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ABSTRACT 
This paper, the last in a series, presents the complete solution of a filamentary maser. The contribution of 

rays emanating from the filament sidewall is essential for the solution self-consistency during saturation. We 
develop an integral equation to calculate this contribution, devise an iteration scheme to solve it, and perform 
the first two iterations. The solution provides complete expressions for the distributions of intensity and flux 
across the source as functions of position and direction with regard to the axis. One consequence of radiation 
beaming, somewhat surprising at first, is that the filament appears smaller when viewed off-axis, at angles 
exceeding the cap’s opening angle. From the detailed results we devise the number distribution of brightness 
temperatures in a large sample of randomly oriented filaments with an arbitrary distribution of lengths. A 
thorough comparison of the filamentary and spherical geometries is presented with possible observational tests 
to differentiate between the two. 

The effects of external radiation on the maser structure and intensity are also studied. Explicit expressions 
for the brightness and flux in this situation are provided, including detailed analysis of two interacting 
filaments and a foreground slab amplifying a background filament. We propose that the two giant bursts of 
H20 maser emission observed in W49 and Orion were the result of such interactions. Rapid time variations 
reported for the Orion burst may best be explained with amplification of a background maser filament by a 
foreground maser slab, initially unsaturated. 
Subject headings: masers — radiative transfer 

I. INTRODUCTION 

The filamentary geometry is of particular importance to 
theory of astronomical masers, since strong interstellar masers 
are most likely elongated tubes, or filaments (e.g., Genzel 1986). 
In all likelihood, the filamentary structures arise from the 
requirement of velocity coherence rather than density contrast. 
We have recently constructed a comprehensive model for H20 
masers in star-forming regions where the filamentary geometry 
is an integral part of the model (Elitzur, Hollenbach and 
McKee 1989, hereafter EHM). Important ingredients in such a 
model, and any other of that nature, are the expressions for the 
beaming angle of the radiation, the intensity as a function of 
angle from the beam axis, and the exact relations between the 
pump rate and the expected brightness temperature and lumin- 
osity at any angle to the filament axis. 

In spite of its great significance, the only investigation per- 
taining to the general theory of filamentary masers is the work 
of Goldreich and Keeley (1972), where the cylindrical maser 
was studied in what they described as a “ very rough way.” The 
aim of this paper is to correct this situation by presenting the 
complete solution of a filamentary maser. The solution is con- 
structed utilizing the framework developed in the previous two 
papers of this series, which present the detailed solutions for a 
linear maser (Elitzur 1990a, hereafter Paper I) and a three- 
dimensional maser of an arbitrary shape (Elitzur 1990b, here- 
after Paper II).1 This general solution is applicable to any 

1 Notations follow those of the previous papers. Equations from Papers I 
and II are referenced with I and II, respectively, followed by the equation 
number in the appropriate paper. 
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geometry, different configurations requiring only the specific 
dependence of the beaming angle on the distance traveled 
along the ray path. Here we employ these methods in the 
filamentary geometry. 

Because of the particular relevance of the filamentary 
geometry to astronomical masers, this paper can be considered 
the culmination of the series. Although frequent reference is 
made to the two previous papers, the presentation here is 
essentially self-contained. In § II we present the solution of an 
unsaturated filament. This enables us to define precisely the 
conditions under which the maser can be considered 
“filamentary.” The solution of a saturated maser without 
background radiation is worked out in detail in § III. Because 
of the contribution of rays emanating from the filament side- 
wall, a complete solution of this problem requires a self- 
consistency approach that results in an integral equation. The 
concepts leading to this equation are well illustrated by the 
first iteration solution, which lends itself to simple physical 
interpretation and provides the correct behavior of the com- 
plete solution. In order to keep the presentation more tractable 
we confine the body of the manuscript to the first iteration; the 
discussion of the full problem and the solution of the next 
iteration are deferred to Appendix A. The effect of background 
radiation on the structure and intensity of a filamentary maser 
is discussed in § IV. In a recent paper, Deguchi and Watson 
(1989) suggested that very bright H20 masers in star-forming 
regions are the result of the interaction of two maser filaments. 
We develop accurate expressions for the brightness tem- 
perature and luminosity of such a maser model, as well as 
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Fig. 1.—Geometric notations and rays in cylindrical masers 

other configurations, and suggest that it accounts for the two 
unusual giant bursts of H20 maser emission observed in Orion 
and in W49 (Matveenko 1986). In § V we discuss the observa- 
tional implications of our results, including a thorough com- 
parison with the spherical geometry. The results with most 
direct relevance to observations are collected in § VI for handy 
reference. 

where 9 denotes inclination angle from the z-axis and Iv(9) is 
obtained from equation (2.4) with the appropriate (9-depen- 
dent) length traveled through the source. The small-angle 
approximation is justified in this integration because large 
values of 9 correspond to short ray lengths and (exponentially) 
small intensities, so their contribution to the integral is negligi- 
ble. Consider the exit point on the main axis (r = 0, z = /). The 
integration range can be divided to two parts, separated by 
9o—the inclination angle of the longest ray, the one separating 
the cap from the sidewall (Fig. 1). The integration region 9 < 
90 corresponds to rays that originated from the opposite cap 
and its contribution to Jv(<f) will be denoted Jv>cap. The length 
traveled through the source by such cap rays is 2//cos 9 ~ 
2/(1 + ^92), so their intensity obeys 

9 <90: Iv(9) = S0 exp [2k0v/(1 + ^S2)] . (2.6) 

The corresponding angular integration is immediate, leading 
to 

II. UNSATURATED FILAMENTS 
To provide a precise definition for the term “filament” we 

start with the prototype, an elongated cylinder (Fig. 1). As in 
the linear case (Paper I), positions along the cylinder are speci- 
fied by z, which again varies in the interval [-/, /]. The cylin- 
der radius is R and its aspect ratio, length over width, is 

a = ¿/R . (2.1) 

We consider only sources where a > 1. When this condition is 
met, the geometrical shape of the cross section becomes irrele- 
vant. If the cross section area is A, we define an effective radius 
according to 

R = (A/n)1'2 (2.2) 
and an aspect ratio according to equation (1). A “filament” is 
an arbitrary elongated structure with a constant cross section 
and a > 1 ; an additional constraint that further restricts the 
definition is given below. A long cylinder is simply a filament 
with a circular cross section. Even the assumption of a con- 
stant cross section can be relaxed, provided the shape varia- 
tions are moderate, but this will not be done here. Other 
quantities of importance are the cap opening angle 90 and the 
corresponding solid angle Í20, obtained from 

90 = R/(2/) = l/(2a), 

Qo = rcög = A/(4/2) = n/(4a2). (2.3) 
Evidently, both 90 and i20/4rc are small parameters ( <§ 1). 

When the maser is unsaturated throughout, the intensity is 
obtained from equation (1.2.5) 

/„ = (S0 + Ie) exp (k0v /) - S0 , (2.4) 

where / is the distance along the ray from its entry point (note 
that the maximum value of pathlength l is 2//cos 290), S0 and 
Kov are> respectively, the unsaturated source function and 
absorption coefficient, and Ie is the intensity of external radi- 
ation that may illuminate the maser; this is neglected until 
§ IV. In particular, the expressions for /v(z, r, ß = ± 1), the 
intensity on rays parallel to the axis, are the same as the corre- 
sponding 7v±(z) of the unsaturated linear maser (eq. [1.3.3]). 
The angle-averaged intensity is given by 

Iv(9) sin 9 d9 , (2.5) 

j — A q2 c exn(lK exp (*0v/32) - 1 ^v,cap a ^0*^0 {ZKqv&) 2 . (2.7) 

Note that the factor j9l is simply Sl0/4n. 
The variation of /v with overall length displays a different 

behavior in two regimes, separated according to the magnitude 
of k0v/9o, which is the square of the ratio of two angles: the 
cap angle 90 and the angle 9r = (/c0v/)_1/2 that sets the scale 
for radiation beaming (eq. [II.2.3]). Evidently, 

k0vS9% = 
•9,2 

KqvR 
4a 

When 90 > 9r, k0v > 1 and from equation (2.7), 

(2.8) 

— S0 

exp [2k0v/(1 + ¿32)] 
4k0v/ (2.9) 

This result is similar to the angle-averaged intensity of an 
unsaturated spherical maser with radius /(I + ^9%) (eq. 
[II.5.5]). Since the radiation pattern is narrower than the cap’s 
opening angle, the intensity of cap rays varies with 9 and has a 
dip along the main axis at 9 = 0 (eq. [2.6]), so the maser 
cannot really be considered filamentary. The maser can be 
considered filamentary only when 90 « 9r, namely K0v/9g « 1, 
which leads to 

4, cap = (£V47r)S0 exp (2fc0v/), (2.10) 

as evident from equation [2.7], This result can also be obtained 
by assuming that the intensity is constant across the cap, that 
is, 

9 <90: Iy(9) = /v(0) = S0 exp (2k0v /), (2.11) 

an approximation justified in this limit. Thus, the filamentary 
condition requires that not only S0 « 1 (or a §> 1) be obeyed, 
but also 90 <£ 9r or 

a $> max [1, k0v R/4] ; (2.12) 

a similar result was derived by Western (1987). This condition 
ensures that equation (2.11) is obeyed and the intensity varia- 
tion across the cap can be neglected; it is evident that under 
these circumstances the shape of the cross section area is irrele- 
vant. As a concrete example we consider our model for H20 
masers in star-forming regions (EHM). A prototype maser 
feature with n(H2) = 109 cm“3, [H20]/[H2] = 6 x 10“4, 
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T = 400 K and d = 2R = 1013 cm has k0xR = 3.9. Therefore, 
the filamentary condition is obeyed in this case whenever 
ap 1. 

