval (Barnett 1973). Graphically, the 
upper and lower limits are chosen to make the unshaded areas 
of Figures la and lb equal to each other. Thus the 97.5% 
single-sided confidence limits given above for AT = 6 become 
95% double-sided confidence limits. Note that this is a purely 
arbitrary choice. For a given confidence level there is an infi- 
nite choice of possible confidence intervals, ranging from a 
single-sided upper limit (Smin = 0) at one extreme, through the 
central interval, to a single-sided lower limit (<Smax = 00) at the 
other extreme. Note also that the confidence level and upper 
and lower limits are not mutually independent : once any two 
are chosen, the third is uniquely defined. 

An alternative choice of confidence limits is that which mini- 
mizes the size of the confidence interval. We refer to this as the 
minimal interval. This places the tightest constraints on model 
parameters that can be derived from a given data set, and is the 
preferred choice in our opinion. We have performed numerical 
simulations which demonstrate that the central choice of limits 
does not minimize the confidence interval for experiments with 
small numbers of counts. For example, we have calculated 
95% confidence intervals for an observation detecting 3 counts 
with negligible background. Figure 2 shows the width of the 
confidence interval, Smax — Smin, as a function of CL17/CLl, 
where CL^ and CLl are the confidence levels of the single- 
sided upper and lower limits, corresponding to Smax and Smin, 
respectively. The central confidence interval corresponds to 
CL[7/CLl = 1.0. This choice of limits does not minimize the 
confidence interval for small (but nonzero) N. In the Gaussian 
limit (i.e., as N goes to infinity) the central confidence interval 
becomes the confidence interval of minimum size. 

Gehrels’s tabulation of classical confidence limits does not 
consider the case of B # 0. It is desirable to extend these results 
to apply to situations in which the background cannot be 
neglected. There are several ways in which the method 
described above could be used naively to generate “ confidence 
intervals ” in the presence of nonzero background that do not 
satisfy the classical definition of confidence intervals. We 
describe several methods that are commonly used and explain 
why they are incorrect. 

Perhaps the most common error is to derive an n a upper 
limit using the Poisson distribution for the mean number of 
background counts. For example, one might obtain a 3 <7 
upper limit by multiplying the standard deviation of the back- 
ground by 3. While this is a correct procedure for determining 
the level of significance of a source detection, it does not cor- 
rectly obtain upper or lower limits on the source flux. The n a 
uncertainty in the background only gives the probability that a 
statistical fluctuation in the background could have given the 
observed number of counts in the absence of a source. 
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Fig. la 

0 5 10 15 20 25 
N 

Fig. lb 
Fig. 1.—Conditional probability distribution function for Poisson-distributed data. The mean in (a) is 2.202, and the mean in (b) is 13.06. These correspond to the 

single-sided upper and lower limits calculated using the classical method with CL = 0.975 and N = 6. 

Another incorrect method is to subtract the mean number of 
background counts from the observed number of counts and 
use this as the number of observed “ source counts,” 
N' = N — B. This method, in contrast to the previously con- 
sidered case, completely ignores Poisson fluctuations in the 
number of background counts detected, confusing the preci- 
sion with which the mean number of background counts is 
known with the determination of the number of background 
counts contributing to an individual observation. The prob- 
lems with this technique are apparent in the case oî N < B, 
where it requires negative source counts, but are also evident if 
B is not an integer, which would require the detection of frac- 
tional photons in this interpretation. 

One way to extend Gehrels’s method to cases of nonzero 
background that satisfies the classical definition of confidence 
intervals is to calculate confidence limits for the total number 
of observed counts, N, in the manner described above at a 
confidence level of CL, and then subtract the mean number of 
background counts, B, from the calculated limits. Negative 
limits are dealt with by setting the corresponding limits to zero. 

That these upper and lower limits satisfy the classical defini- 
tion of confidence limits can easily be seen in the following 
example. Suppose we make an observation of N = NS + NB 
counts, where the mean background, B, is nonzero. From this 
observed number of counts, iV, we can calculate upper and 
lower limits (called U and L to distinguish them from Sm¡lx and 
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Fig. 2.—Confidence interval width Smax — 5min as a function of the ratio of the single-sided confidence levels, CLi;/CLl, for the case of Æ = 0 and N = 3 

Smin) in the manner described above. These limits are on S + Æ, 
rather than on S. For purposes of this argument, we will con- 
sider only the upper limit, U, but the argument can be 
extended to the lower limit as well. We know that the limits on 
the distribution of S + B satisfy the definition of confidence 
intervals given above, so that at least 100 x CL% of the time 
S + B will be less than or equal to U. Since we have assumed 
that B is known to relatively high precision from measure- 
ments in an off-source region, the inequality can only be satis- 
fied by placing a limit on S. Rearranging the inequality, it must 
be true that S < (7 — B for at least 100 x CL% of the observa- 
tions. Therefore, the statistic Smax satisfies the definition of an 
upper limit for S, where 

_{U-B9 U>B, 
max “ jo, U < B. ( ' 

From this we conclude that Gehrels’s tables can be used for 
cases of nonzero background by subtracting the mean number 
of background counts from the limits in his tables. This will 
give confidence limits that satisfy the classical definition of 
confidence intervals. We have several objections to this tech- 
nique however, which we discuss in § 2.3, where we compare 
the classical method and Bayesian method. 

