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ABSTRACT 
The Fokker-Planck equation has been integrated to produce a series of numerical models describing the 

dynamical evolution of globular clusters with a mass spectrum. Three-body binary heating is included to 
obtain postcollapse evolution and a steady Galactic tidal field is imposed. Since no direct interactions between 
stars (such as tidal captures or mergers) are considered, the models are appropriate for globular clusters with 
a relatively low mass (M < 105 M0). A wide range of initial mass functions is considered and the evolution of 
the mass function is examined. The mass function begins to change appreciably during the postcollapse expan- 
sion phase due to the selective evaporation of low-mass stars through the tidal boundary. One signature of 
highly evolved clusters is thus a significant flattening of the mass function. The age measured by the half-mass 
relaxation time increases very rapidly from a characteristic value of -100 at the final stage of disruption. This 
appears to be consistent with the sharp cutoff near 108 yr in the distribution of the half-mass relaxation times 
for the Galactic globular clusters. We also consider the evolution of clusters containing massive dark remnants 
(i.e., white dwarfs or neutron stars). The efficient formation of three-body binaries among the degenerates and 
the relative flattening of the luminosity profile compared to the density profile, lead to postcollapse models 
with a sufficiently low concentration that the core may be resolvable. 
Subject headings: clusters: globular — luminosity function — stars: stellar dynamics 

I. INTRODUCTION 
Theoretical studies of the dynamical evolution of stellar 

systems have concentrated mainly on single or few mass com- 
ponent models because of their simplicity. For many globular 
clusters, CCD photometry is now available to well below the 
main-sequence turnoff point and the corresponding partial 
mass functions have been derived (see McClure et al 1986). 
Recently, Fahlman et al (1989) have reported observations of 
the mass function in NGC 6397 which extend essentially to the 
hydrogen burning limit. More realistic models are clearly 
needed in order to compare the theoretical results with the 
observed properties of such well-studied globular clusters. 

The interpretation of an observed mass function is not 
straightforward because it need not reflect the initial mass 
function (IMF) but rather, some complicated result of dynami- 
cal evolution. In addition, one usually derives the mass func- 
tion from data obtained at a limited range of radial distances 
from the cluster center. If the relaxation time scale is sufficient- 
ly short, the local mass function will generally be different from 
the global mass function because of mass segregation. Multi- 
mass King models may be used to infer the global mass func- 
tion from local observations (see Pryor, Smith, and McClure 
1986) but the applicability of such models to real clusters has 
not been studied carefully. 

There are many physical processes which should be incorpo- 
rated in realistic models for the evolution of globular clusters. 
These include the initial mass function, stellar evolution, 
dynamical relaxation, physical interactions between single and 
binary stars, and external effects, such as the Galactic tidal field 
and the occasional tidal shock. It is a very complicated matter 
to put all these effects into a single model. In a remarkable 
study, Stodolkiewicz (1985) developed a model, based on 
Monte Carlo simulations, in which almost all conceivable 

effects are included. Unfortunately, statistical fluctuations and 
the complex nature of the solution are obstacles in obtaining a 
clear picture of cluster evolution from this work. One also has 
to recognize the difficulty in choosing initial conditions when 
the model requires a very detailed specification of many 
parameters. 

There have been efforts to investigate separately the effects 
listed above. The role of physical encounters between stars, 
including binaries formed by either tidal capture or three-body 
processes, has been studied by Ostriker (1985), McMillan 
(1986), Statler, Ostriker, and Cohn (1987), and Lee (1987a, b) 
among others. The steady Galactic field is modeled by Lee and 
Ostriker (1987) and Chernoff and Shapiro (1988). The evolu- 
tion of multicomponent clusters, including the dynamical 
effects of stellar evolution, has been studied by Chernoff and 
Weinberg (1990). 

The purpose of the work reported here is to study the long- 
term evolution of globular clusters and to examine some of the 
observational implications. To this end, we have combined a 
few of the above effects, as described below, in a series of 
models which remain simple enough that a clear picture can be 
drawn from the numerical results. 

Since any given cluster reaches core collapse in a finite time, 
the outer parts of the cluster, where the relaxation time scale is 
very long, are essentially frozen and, at the time of collapse, will 
simply reflect their initial condition. Postcollapse models are 
necessary in order to follow the long-term evolution. Three- 
body binary heating, which is simpler to treat than tidally 
captured binaries, is used in our models to obtain the postcol- 
lapse expansion. These models are thus applicable mainly to 
relatively low mass clusters, M < 105 M0, since the neglected 
physical interactions between stars (e.g., the formation of 
tidally captured binaries and stellar mergers) become impor- 
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tant in higher mass clusters. During the expansion, stars in the 
outer part of the cluster pass through the tidal boundary 
defined by the location of the cluster in the Galaxy. These 
losses will change the mass function because low-mass stars are 
preferentially removed. We impose a tidal boundary condition 
in our models in order to investigate the evolution of the mass 
function. To summarize: our models include an initial mass 
function, three-body binary heating, and a steady Galactic 
tidal field. We employ the orbit-averaged Fokker-Planck tech- 
nique, which requires modest computing time and yet is suit- 
able for studying the dynamical evolution of large stellar 
systems. The code used here is based upon that described in 
Statler, Ostriker, and Cohn (1987). 

