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ABSTRACT 
We have developed models of broad-band linear polarization (BLP) arising from magnetic regions on cool 

stars. The models include an improved treatment of spatial effects in which the BLP is explicitly integrated 
over the stellar surface. We find that for magnetic region filling factors,/, larger than «1% of a hemisphere, 
direct disk-integration yields results which are often significantly different from a simple linear scaling of BLP 
with region area, especially for regions near the limb. In particular, the amplitude of the BLP reaches a 
maximum for / « 24%, which is a consequence of cancellation of the polarization signal within the region 
itself. The line-of-sight angle at which the region exhibits maximum polarization increases with region size. 

We study the effects of bipolar pairs of regions, and single regions with small-scale bipolarity. The most 
important effect of bipolarity is the reduction in the influence of Faraday rotation on the integrated polariza- 
tion. Spatial effects become more important as the size of the bipolar spot pair is increased. 

We construct similar models for Rayleigh and Thomson scattering regions in order to compare the signa- 
tures of BLP from these sources. Like magnetic BLP, scattering-induced BLP shows a maximum in polariza- 
tion amplitude (at /« 18%), but the line-of-sight angle of the maximum first decreases (for /< 10%) and then 
increases with increasing region size. We also present approximate formulas for the scaling of magnetically 
induced and scattering-induced polarization as a function of / We discuss the importance of the differences 
found in the rotational phase dependence for discerning the source of the polarization. Use of the phase 
dependence requires detailed comparisons of polarization observed at several rotational phases, with the 
success of application depending on the specific geometry of the polarizing regions. The general applicability 
of the models depends on the accuracy in determining the instrumental and interstellar polarization (in model- 
ing of polarization degree P) and/or the orientation of the stellar rotation axis on the plane of the sky (in 
modeling of Stokes parameters PQ and P^). 
Subject headings: polarization — stars: late-type — stars: magnetic 

1. INTRODUCTION 

Broad-band linear polarization (BLP) has been observed in 
many cool stars over the past decade (e.g., Piirola 1977; 
Barbour & Kemp 1981; Tinbergen 1982; Hayes 1984; Huove- 
lin et al. 1985, 1989). Although in red giants it may be partly 
the result of Thomson or Rayleigh scattering from the photo- 
sphere and chromosphere, or scattering from dust grains (e.g., 
Doherty 1986; Huovelin et al. 1987; McCall & Hough 1980), 
BLP in most late-type dwarfs probably arises from an inhomo- 
geneous distribution of magnetic regions (Tinbergen & Zwaan 
1981). The <7 and n components of optically thick lines formed 
in areas with magnetic fields will have differing saturation 
characteristics—the so-called magnetic intensification (MI) 
effect. Because of this effect, a net linear polarization results, 
which, integrated over all lines in a given passband, produces 
the observed BLP (e.g., Leroy 1962; Kemp & Wolstencroft 
1974; Mullan & Bell 1976). 

Time series of BLP measurements have considerable poten- 
tial in unraveling the spatial configuration of magnetic regions 
on stellar surfaces due to the strong geometric dependence of 
the polarization amplitude and direction. In particular, multi- 
ple observations of BLP can help to determine the stellar incli- 
nation angle (e.g., Landi DeglTnnocenti et al. 1981), and rough 
locations of the dominant active regions (Landi DeglTnnocenti 
1982, hereafter L82). With these possibilities in mind, models 

of the expected behavior of linear polarization in cool stars 
have been introduced (Finn & Kemp 1974; Calamai, 
Landi DeglTnnocenti, & Landi DeglTnnocenti 1975; L82; 
Landi DeglTnnocenti & Calamai 1982; Calamai & 
Landi DeglTnnocenti 1983, hereafter CL). These models are 
incomplete in their treatment of geometric effects, however. 
The effects of finite sizes of magnetic regions are treated in a 
very approximate fashion, which leads to errors in the derived 
stellar BLP. 

We have developed an improved model of stellar BLP which 
includes a more complete treatment of the spatial effects. We 
report the results for several distributions and sizes of magnetic 
regions on stellar surfaces as a function of rotational phase, 
and explore the effects of bipolar regions. Since Rayleigh and 
Thomson scattering can also be sources of linear polarization 
(e.g., Finn & Jefferies 1974), we construct a similar model to 
compare scattering-induced with Mi-induced BLP. We also 
discuss methods of distinguishing between magnetic fields and 
scattering as sources of BLP. 

2. THE MAGNETIC POLARIZATION MODEL 

2.1. Development of the Model 
In L82 and subsequent papers, the expected BLP from 

pointlike magnetic sources on a stellar surface is computed as a 

319 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
 9

1A
p J

 . 
. .

37
4.

 .
31

9:
 

HUOVELIN AND SAAR Vol. 374 320 

function of location on the star and the orientation of the star 
to the observer. A linear scaling (filling factor) is then applied 
to determine the expected BLP from a magnetic region of finite 
size. This method ignores the self-canceling effects which arise 
from the vector sum of the BLP from regions larger than a 
point. The linear scaling systematically overestimates BLP 
from active areas by progressively larger amounts as the filling 
factor,/, of the region increases. Indeed, at some point, the total 
BLP will decrease, even as /increases. As an extreme example, 
stars devoid of active regions and stars completely covered 
with a uniform radial magnetic field will both give rise to zero 
net BLP (e.g., Huovelin, Saar, & Tuominen 1988; Landolfi, 
Landi DeglTnnocenti, & Landi DeglTnnocenti 1989). 