2.2. The Bayesian Method 
An alternative approach to determining upper and lower 

limits on S is described by Helene (1983, 1984). This method 
makes use of Bayes’s theorem, which is given by 

fN,B(S)Kp(S)Ps(N) (6) 

(Eadie et al. 1971). Here/N B(S) is called the posterior probabil- 
ity function for the parameter 5 as a function of the observa- 
bles, N and B. The first term on the right-hand side of equation 
(6), p(S), is the prior distribution function (often called “ prior ”). 
This function incorporates the observer’s degree of belief or 
prior knowledge in the different possible values of S before an 
observation is made. The second term on the right-hand side of 
equation (6), PS(N)9 is the conditional distribution function, 

which is the Poisson distribution for S (or S' + B) in this case. 
For a full derivation and explanation of Bayes’s theorem see, 
for example, Larson (1974), Lindley (1980), or Loredo (1990). 

All prior or subjective knowledge of the physical conditions 
applying to the experiment is taken into account in the prior 
distribution function. A commonly cited argument against 
using Bayesian statistics is that this prior distribution function 
must be estimated in order to apply Bayes’s theorem. Indeed, 
the use of a prior distribution function is both a strength and a 
weakness of Bayesian statistics. On the one hand, inclusion of a 
priori information such as the nonnegativity of source flux 
allows one to constrain the problem based on the character- 
istics of the physical system being measured. Such information 
has proved to be of great utility in applications such as 
maximum-entropy image processing (Narayan & Nityananda 
1986). On the other hand, the choice of a prior function intro- 
duces an element of subjectivity into the data analysis that is 
disturbing to many scientists. 

In deriving the Bayesian expression for confidence intervals, 
we have chosen a prior function that minimizes the intro- 
duction of subjective information by imposing only the condi- 
tion of nonnegativity. As we have no knowledge of the source 
flux before an observation is made, we will assume an initial 
distribution function which is constant (i.e., uniform) for source 
fluxes ranging from zero to infinity and which is zero for nega- 
tive source fluxes. By making this choice we have assumed that 
all positive source fluxes are equally probable. This assump- 
tion is clearly unrealistic. For example, one would not expect 
the X-ray flux from a distant quasar to exceed the solar X-ray 
flux, and the prior probability distribution function should 
therefore become zero for large fluxes. At the end of this section 
we show that our results depend only weakly on this 
simplification. 

The posterior probability distribution function for S is found 
by inserting equation (2) in Bayes’s theorem with a constant 
p(S), which gives 

e^s+B\S + Bf 
N\ (7) 
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for S >0. The normalization constant, C, is given by2 

C = 
f f- e^s+B\S + Bf J I"

1 / ^ 

Li —- 
(8) 

The lower limit of integration in equation (8) is zero because we 
have chosen a prior that excludes negative values of the source 
flux. Helene (1983) considers the modifications required if B is 
uncertain. 

Although equations (2) and (7) appear to be similar, they 
have very different interpretations. Equation (2) is the familiar 
Poisson probability distribution function that gives the abso- 
lute probabilities of obtaining different N for a given S and B. 
In equation (7) the roles of N and S are reversed, and we now 
regard this function as the continuous probability distribution 
for the source flux, S, given N and B. The interpretation in the 
Bayesian approach is that fNf^S) gives the relative probabilities 
that the observed number of counts could have been produced 
by sources of different flux S. This distinction between equa- 
tions (2) and (7) is the crucial difference between the Bayesian 
and classical methods. 

Confidence limits for S in the Bayesian case are obtained by 
simply integrating the probability distribution function,/N B, 
over S and solving numerically for Smin and Smax such that 

Sm\B(S)dS = CL . (9) 
JSmin 

The interpretation of the confidence interval defined by Smax 
and Smin is that the probability of the source flux lying between 
these limits is CL. The Bayesian confidence interval places 
limits on the possible source fluxes that could produce the 
observation, and therefore makes a statement about the source 
population rather than one about the population of observa- 

2 The functional form offNt¡^S) is similar to the Poisson distribution func- 
tion P{N). The normalization constant, C, is required in eq. (7) because, while 
the sum of P(N) over all N equals one, the integral of P(N) over all S for a given 
N does not equal one if 5 # 0. 

tions. We believe that this Bayesian definition most closely 
agrees with the intuitive concept of confidence intervals held by 
most astronomers, who wish to know the probability that their 
model parameters lie within their confidence interval rather 
than the probability that their data generated confidence inter- 
vals that contain these parameters. This distinction is subtle, 
but it has important implications for some special cases, as we 
show in § 2.3. 

From equations (7) and (9), one can see that nonzero back- 
ground rates are incorporated naturally into the Bayesian for- 
mulation of confidence intervals. This is in contrast to the 
classical case, where a correct method for including a nonzero 
background is not obvious. The imposition of nonnegative 
source flux in the Bayesian case occurs through the integration 
limits in equation (8) defining the normalization constant and 
through the use of a nonnegative lower limit of integration in 
equation (9). 