The other contribution to Jv(z = tf, r = 0) comes from the 
integration range $ > $0. This corresponds to rays that orig- 
inated from the side of the filament (such as the one entering at 
—z, in Fig. 1) and can be written as 

</v,side = Í exp (K0vR/8)Qd& . (2.13) 
J»o 

The upper limit of the integration is irrelevant since the inte- 
gral is dominated by # ^ #0 due to the rapid decline of the 
exponential factor at large angles. Utilizing this fact, the inte- 
gral can be easily performed and the result is 

‘Jv.side = (fto/47r)S0 
eXP (2k0v <0/(Kov ^ ‘ (2‘14) 

Thus, Jv<side Jv>cap for unsaturated filaments whenever 
k0v¿ > 1. It should be noted that the angular integration range 
of side rays exceeds that of cap rays by a factor of roughly //R, 
i.e., the aspect ratio. Nevertheless, their contribution to Jv is 
negligible because this increase is more than offset by the expo- 
nential decrease of their intensity from that of the cap rays. 

This discussion enables us to examine more precisely the 
applicability of the filamentary model in any given situation. 
For any elongated structure, the complete solution can always 
be expanded as a power series in the variable (S0/^r)2 = 
K0y R/4a. Equation (2.12) ensures that this is a small parameter, 
and the filamentary solution which we develop here is simply 
the leading term of this expansion. In this order of approx- 
imation, the variation of intensity on planes of constant z can 
be neglected; that is, 7V = /v(z, #), independent of r. It is easy to 
show that this also ensures that Jv = Jv{z), independent of r, 
thus validating the self-consistency of retaining only the first 
term of this expansion. 

As mentioned above, the filamentary geometry is generated, 
in all likelihood, by velocity gradients, which determine the 
geometrical shape of the velocity-coherent region. Inside this 
region the material is quiescent, since velocity shifts are smaller 
than the line width, so that further considerations of velocity 
gradients are irrelevant. One consequence of the filamentary 
assumption is that the edges are sharp. However, smoothing 
the filament’s edges should make no fundamental difference to 
the solution, obviously; the relevant property is the relation 
between the characteristic angles defined by the geometry (#0) 
and by the maser radiation pattern (#r)—the filamentary con- 
dition presented in equation (2.12). 

III. THE SATURATED MASER 

Consider now a succession of models with increasing half- 
length / and with all the other parameters held fixed. The 
maser saturates at the length 2*fsv when Jv(/sv) = Js, the satura- 
tion intensity. This length is now obtained from 

(Jf-) exP (2*ov6v) = 4y , (3.1) 

where y = JJS0. This is again an equation of the form exp 
(x)/x = b with h > 1, and from equation (II.5.7), the saturation 
length is given by /c0v/sv = \n(4y1,2/K0vR)9 to a good degree of 
approximation. This relation should be contrasted with the 
corresponding one for the linear maser, k0vSsv = ln(2y)1/2 (eq. 
[1.3.5]). Saturation can therefore occur either earlier or later 

than for a linear maser of the same length, depending on the 
value of k0v R. 

When its length is further increased, the maser develops a 
three-zone structure similar to the linear case, with an unsatu- 
rated core for |z| < zsv and saturated behavior for |z| > zsv. 
The core boundary zsv is as yet undetermined. The dominant 
rays carry radiation outward in each saturated zone. The 
problem facing us now is that the maser beaming angle is not 
known. Individual rays saturate after passage through the core 
where they undergo exponential amplification. In the spherical 
geometry, only a fraction of the rays pass through the core, 
thus defining the radiation beaming angle. In the filamentary 
maser, on the other hand, all the rays that cross from one half 
to the other pass through the core and the geometry does not 
define a beaming angle. As a first approximation, the contribu- 
tion to Jv(z) of rays originating from the sidewall can be 
neglected, thus identifying the cap solid angle as the beaming 
cone (Goldreich and Keeley 1972). However, unlike the 
unsaturated maser where the intensity varies exponentially 
with chord length, the intensity of the subordinate stream in a 
saturated region varies only as a power of the length trans- 
versed (Paper II). Side rays and cap rays thus enter the core 
with intensities that are not too dissimilar and are subse- 
quently amplified by approximately the same amount. It is 
then entirely possible that upon comparing the contributions 
of cap- to siderays in the integral defining Jv, the decrease of 
intensity could now be offset by the increase in angular range 
of integration. 

Consider the z > zsv saturated region ; the expressions for the 
z < — zsv zone can be derived from symmetry. The beaming 
solid angle Qv(z) is defined through the relation 

^ /v(z, ß=l) (3.2) 

(see eq. [II.2.4]). Although the cap solid angle need not neces- 
sarily be the beaming angle of the maser radiation, this angle 
still defines the essence of the filamentary geometry, and the 
ratio of Qv(z) to this solid angle is some dimensionless 
unknown function which we denote co(z). This function speci- 
fies completely the filamentary maser solution, and in Appen- 
dix A we derive the integral equation that defines co(z) and 
devise an iteration scheme to solve it. The iteration procedure 
starts with a trial constant function so that 

n’(z) = Wl(7T^- (3-3) 

Together with the beaming relation (eq. [3.2]), this specifies 
completely the relation between Jv and /v, thus allowing a 
complete solution in terms of the unknown constant co^ This 
coefficient is then determined from the self-consistency condi- 
tion that Jv = j Ivdil/4n. 

The rest of this paper is devoted to this first-order solution. 
The approach and the methods developed here are then used 
in Appendix A to derive the integral equation for the full func- 
tion co(z) from the same self-consistency considerations. The 
accuracy of the first iteration is assessed from the second-order 
iteration, performed in Appendix A. The second-order correc- 
tions to quantities with direct relevance to observations are 
displayed in relations collected in the summary section, § VI. 
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The maser beaming solid angle can also be written as n9*, 

where in the first order 

SvOO = 
coj^R 
/ + z 

— >9«, ^ 
¿ + z 

(3.4) 

and where 9SV = m\l2R/(¿ + ZJ is the beaming angle at the 
edge of the saturated zone. The beaming angle is simply equal 
to the cap opening angle with the filament radius rescaled 
according to R —> a>{,2R, thus the value of col must obey 1 < 
«i < 4. The lower limit arises because the contribution of side 
rays amounts to an effective increase in the cap radius while 
the upper limit is set from the requirement that at z = / the 
beaming angle cannot exceed the opening angle of the rays 
originating at — zsv. 

The equation of radiative transfer is 

¿2 — Kvh + K0v So (3.5) 

(see eq. [1.2.19] and subsequent discussion). When applied to 
the dominant ray /v(z, /i = 1) in the saturated domain, the 
source function can be neglected. With the aid of the beaming 
relation (eq. [3.2]), this then becomes an equation for the 
angle-averaged intensity Jv(z) (see eq. [II.2.9]). An important 
consequence is that the resulting equation does not contain the 
unknown coefficient tw1. Inserting the expression for the satu- 
rated absorption coefficient 

Kv = K0vJJJv (3.6) 
(e.g., eq. [II.3.11]) leads to the following solution for ,/v(z) : 

(/ + z)2Jv(z) = (/ + zsv)2Js + ijs Kov[(^ + z)3 - (/ + zsv)3] . 

(3.7) 
Note again the lack of explicit dependence on the coefficient 
co1 ; it can only affect Jv through the location of the saturation 
boundary zsv. When the filament is sufficiently long that / > zsv 
we find that sv 

JJ/) = ~i2JsK0y¿’ , (3.8) 
a result already obtained in Paper II with the aid of some 
plausibility arguments (see eq. [II.2.14]). The expression for 
J»(z) at any z can be approximated by 

Jv(z) ~ pjm + zjf - 1/(1 + z/02] . (3.9) 

This relation is adequate for all z > zsv, and the consequences 
of the error introduced in neglecting Js near the saturation 
boundary are usually negligible. 

A number of quantities follow immediately from the expres- 
sion for Jv(z). Because the radiation is beamed, the flux obeys 
the standard relation Fv(z) = 4tîJv(z) (e.g., eq. [II.2.5]) and so 

Fv(z) ^ tEv(0[1 + Z¡¿ - 1/(1 + z//)2] , (3.10) 
where 

Fv(/) = 47rJv(/) = {j2)AnJs k0J . (3.11) 

The cap luminosity Lv cap is simply 

^v.cap = AFv(/) = (Ä)hvd)mv vm , (3.12) 
where ^my = 4nK0yJJhv is the volume production rate of 
maser photons (see eq. [1.2.11] and F1/2 ( = AS) is the half- 
volume of the filament. Only a fraction ^ (or 58%) of the 
radiation generated inside the filament is emitted through its 

caps. A full 42% is always emitted through the side wall of the 
saturated filament, whatever its length or radius (in Appendix A 
we show that this fraction increases to 51% in the second 
iteration.) For this reason, the filamentary maser solution will 
never correspond exactly to that of a linear maser, even when 
the F 0 limit is taken. 

Since Jy is known, the absorption coefficient is known too 
(eq. [3.6]) and another quantity that can be fully determined at 
this point already is the intensity of subordinate rays; in the 
right saturated zone those are the rays that travel to the left 
(/r < 0 for z > zsv). This can be determined from the radiative 
transfer equation (eq. [3.5]) after inserting in it the complete 
expression for the absorption coefficient (obtained from eqs. 
[3.6] and [3.7]) and retaining the source function. The equa- 
tion can be solved because its boundary condition is known— 
the intensity of a subordinate ray is zero at its entry to the 
maser. Of particular importance is /v<(zsv, z,), the intensity at 
the saturation edge of subordinate rays that originated on the 
filament surface at z¡ > zsv. The filamentary condition (eq. 
[2.12]) ensures that this intensity is independent of location on 
either the saturation plane (z = zsy) or the plane of origin (z = 
z,). A straightforward integration of the equation of radiative 
transfer together with equation (3.7) produces 

6' < (“sv> Zi) 
So(K0y<f)2 

12 (3.13) 

The assumptions zsy « / and fc0y £> 3 were made in deriving 
this result; both are justified in all cases of interest. The inten- 
sity of subordinate rays that originated from the cap can be 
obtained from this relation using z, = /. 