In the next section, the assumptions and initial conditions of 
the models are described in more detail. The numerical results 
and theoretical interpretations are given in § III. We discuss 
the implications of our results for observations in § IV. The 
final section summarizes our major findings. 

II. INITIAL CONDITIONS AND ASSUMPTIONS 

a) Mass Function 
In order to make our computations simpler, we do not 

include the evolution of primordial high-mass stars. Stellar 
evolution has the effect of slowing down the dynamical evolu- 
tion, and it may even destroy the whole cluster on a relatively 
short time scale if there are a sufficiently large number of high- 
mass stars in the IMF (Chernoff and Weinberg 1990). The 
steep dependence of the main-sequence evolution time scale on 
stellar mass ensures that most of the stellar evolution takes 
place within a much shorter time than any interesting dynami- 
cal time scale. Thus, to a first approximation, we may assume 
that stellar evolution has the effect of changing only the initial 
condition in which the cluster begins its dynamical evolution. 
For example, a cluster with an initial mass spectrum described 
by a power-law index of x = 1 (see eq. [1] below) and extend- 
ing between 0.1 M0 and 15 M0 will lose almost 30% of its 
initial mass within 2 x 108 yr as the stars down to 3 M0 
evolve. Implicitly, our simulations begin at about this point. 
The evolution of the stars from 3 M© to 1 M© will lead to a 
mass loss of only ~ 12% extending over 6 x 109 yr, which is 
many half-mass relaxation time scales for our models, and is 
ignored. The dynamical effect and the change in the mass func- 
tion due to the evolution of the remaining low-mass stars is 
assumed to be negligibly small. 

The initial mass function for the main-sequence stars is 
assumed to be a power law. Massive degenerate remnants, 
representing neutron stars or white dwarfs, have been added in 
some models. We will call these stars “primordial” degener- 
ates to indicate that they are formed in the very early phase of 
dynamical evolution. The number of neutron stars can be esti- 
mated by extrapolating the present mass function but the 
actual number remaining in the cluster may be only a small 
fraction of such evolved stars. The translational energy 
obtained during the final stage of stellar evolution as a result of 
small deviations from spherical symmetry is sufficient to eject 
the star from the shallow gravitational potential of the globu- 
lar clusters. 

Similarly, the number of white dwarfs may be estimated by 
extrapolating the main-sequence mass function and using, for 
example, the initial-final mass relation of Iben and Renzini 
(1983). Only those remnants more massive than the present- 
day main-sequence turnoff stars are of interest in this dynami- 

cal study. However, there is some question as to whether an 
extrapolation of the observed mass functions, particularly 
those which are relatively flat, is reasonable (see e.g., Meylan 
1988; Pryor et al 1989). 

Because of such uncertainties, we assume here that the 
number of massive degenerate stars in the initial models is 
simply a free parameter to be chosen in addition to the form of 
the main-sequence mass function. For simplicity, the degener- 
ate stars are assigned the same individual mass. Thus the 
number of stars between m and m + dm is 

N(m)dm = C1m“(1 +x)dm , mmin < m < rnmax , 

= C2 ô(m - mdeg)dm , m > rnmax , (1) 

where mmin and mmax are the minimum and maximum (i.e., 
turnoff) mass of the main-sequence stars and mdeg is the mass of 
the degenerate stars and ô is the Kronecker ¿-function. Note 
that mdeg > rnmax in those models containing degenerate stars. 

The number of mass groups used in the present study is 
seven. The dynamic range is mmin/mmax = 7 with linear spacing 
for models consisting of main-sequence stars only. In models 
containing a primordial degenerate component, we keep the 
same dynamic range for the main-sequence stars but distribute 
them in six mass bins and use the remaining mass class for the 
degenerates. More mass species should be used if accurate 
results for core-collapse time scales are desired (Chernoff and 
Weinberg 1990) but note that the time to reach core collapse is 
only a small fraction of the overall evolution time scale con- 
sidered here. The postcollapse evolution is much less sensitive 
to the number of mass classes because near equipartition is 
maintained among the different mass stars. Hence, the equi- 
partition process, which is a critical factor in the initial core 
collapse, is not significant in the postcollapse evolution. Com- 
putations made with 10 or more mass classes were found to 
produce essentially the same results as the seven component 
models used in this study. The smaller number of mass classes 
adopted here in the interests of economy should be adequate to 
investigate the long term evolution of multi mass clusters. 

