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ABSTRACT 
Based on the disk-halo decomposition method introduced by Persic & Salucci, we use 58 spiral rotation 

curves to measure the galaxy-background correlation function in the range 3-350 kpc (for H0 = 50 km s_1 

Mpc-1). We find that (1) the two-point function is ^(r) ^ (r0/r)1/76, with r0 ^ 7 Mpc (for Q0 = 1), and (2) 
higher order correlation functions are detected up to the sixth order and are found to fit the hierarchical 
expression. 
Subject headings: dark matter — galaxies: clustering — galaxies: structure 

1. INTRODUCTION 

Dark matter (DM) has long been recognized as a fundamen- 
tal component of the internal structure of galaxies (Faber & 
Gallagher 1979). The overall matter distribution, as revealed 
dynamically by the observed rotation curves, is strikingly dif- 
ferent from the distribution of luminous matter in the optical 
disk region (e.g., Rubin et al. 1985) and extends out to large 
radii where no velocity falloff is observed (e.g., Bosma 1981; 
Begeman 1988; Carignan & Freeman 1988; Carignan, Sancisi, 
& van Albada 1988). Therefore huge amounts of matter, not 
traced by light, dominate the overall dynamics and structure of 
galaxies. One may then naturally expect a link between inter- 
nal galaxy structure and background matter statistics, as sug- 
gested by Peebles (1980,1986). 

In order to study the statistics of mass distribution on the 
scale of galaxies, a proper general technique for decomposing 
the masses of spiral galaxies into their luminous and dark 
components is required. Then the knowledge of the physical 
parameters of DM in the halos allows one to investigate the 
correlation properties of matter on galaxy scales over a sub- 
stantial range of luminosities. This is particularly relevant in 
connection with biased scenarios of galaxy formation (Kaiser 
1984; Politzer & Wise 1984; Jensen & Szalay 1986; Bardeen et 
al. 1986) which establish precise relations between the clus- 
tering properties of dynamical and visible matter. 

Until quite recently, however, a general mass decomposition 
technique was not available, so direct investigations of back- 
ground statistics could not be attempted. A suitable method, 
which estimates the DM content of spiral galaxies at the 
optical disk radius from the profiles of rotation curves, was 
recently devised by Persic & Salucci (1988, 1990a). Such a 
method is the key starting point for the present study. Indeed, 
in a previous paper (Bonometto et al. 1990) we made a prelimi- 
nary investigation of the galaxy-background correlation func- 
tions at short distances, finding that matter and galaxy 
correlation properties are quite similar. 
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In this paper, based on a larger sample of 58 galaxies from 
Persic & Salucci (1990a, b, hereafter PS90) sample, we confirm 
our previous results and expand the analysis to higher order 
correlation functions by means of the moment method (§ 59 of 
Peebles 1980; Sharp, Bonometto, & Lucchin 1984). This 
sample is an extension of the one used by Bonometto et al. 
(1990) and comprises all nonlocal Sb through Sc galaxies for 
which high-quality, extended rotation curves were available in 
the literature by the end of 1988. It spans the magnitude inter- 
val —17.5 > Mb > —23.2, disk radii range between 3 and 55 
kpc, and peripheral velocities between about 100 and 400 km 
s- L In § 2 we briefly review Persic and Salucci’s method for the 
disk-halo decomposition of galaxy rotation curves. Applica- 
tion to the PS90 sample gives mean densities for the individual 
halos. We then derive the two-point (§ 3) and higher order (§ 4) 
galaxy-background correlation functions. In § 5, after compar- 
ing background and galaxy functions, we test the predictions of 
the BBGKY equations on high-order correlations with our 
findings. A summary of results is contained in § 6. 

We use value H0 = 50 km s_1 Mpc-1 for the Hubble con- 
stant throughout this paper. 

2. DARK MATTER IN SPIRAL GALAXIES 

In normal spiral galaxies the optical disk radius, Ropt, is both 
the length scale of their luminous mass distribution (Ropt is ~ 3 
times the scale of the exponential light distribution, see 
Freeman 1970 and van der Kruit 1987) and a very inner radius 
where DM affects strongly and systematically the observed 
dynamics (Rubin et al. 1985; Persic & Salucci 1988, and 1991). 
For this reason Ropi is the appropriate reference radius suitable 
for studying the statistical properties of DM in the same disk 
region for all galaxies. 

Let us define J^pt = F(Ropt) as the value of the observed 
velocity at Ropt, and VKopt as the halo component of Vopt ; let us 
also define Mdisk and Mhalo as the disk and halo masses inside 

^halo 
^disk 4" Mfaio 

(2.1) 

I^opt is obtained from the observed velocity if the disk-to-halo 
mass ratio is known. For normal spirals modeled as a spherical 
dark halo and an exponential thin disk of luminous matter, the 
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disk-to-total mass ratio at Ropt is 

 ^disk  
Mdisk + Mhalo 

0.8-V 
0.1V + LI ’ 

(2.2) 

where V = (d log V)/(d log R)\Rot (see Persic & Salucci 1990a). 
Let us now consider the concfition of centrifugal equilibrium 

for the halo at Ropt, that is, Mhalo = G~1V^pt Ropi. Then, the 
volume-averaged density of the spherical halo, phf0pi, is 

^,op. = 4x 10-27(^2gcm-3 (2.3) 