It is evident that much of the solution is fully determined 
even before the value of the unknown constant új¡ is derived. 
The mere fact that the radiation is beamed suffices to deter- 
mine many quantities; the precise value of the beaming angle is 
irrelevant for Jy, Fy and the subordinate intensity /v<. But the 
dominant-ray intensity does depend on the exact value of the 
beaming angle, and a>1, because 

4./ (z\ 4 
/v(z, fi = l) = _ (/ + z)2Jy(z). (3.14) 

The equation of radiative transfer cannot be solved for the 
dominant ray because unlike the subordinate ray, its boundary 
condition is not known—the dominant ray intensity depends 
on the unknown beaming angle upon entry to the saturated 
zone at z = zsv. An approximate expression for the z- 
dependence of the intensity can be written by inserting Jy from 
equation (3.9). The result is 

Iy(z, 4/v(*f, g = 1)[(1 + 2/^)3 _ l] ; (3.15) 

which demonstrates explicitly that the only undetermined 
quantity is the emergent intensity at z = «f. Thus, the only 
relevant quantity with direct dependence on the unknown con- 
stant <ol is the intensity of the dominant ray, i.e., the maser 
brightness temperature. 

The value of cüj can be determined from the condition Jy = 
J I, d£i/4n. This integral can be performed only after the 
angular distribution of Iy has been determined. 

a) Radiation Angular Distribution 
In determining the radiation angular distribution, consider 

the g > 0 intensity at a point z > zsy on the filament axis in the 
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right saturated zone. Iv varies with direction ¡i because the 
intensity depends on the location —zi of the ray origin in the 
left half of the filament (Fig. 1 ; rays that did not pass through 
the core can be neglected, obviously.) Because the core seg- 
ments of the rays have approximately the same length, irre- 
spective (to the leading order in #o/#r when z > zsv) of the 
inclination angle, all rays are amplified by the same amount 
during their passage through the core. Upon emergence from 
the core, the ratio of intensities is unchanged during travel in 
the right saturated zone, as can be seen from equation (3.5): for 
the dominant rays, the S0 term is negligible and fcv (oc 1/JV ; eq. 
[3.6]) is the same for all rays. Therefore, the angular distribu- 
tion at z is determined exclusively by the zrdependence of 
Jv<(—zsv, — zf), the intensity at the core’s left boundary of a ray 
traveling to the right that originated at — zt. But from the 
symmetry of the model, 

fy<( ^sv» ^/) ^v<(^sv> Z¿) (3.16) 

and equation (3.13) therefore provides the intensity of the 
rightward-moving rays as they enter the core from the left. It is 
useful to introduce the dimensionless variable 

C = y (3.17) 

which varies from nearly 0 (for rays that entered at the left- 
saturated edge, assuming zsv <^ /) to 1 (for rays originating 
from the left cap). At every point z > 0 on the axis the variable 
Ç is directly related to #, the inclination angle of rays originat- 
ing at — Zj, through 

2#0 z 
~T~~r 

(3.18) 

The intensity of subordinate rays (eq. [3.13]) thus defines a 
distribution function 

©i(0 = [(C+l)4-4Ç-l]/ll, (3.19) 

normalized to 1 at C = 1. At point z on the axis, the angular 
distribution of radiation moving to the right is therefore 

/v(z, £) = /v(z, // = 1) x 
0 < S < R/(¿f + z), 
R/(/ + z) < 9 < R/z , 

(3.20) 

where Ç is related to # according to equation (3.18) and 
Jv(z, // = 1) is given in equation (3.14). We have derived the 
complete intensity distribution on the axis. And thanks to the 
filamentary condition (eq. [2.12]), this is the intensity distribu- 
tion anywhere in the saturated zone. This distribution applies 
irrespective of the cross-section shape as long as it is expressed 
in terms of the variable Ç. The unknown coefficient co1 can be 
finally determined since the angle-averaged intensity Jv can be 
calculated explicitly. For example, at the exit point z = the 
integration range 0 < # < 90 corresponds to cap rays, leading 

t0 Jv.cap = (ÍV47r)Jv(A /< = 1), (3.21) 

similar to the result for the unsaturated maser (when the fila- 
mentary condition is obeyed.) The range #o ^ ^ 2#0 (1 > 
C > 0) corresponds to rays that originated from the sidewall, 
leading to 

•/v.side = 2.9¿/v(/, H=\) £©1(0(1 + cr3¿í . (3.22) 

The integration is straightforward, and the result is 

^=ïï(ê)w^ = 1)- (3-23) 

The contribution of the siderays is significant—about 45% that 
of the caprays, irrespective of the filament dimensions. Com- 
bining the cap and side contributions, the angle-averaged 
intensity is 

JM) = ïj (^)W, A = O • (3-24) 

This result agrees with the expression assumed for the beaming 
angle (eq. [3.2]). Thus the model is self-consistent and the coef- 
ficient cOi is finally determined: 

The emitted radiation is beamed into a cone with an opening 
angle œ{/2S0 and so the beaming factor of a filamentary maser 
is 

Qv/47t = cOi x (Q0/4n) = 1/(1 la2) . (3.26) 

The maser intensity emitted along the axis is 

W, ^ 1 Q *^v(0 12R2 ' (3.27) 

This can be considered the main result of the discussion since it 
provides the observed brightness temperature of a filamentary 
maser in terms of the model parameters. Specifically, 

kTh = 
77\ À2hv 
24/ 4n 

0)_Ra3 . (3.28) 

Because the brightness temperature is the only radiative quan- 
tity with explicit dependence on c^, this is the only relevant 
expression where the first-order solution differs from that of 
Goldreich and Keeley (1972). The brightness temperature cal- 
culations of H20 masers in the EHM model employed a factor 
/for possible corrections to the Goldreich and Keeley solution. 
It is evident that/ = l/co1 = 11/16. The second-order iteration 
performed in Appendix A reduces the value of /by an addi- 
tional factor 0.84. This 16% variation in successive iterations 
can be considered an accuracy measure of the first-order solu- 
tion. 

The complete solution enables us to calculate the flux vector 
Fv at any position in the saturated zone. This is done in Appen- 
dix B, which shows that at the overall accuracy level of the first 
iteration, 

Fv(z, r) = Fv(z£2 + *r (3.29) 

where Fv(z) is given in equation (3.10), and ez and er are unit 
vectors in the z- and r-directions, respectively. Consistent with 
the filamentary assumption, the magnitude of Fv is constant on 
planes of fixed z to order l/a2. The presence of a small flux 
component in the cylindrical radial direction implies that off 
the main axis, the direction of the flux is slowly diverging away 
from the z-direction. However, even on the cylinder sidewall 
(r = R), the flux vector is pointed almost exactly along the 
main axis, the deviation from this direction never exceeding 
2#0. The sidewall luminosity of each maser half is obtained 
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from 

L v,side 
r 

er • Fv(z, R)2nR dz . (3.30) 

The flux through the sidewall is smaller than through the cap, 
by ~ 1/a, but the area is larger by the same factor. With the aid 
of equations (3.29), (10), and (11) we find 

¿v,Side = (5/7MFvOO = (5/12)hv®mv V1/2 . (3.31) 

Together with equation (3.12) this shows that all the luminosity 
generated inside the filament is properly accounted for and 
carried through the caps and sidewall by the calculated flux, 
thus providing another self-consistency check of the first-order 
solution. The flux vector field also enables us to calculate the 
flux lines, the curves whose tangent at any point is in the 
direction of the local flux vector. These lines are obtained from 
the equation dr.dz = Fr :Fz, and it follows immediately that 
they are described by the equation 

r = r0(l + z/O (3.32) 

for z > 0, where r0 is the value of r on the central plane; the 
lines for z < 0 are obtained by mirror reflection. Thus the flux 
lines are simply straight lines emanating from the z = 0 plane 
in both directions. An analytic continuation of the flux lines 
from the filament right-half to negative values of z shows that 
they all converge toward the point (z = r = 0)—the center 
of the opposite cap. The center of each cap is therefore the flux 
divergent point for the opposite half of the filament. This pro- 
perty was used in Paper II for a derivation of equation (3.8) 
based on the Gauss theorem. 

b) Core Properties 
The length of the core is determined from the condition that 

the axial ray that enters on one end as a subordinate ray 
emerge on the other as the dominant ray due to exponential 
amplification. For the ray that travels to the right, the intensity 
at core entry, assuming S > zsv, is 

/v( - zsv, p. = l) = jjS0(K0v 02 , (3.33) 

as can be easily seen from equations (3.13) and (3.16). Upon 
emergence from the core its intensity is 

T. „ IIJJ2 

Iv(zsv,p=i) = -^-, (3.34) 

as evident from equation (3.14). The amplification across the 
core, the ratio of these two intensities, is therefore 

“p<2'»-2--)=ö7V' <3-35> 

As mentioned in § II, our models for H20 masers in star- 
forming regions (EHM) produce typical values of k0vR ~ 4 
while y is usually ~ 106 (see also Paper I). Therefore, zsv ~ 
1-5R <| /, as assumed. 

In contrast with the result for a linear maser (k0v zsv = 
In [2}'1/2/k()v/] ; eq. [1.3.15]), the saturation boundary of the 
filamentary maser is independent of /, although it varies with 
R. The reason for this is that the /-dependences of Iv(-zsv, 
/< = 1) and of 3S

2
V are the inverse of each other (when /V zs7). 

But R cannot be varied at will because the filamentary condi- 
tion must always be obeyed. It is therefore more appropriate to 

express the saturation boundary in terms of the filament length 
/ and aspect ratio a as 

a(3y)1/2 

KovzSv = In — . (3.36) 
Kqv t 

Varying the filament length while a is kept fixed provides 
similar behavior to the linear maser. 