The initial density distribution is assumed to be that of a 
single-component King model. We have used two values for 
the central potential of these models: W0 = 4, representing a 
relatively open initial density distribution and W0 = 7, rep- 
resenting a more concentrated initial density distribution. 

b) The Tidal Field 
We have assumed that the Galactic tidal force acting on a 

cluster is constant. This is clearly unrealistic since the majority 
of the globular clusters are expected to have noncircular orbits. 
Furthermore, the clusters should experience occasional tidal 
shocks as they pass through the Galactic disk or other dense 
regions. Nevertheless, a steady Galactic tidal field is adopted 
for simplicity and may be regarded as the average tidal field felt 
by the cluster as it moves along its noncircular orbit. The 
numerical iV-body study by Allen and Richstone (1988) indi- 
cates that the tidal boundary of globular clusters is mainly 
determined by the perigalactic passage. 

The treatment of the tidal boundary condition is the same as 
in Lee and Ostriker (1987). The distribution function beyond 
the tidal energy is decreased according to the following equa- 
tion: 

^ = - C3 /(£){[! - (£/£r)
3]1/2/itid} , E < E,, (2) 
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where Et is the tidal energy (equivalent to the gravitational 
potential at the tidal boundary). C3 is an adjustable parameter, 
nominally of order unity, which is discussed further below. The 
gravitational potential is defined as a positive quantity and is 
zero at infinity. The tidal time scale itid for a cluster of mass M 
and tidal radius Rt is defined by 

2n 
itid = , (3) 

y/(4w/3)G/>, 

where p, is the mean density within the tidal radius. This is a 
fixed quantity throughout the evolution under our assumption 
of a steady Galactic tidal field. Also note that itid is equivalent 
to the orbital time scale for a cluster moving in a circular orbit 
at the Galactocentric distance where the tidal field is deter- 
mined. 

c) Binary Heating 
For relatively massive stellar systems, Ostriker (1985) 

demonstrated that the physical interactions involving tidally 
captured binaries are dynamically more important than the 
binaries formed through three-body processes. However, the 
situation in multicomponent models is likely to be different 
because of mass segregation and equipartition among different 
mass stars. The presence of massive degenerate stars makes the 
three-body binaries more important because compact stars 
would feel no tidal effects (see, for example, Lee 1987a). 

The method of incorporating the dynamical effects of three- 
body binaries in the Fokker-Planck scheme has been described 
by Lee (1987a, b) and Cohn, Hut, and Wise (1989). Lee (1987a) 
found that the explicit inclusion of the formation, hardening, 
and ejection of three-body binaries would provide identical 
results to those obtained by the more indirect method 
described by Lee (1987h) and, more recently, by Cohn, Hut, 
and Wise (1989). In the indirect method, an individual binary is 
assumed to release a certain amount of energy to the cluster 
through both hardening and ejection, but these processes are 
not directly followed. Note that the time-averaged number of 
binaries in single component models is 5 or fewer and that this 
number does not change during the postcollapse phase (Lee 
1987a). We anticipate that the number of binaries in our multi- 
component models is also of order unity. Hence, a real cluster 
heated by three-body binaries will be subject to statistical fluc- 
tuations which are not reflected in the smooth solutions to the 
Fokker-Planck equation. 

The treatment of three-body binaries is still very compli- 
cated in multicomponent models because there are a large 
number of combinations to be considered in the formation of 
the binaries and for the interactions between the binaries and 
the other stars. Therefore, we adopt the following simplifica- 
tions (based on suggestions made jointly by P. Hut and D. C. 
Heggie). The total heating rate per unit volume by three-body 
binaries is assumed to have the form 

¿to, = C4G
5(x^\\ (4) 

where nh mh and vt are number density, mass, and velocity 
dispersion, respectively, of each component, and vc is the mass 
weighted central velocity dispersion. The constant C4 is taken 
to be 4.21 x 103 from Cohn (1985).1 Equation (4) is the 
product of the binary formation rate per unit volume and the 
average amount of energy released per binary before it is 
ejected. The energy released is assumed to be proportional to 

the central velocity dispersion. The binary formation rate is 
computed by taking the probability for any three stars to be 
within p & Gm/v2 during the time interval At&(np2v)~1 

(Binney and Tremaine 1988, chap. 8). The heating is then dis- 
tributed to each mass component proportional to the density 
such that 

Ê, = -7- , (5) 
Plot 

where ptoi is the total density. Such an effect can be included in 
the Fokker-Planck equation by computing a heating coeffi- 
cient 

H(E) = 
¡o^drvr^Jp^ 

¡tHE)vr2dr (6) 

and adding this to the first-order Fokker-Planck coefficient, as 
described by Lee (1987h), and Cohn, Hut, and Wise (1989). By 
making the mass function almost a ¿-function, we have verified 
that our code gives results in agreement with those reported by 
Cohn, Hut, and Wise (1989). The results are also in accord with 
those of Heggie and Ramamani (1989) who performed similar 
calculations with a gaseous model. 