(velocities are in km s-1 and radii in kpc). Therefore, the den- 
sities of dark halos are obtained directly from the observed 
rotation curves. From the data in Table 1 we compute the 
individual values of phf0pt for the PS90 sample. Recalling that 
in a Friedmann-Robertson-Walker (FRW) universe the critical 
density is/?c = 5 x 10“3Ogcm"3, we finally obtain 

Ph,opt 
&0Pc 

1.76 ±0.12 
(2.4) 

with R0 = (8.0 ± 1.0) Mpc (see Fig. 1). 
Equation (2.4) is found in the 3-50 kpc distance range and 

allows us to estimate the background correlation function on 
these scales. Despite the remarkable similarity between equa- 
tion (2.4) and the galaxy function, £gg, a direct comparison 
between the two should be made with some caution, as the 
latter is known over a different scale range, that is, 20 kpc-20 
Mpc (Groth & Peebles 1977; Maddox et al. 1990). Therefore, 
although we can obtain a valid measure of the matter corre- 
lation function already at the optical radius of galaxies, we 

Log R0pt (kpc) 
Fig. 1.—Mean halo matter density at the optical disk radius, phtQpV as a 

function of the optical disk radius, RopV for our sample of spiral galaxies. The 
halo density is considerably higher for optically small, low-luminosity galaxies 
than for larger, brighter objects. The dashed line indicates the slope y = 1.77. 

need to sample the density-radius relation farther out in the 
halos (R Ropt) in order to extend its radial overlap with ¿gg. 

To this purpose let us define an effective halo radius, Rh, as 

TABLE 1 
The Sample of Galaxies 

M, 
Object 

(1) 
Mb 
(2) 

^opt 
(3) (4) 

disk 
Mtot 
(5) 

log Ph,opt 
(6) 

N488 .. 
N753 .. 
N1035 . 
N1085 . 
N1300 . 
N1325 . 
N1417 . 
N1421 . 
N1620 . 
N2336 . 
N2708 . 
N2715 . 
N2742 . 
N2815 . 
N2997 . 
N2998 . 
N3054 . 
N3145 . 
N3918 . 
N3200 . 
N3223 . 
N3672 . 
N3963 . 
N3992 . 
N4062 . 
N4254 . 
N4321 . 
N4565 . 
N4605 . 
N4682 . 
N4800 . 
N5033 . 
N5055 . 
N5290 . 
N5371 . 
N5383 . 
N5246 . 
N5673 . 
N5905 . 
N5908 . 
N7083 . 
N7171 . 
N7331 . 
N7351 . 
N7537 . 
N7591 . 
N7606 . 
N7631 . 
N7664 . 
N7723 . 
1467   
U807 .. 
U2259 . 
U4375 . 
U11810 
U12417 
U12810 
WR 66 

-22.52 
-22.60 
-19.69 
-22.55 
-21.47 
-20.87 
-22.28 
-20.80 
-21.90 
-22.50 
-20.60 
-21.21 
-20.54 
-22.00 
-21.19 
-22.00 
-21.63 
-22.58 
-20.60 
-22.87 
-22.64 
-21.75 
-22.37 
-21.70 
-19.50 
-21.51 
-21.53 
-23.20 
-18.59 
-20.85 
-20.00 
-21.30 
-21.55 
-21.51 
-22.60 
-22.50 
-21.24 
-20.50 
-21.84 
-22.00 
-22.40 
-21.25 
-22.40 
-21.14 
-21.23 
-21.21 
-22.54 
-21.17 
-21.60 
-21.57 
-20.55 
-21.80 
-17.50 
-20.02 
-21.10 
-20.05 
-22.40 
-20.77 

33.3 
20.8 

7.4 
32.0 
20.8 
18.2 
25.6 
26.6 
28.5 
50.6 
13.8 
28.5 
12.2 
29.4 
21.1 
26.6 
17.3 
35.8 
13.8 
47.4 
37.1 
19.8 
23.7 
28.2 
13.1 
14.1 
22.1 
42.2 

3.2 
15.4 
4.2 

38.4 
18.9 
17.6 
32.6 
19.2 
20.2 
11.2 
52.8 
29.8 
38.4 
23.7 
33.9 
12.2 
11.8 
20.5 
26.6 
17.9 
11.2 
15.4 
15.0 
37.1 

5.1 
10.6 
28.2 
11.2 
35.8 
25.6 

379 
209 
138 
310 
200 
209 
308 
225 
265 
252 
283 
177 
190 
286 
160 
214 
239 
276 
158 
288 
255 
190 
177 
277 
201 
204 
227 
254 
95 
179 
165 
219 
200 
220 
240 
209 
157 
125 
250 
350 
223 
227 
226 
180 
137 
195 
257 
208 
183 
209 
143 
211 

89 
189 
182 
165 
225 
171 

0.52 
0.66 
0.31 
0.70 
0.71 
0.27 
0.50 
0.30 
0.36 
0.69 
0.21 
0.34 
0.34 
0.65 
0.71 
0.58 
0.50 
0.64 
0.56 
0.58 
0.69 
0.65 
0.69 
0.61 
0.21 
0.45 
0.50 
0.71 
0.08 
0.49 
0.56 
0.59 
0.71 
0.62 
0.67 
0.77 
0.71 
0.50 
0.58 
0.68 
0.67 
0.58 
0.66 
0.71 
0.72 
0.71 
0.84 
0.47 
0.71 
0.71 
0.51 
0.71 
0.23 
0.57 
0.58 
0.14 
0.62 
0.62 

