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ABSTRACT 
Interstellar propagation effects induced by electron-density turbulence limit the precision of pulsar timing. 

We study three distinct arrival time perturbations that are associated with propagation through the ionized 
component of the interstellar medium. One is due to variations in the electron-column density while angle-of- 
arrival variations cause the other two. The three effects have different frequency scalings as well as different 
time dependences for electron-density fluctuations having a wide distribution of length scales. We assess the 
feasibility of removing propagation effects by analyzing multi-frequency timing measurements. Maximization 
of the signal-to-noise ratio from weak pulsars forces observations toward low frequencies where the amplitudes 
of interstellar propagation effects increase. We examine in detail the arrival times from simulated PSR 
1937 + 21 data and draw the following conclusions: (1) for a Kolmogorov power-law spectrum, the arrival time 
errors are dominated by dispersion measure variations at radio frequencies above several hundred Megahertz; 
(2) dual-frequency observations can be used to remove dispersion measure variations to obtain sub- 
microsecond residuals; (3) the remaining residuals are highly correlated with the angle-of-arrival variations; (4) 
fitting for a non->l2 term does improve the final residuals, although it does not appear to improve the mea- 
surement of the astrometric terms of proper motion and parallax; and (5) frequent sampling with a small 
antenna is better for allowing removal of propagation effects and measuring proper motion and parallax in 
timing data than coarse sampling with a larger antenna (when the number of observations with equal time 
and bandwidth balances the difference in antenna gain). Simulated parallax measurements are fit within 25% 
of the “true” value through a turbulent phase screen along only three lines of sight: toward pulsars 1620 — 26, 
1855 + 09, and 1957 + 20. 
Subject headings: interstellar: matter — pulsars — turbulence 

I. INTRODUCTION 

Perturbations intrinsic to the pulsar, propagation delays of 
radio signals through the interstellar medium, and instrumen- 
tal effects limit the precision of pulsar timing (Rickett 1977; 
Armstrong 1984; Blandford, Narayan, and Romani 1984; 
Cordes, Pidwerbetsky, and Lovelace 1986; Cordes, Foster, and 
Backer 1990). At ~ 1 GHz propagation effects become impor- 
tant at the microsecond level of timing accuracy and hence are 
most important for the timing of millisecond pulsars. Our 
ability to time millisecond pulsars at the submicrosecond level 
over time intervals exceeding one year will determine the ulti- 
mate utility of these pulsars as clocks and as probes of inertial 
frame perturbations. 

In this paper we focus on interstellar propagation effects. A 
simulation of the propagation effects on a pulsar signal has 
been developed to study how multifrequency data can be used 
to derive times of arrival that are corrected for propagation 
perturbations. A phase screen is used to generate pseudo-pulse 
arrival times that are perturbed by turbules in the electron 
density. Dispersion and refraction from these turbules have 
been discussed by several authors (Lovelace 1970; Armstrong 
1984; Blandford, Narayan, and Romani 1984; Cordes, Pid- 
werbetsky, and Lovelace 1986). 

The basic assumption of this model is that the electron 
density spectrum can be approximated as a power law 

Pônjü) ~ Cn Q aî Qo ^ Q ^ Qi > (1-1) 

where q is the fluctuation frequency, q0 and qj are the low- and 
high-frequency cutoffs respectively, measures the amplitude 
of the power spectrum, and a is the spectral index (see Fig. 1). 
Evidence from studies of interstellar scintillation, temporal 
broadening, angular broadening, and angular-wandering point 
to the fact that the electron-density power spectrum is very 
close to being Kolmogorov in form, a = 11/3 (Lee and Jokipii 
1976; Cordes, Weisberg, and Boriakoff 1985; Goodman and 
Narayan 1985; Wilkinson et al 1988; Gwinn et al 1988a, b; 
Spangler and Cordes 1988; Cordes et al 1990). 

The turbulent length scales of interest that produce the 
arrival time perturbations in the simulation cover the 
“refractive” regime from 1011 and 1014 cm. Therefore our 
simulation performs ray tracing in the geometrical optics 
regime from irregularities that are much larger than the rele- 
vant Fresnel scale. In the interstellar medium, diffraction also 
occurs, but the resultant time of arrival (TOA) perturbations 
occur on time scales ~ 100 s, which we are not interested in 
modeling.1 Consequently, the length scales that we need to 
model cover a much smaller range than if we were to consider 
both diffraction and refraction. The diffractive angle 0d = 
2(c/nDAv)112, where D is the pulsar distance, and Av is the 
scintillation bandwidth. We define ld = l/k0d as the diffraction 

1 Note, however, that the diffractive scintillation induced errors in arrival 
times will be statistically independent between observing sessions spaced by 
more than ~ 1 hr. 

123 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
4.

 .
12

3F
 

FOSTER AND CORDES Vol. 364 124 

log Wavenumber q 
Fig. 1.—A schematic drawing shows the spectral density function Pô„e(q) vs. 

wavenumber on a log-log scale. The low- (outer scale) and high- (inner scale) 
wavenumber cutoffs are given by qQ and qr The diffraction wavenumber qd, 
the Fresnel wavenumber qF, and the smallest wavenumber in the simulated 
screen qn are shown. The slope of the power spectrum is given as a (see eq. 
[1.1]). The simulation generates the power spectrum in the range from qn up to 
qF. The mean amplitude of the power spectrum scales from the diffraction 
wavenumber qd set by measurements of the diffraction bandwidth or diffrac- 
tion time scale. 

length scale, where k = Itt/A is the wavenumber, lF = 
(W/2n)112 as the Fresnel scale, and lr = lj/ld as the character- 
istic refraction scale. The sample interval in the screen plane Ax 
may be chosen to satisfy 

ld < lF < Ax <£ lr. (1.2) 

We implicitly assume that the strong scattering regime applies, 
in which ld< lF. Somewhat arbitrarily, but conveniently, we 
choose Ax to be 

A* = F, x one day = 10119 cm ^. (1.3) 

This sample interval is typically 10 times larger than the 
Fresnel scale, 102 times smaller than the refraction scale, and 
103 times larger than the diffraction scale. The actual scaling 
equations used in the simulation are discussed in § IV. 