As we discussed above, the choice of confidence limits 
satisfying equation (9) is somewhat arbitrary. We choose to 
select Smin and Smax such that the size of the confidence interval 
Smax — Smin is minimized for a given confidence level. Using the 
definition of the confidence interval, this implies that 

dSmin _ i 

3S ~ 
(10) 

By differentiating equation (9) with respect to Smax and treating 
CL as a constant, we obtain 

dSm¡n /jy,g(Smax) fii\ 
^Smax ./¡V,£(Smin) 

Combining equations (10) and (11), the condition for the 
minimal confidence interval is /N,B(Smax) =fN,BÍsmini Since 
/n,b(S) has a single local maximum at S = B + N, there is only 
one way to choose Smax and Smin so that equations (9) and (10) 
are satisfied. Upper and lower limits that satisfy equations (9) 
and (10) can be easily found if equation (9) is integrated 

Fig. 3.—Bayesian posterior distribution function/^(S) as a function of S for N = 6 and 5 = 0. The miminal 95% confidence interval for S is indicated by the 
shaded region. 
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numerically by starting at the most probable value and inte- 
grating in both directions, always choosing to sum the side 
with the higher probability, until the desired confidence level 
is reached. This solution is illustrated in Figure 3, which shows 
the probability distribution function,/(S), for AT = 6, £ = 0, 
the same case discussed in the example of the previous section. 
The shaded area is equal to a confidence level of 95%. Note 
that the area under the curve from S = 0 to Smin is less than 
that from Smax to infinity. This is true in general for Bayesian 
minimal confidence intervals with Poisson-distributed data. 

Helene has solved equation (9) numerically for a range of B 
and N. However, many astrophysically important cases have 

been left out of his tables, including cases with N < B (this case 
occurs when a statistical fluctuation in the background results 
in the number of counts observed being less than the mean 
number of background counts). We have tabulated values for 
Smin and Smax for a wide range of N and B for CLs of 0.90, 0.95, 
and 0.99 in Tables 1-3. 

These tables were computed for a prior that is zero for nega- 
tive source values and one otherwise. We have investigated the 
dependence of our results on the form of the prior distribution 
function, and have found that the confidence limits are insensi- 
tive to its exact functional form. Figure 4 shows upper limits 
calculated using Bayes’s theorem for three different priors, 

TABLE 1 
Bayesian Confidence Intervals (CL = 0.90)a 

Number of Observed Counts, N 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

0.0. 

0.1. 

0.5. 

1.0. 

1.5. 

2.0. 

2.5. 

3.0. 

3.5. 

4.0. 

4.5. 

5.0. 

5.5. 

6.0. 

6.5. 

7.0. 

7.5.. 

8.0. . 

8.5., 

9.0. . 

9.5. 

10.0.. 

0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 
0.00 
2.30 

0.08 
3.93 
0.00 
3.80 
0.00 
3.51 
0.00 
3.27 
0.00 
3.11 
0.00 
2.99 
0.00 
2.91 
0.00 
2.84 
0.00 
2.78 
0.00 
2.74 
0.00 
2.70 
0.00 
2.67 
0.00 
2.64 
0.00 
2.62 
0.00 
2.60 
0.00 
2.58 
0.00 
2.57 
0.00 
2.55 
0.00 
2.54 
0.00 
2.53 
0.00 
2.52 
0.00 
2.51 

0.44 
5.48 
0.34 
5.38 
0.00 
4.84 
0.00 
4.44 
0.00 
4.13 
0.00 
3.88 
0.00 
3.68 
0.00 
3.52 
0.00 
3.39 
0.00 
3.29 
0.00 
3.20 
0.00 
3.13 
0.00 
3.06 
0.00 
3.01 
0.00 
2.96 
0.00 
2.92 
0.00 
2.88 
0.00 
2.85 
0.00 
2.82 
0.00 
2.79 
0.00 
2.77 
0.00 
2.74 

0.94 
6.95 
0.84 
6.85 
0.44 
6.42 
0.00 
5.71 
0.00 
5.29 
0.00 
4.93 
0.00 
4.62 
0.00 
4.36 
0.00 
4.15 
0.00 
3.97 
0.00 
3.81 
0.00 
3.68 
0.00 
3.57 
0.00 
3.48 
0.00 
3.39 
0.00 
3.32 
0.00 
3.25 
0.00 
3.20 
0.00 
3.14 
0.00 
3.10 
0.00 
3.06 
0.00 
3.02 

1.51 
8.36 
1.41 
8.26 
1.01 
7.85 
0.52 
7.30 
0.09 
6.61 
0.00 
6.09 
0.00 
5.69 
0.00 
5.34 
0.00 
5.04 
0.00 
4.78 
0.00 
4.55 
0.00 
4.36 
0.00 
4.19 
0.00 
4.04 
0.00 
3.91 
0.00 
3.80 
0.00 
3.70 
0.00 
3.61 
0.00 
3.53 
0.00 
3.46 
0.00 
3.40 
0.00 
3.34 

2.13 
9.72 
2.03 
9.62 
1.63 
9.22 
1.13 
8.72 
0.65 
8.16 
0.22 
7.49 
0.00 
6.86 
0.00 
6.44 
0.00 
6.06 
0.00 
5.72 
0.00 
5.42 
0.00 
5.15 
0.00 
4.92 
0.00 
4.71 
0.00 
4.53 
0.00 
4.37 
0.00 
4.22 
0.00 
4.10 
0.00 
3.99 
0.00 
3.88 
0.00 
3.79 
0.00 
3.71 

2.79 
11.06 
2.68 

10.96 
2.29 

10.56 
1.78 

10.06 
1.29 
9.55 
0.81 
8.99 
0.37 
8.34 
0.00 
7.60 
0.00 
7.16 
0.00 
6.76 
0.00 
6.39 
0.00 
6.06 
0.00 
5.76 
0.00 
5.49 
0.00 
5.25 
0.00 
5.03 
0.00 
4.84 
0.00 
4.67 
0.00 
4.52 
0.00 
4.38 
0.00 
4.26 
0.00 
4.14 