In the following section, we discuss the models with a strict 
power-law mass function for the purpose of understanding the 
general behavior of multimass models. The models with degen- 
erate stars are perhaps more appropriate for comparison with 
the observed globular clusters where some dark remnants are 
believed to be present. These are discussed in § IVc. 

III. NUMERICAL RESULTS 

a) Model Parameters 
In order to calculate models, we have to specify the total 

mass of the cluster, M0 ; the minimum and the maximum mass, 
mmin and mmax; the adjustable constants Cl9 C2, and C3; the 
mass spectral index, x; and the central potential, W0, of the 
initial King model. For the models with main-sequence stars 
only, C2 = 0. The tidal evaporation constant is set to C3 = 1 
for all the models presented here, but the results are insensitive 
to the choice of C3 as long as it is of order of unity. We have 
taken mmax = 0.7 M0 which is close to the turnoff mass in a 
globular cluster and mmin = 0.1 M0, which is just above the 
hydrogen burning limit for population II stars. The total mass 
of the models is M0 = 1.3 x 104 M0 unless otherwise speci- 
fied. Three different values for the mass spectral index are used; 
x = 1,2, and 3. The constant Q is determined when M0 and x 
are specified. 

b) Gravothermal Oscillations 
It is well known that some postcollapse models are suscep- 

tible to nonlinear gravothermal oscillations which affect the 
central regions of the models. These oscillations are artificially 
supressed by adopting integration time steps which are much 
longer than the central relaxation time scale. In this case, 
monotonically evolving solutions are obtained. 

Goodman (1986) found that a postcollapse cluster contain- 
ing only a single mass species and powered by three-body 
binaries is unstable against gravothermal oscillations if 

1 The difference between Cohn’s value C4 = 90 and the value given here is 
due to the fact that Cohn used the one-dimensional velocity dispersion 
whereas we have used the three-dimensional one here. 
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N > 7000, where N is the number of stars. This result has been 
confirmed by Heggie and Ramamani (1989) using a gas- 
dynamical approach and by Cohn, Hut, and Wise (1989) using 
a Fokker-Planck code. 

The appearance of gravothermal oscillations in multimass 
models has not been extensively investigated. Murphy, Cohn, 
and Hut (1989) reported that such oscillations are strongly 
suppressed in their multimass models. For example, their 
model with mmin = 0.1 M0, mmax = 1.2 M© did not show oscil- 
lations until the number of stars exceeded 5 x 105. It is not too 
difficult to understand these results: the core of the multimass 
models is dominated by a small number of high-mass stars 
which essentially constitute a small V-body system. 

In a recent preprint, Murphy, Cohn, and Hut (1990) have 
shown that multimass models do show gravothermal oscil- 
lations when the total cluster mass exceeds some threshold 
which varies with the mass spectral index. We did not observe 
gravothermal oscillations in a few selected models with M0 = 
1.3 x 104 M©, which is consistent with their findings. Note 
that most of the results discussed in this paper are based on 
these relatively low mass models. However, we also discuss 
some models with substantially larger masses (> 105 M©) and 
these, when integrated with a sufficiently small time step, are 
unstable to gravothermal oscillations, again in accord with the 
results of Murphy, Cohn, and Hut (1990). Unfortunately, it is 
not practical to use such small time steps to investigate the 
long term evolution of interest in this paper. All the results 
reported here are based on integrations with a time step which 
suppresses the appearance of gravothermal oscillations. 

We have performed a small number of experiments to 
compare the evolution of the same model calculated with and 
without resolution of the gravothermal oscillations (i.e., with 
long and short time steps). The results, which necessarily apply 
only over limited time intervals, indicate that the long time step 
integrations do track the changes in the more global cluster 
parameters; e.g., the total mass and the half-mass radius. This 
is not too surprising because the oscillations are closely con- 
fined to the cluster center and strongly affect only a tiny frac- 
tion, very much less than 1%, of the total cluster mass (see e.g., 
Murphy, Cohn, and Hut 1990). Hence we do not expect that 
the long-term evolution of models which exhibit gravothermal 
oscillations when integrated with short time steps would differ 
substantially from the result obtained using longer time steps 
which suppress the appearance of the oscillations. This issue, 
however, certainly warrants further study. 

c) Disruption 
There are several mechanisms by which stars might escape 

from the stellar system: (1) ejection through binary-single or 
binary-binary interactions, (2) evaporation of high-velocity 
stars through dynamical relaxation, and (3) diffusion of stars 
across the tidal boundary due to the general expansion of the 
cluster. The number of ejections is expected to be very small 
because the number of binaries formed during the cluster evol- 
ution is very small. The dynamical evaporation cannot be 
treated in the orbit-averaged Fokker-Planck scheme, but it is a 
small fraction of the diffusion loss (see Lee and Ostriker 1987 
for a detailed discussion). 