We adopt a one-dimensional phase screen as a convenient 
model for studying the properties of interstellar turbulence. 
Since we are not examining the intensity response of the pulsar 
to the perturbing screen the one-dimensional simulation is a 
good approximation. The amplitude of refractive pertur- 
bations is reproduced by the thin screen model to within a 
factor of ~2 of those from an extended medium (Romani, 
Narayan, and Blandford 1986; Frehlich 1988). In addition, the 
location of the screen strongly affects the scintillation patterns. 
For our work we have assumed that a single screen is located 
at a distance Ds = D/2, where D is the pulsar distance. This 
produces the largest path length although not necessarily the 
largest refraction angle. In the case of a one-dimensional phase 
screen, a = 8/3 for a Kolmogorov spectrum. The electron 
density fluctuations perturb the phase of electromagnetic 
waves proportional to the electron-column density (as a func- 
tion of the transverse scale). 

In this paper the results of the simulation are presented and 

discussed. Section II presents the arrival time model we use to 
generate pseudo-arrival times. We discuss the three main 
interstellar propagation delays in § III, while in § IV the prin- 
ciples used to generate the interstellar scattering delays on the 
pulse arrival times are developed. The pseudo-timing data are 
fitted according to methods summarized in § V for observing 
parameters similar to those encountered for the millisecond 
pulsar 1937 + 21. In § VI, results are presented for the other 
known millisecond pulsars. A structure function analysis is 
applied to the timing data and compared to the original screen 
in § VII. The possibility of observing a strong refractive event 
(Fiedler et al. 1987) in pulsar timing data is addressed in § VIII. 
In § IX we present the conclusions with guidelines on the 
minimum requirements for successfully removing the inter- 
stellar turbulence effects from a long-term, millisecond pulsar 
timing data set. 

II. ARRIVAL TIME MODEL 

The simulation reproduces the pulsar timing process by 
accounting for the spin-down of the pulsar and the motion of 
the Earth around the Sun. The turbulent-phase screen perturbs 
the arrival times, and hence affects the fitting to arrival time 
data that is done to determine intrinsic and astrometric param- 
eters. A formal expression for the arrival of the Nth pulse at 
time t0 corrected to the solar system barycenter at time ts can 
be given as 

¿s — ¿o + Ni’o + 2 N2P0P0 

+ -('e# Ä') + -*£•[(»- n') + ßip{t - i0)] c c 

+ At, + 
e\DM} 
2nmc + àtoM + ^eeo + bary • (2.1) 

In equation (2.1) P0 is the pulsar spin period at the epoch tQ in 
the reference frame of the solar system barycenter. The first 
derivative of the rotational period is given as P0. The unit 
vector between the solar system barycenter and the pulsar’s 
true position on the sky is Ä, while the assumed position is h\ 
the proper motion is pp, and the pulsar’s distance is D. The 
vector between the observatory and the solar system bary- 
center is rE. The terms in the first line of equation (2.1) describe 
the spin of the pulsar and its deceleration, while the second and 
third line describe contributions due to the correction to the 
barycenter, positional uncertainties, proper motion, and paral- 
lax. The fourth line contains the relativistic clock correction 
and plasma propagation perturbations, including the total dis- 
persion delay. The mean dispersion measure used to correct 
the arrival times to infinite frequency is <DM) (see § III). 

The observed radio frequency v is corrected for the doppler 
shift associated with the Earth’s velocity vE by 

(2.2) 

The relativistic clock correction Air accounts for the time dila- 
tion and gravitational redshift from the changing gravitational 
potential of the solar system around the Earth’s orbit 
(Blandford and Teukolsky 1976). The arrival time accuracy can 
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be predicted to a small fraction of a microsecond using a solar 
system ephemeris to apply topocentric to barycentric correc- 
tions. In this simulation we assume that the relativistic correc- 
tion, ephemeris correction, and mean dispersion delay have all 
been removed to an accuracy of 100 ns. Both the ephemeris 
and relativistic clock terms are neglected in our model. We 
would use the same model to include them as well as remove 
them from the pseudo data. 

Additional effects that should be added to the right-hand 
side of equation (2.1) include (1) white noise due to radiometer 
noise and pulse phase jitter; (2) statistical errors associated 
with diffractive interstellar scintillations; (3) correlated errors 
due to intrinsic rotation fluctuations (“timing noise”); (4) 
pulsar precessional effects ; (5) drifts in the Earth based atomic 
time standard; (6) uncertainties in the planetary ephemeris; (7) 
possible propagation effects associated with a stochastic back- 
ground of gravitational waves ; and (8) the effects of interplan- 
etary scintillation, particularly at small solar elongations. 
Effects (1) and (2) are included in a joint white-noise term that 
is an adjustable parameter of the simulation. The other effects, 
which combine to give correlated time of arrival perturbations, 
are unmodeled in our simulation but are presumed to become 
evident in real data after removal of the interstellar propaga- 
tion effects. 

III. THE INTERSTELLAR PLASMA PROPAGATION TERMS 

The plasma propagation effects are due to phase pertur- 
bations imposed by the ionized component of the interstellar 
medium and are in accordance with the cold plasma dispersion 
relation. Cordes, Foster, and Backer (1990) show that birefrin- 
gence and finite temperature effects are negligible. We model 
the phase perturbation using a one-dimensional thin screen 
approximation: 

0(x) = -Are 

'‘Az 
dz'Sne(x, z'), 

Jo 
(3.1) 

where re is the classical electron radius, À is the wavelength, 
Sne(x, z) is the amplitude of the electron-density fluctuations, x 
is the transverse scale along the screen, and Az is the screen 
thickness. 

