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ABSTRACT 
We present the first results of a series of investigations aimed at exploring the systematics of the gravity- 

mode period structure of models of pulsating DA white dwarfs in the adiabatic approximation. In this first 
paper, we consider the basic issue of the region of period formation in a degenerate star. This is motivated by 
a paper by Pesnell which challenges the usually accepted concept of envelope modes for white dwarfs. It is 
essential here to treat carefully the Brunt-Väisälä frequency, which is the oscillation frequency of fluid ele- 
ments when buoyancy is the restoring force. We show that it must be appropriately transformed in order to 
obtain reliable numerical results in degenerate stellar models. This is because the Brunt-Väisälä frequency is 
defined in terms of a difference between two numbers which become nearly equal in highly degenerate matter, 
thus causing serious numerical problems and systematic errors. We derive an alternative expression which is 
generally valid for multicomponent, nonideal, partially degenerate, and partially ionized plasmas such as those 
encountered in white dwarf envelopes. We use this expression to compute the period structure of the same 
white dwarf considered by Pesnell. For one particular model he investigated we find a period and a weight 
function distribution that are quite different from his results. However, in a numerical experiment based on 
the usual relation for the Brunt-Väisälä frequency (which leads to unreliable values in degenerate matter), we 
recover exactly the results of Pesnell. We conclude that the implicit numerical differencing used in the 
Lagrangian pulsation code of Pesnell leads to very serious difficulties when used with models of degenerate 
stars, and reaffirm the correctness of the fundamental result of other investigations : gravity-mode pulsations in 
white dwarfs are truly envelope modes. The implications of our findings on the work of Cox et al, based on 
the same Lagrangian approach, are also discussed. We find that the basic period structure of all their models 
suffers from obvious symptoms of theory breakdown; this implies that their nonadiabatic results must be 
regarded as questionable. 
Subject headings: stars: interiors — stars: pulsation — stars: white dwarfs 

I. INTRODUCTION 

It is now well established that ordinary DA white dwarfs 
(i.e., stars with an almost pure hydrogen surface composition) 
go through an instability strip during their cooling history. The 
instabilities manifest themselves in terms of multiperiodic 
luminosity variations which result from the superposition of 
excited nonradial pulsation modes of the g (gravity) type. 
Typical light curves of pulsating DA white dwarfs (also known 
as ZZ Ceti stars) show peak-to-peak variations ranging from 
~ 0.005 mag to upward of 0.30 mag. The periods of the 
observed pulsation modes range between 100 and 1200 s. 
Although more than a dozen different pulsation modes are 
simultaneously observed in the more complex ZZ Ceti pulsa- 
tors, it is clear that these modes are selectively chosen by a 
filtering mechanism because the nonradial g-mode spectra of 
DA white dwarfs are very rich and many more modes are 
available. Recent analyzes locate the empirical ZZ Ceti insta- 
bility strip in the range of effective temperature 13,000 K > 
Te> 11,400 K (Wesemael, Lamontagne, and Fontaine 1986; 
Lamontagne, Wesemael, and Fontaine 1987; Daou et al. 1990). 
By the time a cooling DA white dwarf first enters this strip, its 
effective temperature has dropped sufficiently that hydrogen in 

the superficial layers is recombining. It is this partial ionization 
phenomenon that triggers instabilities against nonradial pulsa- 
tion modes in this type of star. Indeed, it has been shown 
independently by several groups that the pulsation modes are 
driven near the base of the thin surface convection zone which 
forms as a consequence of the partial ionization of hydrogen 
and the concomitant increase of the opacity in the outer layers 
(Winget 1981; Dziembowski and Koester 1981; Dolez and 
Vauclair 1981; Winget et al. 1982; Winget and Fontaine 1982; 
Starrfield et al. 1982; Cox et al. 1987). Hence, the blue edge of 
the ZZ Ceti instability strip can be seen as a natural conse- 
quence of the recombination of hydrogen as cooling proceeds. 

The ZZ Ceti instability strip provides us with a “ window ” 
through which we can seismologically probe the interiors of 
white dwarfs. As was well put by Winget (1986), such an 
opportunity is of intense interest because “the white dwarfs 
contain an archeological record of the history of star formation 
in our Galaxy.” For instance, the period structure of a ZZ Ceti 
star depends on its total mass, its effective temperature, and the 
masses of its outer helium and hydrogen layers which surround 
the core in a typical DA white dwarf. While the effective tem- 
perature as well as the gravity (and, thus, the mass through a 
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suitable mass-radius relationship) of a pulsating white dwarf 
can be obtained through classical model atmosphere tech- 
niques in conjunction with properly time-averaged observa- 
tions of its spectrum, inference about its chemically stratified 
structure can be made by comparing its observed periods with 
those of theoretical models. The question of how much hydro- 
gen and helium are left over in evolutionary phases prior to the 
white dwarf stage is an important one which is currently the 
subject of a lively debate (see, e.g., Fontaine and Wesemael 
1987; Shipman 1989). Likewise, it is possible to infer the core 
composition of a pulsating white dwarf through a comparison 
of measurements of rates of period change with rates predicted 
by evolution theory as a result of structural changes due to 
cooling. Other benefits of white dwarf seismology include the 
determination of rotation periods and magnetic field strengths 
through observations of frequency splittings in the Fourier 
spectrum of a pulsator. 