The self-canceling effect will be negligible for small (solar- 
like) active regions which cover only a few thousandths of the 
stellar disk. Considerable evidence points to much larger active 
regions on other stars, however. In particular, RS CVn 
systems, BY Dra variables, T Tauri, W UMa, and FK Comae 
stars and some active dwarfs all show photometric modulation 
due to starspots. In many cases, the filling factors of dark spots 
alone can approach 20%-30% of the stellar surface (e.g., Poe & 
Eaton 1985; Rodonô et al. 1986), and by analogy with the Sun, 
spot umbrae will probably comprise only a fraction of the total 
magnetic region area. Brighter areas, such as plages, magnetic 
network, and penumbrae can be expected to dominate the 
filling factor of active regions (e.g., Cayrel et al. 1983). Thus, at 
least for the more active stars, we anticipate that the linear 
scaling of BLP with the magnetic region filling factor will 
break down. 

To correct this shortcoming, we have constructed an 
improved model for stellar BLP by introducing explicit disk 
integration to the L82 form. An outline of the model and 
results is given in Huovelin & Saar (1990). We begin by 
assuming that the BLP from a given element on the stellar 
surface can be approximated by using an “average” line 
profile computed for the ij/ (the angle between the magnetic 
field and the line of sight) and (¡> (the azimuthal angle of the 
field, with its zero point at the projection of the stellar rotation 
axis on the sky) of the element (see Calamai et al. 1975). The 
line models are based on a Milne-Eddington atmosphere in 
LTE with a linear source function, including magneto-optical 
effects (i.e., Faraday rotation). The BLP values are calculated 
using the mean values for the line-to-continuum opacity ratio 
(rf0), Doppler witdh (A2D), magnetic sensitivity (Landé ge{{), 
magnetic field strength (B), and the Voigt parameter (a). The 
angle that the magnetic field makes with the normal to the 
stellar surface, 0, is assumed to be 0° everywhere in the photo- 
sphere (a reasonable approximation in the Sun; e.g., L82), and 
so 9 = ij/. The net BLP from the surface element in the com- 
puted line is calculated by integrating PQ = Q/I and Pu = U/I, 
the normalized Stokes parameters, over all wavelengths. The 
result is scaled with the average fractional line blanketing in 
the wavelength region (£) to obtain the expected BLP for a 
given bandpass, yielding 

Pq = c\coscosvB)]}. (i) 
and 

pv = c\ JZTl cos ,/'rW> vb) sin {2[* + ^(lA, Vb)]} , (2) 

where vB = A2B/A/lD and AAB = 4.67 x 10_13A2(Â)ÿeff B. The 
II and <í> functions are defined as in Calamai et al. (1975), as 

modified to include Voigt parameters by CL. We obtain the II 
and O functions for our chosen average parameters by spline 
interpolation directly from the tables of Landi DeglTnnocenti 
& Calamai (1982) and CL. Thus far, our formulation is identi- 
cal to that of L82, with the exception of the correction factor C. 
The correction term C( < 1) includes the reduction of polariza- 
tion due to molecules (which show little polarization) and line 
blending. In this paper, we are primarily interested in depen- 
dence of BLP on active region geometry and in relative 
changes in polarization produced by varying magnetic area 
coverage. Since C affects only the absolute level of the polariza- 
tion and not the angular (i.e., geometric) dependence, its precise 
value is not critical for our models, as we assume C = 1. This 
approximation is valid if the portion of the spectrum modeled 
is not heavily blended and contains few molecular lines. As 
pointed out by Leroy (1989, 1990), neglecting the effects of 
blends and molecules may lead to considerable overestimates 
of the linear polarization, especially in the crowded ultraviolet 
spectra of solar-like stars. The solar l/-band polarization, for 
example, is overestimated by a factor of 2 if blends are not 
considered. The above effects will be discussed in detail by Saar 
& Huovelin (1990a, hereafter Paper II). 

At this point, however, instead of scaling the point source 
BLP with a linear area coverage factor A cos i/z/nRl (L82), we 
perform disk integration of the BLP over the stellar surface. 
For our model star, we use an equal area grid with 30 radial 
and 120 azimuthal steps; experiments with finer grids altered 
the results by less than a few percent for areas larger than 
~ 1% of a stellar hemisphere. For smaller areas we use denser 
grids to reduce artificial, stepwise changes in the derived BLP. 
The (equal) fractional projected area of the surface elements 
implicitly accounts for the projection (cos \J/) effect on the net 
BLP, and cancellation of the polarization within individual 
elements is negligible. The actual integration of the net BLP 
over the spatial extent of the magnetic region(s) allows a con- 
siderably more realistic treatment of the cancellation effects. 

In the following we use the term “spot” to designate any 
magnetic region; we do not mean to imply that the areas under 
consideration have to be cool like solar umbrae. Regions con- 
siderably cooler than the average surrounding photosphere are 
less important (and probably negligible) in the disk-integrated 
linear polarization, due to their minimal contribution to the 
integrated light. Indeed, the umbral contribution is weakest in 
the U band, precisely where the high density of lines suggests 
that BLP should be large. 

