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ABSTRACT 
The resonant interaction between an orbiting low-mass secondary star and the pulsational modes of the 

primary in a common envelope binary system is studied. When the secondary is very close to the envelope, 
and especially if it is inside the envelope, i.e., the system is in a common envelope phase, a rich spectrum of 
both g- and p-modes can be excited. During the common envelope phase high-order and high harmonic 
p-modes become important. By means of a simple one-zone model, the amplitudes of the forced oscillations 
are approximately estimated. It is claimed that if several conditions are met, then a brown dwarf secondary 
can cause nonnegligible axisymmetrical mass loss through its resonant interaction with a red giant primary’s 
envelope. One implication of this for elliptical planetary nebulae is discussed. 
Subject headings: stars: binaries — stars: pulsation 

I. INTRODUCTION 
It is widely believed now that a common envelope (CE) 

phase occurs in the course of the evolution of most binary stars 
with separation of r2 < 1000 Re and total mass of approx- 
imately 1 M0 or more. The massive star of the two, the 
primary, expands substantially as it evolves to become a red 
giant and engulfs the lower mass companion, the secondary. 
Even if the initial separation is larger than the giant radius (but 
by no more than a factor of a few; this factor depends on the 
masses), tidal forces are very efficient in bringing the two stars 
closer (Livio and Soker 1983). The CE evolution is assumed to 
reduce the separation of wide binaries and transform them into 
close binaries, unless the secondary is evaporated in the 
envelope or collides with the primary core (Livio and Soker 
1984a). Accordingly, the CE is supposed to lead to the forma- 
tion of cataclysmic variables (Paczynski 1976; Eggleton 1986), 
some low-mass X-ray binaries (e.g., 2A 0620 — 00; Eggleton 
and Verbunt 1986), and double white dwarf systems that are 
supposed to be the progenitors of Type I supernovae (e.g., 
Webbink and Iben 1987). 

As discussed by Livio and Soker (1988), despite its wide 
applicability, very few actual calculations of the CE phase 
exist. One of the reasons is the absence of spherical or cylin- 
drical symmetry in the problem. The two-dimensional 
(Bodenheimer and Taam 1984; Taam and Bodenheimer 1989) 
and three-dimensional (Livio and Soker 1988) hydrodynamic 
calculations demonstrate the importance of taking into 
account two- and three-dimensional effects. These calculations 
find a high-velocity flow in the equatorial plane as a result of 
the secondary interaction with the envelope. In addition, the 
secondary interacts with the matter in its immediate surround- 
ings via accretion and drag forces (e.g., Taam, Bodenheimer, 
and Ostriker 1978; Livio and Soker 1984a). The energy 
released from these processes is deposited into the envelope 
and contributes to the system’s luminosity. All these processes 
are important for massive companions and are not subjects of 
the current work. 

Another outcome of the CE evolution was proposed on dif- 
ferent grounds, in cases where the primary is a moderate-mass 
red giant. It has been proposed that the asymmetrical mass 
flow mentioned above (Soker and Livio 1989) or the deposition 
of orbital angular momentum into a red giant envelope (Soker 

1990) can cause an enhanced mass loss in the equatorial plane, 
which can then lead to the formation of an elliptical planetary 
nebula (Balick 1987). The likelihood of this scenario is sup- 
ported by study of specific nebulae: Mendez et al (1988) pro- 
posed a collision of the secondary with the giant core during 
the CE phase in two planetary nebulae, 125 — 47 1 and 212 + 23 
1. Plait and Soker (1990) discuss the CE evolution as a plaus- 
ible scenario to explain the spherically symmetric outer halo 
and elliptical inner region of the planetary nebula NGC 6826. 

In the present work we carry out a preliminary study of yet 
another process which takes place during the CE phase, and 
which can cause an asymmetrical mass loss; we study the basic 
nature of the excitation of stellar pulsations by a low-mass 
secondary orbiting inside the envelope. The resonant inter- 
action in binaries has been discussed in many contexts in the 
past, but mainly regarding the secondary outside the primary 
envelope. This was done, for example, by Savonije and Papa- 
loizou (1983, hereafter SP) in their study of tidal interactions in 
detached binaries (i.e., the secondary is outside the envelope). 
In § II we illustrate the rich spectrum of modes that can be 
resonantly excited at many different radii of the secondary, 
when it is inside or very close to the primary surface. 

This kind of interaction has no spherical symmetry. By 
decomposing the gravitational potential of the secondary to 
spherical harmonics, however, ordinary differential equations 
can be obtained. In principle the same equations that were 
used by SP, and which are given in § III, describe the inter- 
action in the CE stage. In the current work, however, we do not 
integrate the equations to obtain full accurate solutions, as we 
plan to do in a following work, but rather explore the nature of 
resonant interaction during the CE stage. For this purpose we 
use a simple model to solve the equations, and we derive a 
qualitative description of nonadiabatic oscillations (§ IV). In 
§ V we summarize and discuss future works to elaborate and 
apply the results of this work. 