The filament beaming angle is nearly constant across the 
core when zsv /. The relation between Jv(z = 0) and Js is thus 
similar to that for a linear maser, namely, 

Jv(0) = 2JS exp ( - k0v zj . (3.37) 

Complete core saturation occurs when Jv(0) = Js, or exp 
(^ov^v) = 2. Combined with equation (3.35), the condition for 

complete saturation is that the radius exceed the value 
obtained from 

Kov^cv = i(3y)1/2 . (3.38) 
Again, it is more appropriate to consider this as a relation for 
the length at a fixed aspect ratio 

KovC = 2«(3y)1/2 . (3.39) 
During complete saturation, the core boundary zc can be 
obtained from equation (II.3.23). The beaming angles at zc are 
$+c = 3-c = 2#v(*f) where Sv(¿) = co{,2$0. Therefore, 

4/#o 2R 
Zc ~ (3y)1/2 - (3y)1/2 ‘ (3-40) 

It is evident from these results that our models for H20 
masers in star-forming regions (EHM) are not even close to 
complete saturation since k0vR is only ~4 while y ~ 106. In 
addition, as noted already in Paper I, the properties of the core 
have no effect on the solution in the end regions | z | > zc. The 
maser’s observed features, in particular the brightness^ tem- 
perature, are the same whether the core is saturated or not. 
Core saturation is therefore mostly a matter of pure theoretical 
interest. 

IV. EXTERNAL RADIATION AND INTERACTING FILAMENTS 
The only source of input radiation considered so far was 

spontaneous decays inside the maser itself. In this section we 
add the effects of an external source with intensity Ie, located 
along the axis of a filamentary maser (Fig. 2a). The source is 
assumed to be sufficiently distant that the angle Se(<S0) it 
subtends at the maser can be considered constant throughout 
the filament. When the maser is unsaturated, the effect of the 
background radiation is always described by equation (2.4), 
irrespective of the geometry. As pointed out in Paper I, the 
intensity modification is comprised in this case of S0 S0 + /e 
and the effect of the background source on the solution is thus 
measured by 

7e = IJSo = TJTx0 , (4.1) 
where Te is the brightness temperature of the external source 
and Txo is the unsaturated maser excitation temperature. A 
maser in front of a background source displays emission which 
is enhanced over the value it would have had if that source was 
not there. An enhancement factor % can be defined as 

(4.2) 
* vnh 
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where the subscript nb denotes the intensity in the absence of 
external radiation. Evidently, for an unsaturated maser 

* = 1 + Te • (4.3) 

The enhancement is thus determined exclusively by the param- 
eter ye in this case. 

While an analytic solution is not available in any three- 
dimensional geometry, the full solution in the linear case was 
developed in detail in Paper I, and we can rely upon it for 
guidance in the filamentary geometry. Some caution must be 
exercised, however. The linear maser does not have a true 
intensity; the functions Iv± are actually angle-averaged inten- 
sities (Paper I; see also Appendix C). Thus the linear maser 
solution provides a correct indication of the behavior of Jv but 
not of 7V. As in the linear case, external radiation can only 
increase the maser Jv by up to factor of 2 when the core moves 
all the way to the filament edge and the saturated volume is 
doubled; luminosity enhancements of more than a factor of 2 
are thus precluded by fundamental maser properties. But the 
intensity 7V can be enhanced indefinitely along selected rays, as 
long as their overall contribution to Jv is negligible. The 
unsaturated core and the right-saturated zone amplify input 
radiation by some given amount. Rays that enter the core with 
a higher intensity, such as those originating from the external 
source, will therefore emerge stronger. Thus the external source 
can appear arbitrarily bright even through a saturated 
maser—provided its angular extent is sufficiently small. 

Consider now the filamentary solution in the absence of 
external radiation (previous section). The intensities at core 
entrance of the external and internally generated radiation, 7ex 
and 7in, respectively, calculated in this unperturbed solution 
are 

fex = 7/3 Ie K0x / , 7in = 11/12 S0(k0v 02 , (4.4) 

as can be easily shown from the results of § III. The contribu- 
tions to Jv at the core entry of these two components will be 
denoted Jex and Jin, respectively. These contributions are 
obtained by multiplying each of the intensities by the appropri- 
ate solid angle factor—1/4#^ for the external radiation and 
16/1 l#o f°r the internally generated radiation. The ratio of 
these two components of Jv 

7 ye 

16 /c0v/ 
(4.5) 

controls the structure of the solution (Paper I); in particular, 
the core shifts to the left by the amount + ^e) (see eq. 
[1.4.17]). Therefore, + ^e) is the fractional increase in 
volume of the right saturated zone due to the external radi- 
ation, and hence the fractional increase in Jv at exit on the 
right. The fractional increase in intensity emerging toward the 
observer is obtained after scaling by the appropriate ratio of 
the two beaming factors, leading to 

* H W l+^e 
(4.6) 

(see eq. [1.4.18]). This is the general result for the enhancement 
factor. It holds as long as the intensity of the external radiation 
is not so high as to cause saturation by itself without any 
further amplification in the left saturated zone; that is, the 
validity range of this expression is l/4#g7e < Js, which is 
always obeyed in practice. 

Although the expression for x was derived by inference from 
the linear maser solution, it provides the correct result in two 
limits where a solution is available. When 1, 

Z = 1 + 
28 ye 

h K0xr 
(4.7) 

a result which is easy to understand : In this limit, Jex Jin and 
the maser structure is unaffected by the external radiation. The 
terms 7ex and 7in of equation (4.4) are then the actual intensities 
at core entrance of the external and internally generated radi- 
ation, respectively. These intensities maintain their relative 
strengths during further amplification while traveling through 
the core and the right saturated zone. Their ratio therefore 
provides the ratio of emerging intensities with and without 
background radiation—the maser enhancement factor; hence 
equation (4.7). This result can also be derived by calculating 
the emergent intensity from Ie exp tv( —0 using the expres- 
sion derived in Paper II for the overall gain of an unperturbed 
saturated maser (eq. [II.3.17]). As expected, the enhancement 
can increase with ye without bound, but because of the condi- 
tion Me<^\ such unrestricted amplification is confined to small 
angles. Note that this condition also ensures that the lumin- 
osity of the amplified external radiation is smaller than the 
internally generated maser luminosity, so the overall lumin- 
osity cannot increase by more than a factor of 2. Because this 
added luminosity is confined to a much smaller angle, the 
intensity can be accordingly higher. 

The condition <0 is obeyed whenever the external 
source is either weak or distant. The other limit is > 1, and 
the corresponding enhancement factor is 

i 64 
7=1+ — X -r n (4.8) 

The maser structure is controlled now by the external radi- 
ation since Jex > Jin. Because Jv is dominated by the external 
component, the beaming angle is constant throughout the fila- 
ment (on account of the assumption that the external source is 
distant) and the maser acts effectively as a linear maser. It is 
easy to solve the radiative transfer equation in this case and 
show that except for a correction factor of 6/7, the solution is 
identical to the result of equation (4.8); this is an indication of 
the accuracy of our general result, equation (4.6). The maser 
luminosity is only enhanced by ~ 50%. 

a) Interacting Filaments 
Consider now the situation when the external source is itself 

a filamentary maser, with radius Rb and half-length respec- 
tively, its axis aligned with the foreground maser at a distance d 
(Fig. 2b). The internal properties of the background filament 
(pump rates, etc.) are assumed identical. The external intensity 
Ie is then obtained from equation (3.27) and the angle Se is 
Rb/d. Therefore, &e = (di/d)2 where 

4 = a¿b(í\y¿b/í)
l¡2 (4.9) 

defines a distance scale for the interacting pair (a factor of 
49/48 inside the square root has been set to unity.) The masers 
affect each other’s structure so long as their separation is 
smaller than the interaction distance d¡. For masers with iden- 
tical lengths the distance d¡ obeys 

djt = 103a^/2 , (4.10) 
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(a) 

> 

Fig. 2—Maser amplification of background radiation: (a) a filament 
amplifying a distant source, (b) a filament amplifying a background filament, 
and (c) a background filament amplified by a foreground slab. 

where y5 = y/105. This is a rather large distance. The reason 
interaction can persist to such large separations is that in each 
filament, it is the subordinate intensity which has to compete 
with the dominant intensity of the other member of the pair. If 
Tbi denotes the brightness temperature (obtained from eq. 
[3.28]) of the foreground maser acting as a single filament, the 
brightness temperature Tb2 of the interacting pair is 

When the filament separation is much less than dh the bright- 
ness temperature increases with separation in proportion to 
(i///)2. Even though these results were derived under the 
assumption that d > (to ensure a constant 9e), the limit 
d —> 2/' for identical filaments produces an enhancement factor 
of 6.8, reasonably close to the correct answer / = 8 (the two 
filaments are then simply joined to form a maser with double 
the length). When d > d¡, the brightness temperature 
approaches the limit 

7), max = Tbl 16yab/fb¡¿ = (154/3fe)22dsK0v/ftya2a2 (4.12) 
where ab is the aspect ratio of the background maser. This is 
the maximal brightness temperature that can be produced by 
two aligned filaments, obtained when their separation is suffi- 
ciently large that they do not affect each other’s structure. 
From equation (4.10), the filaments’ separtion must be substan- 
tial before this limit is reached. 

These results are easy to understand. The brightness tem- 
perature of a filamentary maser is proportional to d x (<?/R)2, 
with the first factor reflecting the size of the emitting volume 
(hence the luminosity) and the second one the beaming angle of 
the radiation. As long as d « d, the two members of the pair 
can simply be considered the two halves of a single filament, 
separated by a distance d. This does not affect the first factor, 
since the radiation producing volume does not change, thus 
the overall luminosity hardly changes by such separation 
(small changes reflect the motion of the core location inside 
each filament). But the beaming angle is now tighter, pro- 
portional to R/d instead of R//’, and so the brightness tem- 
perature increases in proportion to ¿(d/R)2. Equivalently, the 
two masers can be considered a single lengthy filament with 
overall length d whose midsection has been removed; this 
removal affects only the radiation generation volume, not the 
beaming angle, producing the same result. It should be noted 
that at a large distance D(>d), the observed angular size of 
either maser is R/D—much smaller than and unrelated to the 
beaming angle. Thus the observed size of the interacting pair is 
the same as that of the background filament acting as a single 
maser. Once the pair separation exceeds the interaction dis- 
tance d¡, the structures of the masers are those of two isolated 
filaments and the pair can no longer be considered the two 
halves of a single maser. The brightness temperature reaches 
the maximum of equation (4.12), since further separation has 
no effect on either the intensity entering each filament or their 
overall gains. The pair excess luminosity is decreasing as (R/d)2 

because of the smaller angle occupied by the radiation that 
arises from their interaction. 