2.1. Tests and Comparison with Unipolar Regions 
The following parameters were assumed throughout: rj0 = 

10; Â = 6000 Â; { = 0.10; vB = 1.2; ge(f = 1.5; a = 0.1. The 
effects of different values of these parameters have been investi- 
gated by CL and others. Tests of the derived BLP in the limit- 
ing cases of zero and complete coverage by magnetic fields 
gave the appropriate value (i.e., zero) for the BLP to within one 
part in 106 (limit of the numerical accuracy). 

In his paper (L82), Landi DeglTnnocenti studies the varia- 
tion of PQ and Pv with rotation for various spot latitudes and 
stellar inclination angles. We reproduced the eight linearly 
scaled models presented in L82 (Figs. 2 and 3 in L82) with 
A/nRl = 0.1, corresponding to a unipolar (positive polarity) 
region with a filling factor /= 5% of a hemisphere (i.e., / = 
A/2nRl = 0-05 ; hereafter all percentage spot areas refer to this 
parameter, unless otherwise stated), and we compared them 
with our new disk-integrated models, obtained with identical 
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-0.1 0.1 0.3 0.5 0.7 0.9 1.1-0.1 0.1 0.3 0.5 0.7 0.9 1.1 
Phase Phase 

Fig. 1.—The difference AP( = PL82 — PDiSK_INT) between the disk-integrated models (PDISK_INT) and the linearly scaled models (PL82) for different stellar inclina- 
tions (i) (see also Fig. 2 in L82). 

input parameters. The Stokes parameters in both sets of 
models were multiplied by 104 to obtain the scaling used in 
L82. The models were calculated in 61 equally spaced phases 
from 0 to 1. 

The overall shapes of the Stokes PQ versus Pu loci were close 
to those in Figures 2 and 3 of L82, which were calculated 
using linear scaling of BLP with spot area, but the disk inte- 
gration yielded consistently smaller amplitudes of the varia- 
tions (i.e., the sizes of the loci were smaller). The differences 
AP( = PL82 - Pdjsk-jnt). where P = (P^ + Pf,)0 5 is the polar- 
ization degree, are plotted in Figures 1 and 2. The maxima of 
the relative overestimates due to linear scaling in these models 
(/ = 5%) are approximately 20%-30% of the total rotational 
polarization variations. 

Qualitatively, the results shown in Figures 1 and 2 are 
approximately valid for a spot with 1% </< 50%, with the 
only significant difference being the relative amount of over- or 
underestimate, which increases with spot size. This behavior is 
clearly exhibited in Figure 3, which shows models (with 
i = 90°) of P as a function of spot size and the angle on the 
stellar surface between the disk center and spot center (line-of- 
sight angle). The line-of-sight angle at which the overestimates 
of polarization due to linear scaling turn to underestimates 
changes only slightly with spot size, from about 70° for a 
/ = 2% spot to about 76° for / = 50%. The underestimated 
PL82 values are due to the simple cosine law used for the 
projection effect in the linear scaling model. As an extreme 
example, the cosine approximation yields zero projected area 
for all spots which are more than half behind the limb, if 
further modifications for partial visibility are not made. Over- 
estimates of PL82 in the central area of the disk, on the other 

hand, result from the neglect of self-cancellation of polarization 
within the spot, which becomes more and more important with 
increasing spot size. This difficulty can only be properly 
addressed by using a disk integration method with a sufficient- 
ly dense grid on the stellar surface. Our tests showed that linear 
scaling and disk integration yield essentially identical results 
(relative difference <5%) with unipolar spots smaller than 1% 
of a hemisphere. However, the maximum overestimate due to 
linear scaling increases rapidly with spot size and is already 
17.5% for an / = 4% spot and about 100% for / = 16% (see 
Figs. 3 and 4). 

Figure 3 also shows how the line-of-sight angle of the 
maximum polarization increases with spot size, an effect which 
can only be seen by employing disk integration, since linear 
scaling yields the maximum polarization at 45° from disk 
center, independent of the spot size (in Huovelin et al. 1988, the 
limb darkening coefficient was incorrectly mentioned to affect 
the line-of-sight angle of maximum polarization). A secondary 
maximum in the polarization also appears at 30° in the disk 
integration model for /= 50% spots (Fig. 3). Its appearance is 
actually a consequence of a minor decrease in polarization at 
larger angles, caused by the increasing fraction of the spot 
behind the stellar limb. The polarization increases again when 
substantial numbers of surface elements which used to cancel 
the BLP of other elements in the spot are placed behind the 
limb. The secondary maximum is resolved from the primary 
maximum for spots with / > 40%. 

Fundamental to all the above effects caused by the self- 
cancellation of spot polarization, however, is the nonlinear 
increase of the maximum polarization with spot size (Fig. 4). 
The maximum P reaches an upper limit for/ æ 24% and there- 
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Phase Phase 
Fig. 2.—The difference AP between the disk-integrated models and the linearly scaled models for different spot latitudes (<5) (see also Fig. 3 in L82) 

after decreases with increasing spot size. A spot can actually 
contain surface elements which completely cancel the BLP of 
other elements (two identical elements equally distant from the 
disk center but with a 90° difference in azimuth will completely 
cancel each other, for example). By fitting a polynomial to the 
Pmax(/) curve in Figure 4, we obtain the following approximate 
formula, 