While our understanding of ZZ Ceti stars has improved 
tremendously in the last decade (see, for example, the reviews 
of Winget 1986, 1988; Kawaler and Hansen 1989 for recent 
developments in this field), we have not yet reached the point 
where the full potential of astroseismology can be exploited 
and the internal constitution of white dwarfs can be inferred. 
This is because the g-mode spectrum of a white dwarf is so 
dense that mode identifications in actual pulsators have 
remained ambiguous. More progress needs to be made on both 
observational and theoretical fronts. On the one hand, the 
advent of the Whole Earth Telescope (Nather 1989) promises a 
revolution of its own, delivering data of unprecedented quality 
and with a density some 10 times larger than before. On the 
other hand, progress in theory has more or less stalled since the 
successful efforts by many groups to identify the driving 
mechanism. As a matter of fact, the most detailed investigation 
remains that of Winget (1981; see also Winget et al. 1982 and 
Winget and Fontaine 1982), a nonadiabatic survey mostly 
geared toward the identification of the driving mechanism. If 
seismological tools are to be developed at their fullest for ZZ 
Ceti stars (i.e., if mode identification is to be achieved), a very 
complete and thorough investigation of the pulsation properties 
of appropriate models must be carried out. 

In this context, we have recently embarked in a series of 
investigations aimed at exploring the systematics of the 
¿/-mode period structures of models of ZZ Ceti stars. We thus 
focus, in this series, on the most fundamental aspect of white 
dwarf seismology. To carry out our program, we develop, as 
needed, new analytic and numerical tools. We also take advan- 
tage of the availability of the large grid of evolutionary equi- 
librium models computed by Tassoul, Fontaine, and Winget 
(1990) in order to explore parameter space thoroughly. We 
restrict our analysis to the adiabatic approximation because the 
period structures of the models can be most efficiently and 
quite accurately studied in that approximation. Obviously, we 
cannot say anything about the stability of a given mode in a 
particular model but, in any case, it appears that the stability 
analyses currently available are sometimes conflicting and 
inconclusive (see, e.g., Cox et al. 1987; Bradley, Winget, and 
Wood 1989; Bradley 1989; but see also below). Our strategy is 
similar to the approach successfully followed by Kawaler 
(1986) in his investigations of the properties of the pulsating 
PG 1159 stars: a thorough adiabatic survey was completed 
before investigating the problem of self-excitation of the 
various modes. We feel that, in the past, the power of the 
adiabatic approach has been somewhat overlooked for the ZZ 
Ceti stars. 

In the present paper, the first in the series, we first explore 
the fundamental issue of the region of period formation in a 
degenerate star (§ II). This is motivated by a paper by Pesnell 
(1987) which challenges the usually accepted concept of 
envelope modes for white dwarfs. To examine quantitatively 
this surprising suggestion and, more generally for our survey, 
to compute the period structure of a white dwarf model, we 
derive a numerically satisfactory expression for the Brunt- 
Väisälä frequency, a crucial property that determines the 
period spectrum for 0-modes. The expression derived in § III is 
valid for an arbitrary equation of state, and is thus applicable 
to the multicomponent, nonideal, partially degenerate, and 
partially ionized plasmas encountered in white dwarf 
envelopes. We next use (§ IV) this general expression to 
compute the period structure of the same ZZ Ceti star model 
which was used by Pesnell (1987). We then compare the results 
with those obtained in a numerical experiment which mimics 
the approach followed by that author. This comparison 
demonstrates the importance of accurate evaluation of the 
Brunt-Väisälä frequency in seismological studies. The implica- 
tions of our findings on the work of Pesnell and his collabo- 
rators, in particular the paper by Cox et al. (1987), are 
examined in the last section. We thus confirm that white dwarf 
pulsation modes are concentrated in the surface layers. This is 
the crucial factor which enables us to use the pulsations to 
probe the compositional stratification of white dwarfs 
(Brassard et al. 1989). 

II. WHAT REGIONS OF A WHITE DWARF ARE PROBED 
BY 0-MODE PULSATIONS? 

The 0-mode period structure of a stellar model is largely 
specified by the spatial distribution of the square of the Brunt- 
Väisälä frequency which is defined by 

1 dPl 
r.P dr J ’ (1) 

where g is the local gravity, r is the radial coordinate, p is the 
density, P is the pressure, and Ti is the first adiabatic exponent. 
The most basic structural feature of a white dwarf is its highly 
degenerate interior. As is well-known, this leads to a decoup- 
ling of the mechanical properties of a star (largely determined 
by the degenerate electron gas pressure) from its thermal 
properties (mostly governed by the thermodynamic behavior 
of the ions). In the narrow ZZ Ceti instability strip, one can 
thus expect that the period structure of a DA white dwarf—a 
mechanical property—does not change very much. There are 
small structural changes, however, caused by the cooling of the 
ionic plasma as the star evolves across the strip. These changes 
are extremely important since they cause a slow period evolu- 
tion and provide us with a powerful tool—through measure- 
ments of rates of period change—for inferring the core 
composition. 

The high degeneracy which characterizes the interior of a 
white dwarf also has far-reaching consequences for mode pro- 
pagation. Indeed, in a typical ZZ Ceti star, electron degeneracy 
leads to nearly isothermal and nearly isentropic stratifications 
in the core region containing more than 99% of its mass. Thus, 
because the density gradient is almost adiabatic throughout 
the interior of a white dwarf, the Brunt-Väisälä frequency (cf. 
ecl- [1]) is very small there and low-order 0-modes cannot 
propagate at large amplitudes. As a result, 0-modes are essen- 
tially envelope modes in white dwarfs, with large amplitudes 
occurring only in the nondegenerate outer layers (see Winget 
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and Fontaine 1982). One can thus expect that g-modes in white 
dwarfs are extremely sensitive to envelope properties such as 
compositional stratification and partial ionization phenomena. 

Compositional stratification is, in fact, the second structural 
feature of a white dwarf model which has strong effects on the 
period structure. Composition changes in transition zones 
produce sharp features in the profile of the Brunt-Väisälä fre- 
quency, which are responsible for the main filtering and mode 
selection capabilities of a ZZ Ceti star model. Indeed, as first 
investigated by Winget, Van Horn, and Hansen (1981), trapped 
modes result when a resonance or near-resonance occurs 
between the local g-mode radial wavelength and the thickness 
of one of the composition layers. This results in a period struc- 
ture which strongly bears the signature of compositional strati- 
fication in the outer layers. Hence, it has been widely accepted 
that white dwarf pulsations probe primarily the outer layers of 
these stars. This point of view has been borne out by detailed 
calculations carried out by several independent groups (see, 
e.g., Winget 1988 and references therein). 