3.47 
12.37 
3.37 

12.27 
2.97 

11.87 
2.47 

11.37 
1.97 

10.87 
1.48 

10.35 
1.00 
9.80 
0.55 
9.18 
0.15 
8.46 
0.00 
7.88 
0.00 
7.46 
0.00 
7.07 
0.00 
6.70 
0.00 
6.37 
0.00 
6.07 
0.00 
5.80 
0.00 
5.56 
0.00 
5.34 
0.00 
5.14 
0.00 
4.96 
0.00 
4.79 
0.00 
4.65 

4.17 
13.66 
4.07 

13.56 
3.67 

13.16 
3.17 

12.66 
2.67 

12.16 
2.17 

11.66 
1.68 

11.14 
1.20 

10.60 
0.75 
9.99 
0.33 
9.31 
0.00 
8.58 
0.00 
8.15 
0.00 
7.74 
0.00 
7.35 
0.00 
6.99 
0.00 
6.67 
0.00 
6.37 
0.00 
6.09 
0.00 
5.84 
0.00 
5.62 
0.00 
5.41 
0.00 
5.22 

4.89 
14.94 
4.79 

14.84 
4.39 

14.44 
3.89 

13.94 
3.39 

13.44 
2.89 

12.94 
2.40 

12.43 
1.90 

11.92 
1.42 

11.38 
0.96 

10.79 
0.54 

10.14 
0.15 
9.42 
0.00 
8.83 
0.00 
8.40 
0.00 
8.00 
0.00 
7.62 
0.00 
7.27 
0.00 
6.95 
0.00 
6.64 
0.00 
6.37 
0.00 
6.12 
0.00 
5.89 

5.63 
16.20 
5.53 

16.10 
5.13 

15.70 
4.63 

15.20 
4.13 

14.70 
3.63 

14.20 
3.13 

13.70 
2.63 

13.19 
2.14 

12.68 
1.66 

12.15 
1.19 

11.57 
0.75 

10.95 
0.35 

10.26 
0.00 
9.51 
0.00 
9.07 
0.00 
8.65 
0.00 
8.25 
0.00 
7.88 
0.00 
7.53 
0.00 
7.21 
0.00 
6.91 
0.00 
6.63 

‘ The top number in each pair is the lower limit, and the bottom number is the upper limit. 
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TABLE 2 
Bayesian Confidence Intervals (CL = 0.95)a 

Number of Observed Counts, N 

0.00 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
0.0. 

0.1. 

0.5. 

1.0. 

1.5. 

2.0.. 

2.5.. 

3.0. . 

3.5.. 

4.0. . 

4.5.. 

5.0. . 

5.5.. 

6.0. . 

6.5.. 

7.0. . 

7.5.. 

8.0. . 

8.5.. 

9.0. . 

9.5.. 

10.0.. 

0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 
0.00 
3.00 

0.04 
4.77 
0.00 
4.65 
0.00 
4.36 
0.00 
4.11 
0.00 
3.94 
0.00 
3.82 
0.00 
3.72 
0.00 
3.64 
0.00 
3.58 
0.00 
3.53 
0.00 
3.49 
0.00 
3.45 
0.00 
3.42 
0.00 
3.39 
0.00 
3.37 
0.00 
3.35 
0.00 
3.33 
0.00 
3.31 
0.00 
3.29 
0.00 
3.28 
0.00 
3.27 
0.00 
3.26 

0.30 
6.40 
0.20 
6.30 
0.00 
5.82 
0.00 
5.41 
0.00 
5.08 
0.00 
4.82 
0.00 
4.61 
0.00 
4.44 
0.00 
4.30 
0.00 
4.18 
0.00 
4.09 
0.00 
4.00 
0.00 
3.93 
0.00 
3.86 
0.00 
3.81 
0.00 
3.76 
0.00 
3.71 
0.00 
3.67 
0.00 
3.64 
0.00 
3.61 
0.00 
3.58 
0.00 
3.55 

0.71 
7.95 
0.61 
7.85 
0.22 
7.40 
0.00 
6.78 
0.00 
6.36 
0.00 
5.98 
0.00 
5.66 
0.00 
5.39 
0.00 
5.16 
0.00 
4.97 
0.00 
4.80 
0.00 
4.66 
0.00 
4.53 
0.00 
4.42 
0.00 
4.33 
0.00 
4.24 
0.00 
4.17 
0.00 
4.10 
0.00 
4.04 
0.00 
3.99 
0.00 
3.94 
0.00 
3.89 

1.21 
9.43 
1.11 
9.33 
0.71 
8.93 
0.23 
8.33 
0.00 
7.68 
0.00 
7.24 
0.00 
6.84 
0.00 
6.48 
0.00 
6.16 
0.00 
5.89 
0.00 
5.64 
0.00 
5.43 
0.00 
5.25 
0.00 
5.09 
0.00 
4.94 
0.00 
4.81 
0.00 
4.70 
0.00 
4.60 
0.00 
4.51 
0.00 
4.43 
0.00 
4.35 
0.00 
4.28 

1.76 
10.86 

1.66 
10.76 

1.26 
10.36 
0.76 
9.85 
0.30 
9.23 
0.00 
8.54 
0.00 
8.09 
0.00 
7.66 
0.00 
7.28 
0.00 
6.92 
0.00 
6.61 
0.00 
6.33 
0.00 
6.08 
0.00 
5.85 
0.00 
5.66 
0.00 
5.48 
0.00 
5.32 
0.00 
5.18 
0.00 
5.05 
0.00 
4.93 
0.00 
4.83 
0.00 
4.73 