P (f) 
 m!-xV -■ , ä -2.128 x 1(T2 + 1.076/ 
PmM= 1%) 
- 4.812 x 10“2/2 + 9.058 x 10"4/3 - 6.26 x 10"6/4, (3) 

where / is given in percent. The above scaling is valid for 
/ < 50%, and it should be applied separately for each individ- 
ual region. For example, two identical regions equidistant from 
the stellar disk center and separated by ± 180° in 0 would yield 
exactly twice as large P as one region, since linear polarization 
is invariant under 180° rotations on the plane of the sky. More 
generally, one can roughly derive the maximum total polariza- 
tion with several regions by first scaling the Stokes parameters 
PQ and Pv for each spot, and then performing a vector sum of 
the contributions of all spots. Assuming that the stellar surface 
contains one major magnetic region, expression (3) can be used 
in approximate determinations of lower limits for filling 
factors, as it gives the maximum of polarization during rota- 
tion. A demonstration of such a filling factor determination is 
presented in Paper II. 

In L82 it is mentioned that the shapes of the PQ, Pu dia- 
grams are not affected significantly by changes in line strength 
(rj0) and magnetic field (vB) values. We found this to be valid in 
only a limited sense. The angles of the maximum polarization 
and equation (3) are approximately valid over a wide param- 
eter range (we found <5% relative difference from equation 

[3] with the following ranges: tj0 = 10-100, B = 500-3000 G, 
a = 0.05-0.2), and the qualitative effects of spot size remain 
unaffected by changes in rj0, B and damping a. This implies 
that Figure 3 shows the general behavior of Mi-induced polar- 
ization (within the limits set by the simplifying initial assump- 
tions of the model). On the other hand, while it is true that the 
overall shapes of the diagrams resemble each other for a wide 
range of rj0 and B, the scaling factor between diagrams is a 

0 45 90 135 180 
Rotation angle (degrees) 

Fig. 3.—The degree of linear polarization vs. the line-of-sight angle (i.e., 
rotation angle) for spots with filling factors/ = 0.5, 1, 2, 4, 8, 16, 20, 24, 30, 40, 
and 50%. The angle of the maximum polarization increases with spot size. The 
linear scaling result is shown (dashed) for spot with/= 2,4, and 8%. 
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Fig. 4.—Variation of maximum polarization with spot size. Disk- 
integration models exhibit the largest polarization for spots covering 24% of 
the hemisphere; the differences with linear scaling (dashed line, LSI) increase 
rapidly with spot size. 

function of i¡/ (or rotational phase <p). As an example, we calcu- 
lated the L82 model with i = 45° and ô = 60° for rj0 = 10 and 
100. The ratio P((p) ioo/P(<p) io varied from 0.43 to 0.56 with 
B = 500 G and from 0.43 to 0.70 with B = 3000 G. The effect 
of large changes in B on P(ç) ratios is even stronger. 
P(<p)3ooog/P(<p)soog varied from 7.9 to 17.5 (rj0 = 10), and 
from 9.8 to 17.1 (rj0 = 100). The relative scaling of polarization 
[i.e., the ratios P(<p, /i)/P(<a f2) in Fig. 3] is therefore exactly 
valid only with the given parameters. The reason for the varia- 
tions in the P((p) ratios arises from the changing optical thick- 
ness in the linear polarized Zeeman components as a function 
of <p. As one alters rj0 or B, the saturation and the degree of 
blending between the n and a components change, thus chang- 
ing the ratio at a given q>. 

2.2. Bipolar Spot Pairs and Regions with Mixed Polarities 
The magnetic areas on the Sun, and probably on most solar- 

like stars, have bipolar structure, with close pairs of regions 
having opposite magnetic field polarities (e.g., Borra, Edwards, 
& Mayor 1984). As shown in L82, a bipolar spot pair will 
produce polarization variations with reduced effect of the 
Faraday rotation (i.e., loops in the PQ, Pu plane are less asym- 
metric with respect to the P^-axis). In the limiting case when 
the spots are like point sources very close to each other, the 
Faraday rotation is completely canceled, and the loop shapes 
above and below the P^-axis are identical. In terms of rotation- 
al phase, (p((p=0 when the bipolar spot pair passes the central 
meridian of the stellar surface), Pulcp) = —Pui — ç) and 
PQ((p) = PQ( — (p) (see L82). In physically realistic cases, 
however, surface elements with opposite polarities cannot 
overlap, and the regions have finite sizes. Geometric effects will 
influence the resulting polarimetric variations, especially if the 
two regions of opposite polarities are large and therefore 
widely separated. 

Since it is not yet clear whether the unipolar fractions of the 
magnetic areas can be considerably larger in some stars rela- 
tive to the Sun, we modeled two extreme cases. In model (1) we 
have a “checkerboard” structure of polarities inside a/= 5% 
circular region, with surface elements of positive and negative 

polarities evenly mixed throughout the spot. In model (2), the 
magnetic area is split into a pair of circular spots of equal size 
(/ = 2.5%) and opposite polarity, separated by 26° in stellar 
longitude (the minimum separation allowed without overlap). 

Figures 5 and 6 show the results with the above two models. 
The differences between the models depend strongly on the 
geometry (i.e., ô and i), and are significant in all cases shown. It 
is obvious that the difference will increase as the sizes of the 
opposite polarity regions increase, while case (2) approaches 
case (1) as the sizes and separation distance of the bipolar spot 
pair are decreased, keeping/in the two cases equal. In practice, 
the shapes of the loops with small spots are nearly identical 
with those produced by two (hypothetical) completely overlap- 
ping, opposite polarity regions. Thus, remembering the limi- 
tations of the linear scaling approximation (see Fig. 4), the 
simpler theory presented in L82 can be used in modeling the 
polarizations of stars with small (/ < 1 %), solar-like magnetic 
regions. 