II. RADII OF RESONANT EXCITATION 

a) General Discussion 
Nonradial stellar oscillations can in principle be divided into 

P-, g-, and/-modes (Cox 1980, § 17.7). (However, for stellar 
models with a large central mass concentration the low-order 
modes are no longer pure; Scuflaire 1974.) The p-waves are 
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characterized by a large radial (relative to the transverse) dis- 
placement and by large Eulerian pressure and density ampli- 
tudes. The 0-waves are predominantly transverse and have 
small Eulerian pressure and density amplitudes. The amplitude 
of the p-modes is small in the inner region of the star, becoming 
larger close to the stellar surface. The 0-modes, on the other 
hand, can have large amplitudes in the inner region. Moreover, 
the frequencies of the p-modes are determined mainly by con- 
ditions in the outer stellar regions, and those of the 0-modes by 
conditions in the deeper stellar interior (Cox 1980, § 17.13). We 
expect, therefore, that if stellar pulsations lead to enhanced 
mass loss it would mainly be through p-wave oscillations. 

The presence of the secondary star inside the giant’s 
envelope changes the nature of the interaction between the two 
stars, as compared with detached binaries. First, since the dis- 
tance between the secondary and the core of the primary is 
smaller than the primary radius, high-order harmonics of the 
secondary’s potential (§ III) cannot be neglected. Thus, for 
example, McMillan, Taam, and McDermott (1990), in their 
calculations of the companion outside the primary envelope, 
could consider only the / < 4 harmonics in the potential, 
neglecting higher orders, while SP consider only the / = 2 har- 
monic. This cannot be done in the CE stage. Moreover, the 
/ = 1 modes cannot be regarded as a constant acceleration of 
the whole primary (Kopal 1959, § II. 1) but should be treated as 
a real mode of oscillation (see Cox 1980, § 17.8, for discussion 
of the / = 1 modes). Second, the short orbital period can effi- 
ciently excite p-waves. In the case of detached binaries, mainly 
the 0-waves are excited. 

Along this line, we focus in this section on finding the com- 
panion’s radii r2 at which resonant excitations are likely to 
take place. By means of three simple approaches it is shown 
that p-waves are much more likely to be excited when the 
secondary is inside the envelope of the primary than when it is 
outside. Radii for p-mode resonant excitations are more 
common for low orders (small n) and high-degree spherical 
harmonics (high-/ modes). 

b) The Homogeneous Compressible Model 
For the purpose of this section, which is to find the radii r2 at 

which resonantly excited pulsations in a CE can occur, it is 
adequate and very convenient to start with the unrealistic 
homogeneous compressible stellar model (Cox 1980, § 17.7). 
Because we take the secondary to be a low-mass star, we 
assume that the structure of the primary does not change as it 
enters the CE phase. The linear adiabatic eigenfrequencies o of 
the homogeneous compressible stellar model are given by 
(Pekeris 1938; Cox 1980, eq. [17.77]) 

Q2(/, n) = D ± [D2 4- /(/ + 1)]1/2 , (2.1) 

where Q2 = (t2R3/GM, with R, M, G being the stellar radius, 
the stellar mass, and the gravitational constant, respectively. 
The quantity D is defined by 

D = -2 + O.ST^nill + 2n + 5) + 2/ + 3] , (2.2) 

where n = 0, 1, 2, ... is the order of the mode, l is the spherical 
harmonic degree, and F1 is the adiabatic exponent. The plus 
sign in equation (2.1) gives the p-modes, and the minus sign the 
0-modes. In addition, there are the /-modes with frequencies 
(Chandrasekhar 1964; Cox 1980, eq. [17.80]) 

Q2(/) = 
21(1 - 1) 
2/ + 1 

(2.3) 

The potential of a point mass orbiting the primary center at 
a constant distance r2 can be decomposed into spherical har- 
monics îL (§ III), each having a frequency 

/ R\3/2 

Q2 = Í — J m, I m I = /, / — 2, / — 4, ... , (2.4) 

where it is assumed that all the mass of the primary is inner to 
r2. The mass of the secondary will be neglected from now on. 

The lowest frequency p-modes are those with n = 0, which 
for Fi = 3/2 are Q2(/, n = 0) = 0.5[0.5 + 3/ + (13/2 + 7/ + 
0.25)1/2]. This gives Q2 = 10.6 and 13.9 for / = 3 and / = 4, 
respectively. For a companion outside the envelope r2 > R, 
only p-modes with / > 4 can be excited, as can be seen by 
substituting m = / in equation (2.4). In Table 1 the radii at 
which p-wave resonances occur, that is, when the frequency 
given by equation (2.1) with the plus sign is equal to that given 
in equation (2.4), are given for = 5/3 and / < 10. Also pre- 
sented is the radius-dependent factor in the potential (R/r2)l+1 

(see eq. [3.8]). There are 12 radii of resonance in Table 1; for 
T1 =4/3 and / < 10 there are 16 radii of resonance, and for 
l < 20 with Ti = 5/3 there are 105 radii of resonance. Among 
the latter, however, the largest radius for which (R/r2)l+1 > 
0.01 is r2 = 1.436R for (/, m) = (11, 11), and the largest for 
which (R/r2)l + i >0.1 is r2 = 1.286R for (/, m) = (8, 8). These 
results demonstrate that p-waves are more likely to be excited 
when the companion is very close to, or inside, the stellar 
surface. From Table 1 it can be seen that high-order modes 
(high n) can be excited at small radii for sufficiently high /, and 
that, for the same order n, higher spherical harmonics are 
excited at larger radii, as is also demonstrated in § lid. 