A surprisingly different stance has been taken recently by 
Pesnell (1987; see also Cox et al 1987) who claims that 
¿/-modes in white dwarfs probe much deeper than previously 
thought. Although such modes have generally very small core 
amplitudes, the point is made that the only appropriate 
method to describe where the period of a mode is determined is 
to consult the weight function of the pulsation mode (this has 
been done, for example, by Kawaler, Hansen, and Winget 1985 
in their study of the pulsating PG 1159 stars). As an illustrative 
example, Pesnell (1987) shows the weight function of a particu- 
lar 0-mode (noted gj here, / = 2, k = 1) for an evolutionary DA 
white dwarf model computed by Tassoul, Fontaine, and 
Winget (1990). The model has a total mass of 0.6 M0. It has a 
C-rich core surrounded by a He-rich layer itself surrounded by 
a H-rich layer. The composition transition layers are treated 
under the assumption of diffusive equilibrium, which, for the 
particular model of interest, implies that there are some small 
traces of helium extending down to the center of the star. The 
effective temperature of the model is Te = 13,969 K, the hydro- 
gen (helium) layer has a mass equal to 10“10 (10-2) times the 
total mass of the star, and convection is treated with the stan- 
dard version of the mixing-length theory due to Böhm-Vitense 
(1958). The results of Pesnell (1987) indicate, surprisingly, that 
the period of the 02 mode (which is found to be 59.0 s) is 
determined in the central regions of the model; indeed the 
weight function shows a maximum at about the half-way point 
in radius (approximately corresponding to the half-way point 
in mass also). The results are the same for both the Lagrangian 
pulsation code developed by Pesnell and for an Eulerian 
version which he used. In the latter case, the square of the 
Brunt-Väisälä frequency has been evaluated from equation (1), 
which implies the numerical evaluation of the derivative d In /?/ 
dr. In principle, this procedure takes into account the varying 
chemical composition in transition zones, including the deep 
core which contains traces of helium. Alarmingly, the period of 
the gl mode and, more generally, the complete period spec- 
trum of the model are found by Pesnell (1987) to be quite 
different from that of earlier calculations carried out by Winget 
(1981) using the same model. Pesnell suggests that his taking 
into consideration the changing chemical composition in the 
deep core (ignored in Winget’s calculations) accounts for this 
difference. If correct, this would mean that the basic period 
structure cannot be computed with any amount of confidence 
because it seems so sensitive to the presence of small traces of 

helium in the core. For simplicity, the unperturbed model had 
been computed under the assumption of diffusive equilibrium, 
but actual time-dependent diffusion calculations carried out by 
Pelletier (1988) show that this assumption breaks down in the 
very deep core of a white dwarf with an age characteristic of 
pulsating DA stars. Thus the helium distribution in the core of 
a DA model can only be specified by time-dependent calcu- 
lations and, until detailed results of such calculations exploring 
a large volume of parameter space become available, white 
dwarf seismology would remain next to useless within the 
interpretation given by Pesnell (1987). 

Other implications of the suggestion that white dwarf 
periods are formed deep in the core are given by Pesnell (1987). 
Among others, mode trapping caused by resonance effects at 
the composition interfaces (located in the outermost layers) 
would have greatly reduced efficiency. As compared with pre- 
vious Eulerian calculations of several groups, the white dwarf 
computations based on the Lagrangian code of Pesnell have 
generally their region of period formation shifted toward the 
deep interior. For example, Cox et al (1987) show the weight 
function of a particular mode in their Figure 11, and mention 
that the period of this mode is largely determined in the very 
deep layers, whereas driving is found, as usual, very near the 
surface. 

Motivated by the past successes of white dwarf seismology 
based on Eulerian calculations (in particular the prediction 
and subsequent discovery of DB variable stars ; see Winget and 
Fontaine 1982), we have felt that this new concept of period 
formation in the core of a white dwarf should be carefully 
examined. We have therefore embarked, with a fresh look, on a 
detailed investigation of the period structure of the model 
analyzed by Pesnell. In the process, we have discovered a basic 
shortcoming of the methods used by that author which (1) 
explains the discrepant results, and (2) has far-reaching impli- 
cations for the results of his Lagrangian calculations in degen- 
erate stars in general. We present our results in detail below 
(§ IV) but first discuss the treatment of the Brunt-Väisälä fre- 
quency which must be used in white dwarfs. 

III. THE BRUNT-VÄISÄLÄ FREQUENCY IN PRESENCE OF 
VARYING COMPOSITION 

In ordinary stars, the run of the Brunt-Väisälä frequency can 
be directly computed from equation (1), which necessarily 
involves the numerical evaluation of the spatial derivative 
dlnp/dr at each shell of the model. In degenerate stars, it is 
useful (indeed essential in the deep core; see below) to trans- 
form equation (1). We thus consider a plasma containing N 
different atomic species in thermodynamic equilibrium. The 
pressure of such a plasma may generally be written in the form 

P = P(p,T,{Xi}), i=l, ...,V-1, (2) 

where p is the density, T is the temperature, and A", represents 
the mass fraction of atoms of species i. Note that the index i 
runs only from 1 to V — 1 because of the constraint 

X Xi + ** = !• (3) 
¿=1 

Of course, other choices of independent variables are possible, 
but the set (p, T, (Vj) is particularly convenient for our pur- 
poses. 

Written as in equation (2), the pressure has a quite general 
form and may include nonideal effects, degeneracy effects, as 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

36
7.