Figure 1 displays the change of mass in time for the W0 = 1 
models with different initial mass functions: x = 0, x = 1, and 
x = 2. The total mass is fixed at M0 = 1.3 x 104 M©. The 
corresponding models with JF0 = 4 or with a different M0 
would show no visible difference in the evolution of total mass. 

Fig. 1.—The evolution of the total mass for three models with different 
initial mass functions: x = 0, x = 1, and x = 2. In all three cases, the central 
potential of the initial King model was W0 = 7, and the initial mass was 
M0 = 1.3 x 104 Mq. The results, however, are insensitive to either the initial 
density distribution or the initial mass. 

The dimensionless time scale used in this and other figures is 

where N is the initial number of stars in the cluster and 
A = 0.41V. 

We followed the evolution of the cluster until the numerical 
instability makes further integration impossible. At the final 
step, the mass of the cluster is typically ~5% of the initial 
mass. The time of complete disruption rev obtained from 
extrapolation of the Figure 1 is found to lie between 0.013 and 
0.016. We found that Tev mainly depends on the form of the 
initial mass function and is very insensitive to the initial total 
mass or W0 for the clusters with the same form of the initial 
mass function. We also found that the choice of C3 in equation 
(2) does not affect the evolution as long as it is of order of unity. 
This is because the orbital time scale for the stars near the tidal 
boundary (i.e., tiid in eq. [3]) is much shorter than the evolution 
time scale for the cluster (i.e., relaxation time scale). 

The mass decreases nearly linearly with time for postcol- 
lapse clusters experiencing self-similar evolution (Henon 1961). 
Although the structure of our models changes continuously 
during the expansion, the outer part becomes more or less 
self-similar at late times (i.e., the ratio between the half-mass 
radius and the tidal radius becomes constant). Under this con- 
dition, the mass evaporation rate becomes a constant, leading 
to nearly linear decrease in mass which is seen in Figure 1. 

d) Central Density and Velocity Dispersion 
The evolution of the central density is shown in Figure 2, for 

models with different IMFs (x = 1 and x = 2) and different 
initial concentrations (JF0 = 4 and 7). The initial mass of the 
clusters is fixed at M0 = 1.3 x 104 M© in all cases shown in 
this figure. The unit of density is Mo/r^(0), where M0 and rc(0) 
represent the initial mass and core radius of the model. Due to 
the presence of the tidal boundary, the density does not show 
the power-law behavior characteristic of quasi-statically evolv- 
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T T 
Fig. 2.—The evolution of central density pc for four models as indicated on 

the figure. The initial mass was 1.3 x 104 M0 in all cases. 
Fig. 3.—The evolution of the central density in model 2 of Fig. 2 (curve), 

compared to the results (filled circles) obtained by applying the scaling 
relationship given in eq. (12) of the text. 

ing isolated clusters. Following the arguments of Goodman 
(1988), and Lee, Reggie, and Ostriker (1990), we can relate the 
evolution of the central density with other physical parameters 
based on the requirement that the energy generated in the core 
must be equal to the global rate of energy change. We will 
assume that the central density is dominated by the highest 
mass component, which also receives most of the three-body 
binary heating. 

The energy generation rate in the core is (e.g., Goodman 
1988) 

¿core «: PcV; 1MC oc /?CV 7rc
3, (8) 

where Mc( æ f tü/7c r^) is the core mass and rc is the core radius 
defined by 

(9) 

The rate of change in the total energy, on the other hand, is 

È 
d_ (0.2GM2\ GM2 J_ 

dt\ rh ) rh trh ' 
(10) 

The half-mass relaxation time scale is defined by (Spitzer and 
Hart 1971) 

Mll2r3
h
12 

trh — 6.7G1/2<m> In A ’ (11) 

where <m> is the mean mass per star. By setting equation (8) 
equal to equation (10), we obtain the following algebraic rela- 
tion for the central density 

M3/2 

Pc oc (jri)v~%13 oc M7/3V3<m>2/3, (12) rh 
where we have used the relationship v2 oc GM/rh. 

In Figure 3, we have plotted the evolution of pc for the 
model with x = 2 and W0 = 7. Values of pc calculated at selec- 
ted times from the right-hand side of equation (12) are shown 
as filled circles. The unknown constant implicit in equation (12) 

has been fixed to match the numerical results. Note that we 
had to use the time-dependent behavior of rh, <m>, (calculated 
for all stars within rt), and the total mass M obtained from the 
numerical integrations in order to get the relation shown in 
Figure 3. The consistency of equation (12) with the numerical 
results supports the idea that the physical parameters are 
determined by the assumed energy balance, but that principle 
is not sufficient to derive the behavior of postcollapse clusters 
without going through the numerical integration. 