2.35 
12.26 
2.25 

12.16 
1.85 

11.76 
1.35 

11.26 
0.86 

10.73 
0.40 

10.12 
0.00 
9.37 
0.00 
8.90 
0.00 
8.46 
0.00 
8.05 
0.00 
7.67 
0.00 
7.33 
0.00 
7.01 
0.00 
6.73 
0.00 
6.47 
0.00 
6.24 
0.00 
6.03 
0.00 
5.84 
0.00 
5.67 
0.00 
5.52 
0.00 
5.38 
0.00 
5.25 

2.97 
13.63 
2.87 

13.53 
2.47 

13.13 
1.97 

12.63 
1.48 

12.12 
0.99 

11.60 
0.52 

10.99 
0.11 

10.27 
0.00 
9.70 
0.00 
9.25 
0.00 
8.82 
0.00 
8.42 
0.00 
8.05 
0.00 
7.70 
0.00 
7.39 
0.00 
7.10 
0.00 
6.84 
0.00 
6.60 
0.00 
6.38 
0.00 
6.18 
0.00 
6.00 
0.00 
5.84 

3.62 
14.98 
3.52 

14.88 
3.12 

14.48 
2.62 

13.98 
2.12 

13.48 
1.63 

12.97 
1.14 

12.44 
0.67 

11.85 
0.25 

11.16 
0.00 

10.48 
0.00 

10.02 
0.00 
9.57 
0.00 
9.15 
0.00 
8.76 
0.00 
8.39 
0.00 
8.05 
0.00 
7.74 
0.00 
7.45 
0.00 
7.18 
0.00 
6.93 
0.00 
6.71 
0.00 
6.50 

4.29 
16.30 
4.19 

16.20 
3.79 

15.80 
3.29 

15.30 
2.79 

14.80 
2.29 

14.30 
1.80 

13.79 
1.31 

13.26 
0.84 

12.69 
0.41 

12.03 
0.02 

11.26 
0.00 

10.77 
0.00 

10.32 
0.00 
9.89 
0.00 
9.47 
0.00 
9.08 
0.00 
8.72 
0.00 
8.38 
0.00 
8.06 
0.00 
7.77 
0.00 
7.50 
0.00 
7.25 

4.98 
17.61 
4.88 

17.51 
4.48 

17.11 
3.98 

16.61 
3.48 

16.11 
2.98 

15.61 
2.48 

15.11 
1.98 

14.60 
1.50 

14.07 
1.02 

13.51 
0.58 

12.88 
0.18 

12.15 
0.00 

11.52 
0.00 

11.05 
0.00 

10.61 
0.00 

10.18 
0.00 
9.78 
0.00 
9.39 
0.00 
9.03 
0.00 
8.69 
0.00 
8.38 
0.00 
8.08 

1 The top number in each pair is the lower limit, and the bottom number is the upper limit. 

plotted as a function of the total number of counts observed. 
Posterior probability functions corresponding to equation (7) 
were derived for these cases from Bayes’s theorem, and the 
resulting upper limits computed for the case B = 3.0 at the 
95% confidence level. The curve labeled a is the solution to 
equation (9) for a constant prior, and corresponds to our Table 
2 for B = 3.0. For comparison, we have considered two other 
priors that do not extend to infinity. The first of these is an 
exponential prior of the form exp (-25) with 2 = 0.05. The 
upper limit calculated with this prior are shown as curve b in 
Figure 4. The second of these is a Lorentzian of the form 
(22 + 52) 1 with 2 = 20. Upper limits for this prior are shown 
as curve c in Figure 4. These curves differ only slightly from 

curve a, and are in both cases lower than the upper limits 
derived from curve a, so that the upper limits in our tables are 
not violated by these priors. 

We conclude that the Bayesian technique produces limits 
that are insensitive to the exact form of the prior as long as it 
does not exclude the region of parameter space that is of inter- 
est. The requirement of an assumed prior is therefore not a 
practical liability for this case. 

2.3. Comparison of the Two Methods 
We have described the classical and Bayesian methods and 

have outlined strengths and weakness for both. We now 
discuss our reasons for preferring the Bayesian approach in 
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TABLE 3 
Bayesian Confidence Intervals (CL = 0.99)a 

Number of Observed Counts, N 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

0.0.. 

0.1.. 

0.5.. 

1.0.. 

1.5.. 

2.0. . 

2.5.. 

3.0. 

3.5. 

4.0. 

4.5. 

5.0. 

5.5. 

6.0. 

6.5. 

7.0. 

7.5. 

8.0. 

8.5. 

9.0. 

9.5. 

10.0. 

0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 
0.00 
4.60 

0.01 
6.64 
0.00 
6.54 
0.00 
6.24 
0.00 
5.99 
0.00 
5.80 
0.00 
5.66 
0.00 
5.55 
0.00 
5.46 
0.00 
5.39 
0.00 
5.33 
0.00 
5.28 
0.00 
5.23 
0.00 
5.19 
0.00 
5.15 
0.00 
5.12 
0.00 
5.10 
0.00 
5.07 
0.00 
5.05 
0.00 
5.03 
0.00 
5.01 
0.00 
4.99 
0.00 
4.98 

0.13 
8.45 
0.03 
8.33 
0.00 
7.92 
0.00 
7.51 
0.00 
7.17 
0.00 
6.89 
0.00 
6.66 
0.00 
6.48 
0.00 
6.32 
0.00 
6.18 
0.00 
6.06 
0.00 
5.96 
0.00 
5.87 
0.00 
5.80 
0.00 
5.72 
0.00 
5.66 
0.00 
5.61 
0.00 
5.56 
0.00 
5.51 
0.00 
5.47 
0.00 
5.43 
0.00 
5.40 