In the homogeneous model the orbital period for r2 < R is 
the same as for r2 = R. In more realistic stellar models the 
orbital frequency increases as the companion gets closer to the 
center, and more modes can be resonantly excited, as is shown 
in the next subsection. 

c) Dependence on Stellar Model: l = 2 Modes in 
Polytropic Models 

As the stellar model becomes more centrally mass- 
concentrated, the orbital frequency increases more rapidly as 
the secondary gets deeper into the envelope. This allows more 
p-modes to be resonantly excited. To demonstrate this behav- 
ior, we use the frequencies of the first 10 orders of / = 2 modes 
for several different polytropic models as given by Cox (1980, 
Table 17.2). The orbital frrequency at each radius, which was 

TABLE l 
P-Mode Resonant Radii for the 

Homogeneous Model 

r2/R (R/r2r 

1.389.. 
1.340.. 
1.286.. 
1.228.. 
1.197. 
1.164. 
1.133. 
1.091. 
1.074. 
1.062. 
1.031. 
1.008. 

0.027 
0.054 
0.104 
0.193 
0.138 
0.346 
0.286 
0.591 
0.455 
0.582 
0.736 
0.960 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 

10 
9 
8 
7 

10 
6 
9 
5 

10 
8 
9 
4 

10 
9 
8 
7 
8 
6 
7 
5 

10 
6 
9 
4 
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TABLE 2 
Resonant Radii for / = 2 in Polytropic Models 

595 No. 2, 1991 

n 

v Mode 123456789 10 

1   p 0.577 
2   p 0.673 0.432 0.176 
3   p 0.634 0.514 0.427 0.359 0.300 0.248 0.198 0.147 0.085 

g 0.934 
/ 0.787 

4   p 0.454 0.426 0.396 0.369 0.352 0.330 0.307 0.286 0.268 0.251 
g 0.524 0.558 0.605 0.638 0.679 0.735 0.791 0.845 0.899 0.951 
/ 0.487 

calculated by solving for the appropriate polytropic model, 
was multiplied by m = 2 to get the exciting frequency for the 
/ = 2 modes. The homogeneous stellar model corresponds to 
v = 0, where v is the polytropic index. For this model we saw 
that the / = 2 p-modes cannot be resonantly excited. The sec- 
ondary radii, in units of the stellar radius R, at which reso- 
nances occur for the first 10 g- and p-modes and for the /-mode, 
are given in Table 2 for four poly tropic indices v. (Note that 
here, and in general, n = 1 is the lowest mode, whereas in the 
homogeneous compressible model n = 0 is the lowest mode.) 

Table 2 clearly demonstrates the rich spectrum of resonant 
excited / = 2 modes and the large number of the secondary 
radii at which this resonant interaction can take place. For the 
/ = 2 modes, as the primary becomes more centrally mass- 
concentrated, the 0-niodes are more likely to be resonantly 
excited than the p-modes when the secondary is close to the 
surface. As can be seen from Table 1, and Table 3 below, higher 
degree (higher /) p-modes can be resonantly excited when the 
secondary is closer to the surface. The p-mode frequencies do 
not change much as we move toward more mass-concentrated 
models (higher v). The p6 mode, for example, has frequencies of 
Qp6 = 129.9 and 105.2 for the v = 1 and v = 4 models, respec- 
tively. The ¿/-modes, on the other hand, are unstable in the 
v = 1 polytropic model, with frequencies of Q^6 = 0.7188 and 
10.08 in the v = 3 and v = 4 models, respectively. 

d) Very High Order p-Modes 
The very high order modes are those for which / > 1 and/or 

the wavelength is much shorter than the pressure scale height. 
A discussion of these modes, together with their oscillation 
frequencies, can be found, e.g., in Cox (1980, § 17.12). We 
assume in this section that the stellar model is very concen- 
trated, that is, most of the mass is in a small core, so that 
equation (2.4) for the secondary frequencies can be used at 
any radius. We further assume that in the relevant region we 
can write P = P0r~q, so that in hydrostatic equilibrium 
GM/r = qP/p. By using equation (2.4) for Q2> the expression 
for high-order p-modes (e.g., Cox 1980, eq. [17.95]) can be 
written as 

- 
/(/ + 1) + (rk)2 

m -)&2, (2.5) 

where k = 2nlXr is the radial wavenumber and Xr is the radial 
wavelength. At resonance Qp = n2> and it occurs at radii 

«2 11/3 
^4- 
r Ui 

m 1/3 
(2.6) 

_/(/ + 1) + (rk)2_ 

Since for typical stellar models (q/Ti)113 < 2, resonances for 

large rk will occur mainly for r2 < r, which can be the case only 
while the companion is inside the primary envelope. To illus- 
trate the behavior of r2/r as given by equation (2.6), this quan- 
tity is given in Table 3, for two values of rk, 6n, and An, and for 
(0/Fi)1/3 = 1.5 (note that in Table 3 r2/r is given, and not r2/R 
as in Tables 1 and 2). Only modes with / < 10 and (r2/r)

z >0.1 
[or, if r2 > r, (r/r2)/ + 1 >0.1] for rk = An are presented. If 
higher values of / are allowed, more p-modes appear with r2 

close to r. Thus, for example, for / < 20 and rk = An under the 
same constraints, there are 47 radii of resonance, as compared 
with 12 in Table 3. This demonstrates again the rich spectrum 
of excited modes. 