-24.51 
-24.77 
-23.92 
-24.86 
-24.88 
-24.32 
-24.45 
-24.61 
-24.56 
-25.41 
-23.78 
-24.89 
-24.10 
-24.78 
-25.09 
-24.86 
-24.32 
-24.97 
-24.53 
-25.12 
-25.14 
-24.80 
-25.07 
-24.73 
-24.04 
-24.24 
-24.58 
-25.29 
-23.39 
-24.47 
-23.48 
-25.17 
-24.80 
-24.53 
-25.06 
-24.88 
-25.07 
-24.50 
-25.33 
-24.65 
-25.26 
-24.72 
-25.12 
-24.51 
-24.72 
-24.89 
-25.13 
-24.45 
-24.42 
-24.58 
-24.66 
-25.34 
-23.94 
-24.16 
-25.06 
-24.02 
-25.13 
-25.08 

Notes.—Reported are: Col. (1): name; Col. (2): absolute blue magni- 
tude; Col. (3): optical disk radius (kpc); Col. (4): observed rotation 
velocity (km s_1) at Ropt; Col. (5): disk-to-total mass ratio at Ropt; Col. 
(6): mean halo density (g cm-3) within Ropt. Further details on this 
sample may be found in Persic & Salucci (1990b). 
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Fig. 2.—Mean halo matter density, ph, as a function of the effective halo 
radius, Rh (see text), for the same sample as in Fig. 1. The three triangles 
represent the galaxies NGC 4605, UGC 2259, and UGC 12417, which are not 
considered in the moment analysis as they fall in a noncontiguous and insuffi- 
ciently populated radial bin. In spite of their exclusion from further analyses, 
the three points fit nicely on the extrapolation of the density-radius correlation 
to small radii. The dashed line indicates the slope y = 1.77. 

the radius encompassing an amount of DM r¡ times greater 
than Mdisk. Consequently the mean halo density at Rh is ph = 
^Mdisk/[(4/3)7rR|]. Observed rotation curves are nearly flat for 
R>Ropt, with a value ^Vopt (e.g., Bosma 1981; Begeman 
1988). Accordingly, the condition for centrifugal equilibrium at 
Rhreads 

ph = 4 x Kr27^^ g cm"3 (2.5) 

(same units as in eq. [2.3]). The effective halo radius, Rh 
appearing in equation (2.5), is not directly observable. It is, 
however, related to the observable quantities Ropt and V 
through the relation 

Rh = ^opt(0.7 - 0.9V) . (2.6) 

Taking rj = 10 (Dekel & Rees 1987; Blumenthal et al. 1984), 
from the data in Table 1 and equations (2.5) and (2.6) we obtain 

with R0 = (10.0 ± 2.5) Mpc (see Fig. 2). This implies that the 
background two-point correlation function, Çbb, is proportion- 
al to the galaxy function, oc <i;gg oc r-1 77, in the distance 
range 3-350 kpc (see next section). Different choices for rj 
reflect very mildly on R0, according to R0 ccrj(y~2)ly (this is 
readily seen from eq. [2.7], recalling that Rhccrj and phozrj~2 

from eqs. [2.6] and [2.5] above). Also, no variation of the value 
of y is induced by different values of as long as the latter is 
chosen to be uncorrelated with luminosity. 

TABLE 2 
Moments of Halo Mass Distribution 

<M)fc 

Bin limits (kpc) Mk Rlk R3 k Æ4 k Rs k Galaxies per bin 
(1) (2) (3) (4) (5) (6) (7) 

20- 40   46400 1.14 1.48 2.09 3.14 4 
40- 70  10100 1.21 1.63 2.35 3.52 5 
70-120  4350 1.17 1.57 2.36 3.84 14 

120-200  1820 1.21 1.77 3.04 5.79 18 
200-350  808 1.13 1.41 1.95 2.92 14 

Notes.—Moments of the halo mass distribution in the various radial bins. 
Adimensional quantities Rn k are defined according to eq. (4.8). Col. (1): radial 
interval of bin; Col. (2): bin-averaged density (MyjMki Cols. (3-6): Rlk, R3 k, 

fc, and Rs k, respectively; Col. (7): number of galaxies per bin. 

In addition to the densities and effective radii shown in 
Figure 2, we compute other parameters for the extended halos 
of the PS90 sample. These include the moments of the mass 
distribution (see Table 2), which will be used in § 3 and § 4 to 
work out the galaxy-background correlation functions. 

3. TWO-POINT FUNCTION ANALYSIS 

We consider the galaxy-background correlation function 
£gb(r). The expected amount of matter within a sphere of radius 
R centered on a galaxy (e.g., Peebles 1986) is 

<M>* = pVR + p4n r2 <fr£gb(r) (3.1) 

[VR = (4/3)7tR3, while p = pc£l0 is the average matter density]. 
Assuming 

tgb(r) = (r0/r)y 

(r0 being the correlation length), in the large-clustering (i.e., 
R r0) regime, from equation (3.1) we get 

= K, itb(R), (3.2) 
mr 

with Mr = pVR and = 3/(3 — y) . 
If R is interpreted as the halo radius, then by comparing 

equation (3.2) and equations (2.4) and (2.7), we get 

R0 = K\/yr0 . (3.3) 

Then we can obtain Çgh by studying ph = M/VR as a function of 
the halo size R for each individual galaxy (see Figs. 1 and 2), 
according to the procedure outlined in § 2. However, the 
upcoming analyses of higher order correlations (see § 4) require 
the use of the moment method rather than linear regression. 
To this purpose we collect the sample galaxies into five bins, 
each having the same logarithmic amplitude, k = 1.74, and a 
characteristic radius, rk = 17.0k; kpc, which coincides with the 
logarithmic center of the bin itself (see Table 2). Averaging 
equation (3.2) over each bin, we obtain 