0.39 
10.15 
0.29 

10.05 
0.00 
9.55 
0.00 
9.07 
0.00 
8.64 
0.00 
8.25 
0.00 
7.92 
0.00 
7.63 
0.00 
7.38 
0.00 
7.16 
0.00 
6.97 
0.00 
6.81 
0.00 
6.66 
0.00 
6.53 
0.00 
6.42 
0.00 
6.31 
0.00 
6.22 
0.00 
6.14 
0.00 
6.06 
0.00 
5.99 
0.00 
5.93 
0.00 
5.87 

0.75 
11.76 
0.65 

11.66 
0.25 

11.24 
0.00 

10.61 
0.00 

10.13 
0.00 
9.68 
0.00 
9.27 
0.00 
8.90 
0.00 
8.56 
0.00 
8.27 
0.00 
8.00 
0.00 
7.77 
0.00 
7.56 
0.00 
7.37 
0.00 
7.20 
0.00 
7.05 
0.00 
6.92 
0.00 
6.80 
0.00 
6.68 
0.00 
6.58 
0.00 
6.49 
0.00 
6.41 

1.17 
13.32 

1.07 
13.22 
0.67 

12.82 
0.19 

12.24 
0.00 

11.61 
0.00 

11.13 
0.00 

10.67 
0.00 

10.24 
0.00 
9.84 
0.00 
9.47 
0.00 
9.14 
0.00 
8.83 
0.00 
8.56 
0.00 
8.32 
0.00 
8.09 
0.00 
7.89 
0.00 
7.71 
0.00 
7.54 
0.00 
7.39 
0.00 
7.25 
0.00 
7.12 
0.00 
7.00 

1.65 
14.84 

1.55 
14.74 

1.15 
14.34 
0.65 

13.82 
0.18 

13.20 
0.00 

12.57 
0.00 

12.09 
0.00 

11.62 
0.00 

11.17 
0.00 

10.75 
0.00 

10.36 
0.00 

10.00 
0.00 
9.66 
0.00 
9.35 
0.00 
9.07 
0.00 
8.82 
0.00 
8.58 
0.00 
8.37 
0.00 
8.17 
0.00 
7.99 
0.00 
7.82 
0.00 
7.67 

2.16 
16.32 
2.06 

16.22 
1.66 

15.82 
1.16 

15.32 
0.67 

14.79 
0.20 

14.15 
0.00 

13.50 
0.00 

13.02 
0.00 

12.54 
0.00 

12.08 
0.00 

11.65 
0.00 

11.23 
0.00 

10.85 
0.00 

10.48 
0.00 

10.15 
0.00 
9.84 
0.00 
9.55 
0.00 
9.29 
0.00 
9.04 
0.00 
8.82 
0.00 
8.61 
0.00 
8.24 

2.70 
17.77 
2.60 

17.67 
2.20 

17.27 
1.70 

16.77 
1.21 

16.26 
0.71 

15.73 
0.25 

15.09 
0.00 

14.40 
0.00 

13.91 
0.00 

13.44 
0.00 

12.97 
0.00 

12.52 
0.00 

12.09 
0.00 

11.68 
0.00 

11.30 
0.00 

10.94 
0.00 

10.60 
0.00 

10.29 
0.00 
9.99 
0.00 
9.73 
0.00 
9.48 
0.00 
9.24 

3.27 
19.19 
3.17 

19.09 
2.77 

18.69 
2.27 

18.19 
1.77 

17.69 
1.28 

17.18 
0.79 

16.64 
0.33 

16.01 
0.00 

15.28 
0.00 

14.79 
0.00 

14.31 
0.00 

13.84 
0.00 

13.38 
0.00 

12.93 
0.00 

12.51 
0.00 

12.11 
0.00 

11.73 
0.00 

11.37 
0.00 

11.03 
0.00 

10.71 
0.00 

10.41 
0.00 

10.14 

3.87 
20.59 

3.77 
20.49 

3.37 
20.09 

2.87 
19.59 
2.37 

19.09 
1.87 

18.59 
1.37 

18.08 
0.88 

17.54 
0.42 

16.92 
0.01 

16.16 
0.00 

15.65 
0.00 

15.16 
0.00 

14.69 
0.00 

14.22 
0.00 

13.77 
0.00 

13.33 
0.00 

12.91 
0.00 

12.51 
0.00 

12.13 
0.00 

11.77 
0.00 

11.44 
0.00 

11.12 

‘ The top number in each pair is the lower limit, and the bottom number is the upper limit. 

certain cases. We will give two examples and compare the 
limits calculated by each method in both cases. 

We first consider the 90% confidence upper limits obtained 
by each method for the case B = 0.5. In Figure 5a we have 
plotted the upper limits calculated using the Bayesian method 
assuming a constant prior (curve a) as a function of the 
observed number of counts, N. For comparison, upper limits 
calculated using the classical method with the minimal con- 
fidence interval are plotted as curve b. Note that, for N >2, the 
two methods give nearly identical results, but that the results 
diverge for iV = 1 or iV = 0. If the background rate is small, 
there is little difference between the two methods. 