So far we have been concerned only with secondary radii at 
which resonant excitations can occur. We turn now to calcu- 
lation of the amplitudes of the nonadiabatic response. In the 
present work we use a simple model to estimate the response 
approximately. We start by writing the basic equations. 

III. BASIC EQUATIONS 

a) The Linear Nonadiabatic Equations 
In this subsection we write the equations which describe the 

nonadiabatic response to the companion potential of Eulerian 
linear perturbations of the primary. We adopt the Cowling 
approximation, i.e., the perturbation to the gravitational 
potential caused by the stellar response is neglected. The equa- 
tions are basically the same as those used by SP, with the 
difference that here the secondary’s potential will be for a circu- 
lar orbit and for arbitrary Ylm. We will therefore not repeat the 

TABLE 3 
Resonant Radii for High-Order p-Modes 

(/, m) 

rk = 4n 

r2/r (r2/r)1 

rk = 6 ti 

r2/r (r2/r)1 

(10,10) . 
(9, 9) 
(8, 8). 

(10, 8) 
(7, 7), 
(9, 7), 
(6, 6) 
(8, 6), 
(5, 5), 
(7, 5), 
(4, 4) 
(3, 3) 
(2, 2) 
(1, 1) 

1.080 
1.033 
0.979 
0.931 
0.918 
0.874 
0.847 
0.808 
0.766 
0.733 
0.672 
0.563 
0.435 
0.276 

0.429a 

0.722a 

0.847 
0.488 
0.549 
0.297 
0.369 
0.183 
0.263 
0.114 
0.204 
0.179 
0.189 
0.276 

0.898 
0.850 
0.797 
0.774 
0.738 
0.719 
0.674 
0.658 
0.603 
0.590 
0.524 
0.436 
0.334 
0.211 

0.343 
0.231 
0.162 
0.0775 
0.119 
0.0512 
0.0935 
0.0350 
0.0796 
0.0248 
0.0754 
0.0827 
0.112 
0.211 
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derivation, but rather give the final form. The Eulerian pertur- 
bation vector variables are the stellar displacement £ = (<^r, 

and the energy flux F = (F'r, F'd, F#). The Eulerian scalar 
variables are the pressure F, density p\ temperature T', and 
opacity k'. Quantities without primes represent the unper- 
turbed stellar variables. We separate each of ¿;r9 F, p', T, and 
F; into the form £r(r, 6, t) = ^(r)7im(0, | ^m(7r/2, </>) |, etc. 
In this form £r(r), and the radial parts of the other variables, are 
the amplitude in the equatorial plane 9 = tt/2. By eliminating 
Ze, fé, F'* and canceling Ylm(6, </))c"i<r</| ^m(7t/2, 4>)\, we 
obtain the desired equations for the radial-dependent part of 
each variable (SP): 

1 dP[ 
p dr 

_ _2 K = + — _ 
T ~ p2 

dP dQ>lt 

dr 

ld_ 
p dr . - +Vim I, 

O \P 

/(/+ 1) /din TV1 F' 
-h 

F: fdlnTV1 d T /A , T _ ^ p' 
F 

where 

dr 

d\nP ^ d\np 
A = ; — F ! 

dr dr 

and 

ri = - 
(r3 - 1)F 

oP 

(3.1) 

(3.2) 

(3.3) 

-T ^7 + (4 - Kr) ^7 - (1 + s) - , (3-4) dr T T H p 

(3.5) 

/dlnK;\ /ölnA 
,3-6) 

(3.7) 

is a characteristic radiative diffusion length scale (SP); T1 and 
r3 are the adiabatic exponents (e.g., Cox 1980). Near the 
surface rj/R is large, and the response is highly nonadiabatic, 
whereas in the stellar interior it is small and the response is 
adiabatic (see § IV). 0Zm is defined in the next subsection. 