Interacting filaments have been studied recently by Deguchi 
and Watson (1989). They proposed that the single-filament 
brightness temperature is enhanced by a factor near (d//)2 as 
long as the radiation of the other maser is the dominant source 
of stimulated emission. This requirement is equivalent to d << 
d„ and their proposal is in agreement with equation (4.11) in 
this limit. 

b) H20 Maser Bursts 
We propose that maser amplification of input maser radi- 

ation is the explanation for the giant burst sometimes observed 
in H20 maser emission from star-forming regions (Matveenko 
1986). Two events have been reported so far, one in W49 
(Burke et al. 1973) the other in Orion (Abraham et al. 1981). In 
both cases the sources flared up, leading to a very high bright- 
ness temperatures (Tb > 1015 K) and unusually small dimen- 
sions and linewidths (Matveenko 1986; Garay, Moran, and 
Haschick 1989). In the case of Orion at least, this was also 
coupled with high linear polarization (up to 70%; Garay et al.) 
These are clearly unique events that require their own explana- 
tion, different from that of other H20 maser features. 

Our model for H20 masers behind shocks in star-forming 
regions produces single-filament brightness temperatures of 

Tbl = 0.9 x 1012(a/10)3 K (4.13) 

(eq. [2.3] of EHM with proper account for the factor of/ 
including the second-order correction). Observations show 
that individual features in H20 maser sources typically have 
brightness temperatures in the range ~1012-1013 K (Genzel 
1986), and can therefore be explained with aspect ratios in the 
range ~ 10-20. Occasionally, brightness temperatures of 
~1014 K are detected, and those would require that some 
filaments have aspect ratios as high as ~50. A phenomenologi- 
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cal analysis of the observations shows that the data are indeed 
suggestive of a description in terms of filaments with a distribu- 
tion of aspect ratios in this range (Genzel 1986). We therefore 
propose that with the possible exception of the burst events, all 
the observed H20 maser emission from Galactic sources can 
be explained as the result of internally generated radiation in 
single filaments. Brightness temperatures in excess of 1015 K, 
observed in the burst events, require the occurrence of either 
extreme aspect ratios, in excess of 100, or the chance alignment 
of two filaments that can then amplify each other’s radiation, 
as described above. Both alternatives involve low probability 
situations, but then they only need apply to two unique events. 
So far, extreme brightness temperatures were recorded only in 
burst events with distinctive properties, suggesting that there is 
a dichotomy in the data between Tb < 1014 K and Tb > 1015 K. 
This indicates to us that the explanation based on chance 
alignment of two masers should get preference. 

The chance alignment of filament pairs provides an ade- 
quate explanation for the giant bursts, with the extreme bright- 
ness temperatures requiring an enhancement factor of / ~ 100. 
As can be seen from equation (4.12), with y ~ 105 and a ~ 10 
the enhancement can reach as much as / ~ 108—considerably 
more than what is needed (or observed, so far). However, this 
limit is only approached at filament separations that exceed 
their lengths by 104 (eq. [4.10]), much more than the overall 
dimensions of maser regions. Astronomical maser sources are 
always confined tod d, where the enhancement is 

* 
16 
11 

(4.14) 

(eq. [4.11]). An enhancement of / ~ 100 is produced when the 
filaments’ separation is 10 times their length. An alignment of 
this type is not unreasonable for filament opening angles of 
$0 ~ 1/10. In our model the filament lengths range from 
~ 1014 to > 1015 cm so the filament separation would have to 
be >1015-1016 cm, in accord with observed dimensions of 
groups of maser spots. The small dimensions and line widths of 
the burst sources can be attributed to the additional con- 
straints imposed by the alignment. Maser features are usually 
small and have narrow lines because of the restrictions 
imposed by velocity coherence. These become even more strin- 
gent when two filaments have to cooperate. Note that Rb < R 
only adds to the enhancement (eq. [4.14]). The time variability 
of intensity and line width observed in the Orion burst (Garay 
et al.) can be attributed to fluctuations in the degree of align- 
ment. The high polarization observed in this burst requires the 
presence of aligned magnetic field in the source. If the cause of 
this burst was indeed filament alignment, it is tempting to 
speculate that it resulted from effects related to magnetic inter- 
action. 

A different type of amplification occurs when maser radi- 
ation is passing through an unsaturated maser. Such a situ- 
ation is likely in our model because the filaments reside in 
sheetlike shocked regions whose thickness is equal to the fila- 
ments’ diameters (Fig. 2c). Unsaturated amplification can 
occur when the line of sight to a given filament intersects a 
shocked slab face-on. If the slab’s perpendicular gain is t 
( = 2k0R where R is a typical filamentary radius) then the 
filament’s intensity is amplified by / = eT before reaching the 
observer and an enhancement by / = 100 requires only t = 4.6 
(/c0 R = 2.3). As mentioned before, our model produces k0R ~ 
4 for prototype filaments so such amplification does not pose 

any problem and is obtained at slab thickness of only 
~ 1.4 x 1012 cm. However, since the overall gain of an unsatu- 
rated maser is smaller than for a saturated maser, / cannot 
exceed the saturated results. Indeed, unsaturated amplification 
is constrained by the requirement that inside the slab itself, the 
contribution of the amplified radiation to the angle-averaged 
intensity not exceed the saturation intensity Js, otherwise the 
slab’s illuminated region would saturate. Using the results of 
§ III it is easy to show that this requirement limits the unsatu- 
rated amplification to 

,<i22(W_L_ 
11 \SJ K0Jb’ 

(4.15) 

where Sb is the opening angle of the background filament (Fig. 
2c). As expected, this is indeed smaller than the corresponding 
saturated amplification (see eq. [4.8] for identical filaments). 
This constraint can be expressed as a lower bound on the 
filament-slab separation 

(d/Sb)2Zll/4SK0vRbXab. (4.16) 

When this limit is exceeded, the slab saturates and the previous 
treatment applies. Inserting representative values we find 

d/Sb > 80[(/cOv Rb/4)(^/100)(ab/10)]1/2 . (4.17) 

Therefore, the separation in a filament-slab configuration must 
be about an order of magnitude larger than filament-filament 
to achieve comparable enhancement. Such separations 
(~1016-1017 cm) are still compatible with observed dimen- 
sions of groups of maser features. 

This analysis shows that both saturated and unsaturated 
amplifications are capable of explaining the brightness tem- 
peratures of H20 giant burst events with plausible parameters. 
Although unsaturated amplification requires an alignment at 
larger separation, the foreground element of the aligned pair 
presents a much larger target area, being a sheetlike object 
rather than a filament. An estimate of the comparative likeli- 
hood of these and other types of alignment requires a detailed 
geometrical model for the entire source, and will be done in a 
forthcoming paper (Elitzur, Hollenbach, and McKee 1990). 
Fast time variations would tend to favor unsaturated amplifi- 
cation because of the exponential response and shorter cross- 
ing times across a slab than along a filament. During 
unsaturated amplification, the radiation reaching the observer 
is that of an unsaturated slab amplifying a background source. 
Time variability is then expected to be similar to that of a 
radiatively pumped unsaturated maser, giving rise to fast fluc- 
tuations. In particular, the radiative crossing time determines 
the onset of saturation in the slab. 

During the initial phase of the Orion burst, the intensity 
appears to have doubled in about a day (Abraham et al. 1981). 
With unsaturated amplification this can be attributed to an 
increase of In 2 = 0.7 in the gain t. Because the dependence of 
gain on slab thickness (and optical depths of IR transitions) is 
nonlinear, the dimensions associated with such a change 
depend on the value of the gain. A slab whose overall perpen- 
dicular gain is t = 0.7 is only 4 x 1010 cm thick while a change 
in gain from t = 4 to t = 4.7 occurs during increase in slab 
thickness from 8 x 1011 cm to 1.5 x 1012 cm, for a thickness 
change of 7 x 1011 cm. At a typical shock velocity of ~ 100 km 
s~\ the crossing time for the latter dimension is just one day 
and the radiative crossing time is only ~ 5 minutes; the former 
thickness produces time scales that are even smaller, by a full 
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order of magnitude. Observations may be expected to display 
variations on all time scales. Indeed, time scales as short as ~ 5 
minutes may have been detected for intensity fluctuations in 
the Orion burst (Matveenko 1986). A plausible scenario for 
this event is that a slab intersected the line of sight to a back- 
ground filament because of either the formation of a new shock 
front or the oblique propagation of an existing one. This pro- 
vided initially unsaturated amplification (explaining the fast 
rise time and rapid fluctuations) that later switched to saturat- 
ed amplification as a result of the interaction with the back- 
ground filament. 

Amplification by filament pairs as an explanation for H20 
masers in star-forming regions has been recently invoked by 
Deguchi and Watson (1989). Unlike the proposal made here, 
their model seems to imply amplification for most (if not all) of 
the observed features in strong sources and to require axial 
alignment of filament pairs. In contrast, our model requires 
such amplification only for the giant bursts, whose properties 
appear to be distinctly different from those of other features, 
and indicates that in the case of Orion at least, the interaction 
involved a foreground sheetlike maser intersecting face on the 
line of sight to a background filament. 

V. OBSERVATIONAL IMPLICATIONS 

One of the most important questions confronting any 
attempt at modeling of astronomical masers is the appropriate 
geometry to use for the underlying structure. The filamentary 
and spherical geometries studied here and in Paper II rep- 
resent the prototypes of elongated and isotropic sources, 
respectively. A formal comparison of the two solutions is pro- 
vided in Appendix C. It is important to find out which observa- 
tions, if any, can distinguish between these different 
configurations, and this is done in this section. 