= (rk'""X tgb(r)prdr , (3.4) 
H Jfkftnin 

where pr is a weight function such that ir£;™n
xPrdr = 1. Taking 

pr oc ra, we get 

log '^ri = y’ r°’ ^ (3-5) Mk 
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TABLE 3 
Galaxy-Background Two-Point 

Correlation Function 

a r 0(Mpc) y 
(1) (2) (3) 

1   6.28 ± 0.58 1.71 ± 0.03 
2   6.44 ±0.60 1.71 ±0.03 
3   6.59 ±0.62 1.71 ±0.03 

Notes.—Parameters (logarithmic slope 
y and clustering length r0) of the galaxy- 
background two-point correlation func- 
tion. Col. (1): logarithmic slope of 
power-law weight function; Col. (2) value 
of r0 and relative error; Col. (3): value of y 
and relative error. 

where 

0(a, y, r0, k) = y log —+ log Kt rk 

+ log 
Ka+i~y - 1 

Ka+1 - 1 
- log 

a + 1 — y 
a + 1 

. (3.6) 

The values of r0 and y are found by minimizing the quantity 

s = y Q>(cc, y, r0, k) T 
a À [log (<M)k/Mfc) J ‘ 

(3.7) 

We remark that, quite differently from usual correlation 
analysis of galaxy samples, values relative to different bins are 
built from different objects, hence are statistically independent. 

Best-fit values of r0 and y and standard deviations (for 
r¡ = 10 and Q0 = 1) are reported in Table 3 for different values 
of a. We find y = 1.71 ± 0.03 independent of a, and r0 ^ 
(6.5 ± 0.6) Mpc only slightly dependent on a. The same 
analysis at Ropt gives very similar results: y = 1.72 ± 0.03 and 
r0 ^ (6.4 ± 0.4) Mpc. 

A comparison between our results on £gb and current results 
on the two-point galaxy function shows that both functions 
are well modeled by power laws having virtually equal slopes 
(y = 1.77 ± 0.04 in the case of galaxies; see Pebbles 1980). On 
the other hand, the galaxy-galaxy correlation length, r0 gg, is 
estimated to be r0 gg ^ 10 Mpc (Peebles 1980; Geller 1987; and 
references therein); therefore it is somewhat greater than the 
value we find. Thus, our result implies that on scales 3-350 kpc 
the matter distribution follows the light distribution, possibly 
except for a moderate bias factor. 

4. THE MOMENT METHOD : «-POINT FUNCTION ANALYSIS 

It is well known that a Gaussian distribution of density 
fluctuations originates clustering with vanishing «-point func- 
tions (« > 2). Detection of «-point functions (« > 2) therefore 
indicates non-Gaussian statistics. This is expected on various 
grounds. Even starting with a primeval Gaussian distribution 
(according to canonical inflationary scenarios), subsequent 
evolution of fluctuations can give rise to non-Gaussianity. For 
instance, Fry (1984b) shows that, even in the linear regime, 
self-gravity generates non-Gaussianity. The form he finds for 
the three-point connected function, at the lowest order in per- 
turbative theory, is 

ra, ''a) = ßK(2ViK(2,(r2) 

+ eW2\r3) + eHr2)e}(r3n . (4.1) 

Here Q depends in general on the shape of the triangle con- 
necting the three points, but not on the size of the triangle itself 
(similar expressions for connected «-point functions are also 
obtained by Fry). 

The hierarchical model for «-point functions has similar 
expressions, in which the «-point correlation function is 
expressed as a combination of products of « — 1 two-point 
functions, 

xn)= £ Qnia X Infe, (4.2) 
/i-treesa labelings edges 

but with constant coefficients (e.g., Fry 1984b). In equation 
(4.2) distinct trees (labeled with a = 1, ..., in) have in general 
different coefficients Qa, but configurations differing only in the 
interchange of labels 1,..., « all have same Qa; ÁB is a single 
index identifying links between vertices. The rather cumber- 
some expression for the number of trees tn with « vertices is a 
standard result of combinatorial analysis (Riordan 1958; see 
also Table 1 of Fry 1984b); the total number of labeled trees is 
«"“2 (see eqs. [Al], [A7], [All], and [A14] for « values up to 
6). For « = 3, equation (4.2) gives an expression like (4.1), but 
with constant Q. Similar relations can be found at higher 
values of «. 

From a theoretical point of view, equation (4.2) is a direct 
output of scale-invariant clustering models (Balian & Schaeffer 
1989a, b) and, in the nonlinear clustering regime, is found to be 
consistent with numerical codes (e.g., Davis et al. 1985; Efsta- 
thiou et al. 1988; Valdarnini & Borgani 1990). 

Equation (4.2) arises in a natural way also from the solution 
of the BBGKY equations in the fully relaxed regime (^ ^> 1 ; 
e.g., Davis & Peebles 1977; Peebles 1980). The BBGKY solu- 
tions provide recurrence relations among different-order Qn Js 
whose details depend on the assumptions required to solve the 
BBGKY hierarchy. For example, Fry (1984a) argued that all 
the trees in equation (4.2) have equal amplitudes, 

Qn,a = Qn = 
/4ßV-2_«_ 
V « / 2« - 2 ' 

(4.3) 

Hamilton (1988), on the contrary, argues that equation (4.2) 
can be taken as a solution of the BBGKY hierarchy when only 
contributions from snake graphs are considered, so that 

Cu, snake = Ô” 2 > 6«, non-snake = ^ • (4.4) 

As we will show in § 5, our results allow a direct comparison 
between Fry’s and Hamilton’s realizations of the BBGKY hier- 
archy. 