The behavior of the mass-weighted central velocity disper- 
sion, in units of GMo/rc(0), is shown in Figure 4 for the model 
(1) shown in Figure 2. The precollapse evolution is character- 
ized by the tendency toward equipartition among the various 

T 
Fig. 4.—The evolution of the central velocity dispersion (weighted by 

stellar mass) for model 1 of Fig. 2. The decrease of vc during the precollapse 
evolution is due to mass segregation and energy equipartition. 
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T 
Fig. 5.—The evolution of the tidal, half-mass and core radii for the same 

model shown in Fig. 4. Also plotted as a dotted line is the evolution of core 
radius for a model with 10 times higher initial mass (i.e., M0 = 1.3 x 105 M0), 
but otherwise identical. Note that the tidal and half-mass radii are the same 
regardless of the initial mass. 

mass components. Therefore the mass-weighted velocity dis- 
persion is decreasing with time during the core collapse in 
contrast to the slow increase observed in single component 
models. 

The core radius, the half-mass radius, and the tidal radius, 
expressed in units of the initial core radius, are shown in Figure 
5 for the same model appearing in Figure 4. The dotted lines 
show these radii for a model in which the initial mass was 
increased by a factor of 10, to M0 = 1.3 x 105 M0, but which 
is otherwise identical. Note that the half-mass and the tidal 
radii are not affected by the change of initial mass but that the 
core radius is sensitive to this parameter. The scaling of the 
core radius with the total number of stars also follows 
Goodman’s (1987) similarity solution for single mass com- 
ponent, isolated clusters heated by three-body binaries: ie 
rc oc N~2/3. 

The higher mass model is unstable to gravothermal oscil- 
lations which have been suppressed in the calculations report- 
ed here. The numerical experiments described earlier indicate 
that the central density obtained from the long time-step inte- 
grations is some time-weighted average value when compared 
to the corresponding oscillating solution. As expected, our 
computed central density is close to the value appropriate to 
the phases of maximum expansion, the state in which the oscil- 
lating model spends most of its time. Hence our results 
describe what might be termed a “ most probable ” view of the 
cluster. Further discussion of the appearance of a cluster expe- 
riencing gravothermal oscillations may be found in Murphy, 
Cohn, and Hut (1990). 

Since the the core-radius increases in time while the tidal 
radius decreases (very slowly), the concentration parameter 
c[= log fo/rj] decreases with time. However, in the case 
where M0 = 1.3 x 105 M0, the concentration parameter 
remains very high until complete disruption of the cluster. The 
high degree of concentration has been understood to be a char- 
acteristic of models for postcollapse clusters. On the other 
hand, the observed core radius is located at the point where the 

surface brightness has fallen by a factor of 1.5 - 2 from its 
central value. (To avoid confusion with terminology, we will 
call this point the half-brightness radius, denoted by rhb). If 
there are massive degenerate stars with negligible luminosity, 
the half-brightness radius could be quite different from the core 
radius (which is very close to the radius where the surface mass 
density is half of its central value). This point, first mentioned 
in the context of postcollapse evolution by Inagaki and 
Lynden-Bell (1983) and explored in some detail by Larson 
(1984), is discussed further in the following section. 

IV. OBSERVATIONAL IMPLICATIONS 

a) Distributionof Half-Mass Relaxation Times 
There is fairly good evidence that the ages of most of the 

globular clusters are close to the Hubble time and that their 
spread in age is sufficiently small that we may assume they are 
coeval. During core collapse, the half-mass relaxation time 
hardly changes. Since core collapse takes place within -10 
initial half-mass relaxation time units, the age of a cluster must 
be less than this order for it to be in a precollapse phase. The 
half-mass relaxation time for most Galactic globular clusters 
lies between 107'5 and 1011 yr (Spitzer 1988, p. 6; Binney and 
Tremaine 1988, p. 515). We expect those clusters with short 
half-mass relaxation time scales to be in a postcollapse phase 
(unless stellar evolution has prolonged the core-collapse phase 
significantly; see e.g., Chernoffand Weinberg 1990). 

We have plotted the ages of the model clusters, measured in 
units of their half-mass relaxation time, versus time in Figure 6. 
The models shown here are those of Figure 1, and they all 
reach core collapse in a few initial half-mass relaxation times. 
Note that the evolution shown in this figure depends only on 
the adopted IMF ; models with different M0 or different W0 but 
the same IMF would follow nearly identical tracks in this 
figure. During the postcollapse expansion, t/tTh increases 
slowly, reaching t/tTh ^100, and then increases very rapidly as 
complete disruption is approached. Also notice that the behav- 

0 0.005 0.01 0.015 0.02 

T 
Fig. 6. The evolution of the age in units of the present half-mass relax- 

ation time for the same three models appearing in Fig. 1. In all cases t/tTh 
increases rapidly beyond ~ 100, although the case with flatter mass function 
tends to show a gentler change. The behavior of t/trh depends mainly on the 
initial mass function and is very insensitive to either M0 or W0. 
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ior of t/trh is gentler for the shallower IMF than it is for the 
steeper ones. For x = 0, t/trh varies rather slowly, even after 
reaching ~ 100. 