We have argued before that the smallest confidence interval 
is to be preferred, since it sets the tightest constraints on model 
parameters. From Figure 5a, it would appear that the classical 
limit is preferable to the Bayesian limits for small N by this 
reasoning. To see why we come to the opposite conclusion, 
consider the 90% confidence intervals for the case of B = 4.0 
(Fig. 5b). The Bayesian upper limits are plotted in curve a. The 
upper limits in curve b are the minimal classical upper limits. 
(Again, note that curves a and b are identical for large N but 
diverge for small N.) For comparison, the upper limits com- 
puted using the method described in § 2.1 from the tables in 
Gehrels (1986) (central limits) are plotted as curve c. (The dif- 
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Fig. 4.—Upper limits computed using the Bayesian technique for different priors. See text for a description of the different curves. 

ference between curves b and c reflects the difference between 
minimal and central confidence limits). Note that for the clas- 
sical method (curves b and c) the upper limit to the mean 
source rate is zero if AT = 0 or AT = 1, whereas the Bayesian 
method always has a nonzero upper limit. The classical 
method does not continue smoothly into the regime where the 
number of counts observed is well below the mean back- 
ground. The probability of detecting 0 and 1 counts in a given 
observation is not unreasonably small for this case (about 0.09 
for B = 4.0 and S = 0), and merely requires a downward fluc- 
tuation in both the source and the background counts for that 
time interval. In the classical case, this fluctuation has the effect 
of producing a source upper limit of exactly zero, an intuitively 
unreasonable result. However, because the probability of 
obtaining this observation is less than 10%, this vanishingly 
small confidence interval satisfies the classical definition of 
confidence intervals. We argue that a downward fluctuation in 
the number of background counts detected should not have the 
effect of decreasing the uncertainty with which the source flux is 
determined, regardless of what the true source flux is. 

This property of the classical upper limits has practical 
repercussions when one wishes to use these data in conjunction 
with data from other wavelength bands to constrain model 
parameters. Because this data point is assigned zero uncer- 
tainty, the fitting process will be driven by this point and will 
heavily weight the model toward a data point that should be 
only an upper limit. In our opinion, this is a serious weakness 
of the classical method. 

A related objection to the results obtained with the classical 
method is that the limits calculated for the case N = 0 depend 
on B. The case AT = 0 is the only case where we know exactly 
how many background counts were observed. It should not 
make any difference whether the mean background rate is 
B = 1 or B = 20: the limits on the source flux should be the 
same, since we know exactly how many source counts and 
background counts were observed. The limits calculated using 
the Bayesian method have this property. 

Finally, if there is any uncertainty in the measurement of B, 
there is no simple way in which to extend the classical method 

described by Gehrels. In some cases the background uncer- 
tainty is not negligible. The Bayesian method can easily be 
extended to cases where B is uncertain (Helene 1983). 

These examples illustrate our reasons for preferring Bayes- 
ian confidence intervals over classical confidence intervals for 
this problem. The classical confidence intervals are poorly 
behaved in this regime, in that they produce counterintuitive 
results. By contrast, the Bayesian confidence intervals can be 
naturally formulated to include the case of nonnegligible back- 
ground and merge gracefully into physically reasonable limits 
when the number of counts detected in an observation is less 
than the number expected from the mean background rate. 
The Bayesian method can also be extended to cases where 
there is some uncertainty in the measurement of B; the classical 
method cannot. We have shown that the main argument 
against the general use of Bayesian statistics, the choice of the 
prior, is only of minor practical importance, since the limits 
calculated are insensitive to its exact functional form. We 
therefore recommend the use of Bayesian confidence intervals 
for observations with very small numbers of counts in the 
presence of background. 

3. ASTROPHYSICAL APPLICATION 

In order to illustrate the practical use of this method, we will 
walk through an actual application, contrasting the classical 
and Bayesian results, and mentioning possible erroneous con- 
clusions that might be drawn from using incorrect methods. 

Burrows et al. (1989) report the results of two observations 
of SN 1987A using an X-ray CCD camera. The data from this 
experiment consist of an image of the sky in X-rays, where the 
location of each photon detected corresponds to a position of 
origin on the sky. The observed images were not completely 
dark, but they contained no sign of a concentration of X-rays 
which could be attributed to SN 1987A. (The X-ray sky is not 
completely dark but glows with the so called “diffuse X-ray 
background”; some apparent photons were no doubt also the 
result of charged particles mimicking X-rays striking the detec- 
tor. Neither of these sources will be concentrated on the 
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Fig. 5a 

Fig. 5b 
Fig. 5.—(a) Upper limits computed using the Bayesian technique (curve a) and the classical technique (curve b) for B = 0.5 and CL = 0.90. (b) Upper limits 

computed using the Bayesian technique (curve a) and the two classical techniques described in the text (curves b and c) for B = 4.0 and CL = 0.90. 

position of the image of SN 1987A, so they represent the back- 
ground, B, for this experiment.) 

From other observations of SN 1987A there exist measure- 
ments of the flux at other energies (wavelengths). The task at 
hand, then, is to apply these data—the lack of detection of soft 
X-rays—to the other positive detections to produce a joint 
spectral model which is mutually consistent. The general pro- 
cedure is to establish a value and uncertainty at each energy 
which has been measured, and fit to produce the model which 
most closely reproduces those values within the uncertainty 
allowed by the measurement. 

Techniques for fitting models are outside our scope; this 
paper focuses on how one establishes the uncertainties when 
there are few counts and a nonzero background. 

Returning to the X-ray CCD example, in the first observa- 
tion one apparent photon was detected in the position 
expected for SN 1987A. The presence of additional photons 
scattered over the image prevents us from concluding that the 
single event truly came from the SN 1987A, leaving open the 
possibility that it was a background event. 

We can, with relatively good precision, determine the mean 
background rate by combining the rate seen in a large number 
of resolution elements not including SN 1987A and averaging 
the results. In this case we obtain B = 0.73 ± 0.19 counts. 