At most frequencies the dominant perturbation is due to 
changes in dispersion measure; see the third to last term in 
equation (2.1). The change in time perturbation over a time t is 

StDM(T) = (kcy'lcKx) - </>(* + b)]b=Vlx . (3.2) 

We assume that the turbulence is “ frozen,” and the screen and 
the pulsar are moving with respect to each other at the trans- 
verse velocity V±. 

The other two plasma terms in equation (2.1) are related to 
angle-of-arrival (AOA) variations. The refraction angle in the 
geometrical optics approximation is 

er(x) = 
d(f>(x) 

dx ‘ 
(3.3) 

We consider the screen to be at distance Ds from the Earth. The 
observed angular perturbation is a factor (1 — Ds/D) smaller 
than the refraction angle 6r. Angle-of-arrival variations 
produce a geometrical delay caused by the increased path 
length : 

<5tgeo(4 
,(1 - DJD) 

2c 
L0?(x)-0?(x + b)-]b=Vlx. (3.4) 

Angle-of-arrival variations also induce an error in the esti- 
mated barycentric arrival time, which is calculated from the 
topocentric arrival time, using an assumed position for the 
pulsar. The AOA perturbation effectively changes the pulsar’s 
assumed position on the sky. This perturbation is of the form 

¿íbaryM = “ ^ ’ ^X1 “ ^ + h)]fc = K±T . (3.5) 

For a pulsar in the ecliptic plane, the dot product reduces to 
(AU/c) cos (Qe t) where QE is the orbital frequency of the Earth 
about the Sun for an assumed circular Earth orbit of one 
astronomical unit (AU) in radius. 

The three plasma propagation terms have different fre- 
quency and time-dependences. For an idealized medium where 
the refraction is produced by discrete lenses whose sizes are 
much larger than the Fresnel scale, the wavelength depen- 
dences are ôtDM oc 22, <5igeo oc 24, and <5ibary oc À2. For media 
with a broad distribution of length scales, such as is implied by 
scintillation and angular-broadening measurements, the wave- 
length dependences are different because diffraction from 
length scales smaller than the Fresnel scale causes the observed 
signal to come from a region on the screen of size D6d oc À2. 
The exponent of 2 is ~ 2 but actually depends on the spectrum 
of the density fluctuations (eq. [1.1]). The wavelength depen- 
dences are discussed further below. 

IV. GENERATION OF REFRACTING SCREENS 

Two aspects of screen generation are important. First, the 
shape of the power spectrum is of the power-law form of equa- 
tion (1.1). Second, the rms phase variation in the screen must be 
fixed to match conditions encountered in realistic observing 
situations. 

To generate a phase screen with the correct (average) spec- 
tral shape, the Fourier transform of a realization of white noise 
W(q) is multiplied by a power-law function, 

S(q) = 
q0<q< qr, 
otherwise 

(4.1) 

The low- and high-wavenumber cutoffs are given as q0 and qj. 
The Fresnel wavenumber, qF, and the diffraction wavenumber, 
qd, are shown in Figure 1 where qF <4 qd. The product is inverse 
Fourier transformed to yield the phase perturbation </>(x): 

EFT 
0(x) ^=> S(q)W(q) . (4.2) 

An example of one realization of a phase screen for a Kolmo- 
gorov spectrum is shown in Figure 2a for values of the index 
a = 7/3, 8/3, and 3. We have used a screen amplitude consis- 
tent with the diffractive scintillations of the millisecond pulsar 
PSR 1937 + 21. The phase at 1 GHz wanders over thousands of 
radians over the 2000 days simulated in this figure. The 
angular wandering induced by refraction is also shown (Fig. 
2b). The refraction screen is smoothed by the multipath scale 
(see eq. [4.6]) to account for the multipath propagation due to 
diffraction. 

The realizations have been calculated so that the length 
scales on which the rms phase equals unity (which is, by defini- 
tion, the diffraction scale) is identical for all values of a. It is 
obvious that the long term fluctuations in both the phase and 
the refractive angle increase as a gets larger. 

To construct screens, we require that the phase amplitude be 
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Fig. 2a 

Fig. 2b 
Fig. 2.—(a) Examples of phase screens generated by the simulation code for 

spectrum with index value a = 7/3, 8/3, and 3 at a frequency of 1 GHz. The 
amplitude is the phase perturbations in units of radians and the transverse 
scale in bin units can be related to a spatial scale by assuming one bin equals 
the distance traveled in one day at the velocity V±. (b) The angular wandering 
of the source position is computed from the refractive bending angle. The 
refractive angle at 1 GHz is plotted in milliarcseconds for the above phase 
screens. 

consistent with the scintillation bandwidth,2 a quantity that is 
measured for most pulsars. The scintillation bandwidth, being 
a diffractive quantity, is not modeled in our simulation, but it is 
used as an input parameter to derive the rms amplitude of the 
phase screen. 

A brief review of the scintillation scaling follows. The spatial 
scale of the intensity scintillation pattern can be related to the 
scintillation bandwidth Avd and pulsar distance as 

_ r ¿2PAvd i1/2 

l2nc(D/Ds - 1)J 
(4.3) 

This scale is appropriate for a screen at distance Ds from the 
Earth that is illuminated by spherical electromagnetic waves 
from the pulsar at distance D. To derive the screen parameters, 
it is convenient to derive the intensity scale that would be 
produced if the screen were illuminated by a plane wave : 

ld = (l- DJD)lsp . (4.4) 

The spatial scale of the intensity scintillation pattern defines 
the size of the scattering disk (FWHM): 

0d = 271^2 A/7t/sp , (4.5) 

which, in turn, defines the multipath propagation scale : 

rmp = edDs(l-DJD)9 (4.6) 

that represents the minimum length scale of refractive pertur- 
bations that can alter pulse arrival times. 