It is instructive to digress first on the quantities that can be 
determined unambiguously from observations. The only radi- 
ative quantity directly measured is the observed flux FVi0bs. It is 
related to the (distance independent) intensity Iv and the solid 
angle subtended by the source Qobs via 

F\,obs == ^v^obs * (5-1) 
Therefore the intensity (i.e., the brightness temperature) can be 
directly determined from the ratio of two observable quan- 
tities. But the flux Fv at the source cannot be determined from 
observations because the radiation is beamed and the beaming 
angle Qv is not an observed quantity. For any source, the solid 
angle covered by observing instruments is minute; it is many 
orders of magnitude smaller than the beaming angle of maser 
radiation. Thus the relation 

FV = /VQV (5.2) 

(eq. [II.2.5]) which holds at the source involves the two unob- 
served quantities Fv and Qv. As a result, the luminosity too is 
unobservable since it is the surface integral of Fv. 

If the distance D to the source is known, the observed solid 
angle Qobs provides the observed area 

Aobs = D2Qobs . (5.3) 

Models that produce the same brightness temperature and 
observed area are therefore indistinguishable by maser obser- 
vations because these are the only quantities that can be deter- 
mined unambiguously. The observed area of a spherical maser 
is just a small cap on its surface with area R2QV(R) (Paper II). 

The sphere would therefore appear identical to a cylindrical 
maser with radius RSV(R) and the same brightness tem- 
perature. The resemblance between the spherical and cylin- 
drical masers is a close one. Consider a spherical maser with 
radius R and its cylindrical subvolume with radius RSX and 
length 2R aligned along the line of sight. This tube is virtually 
identical to an independent cylindrical maser of the same 
dimensions and with the same pump and loss rates. The 
observed area of both configurations is the same. The beaming 
angle of the independent cylinder would be co{,2R$J(2R) = 
0.6#v instead of #v for the sphere’s subregion, and its angle- 
averaged intensity would be (7/12)Jsk:0vR instead of 
(1/3)Jsk:0vR. Consequently, the brightness temperatures of the 
two configurations differ by only 4.8. Thus, apart from numeri- 
cal factors of order unity the two configurations are indistin- 
guishable. From any given direction, the appearance of a 
spherical maser is indistinguishable from that of the equivalent 
cylindrical maser. The suggestion that a certain maser source is 
spherical therefore involves the assumption, which cannot be 
directly verified, that in addition to the observed cylindrical 
region there is a whole unobserved spherical volume with iden- 
tical properties. 

In both spherical and filamentary masers, observations can 
determine a linear scale in the transverse direction but not 
along the line of sight. Thus in a spherical maser the radius of 
the observed region RSV can be determined, but not the actual 
radius R. Likewise, the radius of a filamentary maser can be 
determined from observations, but not the half-length ¿f. In 
both cases this amounts to the fact that the beaming angle 
cannot be determined. The corollary is that maser gain is not a 
measured quantity. 

In spite of the similarities, the radiation angular distribution 
is very different for the two configurations. In the spherical 
maser the distribution is determined by the length of the chord 
in the unsaturated core where the amplification is exponential, 
resulting in a Gaussian angular distribution. In the filament, 
on the other hand, the determining factor is the subordinate 
segment of the ray path, and the resulting angular distribution 
is a more moderate power law. This is of little consequence for 
observations, though. 

When the distance to the source is known, it is customary to 
express the observed flux in terms of the isotropic luminosity 
Lv,iSO = 47rD2Fv obs. From the previous equations it follows 
that 

í'v.iso = FvAobs X 4n/Ci, . (5.4) 

The isotropic luminosity is an observed quantity (since Fv/Qv is 
observable) but it need not equal the actual overall luminosity, 
which is unobserved (the ratio Fv/Qv is observable but neither 
quantity in itself). The observed area of a spherical maser is 
R2QV so Lv iso = 4tcF2Fv, the sphere’s actual luminosity. In 
spite of the beaming, the isotropic luminosity of a sphere is 
equal to its real luminosity, an obvious result in light of the 
symmetry. The luminosity of a spherical maser can thus be 
determined from Fv obs and D. It is an observationally deter- 
mined quantity, only because of the assumption about the exis- 
tence of an unobserved emitting volume. In the case of a 
filamentary maser the observed area is the cap, the beaming 
angle is ttco^o and 

¿v,iso = (77/24)a2Lv . (5.5) 
The isotropic luminosity overestimates the source actual 
luminosity Lv( = 2¿Ahv<bmx) by a rather large factor. The source 
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luminosity cannot be determined from Fv obs and D alone 
without an assumption about the filament aspect ratio, equiva- 
lent to the isotropy assumption made for a spherical maser. 
The luminosity of the observed volume is similar for both 
geometries. 

An important difference between the two geometries 
involves the frequency dependence of the beaming angle Qv. 
The filamentary geometry is characterized by the cap solid 
angle, thus the beaming angle is frequency independent. A 
sphere, on the other hand, has only one geometrical scale, its 
radius, so there is no intrinsic angle defined by the geometry. 
The construction of an angle requires use of the length scale 
l/^ov* which is frequency dependent, and the beaming angle 
therefore varies with frequency, as long as the core does not 
saturate. The observed size of a filamentary maser is fixed, while 
for a spherical maser it varies with frequency shift from line 
center (Paper II). This provides an observational test to dis- 
tinguish between the two geometries. 

Since the appearance of a sphere is the same in all directions, 
the distribution of brightness temperatures of an assembly of 
spherical masers with identical internal properties will simply 
reflect the radii distribution of the population. In contrast, a 
filament appears different to different observers at distance D 
(>/), depending on the angle S between the line of sight and 
the filament axis (Fig. 3). As long as # < 2S0, the observer 
intersects rays that traveled the full length of the maser and the 
observed intensity is ^-independent, thanks to the filamentary 
condition (eq. [2.12]). When S > 2S0 (Sa >1), the rays get 
shorter, and when S > 4$0, only rays that exit through the 
sidewall are observed (since they have to originate at the 
left half). The solid angle of a sidewall segment dz is 
dQ = 2Rdz sin S/D2 and the sidewall contribution to the 
observed flux can therefore be obtained from 

2R sin S fZ2 / , 
Fv,obs =    J (5.6) 

where and z2 are appropriate limits. For example, when 
S > 4S0, Zi = 0 and z2 = 2R/tan S (Fig. 3b). The intensity 
/v(z, S) is obtained from equations (3.15) and (3.20), and the 
value of Z*, required for the angular distribution ©-^i), is 
obtained from z + z¿ = 2R/tan S. The integration is straight- 
forward, and the leading term in the result is 

Ar2 0qc Q 
^ > 2: Fv obs = Fi —2 (a tan S) ~3 , (5.7) 

where F is some constant whose value may depend on the 
precise shape of the filament cross section. It should be noted 
that 4R2 cos S is simply the projection in the observer’s direc- 
tion of the sidewall area that allows emission in the direction S 
(Fig. 3b); the observed solid angle is 

2R sin 9 PZ2 

Qobs = d2 J dz = 4R2 cos 9/D2 . (5.8) 

Therefore, the filament appears smaller at larger angles. This 
result, a somewhat surprising consequence of beaming, is in 
fact quite obvious: For an observer at angle S = 2S0, the pro- 
jected areas of the cap and the sidewall are equal (Fig. 3a). As 
the angle increases, the cap disappears and only a fraction of 
the sidewall contributes, since observed rays must have crossed 
through the unsaturated core (Fig. 3b). The observed bright- 
ness temperature (ocFv obs/Qobs) therefore obeys 

Tb(S > 4S0) = Tb(S = 4S0)[2/(a tan S)Y . (5.9) 

(a) 

(b) 

Fig. 3.—Emission toward a distant observer at an angle {a) 2#0 to the axis 
and (b) $ > 4S0. 

The integrations in the range 2#0 < # < 4#0 (l/a < S < 2/a) 
can be performed in a similar manner. The observed solid 
angle obeys the same relation while the result for Fv obs is 
slightly more involved because more terms must be retained. 
However, the difference is not significant and this is only a 
small transition region anyhow. We can therefore employ the 
result of equation (5.9) as an approximation in this region too, 
and the dependence of brightness temperature on angle and 
aspect ratio is thus 

Tb(a, S)^T0a
3 x 

S< 1/a 
S>l/a, 

(5.10) 

where T0 is a function of the filament’s internal properties and 
its radius; our model for H20 masers in star-forming regions 
produces T0 ~ 109 K for typical parameters (see eq. [4.13]). In 
deriving this result the small angle approximation was 
employed; if large angles become important, S should be 
replaced with tan S. Therefore, a filament with a large aspect 
ratio observed at large angles (S > I/o) will appear as bright as 
filaments with smaller aspect ratios ~1/S observed along the 
axis. This result is easy to understand : the emission at the large 
angles is dominated by rays that travel comparable distances 
in both saturated zones, corresponding to an effective filament 
whose length is l(S) = ¿/(a tan S) (Fig. 3b). 

We can now derive the histogram of brightness temperatures 
of a filament population, assuming they all have the same 
internal properties and radius (so T0 is the same). Since the 
radii are the same, the variation of filament lengths generates a 
distribution of aspect ratios. Denote by jF(a)da the number of 
filaments with aspect ratios in the range [a, a + da]. At an 
arbitrary observer location, all orientations are equally likely 
and the distribution in a and S is dJ^(a, S) = jF(a) sin SdadS. 
We seek the distribution djV'^), the number of filaments 
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observed in the brightness interval [T,,, Tb + dTb~\. For the 
brightness temperature Tb, introduce the characteristic aspect 
ratio 

a(Tb) = (Tb/Toyi3 . (5.11) 

Filaments with aspect ratio a = a(Tb) will contribute to the 
brightness interval at all angles 3 < 1/a, while those with a > 
a(Tb) will contribute only at the inclination angle 9 = l/a(Tb). 
Combining these two contributions and employing the small 
angle approximation for sin 9 we find 

dJ^(Tb) = 1 dTb 

6a(Tb) Tb 

x (^(a[7i]) + -^- i” jr(a)da) . (5.12) 
\ aK1b) Mn) / 

This result can be used to deduce the function J^(a) from the 
observed distribution of brightness temperatures in a given 
source. As an example, consider a power-law distribution of 
aspect ratios, ^(a) cc a~p (p > 1 to ensure convergence.) The 
corresponding distribution of brightness temperatures is also a 
power law, oc 7¡"(4+p)/3. 