3. COMPARISON WITH RAYLEIGH AND THOMSON SCATTERING 

Rayleigh scattering also produces BLP, which can confuse 
the interpretation of polarization measurements. Possible 
sources of Rayleigh scattering in late-type stars include 
extended, inhomogeneous envelopes, chromospheres and 
photospheric spots. Stars with chromospheres may also have 
enough free electrons to cause linear polarization via Thomson 
scattering, similar to the envelopes of early-type stars (e.g., 
Serkowski 1970, Brown and McLean 1977, and references 
therein), and binary stars (e.g., Shakhovskoi 1965; Piirola 
1980). The spatial distribution of the scattering medium may, 
however, be somewhat different in cool stars, and the models 
for special cases of early-type stars and binaries may not 
directly apply. It is therefore important to derive models suit- 
able for the atmospheres of cool stars and to investigate ways 
to distinguish between scattering and MI as sources of BLP, 
since neither one can be rejected as a source of BLP using 
simple arguments. 

3.1. Comparison of Phase Dependence and Scales 
We model the BLP due to single (either Rayleigh or 

Thomson) scattering starting from the theory for particles with 
isotropic polarizability, presented in van de Hulst (1957). The 
scattering medium is assumed optically thin, and the incident 
light is assumed unpolarized. The relevant Stokes parameters 
(in the local coordinate system) for the intensity /'0 scattered 
from an atmospheric element (of volume dV) toward the obser- 
ver will be 

dl = dl0(l + cos2 il/')dV 5 

dQ = dl0 sin2 \j/' cos 

dU = dl0 sin2 ij/' sin 

2(^ + f 

2 U + 

dV , 

dV, 

where 

dl0 = ro(0, <£') -”^£.’2 — as(r> 'I'’ 4>)dm 

(4) 

(5) 

(6) 

(7) 

Here n(r, \¡/9 (/>) is the number of particles per unit volume, <js is 
the scattering cross section per scattering particle, and 
dV — r2 dr sin if/ dÿ d(¡). The angles i¡/ and </> are defined as in 
the MI model, and if/' is the scattering angle of the incident 
light, coming from the direction of the solid angle dco 
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Fig. 5.—Models with bipolar magnetic field structures and different stellar inclinations. The solid line corresponds to one spot of size/= 5% with small-scale 
bipolar elements (“checkerboard ”), and dashed line is the result for a bipolar pair with/= 2 x 2.5%. Zero phase is indicated with a circle, and phase 0.1 with a plus 
sign. 
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Fig. 6.—As in Fig. 5, but for spots with different latitudes 
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( = sin OdOdcj)'). The local polarization angle qj is measured 
counterclockwise from the radius vector of the stellar disk. The 
local coordinates are defined so that 0 is the angle from the 
surface normal at point (i/f, 0), and 0' is the local azimuth angle 
on the surface, measured counterclockwise from the direction 
to the disk center defined by the observers’ frame. 

Thus far the formulation has been quite general, and we 
have not made any assumptions about J'0. Assuming spatially 
uniform intensity on a plane surface under the scattering layer 
with the intensity distribution similar to the solar surface with 
limb darkening, the intensity distribution incident on the 
element of the scattering layer will be ro(6, (j)f)d(o = 

0)(1 — e + e cos 6)dco, where /oOA, 0) is the surface bright- 
ness. With the plane approximation, we implicitly assumed 
that the scattering layer is geometrically thin 
(thickness stellar radius) and close to the stellar surface. The 
limitations are reasonable in the atmospheres of single cool 
stars, with chromospheres not much different from that of the 
Sun. The approximation is similar to that of Schwarz and 
Clarke (1984), with differences in the incident radiation field 
(Schwarz and Clarke considered only the radial intensity) and 
in the distribution of the scattering layer (Schwarz and Clarke 
assumed a uniform layer with inhomogeneous incident 
intensity). Applications in cases with extended clouds very far 
from the stellar surface can be found in Brown & McLean 
(1977) and Brown, McLean & Emslie (1978), while interme- 
diate cases are discussed in, for example, Shulov (1967), and 
applied by Piirola (1980). 

Now we integrate the incoming intensity distribution over 
the solid angle to find the functional dependence of Stokes 
parameters on i//. From the symmetry of the intensity distribu- 
tion, i.e., ro(0, </>') = /'o(0, 2tu — </>'), we notice immediately that 
the scattering plane will be that determined by the local radius 
vector and the line of sight. By defining the projection of the 
radius vector on the sky as the local positive Q-axis, we find 
that the local U will be canceled out in the integration. Devi- 
ations from the above symmetry will generally complicate the 
situation, which is demonstrated by detailed calculations of 
sunspot polarization by Finn & Jefferies (1974). 