The limitation of the above set of equations should be kept 
in mind throughout the rest of this paper. The energy equation 
(3.3) and the radiative transfer equation (3.4) are applicable 
only in the radiative transfer diffusion approximation. Thus, 
they do not hold above the photosphere or in convective 
regions. However, since the set of equations will be solved 
approximately to derive an illustrative solution, we will discuss 
the results in a more general sense. 

b) The Perturbing Potential 

The potential at r due to the secondary at r2 is written in 
terms of spherical harmonics (e.g., Jackson 1975): 

-gm2 

\r~r2\ 
-GM2 

oo 
E 

4n r< 

2/+ 1 T/1 
Ylm(e, d>)Yue2, <t>2) 

oo l 
= Z E 

1 = 0 m= -l 

Ylm(0, (¡>) 
I r,>/2, ct>)\ 

(3.8) 

where r> (r<) is the greater (lesser) of r and r2. We take the 
circular orbit to be in the plane 02 = nß with <¡>2 = 
t(GM/rl)1/2, so that o = miGM/rl)112 is the forcing frequency, 
with M being the total mass inner to r2. Equation (3.8) defines 
0/m, which can be written as 

GM fr<Y ^2 
r> \r>/ M (/ + m)! [TO]2, m > 0 , (3.9) 

where F¡” is the associated Legendre function of degree / and 
order m. If the primary star does not rotate, the mode (/, — m) is 
symmetric to the mode (/, m). Thus, when the real parts of the 
amplitudes of the two modes are combined, the final amplitude 
is twice that given by each mode. In § IV, therefore, the poten- 
tial is taken to be 20Zm, and the solution is given for m > 0. 

c) Power-Law Atmosphere 
In the next section we approximate a shell inside the stellar 

envelope by a power-law profile and assume that the amount 
of mass in the shell is negligible compared with the interior 
mass. For a power-law density profile p ocr~d and with all the 
mass being interior to the shell and the secondary orbit, we 
then derive 

rA=(T1- l)d - Í , a-2 = m{^)3, (3.10) 
P d + 1 o2

0 \r2J 

where A is defined in equation (3.5) and 

GM ]_dP 
r3 rp dr 

(3.11) 

The linearized equation of state (which is necessary to close the 
set of equations [3.1]-[3.4]) to be used in the next section is 
taken to be 

F _// r 
P - p + T ' 

(3.12) 

The exponent of the power-law density profile d is not an 
independent parameter, but rather depends on other physical 
parameters in the envelope. In the diffusion limit the density 
profile exponent and the exponents of the opacity coefficient 
are related though 

3 — fcr = d(l + kp) . (3.13) 

IV. A SIMPLIFIED SOLUTION! BAKER’S ONE-ZONE MODEL 

a) The Equations for the One-Zone Model 
As a first approach, for an approximate estimate of the 

amplitudes of forced oscillations, we apply the one-zone model 
used by Baker for stability analysis of radial modes (Baker 
1966). In addition, we are using the assumptions mentioned in 
§ IIIc. The solutions we derived here should be considered 
more as a qualitative description than as a quantitative one. 

In Baker’s model the behavior of a single spherical shell of 
mass Am is studied. Here we take the shell’s thickness to be 
Ar r. The essential assumptions are that all the physical vari- 
ables and all relative Lagrangian perturbations, except for the 
luminosity, are constant in space throughout the shell. Under 
the assumption of power-law profiles for the unperturbed 
physical variables, we find that the Eulerian variables are also 
constant throughout the shell : 

l(A==±(L\ = l(¿\ = 0 
dr\Pj dr\Tj dr\p) 

(4.1) 
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The perturbation in luminosity incident on the inner boundary 
of the shell is assumed to be zero, and the value of this pertur- 
bation in the shell is taken to be half that value in the outer 
boundary. The derivative of the perturbed luminosity is then 
given by (Baker 1966) 

d_ 
dr 

2_ 
Ar 

(4.2) 

Using equations (4.1) and (4.2) for the derivatives of the 
perturbations and equation (3.11) for cr0 in the linear equations 
(3.1) and (3.2), and substituting for L/L in equation (3.3) from 
equation (3.4), we obtain a set of algebraic equations 

(4.3) 

(4.4) 

(4.5) 

By substituting for T/T from the equation of state (3.12), 
eliminating p'/p and P'/P using the assumption of a power-law 
atmosphere (§ IIIc), and using expression (3.9) for the per- 
turbing potential, we derive the equation for the displacement 
amplitude : 

/(/ + 1) 
.2^.2 X 

D2 — I Di > 

D2 + 
(/+1) 

Di, 

where 

r2<r , 
(4.6) 

r2 > r , 

Re C = 4 - SFi + + 4 d+l - 1 W + 1) 

d+1 Id + 1), (4.7) 

Im C = ß (d — 3X1 + k„) + 11110!, 

Re Dj = — 
d+l Id + 1), 

Im = —ß (1 + O 

Re D2 = 1 — Fj , 

Im D2= -ß — (l + k ) , 
G P 

ß=^^L=
2 (r3- 1)^ 

(4.8) 

(4.9) 

op p(¿ + 1 
a \ d + \ 

(4,0) 

(4.11) 

(4.12) 

(4.13) g0 Ar Ar a0P 

and “ Re ” and “ Im ” stand for the real and imaginary parts, 

respectively. Note that in the current model (g/g0)2 = m2(r/r2)3 

and that the factor 2 in equation (4.6) is due to the symmetry of 
the (/, m) and (/, — m) modes. 