Let us also outline that, in the frame of biased theories of 
galaxy origin, different expressions are expected to hold for the 
«-point functions. Assuming Gaussian background fluctua- 
tions and identifying observable objects with exceptionally 
high-density peaks, the Kirchwood superposition holds (see 
Borgani & Bonometto 1990). Accordingly, the three-point 
function is 

Cliiri, r2, r3) = ÔK(2,(r,)£<2,(r2) + £(2)(ri)<f2)(r3) 

+ èi2W2\r3) + £<2)(r 1 )ÿ2)(r2)^{2\r3)] , (4.5) 

with ß = l (Jensen & Szalay 1986). 
In this section we test the hierarchical expression (4.2) for the 

«-point correlation functions, up to « = 6, from the DM dis- 
tribution around spiral galaxies, and deduce the numerical 
value for suitable combinations of the coefficients Qn a by 
means of the moment method (see Appendix). 
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Let us consider the joint expected mass value in n infinitesi- 
mal volume elements <51^,..., <51^, at distances rl9 ...,rn from 
the center of a galaxy. This can be written as 

{ÔM1...ÔMny=pnÔV1...ÔVnll + Ö...J > (4.6) 

where £distoi.../i by definition the disconnected correlation 
function between a galaxy (chosen as the origin of the axes and 
labeled with zero in the following) and n points lying in the 
background. The disconnected function contains all the lower 
order correlation terms that yield the (n — m)-point function, 
when m points are removed, and the connected terms that 
vanish when one point is sufficiently far away. 

Integrating n times over a sphere of radius R centered on the 
galaxy, we obtain 

(M")* = p" ... ÍR¿F„(1 + • (4-7) 
Jo Jo 

We average equation (4.7) over each radial bin and obtain the 
quantities <Mn)fc, which generalize the quantity <M)fc, defined 
in equation (3.4), to higher correlation order. Due to the large- 
clustering (e.g., > 1) regime, in what follows we neglect in 
equation (4.7) the nonleading contributions from the discon- 
nected terms in We stress that equation (4.7) expresses the 
n-point correlation functions in terms of the observed mass 
moments reported in Table 2. 

A priori, the hierarchical model leads us to expect that 

Rn k = 
<Mn)k 

<m>2 
jrnn

n-2Qn,a, (4.8) 

where are geometrical factors and nn~2 is the total 
numbers of graphs of order n. The ratio appearing in equation 
(4.8) does in general depend on the bin index, /c, while the 
right-hand side is strictly constant only in the framework of the 
hierarchical model. On the other hand. Figure 1 shows that the 
scatter of masses around <M)fc in each radial bin is small, so 
the adimensional quantities Rn k are roughly constant (see 
Table 2). This result is in accordance with the hierarchical 
model expectations, but is in strong disagreement with the 
Kirchwood model, which implies instead a significative depen- 
dence on the label k in the right-hand side of equation (4.8). We 
can therefore conclude that our data on the DM clustering 
around galaxies are consistent with the hierarchical model. 

Following the procedure outlined in the Appendix, we work 
out suitable combinations of the hierarchical coefficients (up to 
the sixth order) : 

Q = 0.43 ± 0.02 , 

Q^a + 0.36Q4 b = 0.18 ± 0.02 , 

Qs,a + 11.43ß5,* + 9.9005,c = 0.67 ± 0.11 , 

Q6,a + 18.06ß6,b + 13.39ß6,c + 49.50ß6,d 

+ 43.59ß6,7+ 52.04ß6,/ = 0.44 ± 0.12 . (4.9) 

The signals for the n-point correlations reported in equations 
(4.9) refer to the halo radius, Rh. We find that at the optical 
radius, Ropt, the signals of the three- and four-point functions 
are 0.46 ± 0.05 and 0.27 ± 0.09, respectively (the coefficients in 
the combinations are virtually the same), while no significant 
signal is found for the five- and six-point functions (cf. the 
higher scatter in Fig. 1 than in Fig. 2). In equation (4.9) no 
distinction is made between the terms, entering in which 

come from galaxy-background and purely background corre- 
lations, respectively. 

5. DISCUSSION 

The range of scales considered in this paper has been partly 
sampled by studying galaxy correlations at short distances. 
Groth & Peebles (1977) extended the canonical behavior 
£gg(r)== (lOA*)1'77 °f the two-point function, deduced from the 
Lick catalog, down to 20 kpc. Gott & Turner (1979) and Lake 
& Tremaine (1980) claimed the canonical form to hold down to 
~6 kpc. (Three-dimensional data [Einasto, Klypin, & Saar 
1986; de Lapparent, Geller, & Huchra 1987] do not pertain to 
the relevant scale range). In this paper we measure the corre- 
lation function down to 3 kpc directly from the statistical 
properties of the halo mass excess in galaxies, and find that the 
canonical behavior extends to such small scales. 