Considering these results, we suggest that those clusters 
whose present half-mass relaxation time scale is small (i.e., t/trh 
is large) may be in the disruption phase. We expect to see only 
a small number of such clusters because of the rapid change in 
t/trh just before complete disruption occurs. This is consistent 
with the near absence of Galactic globular clusters with trh less 
than ~ 108 yr. 

It would be interesting to see if there is other support for this 
speculation. As the end of dynamical evolution is approached, 
most stars remaining in the cluster are relatively massive and, 
therefore, we anticipate a dramatic change in the mass func- 
tion. This subject is discussed below. 

b) Evolution of the Mass Function 
Mass segregation has the effect of concentrating the high- 

mass stars in the cluster core while the low-mass stars are 
pushed to the outside. As a result, the stars leaving the tidal 
boundary are mostly low-mass stars and thus, they are pro- 
gressively depleted from the IMF. For numerical convenience, 
we define a normalized mass function, Ñ(m) such that 
N(m) = 1, with the mass unit chosen to be mmin, the mass of the 
lowest mass component included Jn the models. We have 
shown the global mass functions, Ñ(m), at different epochs in 
Figure la, and the mass function measured within the half- 
mass radius, Ñh(m\ in Figure lb, for the model with x = 1 and 
W0 = 4. Again, neither the initial density distribution nor the 
initial mass affects the general behavior of the mass function at 
later times. 

The mass function within the half-mass radius changes faster 
than the global pne. While Ñ(m) remains almost frozen during 
the collapse, Ñh(m) experiences significant evolution even 
before the collapse. For this reason, we show the precollapse 
epoch in Figure lb in addition to the postcollapse times 
appearing in Figure la. The flattening of the mass function is 
clearly visible in both cases. Even the slope of the mass func- 

tion reverses for Ñ{m) and Nh{m) at later times. Although the 
flattening of the mass function is a universal phenomenon, the 
case with the x = 2 IMF did not show the slope reversal except 
for a brief period at the end of its evolution. 

Richer and Fahlman (1989) derived the mass function for 
M71 from CCD photometry and found that the mass function 
is reversed in the range between m = 0.4 and 0.8 M0. Given 
the fact that this cluster now has a relatively small half-mass 
relaxation time (^2 x 108 yr), and low total mass («3 x 104 

M0), the present mass function may reflect tidal evaporation 
rather than the initial mass function. 

On the other hand, the surface brightness profile of M71 is 
relatively open (c æ 1.1) in sharp contrast to the highly concen- 
trated postcollapse models. The concentration decreases con- 
tinuously during the expansion phase (see Fig. 5) but always 
remains high. Note that at the end of the evolution for the 
model with an initial mass of M0 = 6 x 104 M0 (appropriate 
for M71), the concentration parameter is ~2.2 far larger than 
what is observed in M71. Of course, what is observed is essen- 
tially the half-brightness radius. The model cluster may have a 
significantly different appearance if the cluster contains massive 
degenerate stars as discussed below. 

c) Effects of Massive Degenerate Remnants 
One of the criteria in identifying a collapsed cluster has been 

the size of the core radius (e.g., Djorgovski and King 1986). 
Once core collapse has been reached, the postcollapse expan- 
sion is sufficiently slow that the core radius remains unre- 
solvable as demonstrated in Figure 5. 

It is also true that the size of the core radius depends on the 
strength of the heating source or on the initial density distribu- 
tion of the cluster: the stronger the energy source, the larger 
the core radius and those clusters with a small number of stars 
can be regarded as having a higher heating rate in a relative 
sense (see Goodman 1987). 

The half-brightness radius (based on the surface brightness 
profile) can be larger than the core radius if the degenerate 
stars have a higher individual mass than the most massive 

m m 
Fig. 7.—The normalized mass functions within (a) the tidal radius, Ñ{m) and (b) the half-mass radius, Nh(m), at different epochs for model 3 of Fig. 2. The mass 

unit along the abscissa is mmin, the smallest stellar mass included in the model. The initial mass function is indicated by the dotted line. All epochs, t, except that 
labeled (0) in (h), are postcollapse. The mass of the cluster, in units of the initial mass M0, is also shown for each epoch. 
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Fig. 8.—The evolution of tidal, half-mass and core radii for the model 
containing massive degenerates (initially 3% of the total mass). The degenerate 
mass is assumed to be 1.4 M0 while the most massive luminous stars, those at 
the main-sequence turnoff, have m = 0.8 M0. Also indicated, by the broken 
line, is the half-brightness radius, rhb, assuming that the observed luminosity is 
entirely dominated by the most massive stars. The arrow indicates the epoch of 
Fig. 9. 