b) Some Properties of the One-Zone Model 
We assume now that the one-zone shell is in the very outer 

region of the star. For a widely separated binary r2 > r, the 
(/, m) = (2, 2) mode dominates, and the equilibrium displace- 
ment is given by Çr/r = (%)(M2/M)(r/r2)3. In order to obtain 
this limit, we must take d -► oo, which, by equation (3.13) and 
the demand that kt be finite, requires Kp= —1. For a high 
value of d in the adiabatic limit Re C is always positive, and 
thus no resonances exist. In Figure 1 the amplitudes of the 
displacement for three adiabatic modes are presented, for 
M2/M = 0.01 and F! = 5/3. The most prominent character of 
the amplitudes is the change in sign at r2 = r and then at 
r2/r = 1.26 for the (/, m) = (2, 2) mode and at r2/r =1.5 for the 
(/, m) = (3, 3) mode. The (3, 1) mode always has a positive 
displacement. A positive displacement at r2 < r and a negative 
one at r2 > r mean that the segment of the shell closest to the 
secondary is displaced away from the secondary. At large r2 
the displacement is positive for all modes. When the secondary 
is at a large distance from the primary, the forcing frequency is 
low and the envelope can adjust itself to the forcing potential; 
the potential term in equation (3.1) prevails over the force 
term in equation (3.2). Thus, the primary surface in the 
secondary’s direction rises toward the secondary. When the 
secondary is close to the envelope, the forcing frequency is high 
and the force term dominates over the potential term. In this 
case the displacement is such that maximum secondary force, 
that is, when the secondary is the closest, corresponds to 
maximum acceleration of the shell. This results in the displace- 

r2A 
Fig. 1.—Amplitudes of the radial displacement in the equatorial plane (in 

units of the shell radius r), for a secondary mass of M2 = 0.0IM, shown as a 
function of the secondary orbital radius. The density profile in the shell has an 
infinite slope, d-> co, and the response is adiabatic. Plotted are results for the 
modes (/, m) = (2, 2), (3, 1), and (3, 3) shown by solid, short-dashed and long- 
dashed curves, respectively. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

36
7.

 .
59

33
 

SOKER Vol. 367 598 

ment being away from the secondary. From the r2> r right- 
hand side of equation (4.6) we find that the change of behavior 
occurs at r2 = {w2/[(Fi — !)(/ + 1)]}1/3. 

To gain more insight into the one-zone model we examine 
adiabatic oscillations, i.e., /? = 0, with no external potential, i.e., 

= 0. Thus we are left with the equation Re C = 0, where a 
now is any frequency af. In the case of radial modes / = 0, and 
we recover the equation obtained by Baker for this case af = 
(joPF! — 4)1/2. For the adiabatic nonradial modes we take the 
homogeneous model d = 0, for which a0 is constant through- 
out the stellar model, so that af/a0 = fy, and we obtain the 
equation 

Q4 + Q2[4 - BFi - T11(1 + 1)] - /(/ + 1) = 0 . (4.14) 

Comparing this with the accurate results for the homogeneous 
model (e.g., Cox, 1980. eq. [17.76; eq. [2.1] in this paper), we 
find that the two solutions are identical if 

n = i[-5 - 2/ + (12/2 + 12/ + 25)1/2] . (4.15) 

For most /-values, n will not be an integer, whereas, in the 
accurate solution, n = 0, 1, 2, .... In any case, it is still inter- 
esting to give several values of n calculated from equation 
(4.15). We find that the one-zone homogeneous model adia- 
batic frequencies with / = 1, (3), (6), 13, 24, (50), 188, 341 corre- 
spond to modes in the accurate solution having the same 
values of /, and n = 0, (0.5), (1.5), 4. 8, (17.5), 68, 124, respec- 
tively, where parentheses enclose the values for the noninteger 
n. The assumption of the perturbed variables being constant 
throughout the shell limits the one-zone model to low-order 
modes. 

Let us look now at forced oscillations. A simple expression 
for the radii of resonances in the adiabatic limit can be 
obtained from equation (4.6) by taking = d + 1. In the 
adiabatic limit resonances occur when Re C = 0, which by 
equation (4.7) reads 

  11/3 

/(/ + 1) + q(3rí - 4VF, J 

where, as in this section, r is the radius of the shell, and 
g = d + 1 is the power-law index of the pressure. This expres- 
sion has the same form as the one derived for very high order 
p-modes in equation (2.6), if we identify (rk)2 = q(3Ti — 4)/F1. 
For Fi = 5/3, q = 5/2 and rk = (3/2)1/2. We see that under the 
above assumption for the relation between F1 and d the one- 
zone model corresponds to very low-order modes. 

The last two examples considered in this section suggest that 
the one-zone model, though highly limited, is adequate for 
studying the basic nature of low-order mode forced oscil- 
lations. 

c) The Amplitudes of the Forced Oscillations 
In the one-zone model the nonadiabatic amplitude of ^r/r 

depends on Ar/r, F^ d, kt, kp, and ß. We give here results 
for an illustrative model with Ar/r = 0A, T1 = 5/3, d = 2.5, 
kt = 0, and thus by equation (3.13) kp = 0.2. We present the 
results for the amplitudes of the displacement | <^r/r |, calculated 
from equation (4.6), as a function of the secondary orbital 
radius r2/r for a secondary mass of M2/M = 0.01. Since the 
/ = 1 mode corresponds to a uniform acceleration of the mass 
inner to r2 (see § lia), this mode is limited to r2 < r. The discon- 
tinuity in all graphs at r2/r = 1 results from the discontinuity in 
the derivative of Q>lm there (see eq. [4.6]). 