In our local coordinate system, the scattering angle (ij/') and 
the local position angle of linear polarization (qj) can be 
derived with the scalar and vector products of the incident 
direction unit vector, ä = (sin 9 cos 0', sin 9 sin 0', cos 9), and 
the unit vectors ex = (sin 0, 0, cos 0), ey = (0, 1, 0), and ez = 
(—cos 0, 0, sin 0) of the right-handed rectangular coordinate 
system, where ex is directed toward the observer, and ey is 
directed tangentially to the stellar surface. The cosine of scat- 
tering angle is cos 0' = ä • and the direction of the polariza- 
tion vector on the plane of the sky is defined by cos 0 = 
(ex x a) • ëy/\êx x a\(positive g-axis coincides withez). Substi- 
tuting, we find that sin2 0' = 1 - (ä • êx)2 = \ëx x à \2, which 
leads to sin2 0' cos 20 = 2[(ëx x a) • êy]2 — \ ëx x ä\2. By inte- 
gration over the solid angle, we obtain the following formulae 
for the nonzero Stokes parameters in the local frame : 
J' rin rn/2 

dl = d0' d9 sin 9dl0(l + cos2 0')dF 
co Jo Jo 

3n f2n Cn/2 

= ioÏ6^J0 1 sin 0(1 - € + e eos 0) 

x [1 + (sin 9 cos 0' sin 0 + cos 9 cos 0)2]d0'd0iZF 

T n / 17e 36 , \ 
= i°2^ffV-^'+32COS (8) 

and 
J* Ç2n rn/2 

dQ= d(¡)' sin 0d/o sin2 0'cos 
co Jo Jo 

3n Ç2" f*'2 

= - J J /o sin 0(1 - e + e cos 0) 

x [(sin ij/ cos 0 — sin 0 cos (/>' cos i//)2 

- (sin 0 sin <¡>')2]d(i>'d6dV 

= -¡o^jjsin2 i/'W . (9) 

Note that the contribution of the constant term (1 — 6) in the 
intensity distribution is zero in integral in equation (9). By 
integrating equations (8) and (9) over the depth of the scat- 
tering layer (R) we obtain approximate formulas for the Stokes 
parameters as a function of the scattering optical depth ts = 
ñ(0, 0)<7S R, where ñ(0, 0) is the mean number density of scat- 
tering particles in the stellar atmosphere. We use ts as the 
depth parameter in order to obtain more general expressions 
for the Stokes parameters which are valid for both molecules 
and electrons. The total scattering optical depth can be esti- 
mated separately, including the total scattering coefficient and 
the mean number density of all molecules and electrons. 
Finally, integration over the visible stellar surface (i.e., over 0 
and 0) yields the total linear polarization Stokes parameters in 
the frame where the positive g-axis lies along the projection of 
the stellar rotation axis on the sky. The total intensity of the 
stellar light is the sum of the direct unpolarized light and the 
scattered light: 

2|^ + f dV 

I « 0) cos lA(l — € + 6 cos 0)dA 

+ j* W> ^ 2 (1 _ W + COs2 ^}dA ’ (10) 

where dA = sin 0 d0 d0 and e is the limb-darkening coefficient 
(6 = 0.6 assumed here). The normalized Stokes parameters will 
thus be 

n _ Í Jo(<A> ^X3/64)eTs sin2 >j/ cos {2[<¿> + (n/lftjdA /4,, rô ~ J » (H) 

„ _ í W, 4>X3/64)eTs sin2 if/ sin {2[<£ + (n/ltydA 
rv ~ j . (12) 

Note that these formulae apply to scattering either from atoms 
and molecules or free electrons, with <rs = 0.67 x 10_24(2o/2)4 

cm2 for the former, where 20 is the characteristic “ resonance 
wavelength” of the scatterer, and <rs = 0.67 x 10“24 cm2 for 
free electrons (e.g., Aller 1953). Another, equally valid expres- 
sion for the Rayleigh scattering cross section for atoms and 
molecules, <js = a21287r5/3/l4, is given in Allen (1955). Here a is 
the polarizability which is in simple cases (nearly spherical 
molecules) proportional to the effective “ volume ” of the scat- 
terer, as seen by the scattered light beam. 

The form of variation with // = cos 0 is similar to that of 
Collins (1988), i.e., R = cl x (1 - //2)/(l + c2 x // + c3 x ß2\ 
where cl, c2, and c3 are constants determined by limb dark- 
ening and optical depth. The differences in the constants are 
basically due to our optically thin (single-scattering) approx- 
imation (Collins used detailed radiative transfer calculations of 
scattering in a magnetized atmosphere). We have also not 
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made any assumptions as to the direct effects of magnetic field 
on the scattering. Our approximation would, for example, 
yield the same polarization at limb as the specific case of 
Collins (cl = 0.1153), if we used € = 0.74, which is only slightly 
different from the solar limb darkening constant in the visual 
continuum (e « 0.6). This comparison demonstrates that our 
simple treatment of radiative transfer is sufficient for approx- 
imating the center-to-limb variations as well as the actual scale 
of scattering-induced linear polarization. We can obtain a rea- 
sonable upper limit for the polarization by taking ts = 0.1, 
since double or multiple scattering will dominate for optical 
depths larger than the above value (van de Hulst 1957), and the 
polarization will be reduced due to the partial canceling of 
polarization in multiply scattered light (e.g., Shakhovskoi 
1965). 