The spatial scale of the diffraction pattern is the 1/e length of 
the intensity covariance function, T^b), which is related to the 

2 The scintillation bandwidth (also called the diffraction and decorrelation 
bandwidth) is the range of frequencies over which the observed pulsar intensity 
is correlated. Decorrelation occurs as a result of multipath propagation 
between the source and the observer. At meter wavelengths, the scintillation 
bandwidth is commonly in the range of 1-104 kHz. 

visibility function T(b) by 

rI(b) = \m\2, (4.7) 

where the visibility function is the second moment of the elec- 
tric field £: 

Tib) = (E(x)E*(x + b)} = exp [- ¿D*(fc)] . (4.8) 

Equation (4.7) holds in the strong scattering regime in which 
the screen imposes phase perturbations much larger than a 
radian (e.g., Rickett 1977). The one-dimensional phase struc- 
ture function is 

W = <I^W-0(x + h)|2>, (4.9) 

where the angular brackets denote ensemble averaging and is 
proportional to the integrated power density function defined 
in equation (1.1): 

D/b) = 4n2.2r¡ \ dz \ dq[l - cos (qb)]Ps„e(q). (4.10) 
Jo Jo 

For a one-dimensional screen having a spectrum of the form 
of equation (1.1), the phase-structure function scales as 

D^b) = 2 (4.11) 

where ld is the diffraction scale. At the length scale le the visibil- 
ity function from a plane wave illumination of the screen is 
1/e.3 We scale the screen amplitude by requiring that the 
phase-structure function of the simulated screen at a lag of one 
sample (i.e., D0[Ax]) be equal to that given by equation (4.11) 
with b = Ax. 

Measured scintillation bandwidths are usually at frequencies 
different from those used in our simulation. We therefore scale 
the measured scintillation bandwidths in a way that is consis- 
tent with the slope a used to generate the phase screen. 
Romani, Narayan, and Blandford (1986) and Cordes, Pidwerb- 
etsky, and Lovelace (1986) give the scaling of scintillation 
bandwidth with wavelength for two-dimensional screens and 
three-dimensional media. The analogous scaling laws for one- 
dimensional screens are 

Avd oc ^_2(a + 1)/(a-1) (412) 

for 1 < a < 3, 

Avdoc A“8/(5"a) (4.13) 

for 3 < a < 5, and for a = 3, 

Avdoc/T4. (4.14) 

In computing the three interstellar TOA perturbations, we 
use two refraction screens to mimic two-dimensional AOA 
variations. The two screens are orthogonal to each other, 
giving a distinct AOA variation in each direction on the sky. 
The total geometric delay is computed from the square root of 
the sum of the squares of the refractive angle from each screen. 
The dispersion measure induced delay is computed directly 
from only one of the screens. 

The generated refraction screens scale according to the scin- 
tillation bandwidth, observing wavelength, power spectrum 
slope, and pulsar distance. Using the same initial conditions for 

3 Note that the scale le at which the visibility function is 1/e, the phase 
structure function is 2 rad2, while it is half this at the intensity scale ld. 
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TABLE 1 
Pulsar Parameters Used in Simulation 

DM Period Log P D Avd at 1 GHz V± 
Pulsar (pc cm-3) (ms) (s s"1) (kpc) (MHz) (km s-1) 

PSR 1620-26  63 11.075 -18.11 2.12 (0.45) (200) 
PSR 1821—243  120 3.054 -17.8 5.82 (0.06) (200) 
PSR 1855 +094  13 5.362 -19.8 0.5 4.18 10 
PSR 1913 +165  169 59.030 -17.1 5.6 0.018 100 
PSR 1937+ 214  71 1.558 -19.0 5.0 0.39 50 
PSR 1953+ 294  105 6.133 -19.5 3.5 (0.1) (100) 
PSR 1957+ 206  30 1.607 -19.77 1.0 (4) (60) 

Note.—Values in parentheses are assumed. All other values are either measured directly or derived 
from measurements. 

References.—<1) McKenna and Lyne 1988; (2) Webbink 1985; (3) Foster et al 1988; (4) Rawley et al 
1988; (5) Taylor and Weisberg 1989; (6) Fruchter et al 1988; (7) Fruchter 1988; (8) Dewey et al 1988; (9) 
Cordes et al 1990. 

generating the white noise phase screen allows us to recreate 
the same phase screen at different wavelengths. 

V. FITTING OF PSEUDO-TIMING DATA FOR PSR 1937 + 21 

The millisecond pulsar 1937 + 21 is the pulsar with the most 
accurate timing and the greatest rotational stability (Davis et 
al 1985; Rawley, Taylor, and Davis 1988; Cordes et al 1990). 
The random measurement errors in the best data obtained to 
date are ~ 300 ns (Rawley et al 1988). Recent work has shown 
that arrival times are perturbed by fluctuations that scale pre- 
dominantly as À2 and are most likely variations in dispersion 
measure (Cordes et al 1990). However, when the À2 variations 
are removed from arrival times, and the data are fitted for 
pulsar spin parameters, position (on the sky), and proper 
motion, the residuals still show nonrandom behavior (Taylor 
1988). These residuals are due to a process or processes that 
necessarily scale differently than A2. Sources of non-À2 pro- 
cesses include (1) higher order refractive delays as discussed in 
the preceeding sections; (2) intrinsic timing noise in the rota- 
tion of the pulsar; (3) errors in the Earth based atomic time 
standard ; (4) errors in the pulsar position introduced by uncer- 
tainties in the correction from topocentric to barycentric 
arrival times; and (5) distortions in the local space-time metric. 
Processes (2)-(5) are wavelength independent. 