An erroneous chain of reasoning at this point is to say, “ We 
have determined the background in our device. The 3 a upper 
limit to the background is 1.3 counts, which is more than we 
detected, so we conclude that we would have detected any 
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source brighter than this. Therefore, the 3 a upper limit to the 
source flux is 1.3.” This argument fails to consider that the 
uncertainty in the mean background is much less than the 
fluctuations in the background, and what is relevant is the 
particular fluctuation which occurred in the SN 1987A 
resolution element, not the average over the image. 

An argument which considers the background fluctuations, 
but also leads to an incorrect conclusion, might be : “ The mean 
background is 0.73. The fluctuations we see follow a Poisson 
distribution. The probability that a result greater than 2.0 
would occur is less than 5%, so we can conclude that we would 
have recognized a source as being real and not a background 
fluctuation at the 95% confidence level for an upper limit of 
2.0.” The error here is a confusion of the criterion for judging 
the existence of a source with the measurement of the intensity 
of the source. So, while the argument provides a valid measure 
of the source detection threshold for the experiment, it is incor- 
rect for the source intensity because it fails to consider the 
fluctuations in the number of counts produced by the source. 

The correct value for the upper limit, which considers both 
source and background fluctuations, can be found in Table 2 
(for the 95% confidence level), by interpolating the AT = 1 
column to a background value of f? = 0.73, for a result of 4.2. 
This value, based on the Bayesian approach, ignores the small 
uncertainty in the mean background (B). Helene (1983) pro- 
vides the algorithms for incorporating this uncertainty if it is 
necessary for a particular case. 

A better case for contrasting the classical and Bayesian 
methods results from the second CCD observation. Here no 
counts were detected in the SN 1987A region, with a mean 
background of 1.03 ± 0.19. Table 2 again provides the Bayes- 
ian 95% upper limit, which is 3.0. The classical result for this 
case is 1.96. The classical result is significantly lower than the 
Bayesian. The reason for this is that the classical approach is 
only concerned with ensuring that 95% of all observers in 
potential future measurements will obtain confidence intervals 
that include the true value. Because the observed Af = 0 is less 
than B, the classicist can be confident that few later observa- 
tions will have the low value measured in this case. Thus he 
need not force the value of S as high as the Bayesian must to 
keep the “ failure rate ” of his prediction down. In the limit of N 
substantially less than B, this leads to a classical upper limit of 
exactly zero. 

As a final example, suppose 5 counts are detected in an 
observation with a mean background of 1.03 ±0.19. It is not 
known how many of these 5 counts are background counts 
and how many are source counts. In the absence of a source, a 
5 a fluctuation in the background counts would be required to 
produce the 5 counts detected (from a Poisson distribution 
with a mean of 1.03). On the other hand, the 95% Bayesian 
confidence interval for the flux extends from 0.76 to 9.85 
counts, covering over an order of magnitude in the source flux. 
Thus this observation would constitute a source detection with 
a high degree of confidence, but puts only weak constraints on 
the source flux. 

There are occasions when the classical limits are appropri- 
ate. For example, if a large number of observations were made 
of SN 1987A the self-consistency of the measurements could be 
checked by comparing the classical limits. However, in the 
situation we have described, fitting the spectrum of the SN 

1987A target, it is the uncertainty in the source flux which is 
critical, not the uncertainty in the observation. If the uncer- 
tainties are too small, and certainly if they are zero, the results 
of the later fits will be unreasonably dominated by this null 
result. 

4. CONCLUSION 

We have examined the problem of error analysis for photon- 
counting experiments with low numbers of counts and have 
compared two different solutions to the problem. We prefer the 
Bayesian method over the classical method, for several 
reasons. The Bayesian method can be applied in a straightfor- 
ward manner for cases of nonzero background, whereas there 
are some problems in extending the classical method to cases 
of nonzero background. First, the classical method gives no 
information about the source for many cases when the mean 
background, B, is higher than the number of counts observed, 
N. Second, the upper limits for the case of AT = 0 depend on B. 
Since this is the only case where we know exactly how many 
counts from the source were detected (zero), the dependence of 
Smax on B is not reasonable. Third, there is no straightforward 
way to extend the classical method to cases in which there is 
any uncertainty in the background. Although the Bayesian 
method requires that an assumption be made about the a 
priori relative probability of the possible experimental hypoth- 
eses, we have shown that this requirement poses no practical 
difficulty in our case and that the use of a constant prior for 
source fluxes from zero to infinity is a good approximation to 
any reasonable prior. Tables of confidence intervals for several 
confidence levels were calculated in order to make these results 
available for cases not included in the tables of Helene (1983, 
1984). 

This method is not restricted to the estimation of source 
fluxes. Although our discussion has been formulated in terms 
of finding confidence intervals for source fluxes in imaging 
applications, the same results can be used to apply to measure- 
ment of spectral line intensities in the presence of a continuum. 
The ratio of small numbers can also be treated by this method. 
This is relevant to such problems as determination of line 
ratios to calculate temperature, abundances, etc. A detailed 
treatment of confidence intervals for ratios in the case of zero 
background has been given by Helene (1984). If the back- 
ground is nonzero, the upper and lower limits can still be 
calculated, but the functional form is very complex, even if the 
mean backgrounds for the numerator and denominator are the 
same. 

A program for calculating upper and lower limits using the 
Bayesian method (eq. [9] with minimal confidence intervals) is 
available from the authors in the form of Fortran source code 
or as an IBM PC executable file. 
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