To facilitate comparisons with the MI case, we computed 
eight scattering models with enhanced densities of scattering 
material at the same size and locations of the magnetic spots in 
the MI models. Note, that our models differ from those of 
Schwarz & Clarke (1984) and Doherty (1986) in that they 
assume anomalies in the optical depth (rs) instead of those in 
the brightness (I0) to produce the polarization. The difference 
in the double loop orientations between the scattering and the 
MI models (see Figs. 7 and 8) is due to the 90° angular shift in 
the scattering model (linear polarization is perpendicular to the 
scattering plane; eqs. [9] and [10]) plus the Faraday rotation 
in the MI model (eqs. [1] and [2]). As a way to distinguish the 
source of polarization, the difference may be of minor signifi- 
cance, since the orientations of the rotation axes of single stars 

are rarely known. The phase dependence of the variations may, 
however, turn out more useful in distinguishing the source, as 
demonstrated by Figure 9, where the models of Figure 7 are 
plotted against phase for the case of scattering (solid line) and 
MI (dashed line), A detailed phase by phase study of the P 
variations from sufficiently accurate observations might thus 
provide adequate constraints as to the source of polarization. 

The deviation from linear scaling in the scattering model 
differs slightly from that of the MI model which is demon- 
strated by Figure 10 (to be compared with Fig. 3). The 
maximum polarization is achieved with spot sizes of/= 18%. 
We have made a polynomial fit, analogous to equation (3), to 
find the approximate spot size dependence of the scattering- 
induced linear polarization. The resulting formula 

P (f) 
p rr o/, = 1 192 x 10”2 + 1048/- 6.945 x 10"2/2 

-‘maxi./ I/o) 

4- 2.246 x 10"3/3 - 3.592 x 10“5/4 

+ 2.255 x lO'7/5 , (13) 

where/is expressed in percent, applies at least for/ < 50%, and 
the scaling is linear with the scattering optical depth xs (as long 
as the optically thin approximation holds). The symmetry rela- 
tion mentioned in conjunction with equation (3) also holds for 
equation (13), and therefore in the most favorable case (two 
polarizing regions at opposite directions from the stellar disk 
center), the polarization could be twice the value given by 
equation (13). 

PQx104 PQx104 

Fig. 7.—Scattering models (solid lines) for one/= 5% spot with different stellar inclinations, assuming ts = 0.1 and equal brightness inside and outside of the 
spot. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

1A
pJ

. 
. .

37
4.

 .
31

9H
 

-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 
PqXIO4 PQx104 

Fig. 8.—As in Fig. 7, but for spots with différent latitudes 

-0.1 0.1 0.3 0.5 0.7 0.9 1.1-0.1 0.1 0.3 0.5 0.7 0.9 1.1 
Phase Phase 

Fig. 9.—Comparison of P vs. rotational phase for the models of Fig. 7. The scattering model is shown by the continuous line and the MI model by the dashed 
line. 
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Fig. 10.—P vs. line-of-sight angle (i.e., rotation angle) for the scattering 
models (compare with Fig. 3 which shows the corresponding MI models). The 
curves are for spot sizes off = 0.5,1,2,4, 8,18,25, 30,40, and 50%. The largest 
polarization is achieved with an /= 18% spot. The small secondary maxima 
for spots with/= 40% and 50% are due to geometrical effects and cancellation 
which become important in large regions. 

The frequently used sin2 i¡/ dependence for Rayleigh scat- 
tering, although valid for a single point at the surface, also does 
not directly apply for the total polarization in finite-size mag- 
netic regions. The line-of-sight angle of the maximum polariza- 
tion differs from 90° by an amount that depends on the spot 
size (see Fig. 10). It is close to 90° for very small spots (/ 1%), 
decreasing to about 60° for / = 10% spots, and with areas 
larger than this the maximum shifts back toward (and finally 
beyond) the limb The above effects are consequences of partial 
cancellation and geometrical effects which become important 
with large polarizing areas, analogous to, although not identi- 
cal with, the MI case. 

As for the scales of the models in Figures 7 and 8, we note 
that we have chosen an optimum value of the scattering optical 
depth (ts = 0.1). The predicted contribution of free electrons in 
the solar chromosphere, for instance, adds up to a considerably 
smaller optical depth. Considering a typical value for « 1011 

cm-3 in the solar chromosphere and a thickness of 104 km 
(rough overestimate for the solar chromosphere), we obtain 
ts « 10 ~4. The resulting disk-integrated polarization due to 
Thomson scattering, using the total filling factor of active areas 
(/ = l%-2%), will be less than 10_5% (i.e., 10-7 in absolute 
units), which is well below the threshold of detection. For 
typical atomic and molecular polarizabilities (e.g., Allen 1955), 
BLP due to Rayleigh scattering will be larger than for 
Thomson scattering. Thus, stars with outer atmospheres much 
deeper and/or denser than in the Sun may show enhanced 
contributions to BLP from scattering. 

We also emphasize that, in addition to considerable optical 
thickness, inhomogeneous structure in the scattering atmo- 
sphere is necessary to produce nonzero disk-integrated polar- 
ization (just as in the MI case). More precise estimates of ts, 
and hence the relative contribution of scattering to BLP, can 
be made by using chromospheric models. These will be investi- 
gated in a companion paper (Paper II). 