In the following section, we study the perturbing effects of 
the interstellar medium on our ability to extract useful infor- 
mation from arrival time data. We present the simulated data 
for PSR 1937 + 21 in detail because, to date, arrival time data 
from this object provide the best opportunity for measuring 
parallax and for placing limits on a stochastic gravitational 
wave background. Data from the other millisecond pulsars will 
be discussed briefly in the following section. The parameters 
used for each pulsar are presented in Table 1. Assuming a 

specific spectrum a for the electron-density distribution and 
choosing observing frequencies of 0.33, 0.43, 0.75, 1.0, 1.4, and 
2.4 GHz, we show the effects of propagation terms on different 
fits to pulsar arrival time data. 

a) Scaling of Individual Terms 
Table 2 shows the rms amplitude of the three propagation 

delays averaged over 20 realizations of a Kolmogorov phase 
screen a = 8/3 for PSR 1937 + 21 data at six frequencies. In 
Figure 3 the amplitudes of five terms at 1 GHz that perturb the 
simple polynomial spin-down of the pulsar are separated and 
displayed on individual panels. The six month parallax term, 
the annual term from proper motion, and the three propaga- 
tion terms due to the barycentric, geometrical, and dispersion 
delays are plotted. 

Our ability to fit for the astrometric terms of proper motion 
and parallax are strongly affected by the assumed slope of the 
electron density power spectrum and the distance to the pulsar. 
The amplitude of the parallax term (see eq. [2.1]) is 

tpar = “[1-(ÎÎE-Â)2], (5.1) 

so the zero to peak amplitude is 

max (tpar) ~ \.2(ps)D¿p
l

c cos2 (Ae), (5.2) 

where Àe is the ecliptic latitude. When we place the pulsar 
1937 + 21 at a distance of 1 kpc (rather than the established 
distance of 5 kpc, Heiles et al 1983), we are able to solve for the 
parallactic distance using four frequency data collected 
between 0.33 and 1.0 GHz. Our solution even solves for the 
index of refractive perturbations, although this is not a very 
reliable solution (see Table 5A) and discussion below. 

TABLE 2 
Amplitudes of Propagation Terms at Six Frequencies for PSR 1937 + 21 

333 430 750 1 1.4 2.38 
Term (MHz) (MHz) (MHz) (GHz) (GHz) (GHz) 

Geometric delay (//s)   1.1 0.7 0.2 0.1 <0.1 <^0.1 
Barycentric error (/zs)   1.6 1.2 0.5 0.3 0.2 0.1 
Dispersion delay ¿/s)   14.5 8.7 2.9 1.5 0.8 0.3 

Note.—Amplitude of each individual delay term for PSR 1937 + 21 is given as the root mean square of 
the term in ¡ns. The values were derived from 20 independent realizations of a four year simulation using 
phase screens generated from a Kolmogorov power spectrum (a = 8/3). The refractive screens were 
smoothed by the multipath scale. 
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TABLE 4 
Amplitude of Propagation Terms at 1 GHz Scaled with a 

128 

Fig. 3.—The five panels each represent a single term added to the arrival 
time perturbation. Collectively these terms produce the errors generated by the 
phase and refraction screens. The panel show (a) parallax, (b) proper motion, 
(c) the barycentric correction error induced by angular wandering of the source 
position, (d) the amplitude of the geometric delay, and (e) the dispersion 
measure delay. All terms were generated using a Kolmogorov power spectrum 
at a frequency of 1 GHz and cover a four year time period. 

The dominant effect on the residuals is the variable disper- 
sion measure delay (Fig. 3), which produces peak-to-peak 
arrival time errors as large as ~ 6 //s at 1 GHz over four years. 
Since dispersion measure delays scale strictly as 22, dual fre- 
quency observations can be used to remove them. Unfor- 
tunately, this may be insufficient, since, at the same observing 
frequency, both the barycentric and geometric propagation 
delays contribute peak-to-peak errors of ~ 1.5 jus and ~0.4 //s 
respectively (see Fig. 3). At higher frequencies the propagation 
effects will be reduced. Table 3 shows the scaling of the arrival 
time residuals from each perturbation term at 1 GHz over 2, 4, 
and 8 year time intervals. Both the geometrical delay and the 
barycentric delay saturate with time scales of a few months as 
expected from the multi-path propagation scale. The disper- 
sion measure term grows proportionally to t5/6 until the outer 
scale, l0 — 2n/q0, is reached (>1000 years). The scalings of the 
three propagation delay terms with frequency depend on the 
index of the electron density power spectrum. Table 4 shows 
the propagation delay terms for different values of the electron- 
density power spectrum a. 

b) Multiple Frequency Data 
One of the goals of our simulation is to investigate the feasi- 

bility of removing À dependent effects. We generate arrival 

TABLE 3 
Amplitude of Propagation Terms at 1 GHz Scaled with Time (a = 8/3) 

Geometric delay Barycentric error Disperson delay 
Time (jis) {/is) (/is) 

T = 2 yr  0.068 0.33 1.10 
T = 4 yr  0.076 0.34 1.55 
T = 8 yr  0.081 0.35 1.96 

Note.—The amplitude of each delay term is given in microseconds. The 
values given are the root mean squares of each term computed by the simula- 
tion over the given time period. Twenty phase screens were generated using a 
Kolmogorov power spectrum (a = 8/3). The refractive screens where 
smoothed by the multipath scale. The terms simulate arrival time data from 
PSR 1931 + 21. 