luminous star. The presence of dark remnants also boosts the 
heating rate significantly because the velocity dispersion of the 
massive stars becomes smaller than the virial value through the 
equipartition process (see eq. [4]). To investigate these effects, 
we computed the evolution of a model with an initial mass of 
6 x 104 M0, x = 1, mdeg = 1.4 M0, mmin = 0.114 M0 and 
mmax = 0.8 M0. The main-sequence stars were placed in six 
linearly spaced mass bins. The degenerate stars comprised 3% 
of the initial mass of the cluster. 

The evolution of the tidal, half-mass, and core radii is dis- 
played in Figure 8. The broken line shows the half-brightness 
radius of the stars with mmax at several epochs. Essentially, it is 
these stars that determine the cluster luminosity profile. Evi- 
dently, the half-brightness radius is generally larger than the 
core radius by more than a factor of 1.5. The observed concen- 
tration parameter, based now on the half-brightness radius, 
becomes correspondingly smaller. In this case, it is still quite 
large compared with that of M71: at the final point of the 
calculation, c » 2. Given the many theoretical and observa- 
tional uncertainties, we regard this concentration to be rather 
low that many low-mass clusters, may in fact be in a postcol- 
lapse phase without showing a strong cusp.2 Clearly, any addi- 
tional energy sources in the core during the expansion (such as 
stellar evolution and heating by tidally captured binaries) 
would help in making the core radius even larger. A significant 
population of more massive remnants; i.e., black holes, could 
also help (see Larson 1984). 

We show the surface density profiles of the degenerate stars 

2 Recently, Fahlman, Richer, and Drukier (1990) have re-examined the star 
count data in the central regions of M71 and found some evidence for a very 
shallow power-law deviation from a King profile. However, efforts to repro- 
duce this result with the models discussed here have not been successful. It 
appears that one must fine tune some of the parameters; e.g., the shape of the 
IMF or the fraction of heavy remnants, in order to fit a specific model to data 
describing this particular cluster. A more detailed discussion of this work will 
appear elsewhere. 

(which dominate the mass at small radius) and of the highest 
mass luminous stars (which determine the observed surface 
brightness profile) in Figure 9. Both curves are normalized by 
the central values. The luminosity profile is significantly flat- 
tened compared to the density profile of the degenerate stars 
due to the relatively high mass ratio between turnoff and 
degenerate stars in the present model. Such flattening is very 
well observed in Ml5, and provides clear evidence for the pre- 
sence of massive degenerate stars in that cluster. At the epoch 
shown in this figure, the degenerate stars comprise ~25% of 
the remaining mass (essentially no degenerates have escaped). 
The existence of such a population of dark remnants in M71 
has not been ruled out by Richer and Fahlman (1989). 

We conclude that even a small initial number of massive 
degenerates can provide a way of producing a relatively open 
surface brightness distribution for clusters of moderate initial 
mass. Deep photometric observations of other clusters with 
relatively low half-mass relaxation time scales would be of 
considerable interest. 

v. SUMMARY 
We have developed a series of models suitable for studying 

the dynamical evolution of relatively low mass globular cluster 
systems. Our models include an initial mass function, three- 
body binary heating and the Galactic tidal field. Mass segrega- 
tion and the presence of the Galactic tidal field induce 
evolution of the mass function. Within the half-mass radius, 
the mass function experiences significant evolution even during 
the collapse phase. The lifetime of a cluster depends primarily 
on the tidal field and its initial mass. 

The age of a cluster measured in units of the half-mass relax- 
ation time is a monotonically increasing function of time, but 
the rate of increase is slow until the age reaches a value of 
~ 100. The rapid increase beyond that value may be the reason 
for the near absence of Galactic globular clusters with half- 
mass relaxation times smaller than a few times 107 yr: those 
with shorter relaxation times would be disrupted very quickly. 
This also implies that the clusters which presently have a short 
half-mass relaxation time are at the phase of complete dis- 

Fig. 9.—The projected density distribution for the model appearing in Fig. 
8 at the epoch indicated by the arrow in that figure. At this time, degenerate 
stars account for ~ 25% of the total mass. 
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ruption. One signature of this will be a flattening of the mass 
function. The shape of the mass function within the half-mass 
radius can be reversed if the initial mass function was suffi- 
ciently shallow (i.e., x < 1). 

The half-brightness radius in a postcollapse cluster contain- 
ing massive degenerate stars may be resolvable, at least in 
those clusters with a relatively small mass. 

We would like to thank Douglas Heggie for useful dis- 
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