Vol. 374 

4. DISCUSSION AND CONCLUSIONS 

We have developed improved models of magnetically 
induced broad-band linear polarization which include explicit 
disk integration of Stokes Q and U parameters over the stellar 
surface. The results show that scaling polarization linearly with 
spot size (L82) generally overestimates the rotational varia- 
tions of polarization. The differences are negligible with 
regions smaller than 1% of a stellar hemisphere but increase 
rapidly with the region size, and are more than one-fifth of the 
maximum polarization with an/= 5% region (see Figs. 1 and 
2) . The overestimates are due to the neglect of the self- 
cancellation of the Stokes parameters within finite-sized mag- 
netic regions. The superiority of explicit disk-integration also 
becomes evident with regions near, or partly behind, the stellar 
limb. 

The calculations with disk integration show that the polar- 
ization increases nonlinearly with spot size, reaching an upper 
limit for a region with/ « 24%. Further increase in the circular 
region size produces a decrease in the polarization, again due 
to the self-cancellation effects (Figs. 3 and 4). The line-of-sight 
angle of the maximum polarization also depends on the spot 
size, generally deviating from the value 45° given by the linear 
scaling approximation (L82). The maximum polarization curve 
in Figure 4 can be used to set upper limits to the BLP expected 
in cool stars, and in estimating lower limits for the magnetic 
area filling factors from the observed linear polarization (Paper 
II). For this purpose, we have derived an approximate formula 
(eq. [3]) by fitting a fourth-order polynomial to the curve of the 
disk-integrated polarization in Figure 4. 

We find that the effects of bipolar structure in the magnetic 
field are strongly dependent on the scale of the bipolar regions 
(Figs 5 and 6). Regions composed of small-scale bipolar ele- 
ments exhibit complete cancellation of Faraday rotation. 
Rotational variations are close to those in the corresponding 
unipolar regions. The variations become significantly different 
if the small-scale bipolarity is replaced by large-scale bipolarity 
(i.e., a large bipolar spot pair). The former situation is analo- 
gous to the solar case, having groups of small bipolar spot 
pairs. The observations of the circular polarization in late-type 
(G-M) stars also support this scenario, since large values have 
not been found (e.g., Borra et al. 1984). 

Rayleigh and Thomson scattering may also produce signifi- 
cant linear polarization in late-type stars. We have therefore 
developed analogous disk-integrated models for polarization 
due to scattering. Like the MI case, scattering-induced BLP 
shows an upper limit (at /« 18%) due to cancellation effects. 
We introduce an approximate formula (eq. [13]) for the scaling 
of scattering the induced polarization as a function of the 
region size, which can be used for filling factor determinations, 
analogous to equation (3). The actual values obtained for the 
polarization are, however, probably too high, which is due to 
our assumption of optimal value (0.1) for ts. Values of ts and 
the resulting linear polarization in stars are estimated in 
Paper II. 

Our models show that for scattering regions of finite size, the 
line-of-sight angle, at which the polarization due to Rayleigh 
scattering peaks, can deviate significantly from the normally 
expected 90° (again due to the spatial cancellation effects; see 
Fig. 10). This angle is generally different from the angle at 
which the MI induced polarization reaches a maximum (Fig. 
3) . The difference may be detectable (see Fig. 9), but this 
requires accurate observations in many rotational phases. 

The values of the parameters used here, which determine the 
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scale in the MI models, are generally reasonable for stars. The 
models are not complete, however, since the line-blanketing 
parameter ^ and the line-to-continuum opacity ratio rj0 may 
differ significantly from the arbitrarily chosen values (0.1 and 
10, respectively). In fully self-consistent models, these param- 
eters cannot be defined independently, since ^ is physically 
related with rç0. Accurate determination of broad-band values 
of these quantities is not a trivial task and requires knowledge 
of the mean line density and strength as a function of wave- 
length. Also, as pointed out by Leroy (1989), the contribution 
of molecular lines should be determined, since molecules 
increase the observed but appear to contribute little to the 
linear polarization. In a very recent investigation, Leroy (1990) 
found that significant blending of lines (crowded spectra) 
causes further decrease in the linear polarization (parameter C 
in eqs. [1] and [2]). We consider a simple model for estimating 
the wavelength dependence of MI polarization and discuss the 
above effects in a companion paper (Paper II; see also Saar 
and Huovelin 1990b). 

Finally, the application of our models to real data deserves 
some comment. Since the overall levels of BLP due to MI or 
scattering are in most cases close to the detection limits, it is 
important to be extremely careful in determining the instru- 
mental and possible interstellar (or any other constant) com- 
ponents of polarization if the polarization degree P is to be 
used for comparisons with models. An unknown, additional 
polarization component may significantly alter the rotational 
variations of P (e.g., Fig. 9) and will disqualify direct compari- 
sons with our models. The value of P, however, is unaffected by 
the orientation of the stellar rotation axis on the sky. 

In contrast, use of PQ and (instead of P) when fitting data 
has the advantage that the models (e.g., Figs 5-8) are identical, 
except for a shift of the zero point, if any (constant) errors in 
the polarization exist. The orientation of the stellar rotation 
axis will, however, affect the relative changes of PQ and Py. If 
this orientation is not known, comparison with models is 
ambiguous to within an arbitrary rotation of the coordinate 
system. We may conclude from the above that P should be 
modeled if interstellar and instrumental polarization can be 
accurately determined, and the orientation is unknown, and PQ 
and Pu should be modeled if the reverse is true. If either the 
external polarization or the orientation can be determined, the 
other parameter can, in principle, be derived from the observa- 
tions by using an appropriate fitting procedure. 
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