Geometric delay Barycentric error Dispersion delay 
Index (a) (jis) (//s) (jus) 

2.33  <^0.1 0.1 0.2 
2.67  0.1 0.3 1.5 
3.00  1.6 1.6 9.1 

Note.—The amplitude of each delay term is in microseconds. The values 
given are the root mean squares of each term computed by the simulation over 
the given time period. Twenty refractive screens where smoothed by the multi- 
path scale. The simulation covered a four year time period. The terms simulate 
arrival time data from PSR 1937 + 21. 

times, according to equation (2.1), perturbed by the phase 
screen with a spectral index a = 8/3, using a model for the 
pulsar 1937 + 21 as given in Table 1 except that a distance of 1 
kpc is assumed. We then fitted the simulated arrival time data 
for the spin-down and astrometric parameters involving P, P, 
ä, /i, and distance D. An initial fit for the pulsar spin poly- 
nomials is made to the TOA’s at each frequency. We call these 
residuals R0(í, À). The multifrequency residuals are then fitted 
at fixed times t for a wavelength-dependent function of the 
form 

R0(t,X) = atÀ
2 + btÀ

y + ct, (5.3) 

where the coefficient at is the amplitude of the dispersion delay 
introduced by the changing electron-column density, bt is the 
amplitude of the dominant nondispersive delays with a wave- 
length dependence that scales with the spectrum of the per- 
turbing screen, and ct is a constant term that includes 
wavelength independent rotational variations. The spectral 
index of the dominant refraction effects is y. We assume that 
only one of the barycentric or geometric terms dominate the 
data in our simulation. The parameters at, bt, and ct are deter- 
mined uniquely at each epoch, while y is solved globally so that 
the general solution minimizes the rms residuals. The resulting 
parameters are used to remove the frequency dependent per- 
turbations according to : 

3Rt = R0(U i) -at2
2 - bt A

7 = cf . (5.4) 

The corrected wavelength independent residuals 3Rt are used 
to fit for new spin-down terms, proper motion, and parallax 
terms. 

c) The Fit 
We fitted the multifrequency timing data in three different 

manners. First, we fit for only spin-down and astrometric 
parameters (effectively setting at = bt = 0 in eq. [5.1]). Second, 
we fit only for DM variations, fixing bt = 0. Finally, we fit the 
data using all the terms in equation (5.1). The results of the 
three different fitting procedures are given in Table 5A. The 
simulated data were fitted across four frequencies: 0.33, 0.43, 
0.75, and 1.0 GHz. Figure 4 displays the DM perturbation and 
the fitted dispersion measure sampled once every two weeks 
over four years. The agreement between the dispersion mea- 
sures generated by the phase screen and the fit dispersion after 
running the simulation demonstrates the necessity of removing 
dispersion measure variations from the timing data in order to 
obtain microsecond timing precision. Angle-of-arrival varia- 
tions from the barycentric delay term are the dominant source 
of the differences. Since this term scales very closely to À2, the 
fitted DM removes more À2 power than expected from ôtDM 
alone. 
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TABLE 5 
A. Fitted Data from PSR 1937 + 21 1000 MHz Maximum Frequency2 

Initial À2 A2 and Ay 

Term Value Fit at 1 GHz Fit Fit 

/(Hz)   641.85 ±5.2 x 10"12 ±5.4 x 10"12 ±4.4 x 10"12 

/(Hz s-')   1.08 x 10"18 ±8.5 xlO-20 ±8.9 x 10“20 ±7.2 x 10“20 

«.(mas)   -0.259 - 0.400 ± 0.022 -0.285 ± 0.023 - 0.260 ± 0.018 
/<ä(mas)   -0.436 - 0.434 ± 0.027 - 0.401 ± 0.029 - 0.426 ± 0.023 
D (kpc)   1.0 1.4 ± 3.4 2.6 ± 2.0 2.0 ± 1.0 
  0.1 0.7 0.7 0.6 

index y   1.63b 4.7 ± 0.8 

Note.—The data used in this table came from one realization of simulated timing data from PSR 
1937 + 21. The values were derived from a four year simulation using a phase screen generated from a 
Kolmogorov power spectrum (a = 8/3). The data were fit over four frequencies: 333, 430, 750, and 1000 
MHz. 

a Spectral index a = 8/3. 
b Assuming angle-of-arrival variations from the barycentric correction term dominate geometric delays. 

B. Fitted Data from PSR 1937 + 21 2380 MHz Maximum Frequency2 

Initial A2 A2 and Ay 

Term Value Fit at 1 GHz Fit Fit 

/(Hz)   641.85 ± 5.2 x 10"12 ±3.6 x 10“12 ±2.5 x KT12 

/(Hz s-1)   1.08 xlO”18 ±8.5 xlO“20 ±5.9 x KT20 ±4.1 x 10"20 

//a(mas)   -0.259 -4.00 ± 0.022 -0.279 ± 0.015 -0.266 ± 0.010 
//¿(mas)   -0.436 -0.434 ± 0.027 -0.415 ± 0.019 -0.431 ± 0.013 
D(kpc)   1.0 1.4 ± 3.4 1.7 ± 0.6 1.4 ± 0.3 
<rrms(Ms)   0.1 0.7 0.5 0.3 
index y   1.63b 5.4 ± 0.8 

Note.—The data used in this table came from one realization of simulated timing data from PSR 
1937 + 21. The values were derived from a four year simulation using a phase screen generated from a 
Kolmogorov power spectrum (a = 8/3). The data were fit over five frequencies: 333, 430, 750, 1000 and 2380 
MHz. 

2 Spectral index a = 8/3. 
b Assuming angle-of-arrival variations from the barycentric correction term dominate geometric delays. 

C. Fitted Data from PSR 1937 + 21 5000 MHz Maximum Frequency2 

Initial A2 A2 and Ay 

Term Value Fit at 1 GHz Fit Fit 

/(Hz)   641.85 ±5.2 x 10“12 ±1.2 x 10"12 ±9.0 x KT13 

/(Hz s_1)   1.08 xlO“18 ±8.5 xlO"20 ±1.9 xlO"20 ±1.5 xKT20 

/za(mas)   -0.259 - 0.400 ± 0.022 -0.267 ± 0.005 -0.265 ± 0.004 
//¿(mas)   -0.436 -0.434 ± 0.027 -0.438 ± 0.006 -0.438 ± 0.005 
D(kpc)   1.0 1.4 ± 3.4 1.05 ± 0.07 1.08 ± 0.06 
<rrms(//s)   0.1 0.69 0.15 0.12 
index y   1.63b 3.8 ± 0.6 

Note.—The data used in this table came from one realization of simulated timing data from PSR 
1937 + 21. The values were derived from a four year simulation using a phase screen generated from a 
Kolmogorov power spectrum (a = 8/3). The data were fit over four frequencies: 1000, 1400, 2380, and 5000 
MHz. 