TABLE 4 
Resonant Radii and Amplitudes in the One-zone Model 

ß = 0.01 /? = 20 

(/,m) r2/
r \m rjr 

(1, O 
(2,2) 
(3,1) 
(3.3) 
(5.3) 
(5.5) 
(7.5) 
(7.7) 
(9.5) 
(9.7) 
(9,9) 

(10,8) 

0.833 
1.042 
0.540 
1.123 
0.845 
1.188 
0.971 
1.216 
0.832 
1.041 
1.231 
1.065 

0.526 
0.181 
0.0283 
0.108 
0.0303 
0.0320 
0.0261 

9.78 x KT3 

2.50 x 10~3 

9.13 x KT3 

3.22 x 10" 3 

5.15 x KT3 

1.197 
0.608 
1.264 
0.948 
1.333 
1.097 
1.373 
0.947 
1.185 
1.402 
1.218 

0.142 
0.0172 
0.0377 
0.0116 

4.10 x KT3 

2.11 x 10"3 

6.54 x 10~4 

1.05 x 10“3 

3.75 x KT4 

1.33 x 10~4 

1.73 x KT4 

In Figure 2a we present results for an almost adiabatic case 
with ß = 0.01. The (/, m) = (3, 1) adiabatic mode shows two 
resonances, the inner one being the p-mode and the outer one 
the 0-mode. In the adiabatic limit resonances occur when Re 
C = 0, which generally has two solutions for o2 and thus two 
radii at which resonance occurs. The (/, m) = (2, 2) adiabatic 
p-mode resonance, for example, occurs at r2 = 2.31r, which is 
outside the range of Figure la. Several examples of higher 
modes are shown in Table 4 with the radii of the p-mode 
resonances given in the second column (the radii are given for 
the adiabatic case ß = 0; the values for ß = 0.01 are practically 
the same) and the amplitude at each radius in the third column. 

In the highly nonadiabatic limit (// -► oo) resonances occur 
when Im C = 0, which has only one solution. The results for a 
highly nonadiabatic case are presented for ^ = 20 in Figure 2b 
for the first four modes, and in Table 4 for several higher 
modes. The resonant amplitudes in the highly nonadiabatic 
case decrease faster than those in the adiabatic limit as we 
ascend to higher modes. This is because higher frequencies 
(which result from higher values of m) make the response less 
nonadiabatic due to the factor ßa0la in equation (4.6). 

In the limit of very high /, the ratio of the p-mode resonant 
radii in the adiabatic case to that of the highly nonadiabatic 
case of the same mode is Ff1/3. This results from the decrease 
of the sound speed from its adiabatic value (Ti Pip)112 to its 
isothermal value {Pip)112 (Unno et al. 1989, § 23), and from the 
forcing frequency being proportional to r_3/2. In the current 
case this ratio for very high / is 0.843. For lower values of / the 
above ratio is closer to unity, as can be seen in Table 4. 

In an intermediate case, which is presented in Figure 2c for 
/? = 1, there are no resonances but, rather, broad peaks. For 
these kinds of intermediate cases we do not expect that reso- 
nant interaction will be important. Thus, there might be stellar 
models for which no strong resonant interaction will take 
place. This will be studied in greater detail in a future work. 

Although the displacement amplitude decreases rapidly as 
we ascend to higher modes, this is not true for the velocity 
amplitude, which decreases more slowly for high m. The ampli- 
tude of the radial velocity in the equatorial plane which corre- 
sponds to a mode (/, m) is given by 

Wr\ 
_w_ NU 

r 
(4.17) 

where l'.sc is the escape velocity from r. Thus, high-m modes 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

36
7.

 .
59

33
 

RESONANT INTERACTION IN COMMON ENVELOPES 599 No. 2, 1991 

r2/r 
Fig. 2a 

Fig. 2c 
Fig. 2.—Amplitudes of the radial displacement in the equatorial plane (in 

units of the shell radius r), for a secondary mass of M2 = 0.01M, shown as a 
function of the secondary orbital radius. The physical parameters of the shell 
are given in the text. Plotted are results for the modes (/, m) = (1,1), (2, 2), (3,1), 
and (3, 3) shown by solid, short-dashed, long-dashed, and dot-dash curves, 
respectively, (a) Almost adiabatic case ß = 0.01. {b) Highly nonadiabatic case 
ß = 20. {c) ß = 1. The amplitude of the (/, m) = (1, 1) mode in Fig. 2c reaches a 
maximum of 0.0643 at r2 = r. 

can have large velocity amplitudes as compared with their 
displacement amplitudes. 