The coherence properties of the strong maser features in 
star-forming regions appear to be determined by chance order 
in a chaotic velocity field. These features appear to be individ- 
ual structures defined by line-of-sight velocity coherence in an 
otherwise turbulent medium. In all likelihood, the structure of 
a single maser spot resembles more closely a filament rather 
than a sphere. As we have shown above, for either geometry 
the observed radiation emanates from a region that is shaped 
like a tube. But in the case of a filamentary maser this is the 
entire coherent region while in a sphere it is only part of a 
much larger volume whose properties are assumed identical to 
those of the observed emission tube. The filamentary geometry 
provides the minimal realization of the velocity coherence dic- 
tated by observations, and this makes it the most likely configu- 
ration in sources that display large velocity dispersion. The 
velocity gradients for certain directions will be, by chance, 
somewhat smaller than for others. The better velocity coher- 
ence introduces a preferred local axis leading to stronger radi- 
ation along it, which then increases the asymmetry and so on, 
resulting in an elongated structure. 

Perhaps the most decisive arguments against the spherical 
geometry come from interferometric studies. Genzel et al. 
(1981) report that the observed sizes of individual maser spots 
in W51M are roughly constant across the profile; similar 
results were obtained for a number of maser sources by Walker 
and Moran (1990). Such behavior is expected only when the 
filamentary condition is obeyed. In addition, as shown in 
Paper II, the apparent radius of a typical astronomical maser 
would be only ~ 3% of its actual radius if it were shaped like a 
sphere. However, high-resolution mapping shows that the 
separation between maser spots is comparable to the diameters 
of individual features. Regions with dimension^ 100 times the 
diameter of a single spot typically contain many features with 
different velocities. It is therefore highly unlikely that astrono- 
mical masers resemble homogeneous spheres, and this 
geometry is mostly only of theoretical interest. In all likeli- 
hood, strong features in astronomical maser sources are the 
result of filamentary geometry. 

VI. SUMMARY 
This section is a summary of the results with most direct 

relevance to observations. The pertinent equations are gath- 
ered together and the second-order corrections are displayed 
wherever applicable to provide a handy reference. The original 
equation numbers are maintained for easy tracking to their 
location in the manuscript. When the equations are modified, 
either because of second-order corrections or to provide a form 
that is easier to apply, a prime is added to the equation 
number. 

When the length of a filamentary maser increases, its flux 
varies linearly according to 

Fv(t) = 47tJv(l) = 0.84 x (7/12) x 4tcJs k:0v ^ (3.11') 

while the solid angle of the radiation beam becomes narrower, 

Qv/4tc = (o^ilo/An) = 1/(1 la2) ; (3.26) 

the corresponding relation for the angular size of the beam 
pattern is 

Sv = (o\/2S0 = 0.60/a . (3.26') 

The linear increase of the flux and quadratic increase of the 
beaming factor 4n/Qv combine to produce brightness tem- 
perature variation with the third power of length according to 

kTb^0M(^^<S>myRa3 (3.28') 

for observations along the axis. As an example, our model for 
H20 masers in star-forming regions produces 

Tb = 0.9 1012(a/10)3 K (4.13) 

for typical parameters. Other consequences of the beaming are 
(1) the isotropic luminosity overestimates the maser actual 
luminosity, 

¿v.iso = 0.84(77/24)a2Lv, (5.5') 

and (2) the filaments appear smaller when viewed off-axis, the 
observed solid angle decreasing with an increase in observa- 
tion angle & according to 

Qobs = 4R2 cos S/D2 . (5.8) 

The variation of brightness temperature with length and 
viewing angle when all other properties are fixed is given by 

Tb(a, S) ~ T0 a
3 x 

S< 1/a 
8 > 1/a . 

(5.10) 

From this, the distribution of brightness temperatures 
observed for a filament ensemble can be calculated and the 
result is listed in equation (5.12). A power-law distribution of 
aspect ratios, Jf(a) cc a~p, produces a power-law distribution 
of brightness temperatures, ^(T*,) oc Tb

{4+P)/3. 
The effect of external radiation on the maser emission can be 

described by the parameter/, the enhancement of intensity due 
to the external radiation (eq. [4.2]). The general result for the 
enhancement factor of a filamentary maser is 

1 + 
28 TJTx0 

11 
1 + 7 TJTx0 (Si 

16 /Co V J 
(4.6') 

where Se is the angle subtended at the maser by the external 
source, Te is its brightness temperature and Tx0 is the unsatu- 
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rated maser excitation temperature. This general expression 
can be used to derive the enhancement factor when the back- 
ground source is itself a maser, as in the case of two interacting 
filaments (eq. [4.11]) for example. 

This work was supported in part by NSF through grants 
AST-8615177 and AST-8716936, and NASA through grant 
RTOP 188-44-53 and a theory grant which supports the 
Center for Star Formation Studies. 

APPENDIX A 

EXACT EQUATION FOR THE BEAMING ANGLE 

The solution presented in § III was the first-order solution, derived under the assumption of a constant &>(z), the ratio of the beaming 
angle Qv(z) to the cap solid angle (eq. [3.3]). In this Appendix we develop the exact integral equation that defines this unknown 
dimensionless function. 

It is convenient to denote locations on the axis with the dimensionless coordinate 

y =zIt ■ 
The cap’s solid angle at y is then 4i!0/(l + y)2 and the function m is defined from 

£iv(;y) = 0)(y) 
4fi0 

(1 + y)2 ' 
The solution of the equation of radiative transfer (3.5) for the dominant rays of a saturated filament is then 

JJy) = Js KoJiiy), 

where 

(Al) 

(A2) 

(A3) 

i(y) = 
oiy) Çy (i + y')2 

(i + yY f co(y') 
dyf 

and where we assume, as we did throughout, that zsv / and that Js can be neglected in comparison with Jv, since our primary 
interest is in z zsv(y > 0). From this result it follows that 

a = Jv(/)/(JsKov/)=;(!), (A4) 

where a is the structure constant defined in Paper II (see eq. [II.3.9]). Note that a>(y) = constant generates the first-order profile 

1 
ji(y) = 

3(1 + y): • (y3 + 3y2 + 3y) , (A5) 

which properly reproduces equation (3.9). 
With equation (A3) for Jv(y), it is a simple matter to solve for the intensity of the subordinate stream and obtain the equivalent of 

equation (3.13): 

where 

/v<(zsv> Zt) = SoOCov’WO , 

' (1 + /)2 

^(0 = dyoiy) 
Î œ(ÿ) 

dy' . 

(A6) 

(A7) 

This then provides the radiation angular distribution profile 

0(0 = T(0/T(1). 

Note again that the first-order profile obtained from wly) = constant is 

¥1(0 = M4 + 4{3 + 6C2), 

(A8) 

(A9) 

in agreement with the result of equation (3.19). 
Since the solution is now fully determined, even if in implicit form, the angle-averaged intensity Jv can be calculated from its 

defining relation Jv = J /v dSl/An. The equation determining the unknown function a>(y) is obtained from the self-consistency of the 
derived result and the beaming relation (eq. [3.2]) assumed at the outset. As in § Ilia, the integration is divided to its cap and side 
contributions so that 

JXy) = •Jv.captv) + •Jv.sideO’) • (A10) 

The left-hand side is obtained from the beaming relation (eqs. [3.2] and [A2]), while the cap and side contributions are given in 
equations (3.21) and (3.22), respectively, with proper account for the different location; in particular, the contribution of the sidewall 
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can be brought to the form 

•/v.side = 2^0 Iy(y, 1) iJefCXy + 0 "3di (Al 1) 

(see eq. [3.22]). Equation (A 10) therefore becomes 

which is the sought-after result. When 0(C) is inserted from equations (A7) and (A8), this becomes an inhomogeneous integral 
equation for the unknown function co();). Its solution fully defines the function co(y\ both scale and functional form, and provides the 
complete solution of the filamentary maser problem. This equation can be solved with an iterative technique: the function œn 
derived in the nth step is inserted in the right-hand side, thus producing the next solution con+x on the left-hand side, and so on. The 
solution presented in § III was derived from the initial guess co^y) = coi, a constant. The corresponding angular distribution 0! is 
then the one listed in equation (3.19), and the next order solution œ2 can be obtained after a straightforward, if somewhat laborious 
integration. The result is 

Mliy) = (2/H)[l + 10y + 3y2 - 6y3 + 6(1 - y2)2ln(l - l/y)] . (A13) 
Note that <u2(l) =16/11, thus the beaming angle of the emanating radiation used throughout the paper is correct to second order. 
The logarithmic divergence at y -► 0 (z -► 0) is of no concern because the discussion is confined to z > zsv. A remarkably accurate 
representation of this function over the entire interval [0,1] is provided by the simple expression 

co2(y) = (16/ll)y-°-285 . (A14) 

Therefore, although the function œ is not constant, its variation in second order is (ff/z)0 285, which is reasonably slow. 
Since the function m2 is known, the rest of the second-order solution can be easily worked out. We present the results for an 

arbitrary power law, co2cc y ~p. The second-order variation of the angle-averaged intensity is then 

j2(y) = 
1 

3(1 + y)2 

_3^ 

Vl + p/3 1 + p/2 l+pj’ (A 15) 

note that the first-order solution is reproduced with p = 0 (see eq. [A5]). The parameter a that characterizes the emergent intensity 
(eq. [A4]) can now be obtained, and with p = 0.285, the second-order result is 

«2 = 0.84a! . (A 16) 
Thus the first-order a¡ = 7/12 is reduced by 16%, which can be considered the overall accuracy of the first-order solution. The 
variation of a„ in successive iterations provides a particularly suitable convergence test, because a involves an integral over the entire 
maser. The second-order angular distribution can be calculated similarly, and the result is 

1 í Í4 

'î'ztë) = 7^ f 12 Vl + p/3 
4?3 | 6Ç2 \ 

1 + p/2 1+pJ’ (A17) 

again, the first-order distribution is recovered with p = 0 (see eq. [A9]). This completes the second-order solution of a single 
filament. 