A comparison between our results on the two-point galaxy- 
background correlation functions and the ones on the corre- 
sponding galaxy-galaxy function shows that the two functions 
have strikingly similar slopes. However, if Q0 = 1, the respec- 
tive clustering lengths are different, being r0 gg. If this is the 
case, the lower value of r0 gb suggests a bias in the distribution 
of galaxies. By comparing r0 gg ^ 10 Mpc and r0 gb ^ 6.5Qq 1/7 

Mpc, we see that 

b = ^= (^V ^ 2.2i20 , (5.1) 
T>gb \^*0,gb/ 

with a ~20% uncertainty. The above value of the biasing 
parameter b is consistent with Dekel & Rees’s (1987) expecta- 
tion, based on very different grounds, that b ~ 2-3. We empha- 
size that equation (5.1) is the first direct estimate of the biasing 
parameter b on the scale of galaxies (see also Bonometto et al. 
1990), and is uniquely related to our capability of investigating 
the background (dark) matter statistics. 

Any biasing in the distribution of galaxies requires a re- 
scaling of the actual values of our n-point galaxy-background 
functions by a factor b"-1 in order to obtain the corresponding 
values for the galaxy case. However, due to the very structure 
of the hierarchical pattern, the coefficients appearing in equa- 
tion (4.2) are left unchanged by the presence of bias when going 
from galaxy-background to purely galaxy statistics. Therefore, 
our outputs on the hierarchical coefficients for higher-order 
functions can be directly compared with published results 
coming from number counts, which are hereby briefly sum- 
marized. 

1. Three-point function.—A value ß ~ 1 is usually preferred, 
but values in the range 0.7 < ß < 1.3 have been suggested (Fry 
1984b; Peebles & Groth 1975; Groth & Peebles 1977; Sharp et 
al. 1984; Peebles 1980, and references therein). 

2. Four-point function.—The determinarton of Ra and Rb 
was first obtained by Fry & Peebles (1978) on the basis of 
the two-dimensional Lick sample (Seldner et al. 1977). They 
found Ra + %Rb = 3.8 ± 1.2, or, after smoothing the data, Ra 
+ %Rb = 6.4 ± 0.6. However, an independent analysis of the 
Zwicky sample gives Ra + ^Rb = 0.8 ± 0.6 (Sharp et al. 1984). 

3. Higher order functions.—Signals for higher order (up to 
n = 8) functions were recently reported by Szapudi, Szalay, & 
Boschan (1989) from the analysis of the Lick catalog (Shane & 
Wirtanen 1967). Those authors found an acceptable agreement 
with the hierarchical pattern. 

We consider purely background functions. By analogy with 
equation (5.1), the background and galaxy-background two- 
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TABLE 4 
Combinations of Hierarchical Coefficients 

Correlation Order 4th 5th 6th 

Observations   0.175 ± 0.015 0.675 ± 0.107 0.44 ± 0.12 
Fry   0.167 ± 0.015 0.567 ± 0.081 0.70 ± 0.13 
Hamilton   0.123 ± 0.011 0.787 + 0.110 1.49 + 0.28 

Notes.—The values (4.9) for suitable combinations of hierarchical coeffi- 
cients Qn a, up to n = 6, obtained from data, are compared to the predictions 
of Fry’s (1984) and Hamilton’s (1988) solutions of the BBGKY equation, given 
by eqs. (4.3) and (4.4), respectively. 

point functions are related by £gb = b<*bb. Consequently, the 
clustering length of the DM distribution, r0 bb, turns out to be 

r0,bb = fc'^Vgb = (4.2 ± 0.7) Qo 1/7 Mpc . (5.2) 

For Q0 = 1 this is about one-half the value of the clustering 
length of galaxies. We similarly link our n-point (one galaxy 
and n — 1 background points) function to its background 
counterpart (i.e., n background points). Assuming the hierar- 
chical pattern to strictly hold only for the background func- 
tions, we find the following signals for the three- and four-point 
functions : 

Qib) = 0.90 ±0.15 

R(b) + 0.35R(b) = 0.77 ± 0.25 (5.3) 

(due to the structure of the hierarchical pattern, the coefficients 
appearing in eq. [4.2] are affected by the presence of bias only 
when going from galaxy-background to purely background 
statistics). We find no statistically significant signals for the 
five- and six-point functions. 

Finally, the detected signals for higher order functions allow 
a comparison with Fry’s (1982, 1984a) and Hamilton’s (1988) 
hierarchical solutions of the BBGKY equations, that are 
expressed by equations (4.3) and (4.4), respectively. The results 
of this comparison are summarized in Table 4, where we report 
the observational values for the combinations of hierarchical 
coefficients evaluated at Rh (see eq. [4.9]), together with Fry’s 
and Hamilton’s respective predictions (no significant compari- 
son is allowed by the data at Ropt). Fry’s solution appears here 
in significantly better agreement with our results, as it predicts 
values of those combinations remarkably well up to the fifth 
order, and still within ~ 1.5 er for the sixth order. In the case of 
purely background functions, however, we cannot discriminate 
between Fry’s and Hamilton’s solutions. In fact, at the fourth 
order both solutions overlap with our signal. 

Comparing our higher order results with the BBGKY pre- 
dictions is particularly relevant in that the BBGKY equation 
predicts a hierarchical pattern for higher order correlations 
only in the statistical equilibrium limit (e.g., Davis & Peebles 
1977). Statistical equilibrium is in fact expected on the scale of 
galaxies, where gravitational relaxation processes have already 
taken place, while it is hardly expected on the much larger 
scales of galaxy clustering. 