 .
60

IB
 

604 BRASSARD ET AL. Vol. 367 

well as partial ionization effects. In the latter case, note that it 
is the condition of thermodynamic equilibrium that ensures that 
the pressure depends explicitly only on (p9 T, {Xj) and not on 
the populations of the various ionized states. In terms of our 
independent variables, the first adiabatic exponent may be 
written as 

17 = 
/¿> In P\ 
vain/?yad>m ’ (4) 

where (against the common practice; e.g., Cox and Giuli 1968), 
we have explicitly indicated that this derivative is evaluated at 
constant chemical composition. This constaint is implicit in 
most astrophysical textbooks. With this in mind, we also 
remark that the usual relationships between the adiabatic 
exponents and other thermodynamic derivatives are generally 
valid, even for plasmas in which the chemical composition may 
change. In particular, a useful general relation in the present 
context is that provided by equation (34d) of Fontaine, Gra- 
boske, and Van Horn (1977), 

^i = 
1 - Vad/T ’ 

where 

/¿>lnP\ 
\dln/?/ 

and 

Xt — 

Vflri — 

d\nP 
d\nT 

d\nT 
d\nP 

T,{Xi} 

P,{Xi} 

ad,{A7} 
From equation (2), we can immediately write 

N-l 
dlnP = Xpdlnp + xTd\nT + 

1=1 

where we have defined generalized compressibilities 

\d\nxjp T {Xj^i} 

From equation (9), we obtain 

d\np _ J_ _ /r v _ J_ V d\nXt 

d\nP Xp Xp Xp ,= i%X* dlnP ’ 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

where the short-hand notation V = d\nT/d\nP has been used 
for the actual temperature gradient. 

Next, we transform equation (1) slightly with the help of the 
equation of hydrostatic equlibrium (dP/dr = —pg)9 

N2 = —g 
d\nP 

dr 

(fp fd\np 
P \d\nP 

d\np 
dhiP -6] 

7] 

Substituting (5) and (11) into (12), we finally obtain 

V2 = —— 
p Xp 

1 TB d ln X- 

Xt kXx‘ dlnP_ 

(12) 

(13) 

This is the desired general expression for the Brunt-Väisälä 
frequency. Ignoring for the moment the effects of varying the 
chemical composition, we immediately see why equation (13) is 
to be preferred to equation (12) from a numerical point of view. 
The latter equation shows that N2 is small in degenerate 
matter because d\np/d\nP & 1/TY Differencing these two 
nearly equal terms poses numerical difficulties in degenerate 
matter. By contrast, equation (13) indicates that N2 is small in 
degenerate matter primarily because %t (a multiplying factor in 
front of the brackets) becomes small. This last form is far more 
numerically satisfactory and reliable than equation (12). 

In the particular case of compositionally stratified DA white 
dwarf models, there are two separate and distinct composition 
transition zones: the H/He and He/C buffer regions. In both 
cases, we are dealing with the simple situation of a two-ion 
buffer zone (N = 2). We thus may choose 7, the mass fraction 
of helium, as a convenient and unique indicator of composition 
change in both zones. Equation (13) then reduces to 

iV2 = £^ii(Vad_v + B)) 

* Xp 

with 

XydhiY 
XT d\nP ’ 

where 

(d\np\ 
Un yU* 

(14) 

(15) 

(16) 

The Brunt-Väisälä frequency in the white dwarf models report- 
ed by Tassoul, Fontaine, and Winget (1990) has been com- 
puted with the help of these last equations. Written in this 
form, the explicit contribution of a change of chemical com- 
position to the Brunt-Väisälä frequency is contained in the 
term B. In white dwarf models, this quantity is always positive 
and assumes (in presence of diffusive equilibrium) non- 
negligible values only in regions where the abundances of the 
two atomic species are comparable, i.e., in the composition 
transition zones themselves. 

Figures la and \b (the latter is a blowup of the outermost 
layers) illustrate this point for the particular DA white dwarf 
model referred to above. They show the run of the quantity B 
as a function of radius. This quantity features two relatively 
narrow spikes, one centered on the He/C transition zone 
(r/R ä 0.92, Fig. la), and a larger one centered on the H/He 
transition zone (r/R ä 0.9968, Fig. lb). The H/He spike is 
larger because the H/He transition zone is narrower than the 
He/C transition zone (see Tassoul, Fontaine, and Winget 1990 
for a discussion of this). 

Away from the composition transition zones, B assumes 
negligible values. In particular, in the deep isothermal core 
where V « 0 and Vad « 0.4, B is totally negligible, which 
implies that the presence of small traces of helium in the core of 
this model cannot affect the value of N2 there. This is in con- 
trast to the statement of Pesnell (1987), who has proposed that 
these small traces were responsible for the large differences 
found between his pulsation results and those of Winget (1981) 
for the very same model. For highly degenerate matter of 
material with pe = 2, the pressure is the same for a given set 
(/?, T) whatever (in the present case) the proportions of the 
He/C mixture, so/y = (d\n P/d In Y)p T -► 0. This phenomenon 
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Fig. la Fig. lb 
Fig. 1.—(a) Run of the quantity ß as a function of radius for our DA white dwarf model. B contains the explicit contribution of a change of chemical composition 

to the Brunt-Väisälä frequency. It has nonnegligible values only in the composition transition zones. The structure centered on r/R « 0.92 corresponds to the He/C 
transition zone. A very sharp peak corresponding to the H/He transition zone is barely visible very near the surface, (b) Same as Fig. la, but blowup of the outermost 
layers of the model. The feature is due to the H/He transition zone. 

completely overwhelms the small values of Xt which appears in 
the denominator of B (see eq. [15]), hence B vanishes in the 
deep interior. 