The amplitudes which are calculated in the one-zone model 
need not be the same ones as at the surface of the star. In a 
realistic stellar model we do not expect the response of the 
envelope to be limited to a well-defined thin zone. It is more 

likely that global modes would be present, or that the waves 
would propagate in a large zone. The amplitudes of p-modes 
are increasing toward the stellar surface. Thus, if the ampli- 
tudes calculated in this section are appropriate for an inner 
zone, the amplitude at the surface can be much larger. Con- 
sidering the limitations of the one-zone model, the main con- 
clusion from the results presented in Figure 2 can be stated as 
follows: For highly nonadiabatic or highly adiabatic oscil- 
lations the response of the envelope to the forcing secondary 
potential can be very strong, and a low-mass companion 
(M2/M~10-2) can cause a nonnegligible effect on the 
envelope. We discuss one implication of this in the next section. 

From Figure 2 we see that the amplitudes depend on the 
values of ß and Ar/r. The dependence on Ar/r is the limitation 
of the one-zone model, while the dependence on ß is more 
general. A word of caution should be said here concerning 
nonadiabatic effects. In the red giant phase most of the 
envelope (with the exception of a thin outer ragion) is convec- 
tive, while the equations used in this work are written for a 
radiative transfer. Li vio and Soker (1984h), in their calculations 
of a brown dwarf inside a red giant, used a red giant model 
with 0.88 M0 and 400 RQ, in which the outer 40 R© a 

radiative region (Harpaz 1984). Taking the outer radiative 
region to be the one-zone shell, we have r = 380 R0 

an<^ 
Ar = 40 Rq . We find that a good fit to the density profile in the 
outer radiative region is d = 15, and since the temperature and 
density are very low in this region, kt ~ Kp ~ 0. These last 
three values, however, do not satisfy equation (3.13). This is 
because the diffusion approximation breaks down in this 
tenuous outer region. In any event, with the above values and 
other values appropriate for that model, we find that ß ^ 200. 
This high value of ß means that the response of the outer 
region is highly nonadiabatic, as expected for outer regions of 
stars (e.g., SP). 

V. SUMMARY 

The goal of this paper is to illustrate the importance of 
resonant interaction during the common envelope phase of 
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binaries with low-mass secondaries. The rich spectrum of 
modes that can be excited at many different orbits of the sec- 
ondary, inside and close to the primary surface, was demon- 
strated in § II through Tables 1-3. As the secondary gets closer 
to the primary, higher degree p-modes (higher l) become 
important. The one-zone model was used to get an approx- 
imate estimate for the displacement amplitude of the forced 
oscillations. As illustrated in Figure 2, this response can be 
very strong for high and low /?-values. 

The common envelope phase with low-mass secondaries is 
very likely to take place when the primary is a red giant. The 
resonant interaction might influence the mass loss of the 
primary to be axisymmetric, with an enhanced mass loss in the 
equatorial plane, which might eventually lead to the formation 
of an elliptical planetary nebula (Balick 1987). Massive second- 
aries can cause asymmetrical mass loss through their direct 
interaction with the envelope, as was demonstrated in hydro- 
dynamical simulations (Bodenheimer and Taam 1984; Livio 
and Soker 1988; Taam and Bodenheimer 1989), and by deposi- 
tion of angular momentum into the red giant envelope (Soker 
1990). Brown dwarf secondaries with masses M2 > 0.02M can 
cause axisymmetric mass loss by transferring orbital angular 
momentum into rotation of the red giant (Soker 1990). 

We showed in this work that brown dwarfs with masses 
M2/M > 10-2 can resonantly excite oscillation modes in the 
primary envelope, and thus might cause equatorial enhanced 
mass loss. This last effect will be nonnegligible if the interaction 
takes place during the high mass loss phase of the red giant and 

if the forced oscillations enhance mass loss. (The connection 
between the pulsation and mass loss is beyond the scope of the 
current work.) This mechanism for an axisymmetric mass loss 
implies that elliptical planetary nebulae, if they are a result of 
such a mass-loss profile, can have a very low mass brown 
dwarf, which is beyond the current detection limit, orbiting 
around the central mass. Such binaries in the centers of ellip- 
tical planetary nebulae as a result of angular momentum trans- 
fer are discussed by Soker (1990). 

The current preliminary study is an illustrative one. Several 
points should be elaborated in future works. First, the observa- 
tional implications of resonant interaction during the common 
envelope phase, i.e., a way to detect such systems and to attrib- 
ute this mechanism to known systems, is being studied 
(Whitney, Clayton, and Soker 1990). Second, a study of high- 
order modes in the WKB approximation, somewhat similar to 
the approach used by Balbus and Soker (1990) in studying the 
resonant interaction of a galaxy in the intracluster medium, 
can teach us a lot. Finally, a full integration of the equations in 
order to deal with global modes is essential for the understand- 
ing of the process. The last two approaches require a detailed 
stellar model, where there is the additional complication of the 
convective envelope in red giants. 

I thank Martin Laming for a careful reading of the manu- 
script of this paper, and Mario Livio and Bob Noyes for 
helpful discussions. I also thank the referee for his comments, 
which made this manuscript more clear. 
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