We conclude by pointing out that the PS90 sample, upon 
which the analysis presented in this paper is based, does not 
involve any obvious bias other than the requirement that its 
galaxies should have good quality photometric and kinematic 
data, to ensure a reliable determination of both the luminous 
and the total mass distributions. Any possible error coming 
from inaccuracies in the rotation curve data and data analysis 
is not included in the formal errors quoted through the paper. 

6. CONCLUSION 

In this and in our previous paper (Bonometto et al. 1990) we 
present the first direct study of the correlation properties of 
(dark) matter on galaxy scales. Our procedure, which is based 
on the properties of dark halos deduced from the rotation 
curves of spiral galaxies, allows us to investigate the galaxy- 
background correlation function with an accuracy compara- 
ble, even for a rather limited sample of galaxies, to that 
achieved by the usual galaxy number-counts correlation 
analysis applied to large samples. In fact, computing the 
density of one halo is effectively analogous to counting all the 
objects within a given distance of a galaxy center; in addition, 
there is no intersection among the information coming from 
individual galaxies. 

The two-point galaxy-background correlation function we 
obtain is a power law with same slope as the two-point galaxy 
function. A discrepancy between the respective clustering 
lengths might be indicative of bias. If such is the case, a biasing 
parameter b ^ 2.2Q0 connects the galaxy and background dis- 
tributions. The range of scales we sample overlaps widely with 
the range sampled through galaxy counts, our data extending 
to yet smaller scales. We find that at such small scales, ¿(r) lies 
on the extrapolation from its known behavior at larger scales. 
This seems to indicate that the fluctuation spectrum has the 
same slope on scales ranging from ~ 20 Mpc down to ~ 3 kpc, 
despite the expectation that nonlinear evolution and virializa- 
tion of primeval structure may have modified the (original) 
fluctuation spectrum on galaxy scales. 

As for higher-order correlations, a significant point is that 
the hierarchical pattern is allowed by observational data up to 
the sixth order. We also obtain suitable combinations of the 
hierarchical coefficients Qn a. 

As a concluding remark, our approach to the study of matter 
statistics involves a different physical basis as compared to 
usual analyses of galaxy clustering. The crucial feature that 
allows us to link rotation curves and background (dark) matter 
distribution is our capability of extracting the DM content of 
spiral galaxies by decomposing the observed rotation curves 
into their (luminous) disk and dark (halo) components. In our 
opinion, our results highlight a deep underlying connection 
between internal structure and large-scale distribution of gal- 
axies. 

We thank an anonymous referee for insightful and stimu- 
lating comments which helped us to improve considerably the 
presentation of this work. 

APPENDIX 

In this Appendix we work out the values of (suitable combinations of) the hierarchical coefficients introduced in equation (4.2) by 
means of the moment method (see eqs. [4.7], [4.8], and [4.9]). 
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1. ANALYSIS OF THE THREE-POINT FUNCTION 

At the third-order correlation analysis, the hierarchical expression (4.2) contains summations over only one tree and three total 
terms. Thus 

¿CHI — ß(£oi £o2 + íioíll + Í20 £21) ? (Al) 

with obvious meaning of the two-point functions’ indices. Inserting equation (Al) into equation (4.7) and also taking into account 
the disconnected terms, it is easy to show that 

<M2) 
J'R ÇR 

ÔV, 
0 Jo 

öv2ii + £ri + ¿r2 + £ri2 + ß(£ri £r2 + £ri ¿ri2 + ¿r2 £rj] 

where r12 = \ rx — r2l On the other hand, 

<M> 
J'R pR 

ÔV, 
0 Jo 

By averaging equations (A2) and (A3) over the k-th bin, and including only terms (in the £ > 1 regime), we get 

K, 
R2,k = (Q + 2Q^i 

(A2) 

(A3) 

(A4) 

(A5) 

(here R2 k is defined according to eq. [4.8], taken for n = 2). The quantity K2 is 

while K± has been already introduced in § 3. The multiple integral in equation (A5) can be evaluated numerically, and the value it 
takes for y = 1.71 is reported in Table 5. The fit to equation (A4) with the observational R2 k values gives 

Q = 0.43 ± 0.02 . (A6) 

This value is in very good agreement with the one deduced by Bonometto et al. (1990), but with a smaller statistical error (the error 
in eq. [A6] corresponds to one formal standard deviation), thanks to the improved statistics of the enlarged PS90 sample. 

2. ANALYSIS OF THE FOUR-POINT FUNCTION 

In this case, the hierarchical pattern (4.2) provides summations over two different trees, corresponding to two different amplitudes 
Ra = 63,2 and Rb = 63,1’ and 16 total terms. Then, 

£>723 = Raííoi £2 £3 + ' • ' (12 H terms)] + Rbtt01102 <£3 + ' ' ' (4 K terms)] . (A7) 

By averaging equation (4.7) over the fcth bin, for n = 3 we deduce 

*3» - 
*3,* = + ft) + K>(i + 3 ff)_ • (A8) 

The constants K3a and K3b come from the triple three-dimensional integration in equation (4.7). Their full expressions are: 

3' 

K*h = 

I d3Xi d3x2 d3x3(x1x12 
) Jo Jo Jo 

*1 ri ri 
d3x1 d3x2 d3x3(x1x12 

o Jo Jo 
LY 4nJ 

X23) 7 

X13)"V (A9) 

and their numerical values are reported in Table 5. 
Substituting the observational values of R3 in equation (A8) allows us to obtain the value of a suitable combination ofRfl and 

Rb. We find 

Ra + 0.356R* = 0.175 ± 0.015 , (A10) 

in good agreement with our earlier result (see Bonometto et al. 1990), but with a consistently smaller error. 