The form of equation (14) is also reminiscent of the well- 
known relationship between the Brunt-Väisälä frequency and 
the Ledoux criterion for convective stability in the case where 
the plasma forms an ideal and nondegenerate gas. If we were to 
specialize to this particular case, the mean molecular weight // 
(which is the usual variable appearing in the Ledoux criterion) 
would still not be an appropriate variable in the present 
context. This is because partial ionization regions can some- 
times overlap with composition transition zones in white dwarf 
models, which causes // to vary not only with composition 
there but also with varying ionization as function of depth. The 
difficulty is easily circumvented by replacing // by any variable 
which measures only a change in chemical composition; the 
functional form of the term B in equation (14) is the same as 
that of the term involving // in the Ledoux criterion. In the 
present case of a two-ion transition zone, the helium mass 
fraction Y specifies uniquely the run of the chemical composi- 
tion, is independent of ionization effects, and is, thus, an 
acceptable variable. The ionic mean molecular weight would 
also be appropriate in equations (15) and (16) because it is a 
unique function of Y ; other choices are also possible. In prac- 
tice, the computation of B in white dwarf models is straightfor- 
ward: Xy is obtained by differentiating in composition in the 
equation-of-state tables, Xt ^ another equation-of-state vari- 
able, and din Y/dinP is numerically evaluated from the actual 
composition profile, which is usually well-resolved in stellar 
models. 

It is of interest to discuss briefly the more usual expression of 
the Brunt-Väisälä frequency in presence of varying composi- 
tion which is found in textbooks (e.g., Cox 1980). To recover 
that expression, it is necessary to specialize to the case of a 
completely ionized, nondegenerate, and ideal gas (an approx- 

imation valid in the deep interiors of main sequence stars for 
example). Here, however, the plasma may comprise more than 
two atomic species, and we must return to the more general 
expression given by equation (13). In addition, the pressure is 
now given by 

p = rWL + — T4, 
p 3c 

(17) 

where the symbols have their standard meanings. The mean 
molecular weight is related to the mass fractions of the different 
elements through the relation 

i = y (Zt- + \)Xi 

P k A, 

Zs+l 
An 

(18) 

where Z, and A, are, respectively, the atomic number and the 
atomic weight of element of species L Note that equation (18) is 
only valid if the ionization of all elements is complete. By 
combining (17) and (18), one can compute the quantities 

Xxi 
idlnP\ 
\dlnxjp T {Xjizi] 

= Xißp\ 
Zt-+ 1 

A: 
Z„+l\ 

An ) 
, (19) 

where ß = PgaJP and Pgas = N0kpT/ju. This last relation is a 
direct consequence of the particular form for the pressure (eq. 
[17]). From equation (18), one can also write generally 

—dlnfi = YxJ^- - 
i=i V Ai an J 

= ^NÍ1Xxld\ryXí, (20) 
P i=l 

where use has been made of equation (19). We thus obtain the 
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result, after noting that 

a _ V1 dlaXj 
P dinP~ ¡^d

l
Xxi dlnP ' 

(21) (30) 

By noting further that (d In P/d ln fi)p T = —ß, we finally get 

(d\n P\ dlnfi dlnX¡ 
<22) 

Substituting (22) into (13), we obtain the usual expression of 
the Brunt-Väisälä frequency which is related to the Ledoux 
criterion for convection, 

N2=d!PXl\Wá_V_±(dJlLZ) 
PxPL‘

d Xt \d\nfi) 

d\nfi~\ 
\d\nfij T JlnPJ 

(23) 

Since n is uniquely related to the {2Q (via eq. [18]), we may 
write for the logarithmic pressure derivatives 

Equation (29) has exactly the same functional form as our 
equation (14), as it should. We have already noted that the 
exact choice of the variable measuring a change in chemical 
composition is immaterial as long, of course, as this variable 
depends only on the composition. 

Even though the equation obtained by Pesnell (1986) is con- 
sistent with our results, we cannot help but notice that a 
serious error of interpretation has, unfortunately, been put 
forward in that paper. Indeed, in the limit of complete ioniza- 
tion, the claim is that equation (29) (or the equivalent expres- 
sion in Pesnell 1986) does not lead to the usual expression for 
the Brunt-Väisälä frequency in the case of a nondegenerate, 
ideal gas with varying composition. This is surprising because, 
quite clearly from equation (17), one must have 

and 

/dlnP\ /d\nP\ 
p \dln/?/r m \d\np)T p 

Í dlnP\ id\nP\ 
{d\nTjpAXi]~{d\nT)Pffl 

(24) 

(25) 

Equations (23), (24), and (25) give collectively the usual form of 
the Brunt-Väisälä frequency. We may note that V2 > 0 in radi- 
ative regions, which corresponds to the usual Ledoux condi- 
tion for convective stability 

^ ^ 1 fd\nP\ d\np 
ad_V~^V^)p,r^P> 

(26) 

Once again, however, this particular form of the Brunt-Väisälä 
frequency (and of the Ledoux criterion) has been obtained for 
the special case of a completely ionized, nondegenerate, and 
ideal gas. For more general cases, equation (13) (or an equiva- 
lent one since the set [/?, T, {Xj] is not unique) must be used. 

We may also remark that our equation (14) is consistent 
with equation (8) of another paper by Pesnell (1986) dedicated 
precisely to a discussion of the appropriate form of the Brunt- 
Väisälä frequency in presence of partial ionization and varying 
composition. It should be noted, however, that the equation 
obtained by Pesnell (1986) has been derived under the unneces- 
sary restriction of a nondegenerate, ideal gas. By contrast, our 
equation (14) is generally valid for a two-ion plasma. The vari- 
able that measures a change in chemical composition in 
Pesnell’s paper is the ionic mean molecular weight (denoted p0 
in his paper). His equation (8) gives 

N2 = -gA = g
2P Xt 
p Xp 

where (in Pesnell’s notation). 