2 Spectral index a = 8/3. 
b Assuming angle-of-arrival variations from the barycentric correction term dominate geometric delays. 

Figure 5a-b displays the residuals for four frequencies of 
data corrected for a simple A2 term and after correcting for a X2 

plus Ày terms to remove the dispersion measure and refractive 
delays. The final residuals after fitting for the A2 term are ~0.7 
Ais, while after fitting for the À2 and Ày term they are reduced to 
a level of ~0.6 /¿s rms, where y = 4.7 ± 0.8. The ~0.6 //s 
residuals represent the limit obtainable by removing a disper- 
sive term proportional to A2 plus fitting for a refractive term 
proportional to Ày in the 0.33 GHz to 1.0 GHz frequency inter- 
val. 

Adding an additional frequency at 2.4 GHz (Table 5B) 
lowers the final residuals to 0.5 jus for a simple À2 fit and to 0.3 
jis for a A2 plus Ay fit. The solved exponent term was 

y = 5.4 ± 0.8. The fitted values for the proper motion and 
parallax are better than the values obtained using only the 
lower frequency data. While fitting for the extra term Ay does 
improve the fit when the 2.4 GHz data are included, it does so 
only marginally for the four frequencies between 0.33 and 1.0 
GHz. 

Table 5C gives the results from a four frequency fit in the 
interval between 1.0 and 5.0 GHz. The results show that all of 
the pulsar spin and astrometric terms are solved for with a 
simple A2 to account for the dispersion measure variations. 
Adding an additional term proportional to Av as we did above 
does not improve the solutions. Above 1 GHz the refractive 
delays have become sufficiently small that they are negligible in 
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Day Number 
Fig. 4.—The ability of dual frequency measurements to remove the disper- 

sion delay is demonstrated. The solid line represents the original phase screen 
generated by the simulation. The triangle represent the best estimate of the 
dispersion delay at each epoch computed from dual-frequency data between 
430 MHz and 1 GHz. The post-fit residuals are displayed for a simulated 
frequency of 1 GHz. 

our simulated data. Adding the extra term only decreases the 
number of degrees of freedom and improves the residuals 
accordingly. Strong coupling between terms does not allow 
easy separation and recovery of the true terms. The number of 
degrees of freedom decreases from roughly 300 when fitting for 
a X2 term to less than 200 when the Ày term is added. Therefore, 
the nearly factor of 2 improvement in the residuals is better 
than expected from a 33% increase in the number of param- 
eters, when the high-frequency data are added. 

The four-frequency fits tend to minimize the residuals and 
solve for refractive indexes giving values of y between 4 and 5. 
This is much larger, and implies a much steeper turbulence 
spectrum, than expected from the input model where we know 
the refractive perturbations are dominated by AOA variations. 
The expected index y from AOA variations produced by a 
Kolmogorov spectrum is 1.63 (49/30). The reason for this dis- 
crepancy in the simulated data is that the refractive pertur- 
bations have a “ beam ” size set by the multipath propagation 
scale that depends directly on the wavelength of observation. 
For PSR 1937 + 21 the multi-path scale at 1.0 GHz is 
2.6 x 1013 cm and at 0.43 GHz the multi-path scale grows to 
1.7 x 1014 cm, while the amplitude of the geometrical delay 
term decreases from 0.7 ¡is at 0.43 GHz to 0.1 jus at 1.0 GHz. 
The angle-of-arrival term displays more rapid variations at 
shorter wavelengths than at longer wavelengths, thus making 
the fitting process for a Ay term intrinsically difficult. The x2 

minimization process used to solve for the refractive index y 
returns asymmetric errors with a much steeper gradient 
toward small values of the index and a shallow gradient 

Day Number 
Fig. 5.—(a) The final residuals are plotted for four frequency data (333,430, 

750, MHz, and 1 GHz) fit for spin and astrometric parameters plus dispersion 
measure; and (b) the same as in (a) plus fitting for refraction induced pertur- 
bations (ocP). The final residuals have an rms amplitude of 0.7 ¿is and 0.6 fis, 
respectively. The same data are tabulated in Table 5A. 

toward large values. Thus any uncertainty in the value y will 
tend to be biased toward larger values and hence a steeper 
spectrum. 

d) Non-Kolmogorov Spectra 
Refraction effects are a strong function of the spectral index 

of the electron-density turbulent spectrum. Increasing the slope 
from the Kolmogorov value of a = 8/3 to a = 3 substantially 
increases the amplitudes of the dispersion measure and geo- 
metric delay terms.4 At 1 GHz the rms amplitude of these 
terms averaged over 20 realizations is 1.6 jus for the geometric 
delay and barycentric correction terms and 9.1 ¡is for the dis- 
persion delay (see Table 4). After applying a four wavelength fit 
over the interval 0.33 to 1.0 GHz we conclude that the use of a 
A2 term is insufficient to recover properly the original per- 
turbing phase screen and to fit for proper motion. Adding the 
Ày term did not substantially improve the fits. The refractive 
power still left in the corrected residuals exceeds the amplitude 
of the astrometric terms of proper motion and parallax. 