The corrections to the solution in the presence of external radiation can be worked out in a similar manner. The parameter (eq. 
[4.5]) involves the beaming angle at core entrance where most of our approximations are least valid, so its usage is somewhat 
problematic in second order. This problem is avoided in the two limits where a direct solution is available. When the external 
radiation does not affect the maser structure (ße « 1 ), the enhancement factor / is determined by the ratio of intensities at core entry 
in the unperturbed solution. It is easy to show that the general form of equation (4.4) for these intensities is 

lex = 4/(l Ke K0v/ , 
and their ratio, the enhancement factor, is thus 

/in = y(i)So(K0v02, (A 18) 

*=1 + 
4/(1) ye 

¥(1) Kov^ (A 19) 

(see eq. [4.7]). It is easy to verify that the numerical coefficient 28/11 is recovered from this result with the first-order functions. 
Equation (A16) provides the second-order correction to;(1), and from equation (A17) and p = 0.285, 

^(1) = 0.83 x ¥,(1). (A20) 

Thus the ratio/(I )/¥(!) is essentially unchanged in second order and so/ is the same. 
The other limit, ■'/!,, ï> 1, corresponds to the situation where the maser structure is controlled by the external radiation. The 

general expression for / is then 

* = 1 + 
2<a(l) 

;(D 
(A21) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

36
7.

 .
33

3E
 

RADIATIVE TRANSFER IN ASTRONOMICAL MASERS 347 No. 1, 1991 

The first-order coefficients reproduce equation (4.8) up to factor 6/7, as mentioned. The value of a>(l) is unchanged, while the 
second-order correction to j(l) modifies this factor to 1.02, improving the adequacy of the coefficient 64/11 of equation (4.8). The 
expressions for / derived in § IV therefore hold in second order. 

APPENDIX B 

THE RADIATIVE FLUX VECTOR 

The component along the ith direction of the radiative flux vector Fv(z, r) is obtained from 

Fvi = (Bl) 

where is the appropriate coordinate unit vector and l is the unit vector along the ray (Fig. 4). Consider the contribution of cap 
rays. The filamentary condition ensures that 7V can be considered independent of l. For an arbitrary point P at location (z, r), a 
coordinate set is chosen with its origin at the point A(r, z = — *f) and the x-axis along AO (Fig. 4). The components of the unit vector 
l are 

/ = ( — sin S' cos 0, — sin S' sin 0, cos S') (B2) 

and the other relevant unit vectors are er = ( — 1, 0, 0) and ez = (0, 0, 1). It is convenient to introduce the angle S = R/l = R/(¿ + z). 
The solid angle element is dQ = sin S' dS' dip and for each </>, the ^'-variation corresponds to the tip of the ray moving along the 
appropriate AB segment. From the figure it is evident that 

AB = (R2 — r2 sin2 0)1/2 + r cos (p (B3) 

and S' varies in the interval [0, S x AB/R~\. It is convenient to transform all (^-integrations to the quadrant [0,7r/2]. This can be 
accomplished with the introduction of two appropriate upper bounds for the S' integrations 

(B4) 

(B5) 

(B6) 

The z-component of Fv is then 

S± = 3[(1 - (r/R)2 sin2 (£)1/2 ± (r/R) cos 0] . 

rn¡2 ( p- \ 
^vz,cap = 2/v I dcpl\ S'dS'U 

where the small angle approximation was assumed for S'. Straightforward expansion produces 
^n/2 

F _ 9/ q2 1 vz,cap v 17 

r 
d(p[l + (r/R)2(cos2 (p — sin2 </>)] 

The terms multiplying (r/R)2 integrate to zero, and the result is 

^vz.capfe r) = nS2Iv(z) , (B7) 
the standard beaming relation (note, in particular, that Fvz is independent of r). Therefore, the cap contributions to Fvz and Jv are 
related by the standard beaming expression 

í'vz.cap = 47tJv,cap . (B8) 
The r-component of Fv is obtained from 

p/2 / p+ p- 
Fvr cap = 21 v d(P cos (P[ S'2 dS' - S'2 dS' 

Jo \Jo Jo 
(B9) 

The two ^'-integrals enter in a difference because the r-projection of / has opposite signs in the two quadrants of (p. As before, 
straightforward ^'-integration produces 

p/2 
Fvr.cap = 4/3IvS

3(r/R) d(p[3 cos2 (p + (r/R)2(4 cos4 (p — 3 cos2 </>)]; (B10) 

-Z¡ 

Fig. 4.—Calculation of the radiative flux vector Fv 
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note that 9r/R = r/L Again, the terms multiplying (r/R)2 integrate to zero and the final result is 

(BH) 

The radial component Fvr increases in proportion to r, the distance from the axis (from symmetry, Fvr obviously vanishes on the 
axis). The result Fr :Fz = r:l implies that the flux vector is parallel to the line connecting the point with the center of the far cap, 
which is easy to understand: for every area element on the cap there is an equivalent element located diametrically opposite- the 
resultant contribution of the two elements to the flux vector is aligned with the PO axis. 

These calculations provide the cap contribution to the flux at an arbitrary point. It is straightforward to show that the sidewall 
contribution maintains the relation of equation (B8) between Fvz and Jv, and thus 

where Fv(z) is given in equation (3.10). On the other hand, the relation of equation (Bll) is only approximately obeyed by the 
sidewall contribution to Fvr. However, the deviation from this relation is not large—it is similar to the deviation of co(z) from 
constancy along the filament. Since this difference affects only the contribution of the sidewall, which is smaller than that of the cap, 
it can be neglected at the level of accuracy of the first-order solution. Therefore, at the first order, the relation of equation (Bll) 
applies to the overall components of the flux vector, Fvr and Fvz. This completes the definition of the radiative flux vector 
everywhere for the first iteration. 

The first-order solution of the filamentary maser can be compared with both the linear and spherical masers. The resemblance 
with the linear maser is best illustrated by taking the R -► 0 limit of the filamentary maser solution. This limit cannot be taken 
directly because the intensity then diverges—as it should. The divergence occurs because the radiation is compressed into an 
infinitely narrow beaming cone. This is the same divergence that was mentioned in the discussion of the linear maser and is the 
reason why the functions Iv± were introduced there (Paper I). The construction of an equivalent linear maser from a filamentary 
maser therefore requires that the coefficient in front of the singularity be identified. To do that we must first integrate over angles 
and then equate the corresponding emissivities in the filamentary and linear geometries through 

In this expression, the beaming angle ,9V was replaced by its average (as defined in Paper II) because the beaming angle of the 
filamentary maser varies with position while for a linear maser it is fixed. At the edge of the filament <92(/)> = (12/7)0^9? and the 
intensity of the corresponding linear maser with half-length / is 

Inserting the filamentary maser first-order expression for Jv (eq. [3.26]), the intensity obtained through this limit procedure is 
^v+(0 2</siCov/, in agreement with the result for the linear maser (Paper I). In addition, the various expressions obtained for the 
filamentary geometry are identical in form to those derived for the linear maser if the aspect ratio is considered a constant. The 
differences in the numerical coefficients of the two geometries reflect the radiation leakage through the filament sidewall, an effect 
that does not exist in the linear model. 

The first-order filamentary maser solution also shares a lot of common properties with the spherical maser. In fact, with the 
formal substitution r -► «f + z the spherical maser solution can be carried over directly to the filamentary geometry. This correspon- 
dence can be understood from the discussion leading to equation (II.2.15), and its formal justification is provided by the calculations 
of the flux vector presented above (§ III; Appendix B). This substitution properly transforms the equation of radiative transfer from 
one geometry to the other since in the z > zsv saturated zone of a filamentary maser, 

similar to the spherical maser (see eq. [II.2.15]). Next, the expressions for the beaming angles are the same in both geometries (see 
eqs. [3.4] and [II.5.9]) and so the average beaming angle of the filamentary maser obeys 

Fvz(z, r) = Fv(z), (B12) 

APPENDIX C 

COMPARISON WITH OTHER GEOMETRIES 

! 
The intensity of the equivalent linear maser is thus 

(Cl) 

/v+(z) = lim i<'9v2(z)>/v(z, 1) • (C2) 

(C3) 

+ z)'2 j-z [(^ + z)2*7v] = K0vJs , (C4) 

<Q(z)> = 
3Q(z) 

1 + Of + zJ/Of + z) + [(/ + Zj/(/ + z)]2 (C5) 
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(see eq. [II.5.10]). Assuming / > zsv we again find a = Q(/)/<Q(/)> = 7/12. This result was also derived in Paper II from general flux 
considerations. It can be similarly obtained from the ratio of volume to surface area of a spherical shell with radii / and It, which 
can be understood from flux considerations and the correspondence with spherical geometry. Similarly, the optical depth between 
z1 and z2 in the saturated zone of a filamentary maser can be obtained from the corresponding expression for a spherical maser (eq. 
[II.5.16]): 

Tv(zi> Z2) = In 
(/ + z2)3 - (/ + zj3{l - 3/[fc0v(/ + z j]} 
(/ + Zj)3 — (/ + zj3{ 1 — 3/[/c0v(/ + zsv)]} 

(C6) 

In spite of the great similarity between the geometries, fundamental differences do exist. They stem from the difference in the 
location of the divergence center for the flux vectors. In a sphere this is the center, coinciding with the center of the core. In a 
filament, on the other hand, the flux divergence center is the center of the far cap, outside the core. Similarly, the base area A0 which 
determines the beaming angle Qv (eq. [II.2.16]) is the visible area of the core of a sphere while in a filament it is the cap area of the far 
end. This causes the range of variation of the appropriate radii to be different. In the saturated shell of a spherical maser the radius 
varies from rsv to R and the ratio of maximum to minimum radii can be almost arbitrarily high (the upper bound to this ratio is only 
met when the core finally saturates.) In contrast, the corresponding ratio in the filamentary maser is 2t/(t + zsv) < 2, which becomes 
constant, irrespective of the maser length once t P zsv. The “equivalent radius ’V + z of a filamentary maser varies by only a factor 
of 2, independent of the actual source dimensions. 
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