[vad - ' 
Xua a d In /¿q~| 
Xt Po dlnPj ’ 

We can slightly rearrange equation (27) to write 

P XP 

vad - V - - 
1 f dlnP\ dlnji0 

Xt \<3 Infi0/p TdlnP 

(27) 

,28) 

(29) 

/dlnP\ = ßo fdP\ = ßo dti_ 
\ô InPoJp.T P\Spo)p.T P \dß)p,T ¿Po 

fd\nP\ d\np 
\d\npJp>T d\np0 ’ 

(31) 

where advantage has been taken of the fact that p and are 
uniquely related and are independent of p and T in the limit of 
complete ionization. From equation (31), we may write 

id\nP\ d\np0 fd\nP\ d\np 
\d\np0)p T dlnP \d\npjp T d\nP ’ 

(32) 

Substituting (32) into (29) gives back, contrary to Pesnell’s 
claim, the standard expression (eq. [23]) for the Brunt-Väisälä 
frequency. Hence, the suggested reduction of the Brunt-Väisälä 
frequency for a completely ionized, ideal, and nondegenerate 
multicomponent plasma is clearly incorrect. 

We strongly suspect that the confusion arises from the fact 
that the quantity xß0 (

see ecl- [28])> defined by Pesnell (1986) is 
not a true compressibility (i.e., a logarithmic derivative such as 
our quantities %Xi f°r example). In fact, from equation (30), one 
sees how the standard compressibility (d In P/d In//0)p r is 
related to the quantity xß0- H is the term p/p0 ( < 1 for complete 
ionization) which makes the functional dependence appear dif- 
ferent from that of the usual expression in equation (27) and 
which suggests a reduction of the Brunt-Väisälä frequency. As 
we have seen, however, p/p0 and xß0 should be lumped together 
as in equation (30). 

In a specific example related to the region around the hydro- 
gen exhausted core of a nondegenerate star, Pesnell (1986) sug- 
gests that the Brunt-Väisälä frequency should be reduced by 
some 17% as compared to the value computed by the standard 
expression related to the Ledoux criterion. For reasons just 
given, this suggestion is incorrect. In fact,/or that particular 
example, we can rigorously write 

5 d\np0 d\np 
6 dlnP = dlnP ’ 

which, substituted in Pesnell’s equation (21), gives back the 
usual expression of the Brunt-Väisälä frequency contrary to 
the claim and major conclusion of that paper. 
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Fig. 2.—(a) The square of the Brunt-Väisälä frequency as a function of the radius for our reference model. The continuous curve corresponds to the computations 
based on equation (14), the dotted curve to those based on eq. (1) with numerical derivatives, (b) Same as Fig. 2a, but blowup of the outermost layers to emphasize the 
H/He transition region. 

IV. A COMPARISON OF TWO DIFFERENT APPROACHES TO THE 
PERIOD STRUCTURE OF ZZ CETI STAR MODELS 

We have used the Eulerian code developed by Hansen (see 
Kawaler, Hansen, and Winget 1985) to analyze the adiabatic 
period structure of the DA model discussed by Pesnell (1987). 
The continuous curve in Figures 2a and 2b (the latter is again a 
blowup of the outermost layers) shows the distribution of N2 

in terms of the radius. The small localized structure around 
r/R « 0.92 (Fig. 2a) is associated with the He/C transition zone 
(log AM/M « — 2). A sharp feature, visible around 
r/R » 0.9968 (Fig. 2b% is associated with the H/He transition 
zone located in the outermost layers (log AM/M ä —10). The 
N2 profile is generally quite smooth and any discontinuities or 
quasidiscontinuities (such as the structures associated with the 
composition transition zones and contained in the term B) are 
potential sources of resonance effects. Our calculations indi- 
cate that the period of the gl mode is 122.8 s in reasonable 
agreement with the older calculations of Winget (1981) which 
give 142.3 s, but a far cry from the 59.0 s obtained by Pesnell 
(1987). Note that we recover exactly the results of Winget 
(1981) by ignoring the effects of the composition transition 
layers on the Brunt-Väisälä frequency as was done in that 
study. In practice, this is accomplished by ignoring the contri- 
bution of B to N2 (see eq. [14]). 

Interestingly, however, we can reproduce the results of 
Pesnell (1987) by performing the following experiment: we now 
calculate AT2, not with equation (14), but rather directly with 
equation (1) which involves the numerical evaluation of d\np/ 
dr. This procedure is implicit in the Lagrangian formulation of 
Pesnell and was required by him in^his Eulerian code in order 
to recover the results of the Lagrangian calculations. The 
dotted curve in Figures 2a and 2b shows the resulting N2 

profile for our reference model. As compared to the continuous 
curve, additional structure and two spurious “convection” 
zones (negative values of N2) have appeared. It is obvious that 

the N2 profile presented by Pesnell (1987) in his Figure 1 is 
quite similar to our dotted curve. Apparently, the spurious 
“ convection ” zones were suppressed by Pesnell but important 
structure was left after this operation as can clearly be seen in 
his figure. All other features of Pesnell’s figure are accurately 
reproduced, however. As noted before, the quasidiscontinuities 
that are present in our dotted curve and in the N2 profile 
shown by Pesnell (1987) can isolate and trap certain modes if 
resonance conditions are met. These modes are trapped in the 
deep interior, however, implying very large kinetic energies and 
very low growth rates. More importantly, it is the large system- 
atic differences observed between the dotted and continuous 
curves in our Figures 2a and 2b that are directly responsible for 
the large differences found in the period of the same mode. For 
instance, in the range 0.1 < r/R < 0.8, the dotted curve sug- 
gests systematically larger values of N2 in that particular 
model. Hence, the model appears “less degenerate” than 
before. From asymptotic theory (cf., Tassoul 1980), the period 
of a 0-mode is inversely proportional to J | N \/r dr, so, if | N | is 
larger, we can expect a smaller value of the period. We find, in 
fact, in our altered calculation, a period of 58.7 s for the gl 
mode, very close to the value of Pesnell (1987) but quite differ- 
ent from our original estimate. 