3. ANALYSIS OF THE FIVE-POINT FUNCTION 

For n = 5, equation (4.2) gets rather cumbersome. By using the helpful graph technique (see also Fry 1984b), the contributions 
from the three different trees and 125 total terms can be written as 

£o5)..4 — Gs.iKoi ¿02 ¿03 ¿04 + ’ ’ * (5 terms)] 

+ 05,2[¿01 ¿12 ¿23 ¿24 + • ‘ * (60 X terms)] 

+ 05,3[¿oi ¿12 ¿23 ¿34 + * • * (60 2 terms)] . (All) 
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TABLE 5 
Hierarchical Coefficients of Higher Order Functions 

Coefficient Value 

Kl = (in) j d3X‘ j d3xl(X\Xl2)~y 

K3(, = (^) J dix¡ J dix2 J à3x3(x1x12x 

= J J d3x2 J </3x3(x,x12x 

K40 = (it) J d3jci • J d3xi(xlx12x13x1 

J - | á3x4(x1x12x1 

Kid = (¿) 0 
d3Xi ' ■ ■ J d*X¿Xl X12x: 

^5. = ^^ J d3x5(xlxl2x13xlixi 

K5J = (^) J d3xi ...^d3xi{xixl2xi 

K5/ = (ït) J d3;,ci - J ^Xsix^^x^x^x. 

K5, = (J^j J á3xi J d3x5(x1x12x. 

K¡h=(j~j J <í3xl-- | ¿3x
5(xlxl2

x13x34x, 

^5¡ = (¿) J* á3xj - J d3x5(xlx12x 

r1 

*12 *23 *24.) V 

3 *34) 7 

-y 

5)- 

2*23 *24 *25) 

2*13*14*45)“ 

*34*35) 

2 *23 *24*25) 

45) 

23 *34*35) 

45) 

23 *34*45) 

= 1.326 

= 4.531 

= 8.992 

= 9.696 

= 18.410 

= 15.836 

= 16.762 

= 11.358 

= 38.245 

= 30.441 

= 34.691 

= 31.684 

= 28.883 

= 30.723 

= 27.800 

= 30.328 

= 27.204 

Notes.—Coefficients entering the combinations (A 10), (A 13), and (A 16) of hierar- 
chical amplitudes. They have been evaluated, for y = 1.71, by means of a Monte Carlo 
multiple integration. 

27 

In the right-hand side of equation (All) the first contribution comes from star graphs, while the last one comes from snake graphs. 
The middle term takes into account the presence of one differently rooted tree. In this case, too, we substitute equation (All) in 
equation (4.7) and obtain the fourth moment of the mass distribution : 

R 4,k — + 1205,2 + 12Q 5,3 + 2 
K 3a + 2 ; K 4d 

Ki K\ )_ 
(A 12) 

The four K4 quantities come from the quadruple volume integration occurring in the computation of <M4)fc. Their full expressions 
and numerical values are reported in Table 5. Following the same pattern as in the previous subsections, we compare equation (A 12) 
with observational data. In this case the combination of the Ö5’s reads 

Q5>1 + 11.43Q5<2 + 9.90ß5i3 = 0.675 ± 0.107 . (A13) 

Equation (A 13) is relevant because it represents one of the very first pieces of information on fifth-order correlation. Inded, there is 
strong evidence for the hierarchical pattern to hold up to the fifth order, with a ~ 6 signal. 
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4. ANALYSIS OF THE SIX-POINT FUNCTION 

The growth of the number of terms to be added in equation (4.2) leads us to consider, for n = 6, contributions from six different 
trees and 1296 total terms. Then, the expression of the six-point correlation function is 

£o5)..5 = öö.iKoi £02 £o3 ¿04^05 + ’ ’ ’ (6 terms)] 

+ 06,2Koi *9 12 É23 Í24É25 + ' ' ' (120 £ terms)] 

+ Qö.sKoi *9 12 Í13 Í34Í35 + ‘ ‘ ' (90 i*i terms)] 

+ ÔS^KOI *9 12 Í23 Í24Í45 + ‘ ‘ ' (360 ^ terms)] 

+ ôe.sKoi ¿12^23 ¿34 íss + ' ' ' (360 terms)] 

+ Ô6,6Koi ¿12 ¿23 ¿34 ¿45 + ‘ ' (360 terms)] . (A14) 

Due to the complexity of this expression, the form of the fifth moment of the mass distribution looks rather unpleasant. In fact, 

R5,k = 06,1 1 + 5 Kso 
K[ 

+ 20Q6 
El 
Kf 

^4q , Ell j. 2 El£ 
Kt + K* K* + 3006,^ 

'K2
2 „ KSe K 

+ 60Q6^Kt + 2Kt+2KÏ + lt r) 

+ 60ß 6,5 
K, 
Ki Kl 

Em 
Kl 

K 

Kl + T*? + 2 Íft) + + ^ + ff ! ■ <A>5) 

Expressions and numerical values of the Ks coefficients are given in Table 5. 
By fitting the data on central moments to equation (A 15), we get 

ß6>1 + 18.06ß6 2 + 13.79ß6,3 + 49.50ß6,4 + 47.96ß6,5 + 43.5906,6 = 0.44 ± 0.12 . (A16) 

Similarly to equation (A 13), equation (A 16) is important in view of the paucity of data on sixth-order correlation. In this case, again, 
the hierarchical pattern shows up with a 4 a signal. 
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