As hinted previously, the fundamental reason for this dis- 
crepancy is that a numerical evaluation of the difference 
appearing in equation (1) encounters serious difficulties in 
degenerate matter. Indeed, with a slight rearrangement of 
terms, we can write 

where s is the specific entropy per gram. In the nearly adiabatic 
interior of a degenerate star, the numerical evaluation of deriv- 
atives boils down to computing N2 by taking the difference of 
two nearly equal quantities. By contrast, our formulation of N2 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



PQ 
608 BRASSARD ET AL. Vol. 367 

ï—i O UD 

Fig. 3a Fig. 
Fig. 3.—(a) The logarithmic derivative of the density /? as a function of radius for our reference model. The continuous curve corresponds to the values inferred 

from combining eqs. (1) and (14), while the dotted curve corresponds to the values obtained numerically using a 3 point Lagrange differentiation scheme, (b) Same as 
Fig. 3a, but blowup of the outermost layers to emphasize the H/He transition region. 

given by equation (14) is reliable everywhere. In the deep core, 
as mentioned previously, the term B does not contribute, V is 
also negligibly small because of the nearly isothermal condi- 
tions, Vad remains a number with typical values slightly under 
0.4, and N2 is then evaluated by multiplying various quantities. 
Of course, the two formulations are equivalent in principle, 
and we indeed observe that the two curves shown in Figure 2a 
and 2b merge together for large values of r/R, i.e., in the outer 
layers where the degree of degeneracy decreases substantially. 
The small differences that are observed in the H/He transition 
zone (Fig. 2b) are not significant and are attributed to a differ- 
ent accuracy of the numerical scheme in a region where the 
variables change rapidly. 

Figure 3a and 3b emphasize the fact that the limitation of 
equation (1) is truly due to the use of a difference between two 
numbers which become nearly equal in degenerate matter. 
What is plotted is the logarithm of the quantity d In p/d In r as a 
function of radius. The dotted curve corresponds to our 
numerically evaluated values, while the continuous curve cor- 
responds to the values of dXnp/dXnr inferred from equation (1) 
with N2 evaluated from equation (14), i.e., 

d}n£= N^r pgr 
dlnr FjP' 1 J 

The figures show that the agreement is very good; only small 
differences are observed in certain particular regions. This 
means that the absolute value of d In p/d In r evaluated numeri- 
cally is not bad, but is still not good enough to give reliable 
results for N2 because it is subtracted from another number 
(pgr¡Y i P) which is nearly equal. It may be of interest to point 
out that very similar results are obtained whether or not dP/dr 
is itself evaluated numerically in equation (1) or replaced by 
—pg. The fundamental limitation of equation (1) in degenerate 
matter rests indeed with its particular form involving a differ- 
ence of two nearly equal numbers. 

Thus, numerical differencing implicit in the Lagrangian for- 

malism of Pesnell leads to unreliably noisy N2 profiles in white 
dwarf models with concomitant dramatic consequences on the 
period structure. Not surprisingly, the region of period forma- 
tion is also affected by these problems. For example, Figure 4 
contrasts the two weight functions which we have computed 
for the gl mode of interest. The continuous curve refers to the 
weight function for the eigenmode computed with our equa- 
tion (14) for N2 and leading to a period of 122.8 s. Quite 
clearly, the mode is an envelope mode as can be expected for a 
degenerate star. By contrast, the dotted curve, based on the use 

Fig. 4.—The weight function of the gl mode in terms of the radius. The 
continuous and dotted curves correspond to the two sets of calculations 
referred to in the caption of Fig. 2a. 
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of equation (1), leads to the conclusion that the period is 
formed in the deep interior as in Pesnell (1987). We have thus 
clearly identified the origin of the discrepant period and weight 
function of the eigenmode discussed by Pesnell (1987). We feel 
that this numerical experiment should put to rest the idea that 
white dwarf pulsations probe the deep core. 

V. DISCUSSION AND CONCLUSION 

We have found it both interesting and instructive to investi- 
gate the complete adiabatic period structure of our white dwarf 
model for all modes with l = 1, 2, and 3 and with periods in the 
range 100 s < II < 1000 s. Figure 5 summarizes our results 
which are based on the computation of the Brunt-Väisälä fre- 
quency as given by equation (14). The figure shows the normal- 
ized kinetic energy of a mode as a function of the period. Each 
plotted point corresponds to a radial overtone starting to the 
left with k = 1, except for the / = 3 modes which start with 
k = 2 because the g\ mode has a period smaller than 100 s. The 
positions of the / = 1, 2, and 3 modes are joined together by a 
continuous, dashed, and dotted line, respectively. As discussed 
by Winget, Van Horn, and Hansen (1981) as well as Winget 
and Fontaine (1982), the primary minima in these curves corre- 
spond to modes with a node at the H/He interface. Such modes 
show very small amplitudes below the H/He buffer zone (in 
essence they resonate with the H layer thickness, or, more 
accurately, they are efficiently reflected at the composition 
interface), so we can think of these modes as effectively trapped 
in the outer H layer. Because the kinetic energy of a mode is 

Fig. 5.—Kinetic energy vs. period for all gr-modes of our reference model in 
the period range 100 s < II < 1000 s and with / = 1 (continuous curve), and 
/ = 2 (dashed curve), and / = 3 (dotted curve). Each plotted point corresponds to 
a radial overtone starting to the left with fc = 1 (/ = 1 and 2) and k = 2(1 = 3). 
This period structure is obtained with the Brunt-Väisälä frequency computed 
with the help of equation (14). 
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proportional to the displacement vector integrated over the 
whole star, modes trapped in the outer H envelope show a 
characteristic signature corresponding to minima in kinetic 
energy. Thus, the gl mode with a period H = 542.5 s and 
(normalized) kinetic energy log £ = 42.17 is the first trapped 
mode of the / = 1 sequence. Note that the H/He transition 
zone has a finite width imposed by diffusion consideration, and 
is therefore not a true discontinuity. This explains why the 
kinetic energy minima have finite widths; modes can be par- 
tially trapped in ZZ Ceti star models. 

As can be further observed in the figure, the number of 
trapped modes in the period window 100-1000 s increases with 
increasing /. This is because, for a given period, the radial 
overtone (the number of radial nodes) increases with /. Hence, 
more modes have nodes falling at the H/He interface for larger 
values of /. At the same time, the contrast in kinetic energy 
between the trapped modes and the other modes tend to 
decrease with increasing order k (as can be expected). Note, in 
addition, that beyond the primary minima shown in Figure 5, 
there are also secondary features which are real, and which 
correspond to modes with nodes at the He/C interface. 
Because the He/C transition zone is located much deeper 
(log AM/M » —2, r/R » 0.92) than the H/He transition zone 
(log AM/M ä —10, r/R « 0.9968) in our particular model, the 
effect on the kinetic energy is much reduced. 

It is also interesting to reconsider briefly the gj mode dis- 
cussed in the previous section. Figure 5 indicates that this 
mode (H = 122.8 s, log E = 47.64) does not resonate with the 
H outer layer. Nevertheless, it has been established that it is a 
true envelope mode, as its weight function is confined into the 
outer 10% of the radius (see Fig. 4). The difference with a 
trapped mode such as gl is marked, however. Indeed, if we 
consult the weight function of this latter mode, we find that it is 
confined in the outer 0.3% of the radius, i.e., in the H outer 
layer (as expected from the previous arguments). 

In sharp contrast to the results we just discussed, Figure 6 
shows a clearly unphysical period structure. Here, we have 
considered the same reference model, but the Brunt-Väisälä 
frequency has been computed directly from equation (1) which 
involves the numerical evaluation of d In p/dr. As determined in 
the previous section, this treatment of N1 makes the model 
appear less degenerate, so the lowest order modes have periods 
less than 100 s. In Figure 6, we have therefore plotted the 
results in the period range 0-1000 s so as to include the lowest 
order modes (/c = 1) for / = 1, 2, and 3. In particular, note that 
the gl mode (H = 58.7 s log £ = 50.37) discussed previously is 
included. Note also the much wider range of kinetic energy 
caused by the presence of sharp peaks. 

The period structure illustrated in Figure 6 is plagued by 
several defects. We can isolate at least four of them: (1) The 
distribution of kinetic energy with respect to period for a given 
value of / shows a jagged appearance, with no obvious effects 
caused by transition zone mode trapping which, as we have 
seen, should manifest themselves in the form of well-defined 
minima in the distribution. (2) Convergence difficulties in 
finding eigensolutions were frequently experienced; many 
modes are missed (but we have nevertheless joined the points 
together in the figure). (3) Certain isolated modes show very 
large values of the kinetic energy while modes with adjacent 
values of k show the “ normal ” behavior; these sharp peaks are 
associated with modes that are trapped in the core. This phe- 
nomenon is possible because the Brunt-Väisälä frequency 
suffers from unphysical structure in the deep core which can 
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PERIOD (SEC) 
Fig. 6.—Same as Fig. 5, but, this time, the Brunt-Väisälä frequency is 

computed directly from equation (1) with numerical derivatives. 

cause potential resonance conditions there. We have explicitly 
verified this assertion by consulting the weight functions of the 
mode with the largest kinetic energy in Figure 6 (a / = 2 mode). 
We find, as expected, that this particular mode is confined to 
the inner 5% of the radius. (4) Comparison with models with 
different effective temperatures shows that the period- 
luminosity relationship for a given mode is muddled, in con- 
trast to the expected behavior of a slow period evolution (see 
above). 

In comparing our results with the calculations of Cox et al. 
(1987) based on Pesnell’s Lagrangian formalism, we cannot 

escape the important conclusion that the period structures of 
their models suffer from all of the above symptoms. This is partic- 
ularly evident when looking at their growth rate versus period 
diagrams (specifically their Figs. 2a, 2b, 3a, 3b, 4, 5a, 5b, 5c; see 
also their Table 2). The sharp dips that are obtained in these 
diagrams (for given values of /) correspond exactly to the sharp 
peaks which are found in our Figure 6 as the growth rate (a 
nonadiabatic property) is inversely proportional to the kinetic 
energy. These dips are unfailing signs of unphysical structure of 
the Brunt-Väisälä frequency in the deep degenerate cores of the 
models computed by these authors. In addition, as already 
pointed out previously, they also find that g-modes are formed 
deep in the core of a white dwarf (see their Fig. 11), another 
signature of numerical problems in the evaluation of the 
Brunt-Väisälä frequency in degenerate matter. Furthermore, 
Cox et al. (1987) report missing many modes because of con- 
vergence problems (another symptom of an excessively noisy 
N2). Hence we must conclude that the period structures of the 
models discussed by Cox et al. (1987) are largely incorrect. 

To summarize, the implicit numerical differencing used in 
the Lagrangian pulsation code of Pesnell leads to very serious 
difficulties when used with models of degenerate stars. These 
difficulties are at the origin of his suggestion (Pesnell 1987) that 
white dwarf periods are formed in the deep interior. We reaf- 
firm the prior results of all other investigations; g-mode pulsa- 
tions in white dwarfs are truly envelope modes. The 
implications of our findings on the work of Cox et al. (1987) are 
important and far-reaching. We find, in particular, that the 
basic period structure of their models (i.e., the most fundamen- 
tal aspect of astroseismology) is unreliable and, in large part, 
unphysical. Because of this, their nonadiabatic results concern- 
ing primarily driving and damping must be considered prema- 
ture ; thus, their controversial conclusions about the complete 
insensitivity of the ZZ Ceti theoretical blue edge to the hydro- 
gen layer mass remain clearly questionable. 

We are grateful to A. Talon for useful discussions. This work 
was supported in part by the NSERC Canada, by the fund 
FCAR (Québec), and by the NASA grant NAGW-778 at Yale 
University. 
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