Decreasing the slope of the power spectrum to a = 7/3 
lowered the rms amplitude of the geometric delay at 1 GHz to 
0.1 jus and the dispersion measure to 0.2 jus over a single four 
year simulation. Fitting for dispersion measure removed 
almost all of the variations due to the changing electron 
column density. The addition of a Ày term to the fitting did not 
improve the pulsar parameter estimation and reduced the dis- 
tance estimate errors only by a marginal amount. Fitting for 
the refractive term was not very significant in this case, due to 
its negligible amplitude at this power spectrum slope (see Table 
4). 

e) Big vs. Small Telescopes 
In order to optimize a millisecond pulsar observing program 

we studied the possibility of measuring parallax from pulsar 
1937 + 21 using a small telescope. To make a comparison, we 
assume that both telescopes have the same integration time 
(per arrival time) and bandwidth. We also assume that the 
number of arrival times (epochs) for the smaller telescope is the 
square of the ratio (G/Tsys)big/(G/Tsys)small times the number of 
arrival times for the larger telescope, where G is the telescope 
gain and 7¡ys is the system temperature. Doubling the ratio of 
G/7¡ys in one telescope requires that the number of samples 
obtained with the other instrument must be quadrupled to 
keep the net radiometer error the same. 

As a specific case, we assume a large antenna with G/7¡ys four 
times larger than for a small antenna. Simulated arrival time 
data were generated for PSR 1937 + 21, with observation 
epochs every 16 days for 1200 days, at a distance of 1 kpc and 
an electron-density power spectrum index a = 8/3. A white- 
noise background (0.1 ¡is) was added to the arrival time errors. 
A second data set was generated with daily sampling over the 
same 1200 days, but the white noise background was four 
times higher. 

Simulated data from four frequencies (0.33, 0.43, 1.0, and 1.4 
GHz) were able to reproduce the original pulsar parameters, 
including a solution for the parallactic distance, after removing 
/l2 and Xy terms. The formal uncertainties in the individual 
astrometric and screen index parameters are smaller in the case 
of the smaller telescope with frequent sampling. The more fre- 
quent sampling obtained with the smaller telescope was better 

4 The spectrum is always normalized at the diffraction wavenumber so that 
a steeper index implies larger refraction effects for a fixed diffraction effect. 
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TABLE 6 
Parallax Fitting of Big vs. Little Telescope 

Big Telescope Little Telescope 

Term Value Initial X2 X2 and Xy Initial X2 X2 and Xy 

X<Hz)   641.85 +2.8 xlO'11 +3.6 x 10“12 ±3.5 x 10“12 ±3.3 x 10"12 ±1.2 xlO“12 ±1.3 xlO“12 

/(Hzs )   1.08 xlO“18 ±3.8 x 10“19 ±6.8 x 10"20 ±6.7 x 10"20 ±6.2 x 10"20 ±2.3 x 10“20 ±2.4 x 10“20 

pjmas)  -0.259 -0.315 ± 0.083 - 0.234 ± 0.015 - 0.224 ± 0.015 -0.221 ± 0.014 -0.241 ± 0.005 -0.227 ± 0.005 
^(mas)  -0.436 - 0.292 ± 0.105 - 0.501 ± 0.019 - 0.546 ± 0.019 - 0.362 ± 0.017 -0.485 ± 0.006 - 0.537 ± 0.007 
i’O'P0)   1.0 ... ... 4.2 ±2.9 ... ... 3.0 ±0.6 <7rm»(As)  ... 0.9 0.3 0.3 0.9 0.5 0.5 
V   ... ... 3.7 ±0.5 ... ... 3.2 ±0.3 
observations  75 1200 
<j(//s) white noise ... q ! q4 
T(days)   12oo 1200 

at determining the wavelength scaling of the refractive delay 
term. Table 6 shows the quality of the fit to the pulsar param- 
eters for frequently sampled observations on a small telescope 
versus sparse sampling on a larger telescope. We find that it is 
better to make daily observations with a small telescope than 
less frequent observations using a large telescope. 

/) The Dominant Source of Uncertainty 
The dominant refraction term responsible for the uncer- 

tainty in our fits is the barycentric correction term for power 
spectra with slopes equal to 8/3. The peak-to-peak wandering 
of the source position can be as large as ~ 1 mas corresponding 
to an arrival time delay of ~ 1.2 //s at 1 GHz at a distance of 1 
kpc. Because the amplitude of this term scales as A1,63 for a 
Kolmogorov spectrum, a large fraction of this term is absorbed 
into the dispersion measure fit (see Fig. 4). The unabsorbed 
part of the term will be nearly frequency independent. Figure 6 
shows the high degree of correlation between residuals from 
the fit for dispersion measure only with the barycentric error 
term used in the simulation. Figure 7 gives the crosscorrelation 
function between these two time series at all possible lags. The 
peak correlation has a value of 0.7 at zero lag, where 1.0 at zero 
lag would be perfect correlation. If refractive effects contribute 
to the uncerainty of the timing data in PSR 1937 + 21, the 
simulation suggests that the dominant term is the wandering of 
the source position from AOA variations. 

Fig. 6.—The solid line represents the barycentric correction error from 
uncertainty in the true pulsar position as added to the simulated arrival times 
before solving for the pulsar spin and astrometric parameters. The dashed line 
traces the frequency corrected final residuals after fitting for the pulsar’s spin, 
astrometric, and dispersion measure parameters. The two terms show a high 
degree of correlation. 

VI. OTHER PULSARS 

As with PSR 1937 + 21, we simulated TOA’s for other 
pulsars using the data given in Table 1 to scale their scattering 
screens. Data were generated at three radio frequencies: 430 
MHz, 750 MHz, and 1.0 GHz for each pulsar in the list. The 
amplitudes of various propagation delay terms for each of 
these pulsars as estimated by our simulations are given in 
Table 7. A simple dispersion measure fit was applied through 
the three frequency arrival times. The parameters were com- 
pared with the original parameters and are given in Table 8. 
The final residuals from each pulsar were between three and 
eight times the input 0.1 /jls white noise level. Refraction 
induced AOA variations contribute the excess power. 

In all cases, the proper motion is easily solved for while the 
distance is estimated to within 25% of the “true” value for only 
three objects (PSR’s 1620-26, 1855 + 09, and 1957 + 20). 
Fitting data from three frequencies for a A2 term does a 
respectable job of removing the dispersion measure variations 
and bringing the simulated timing residuals below a micro- 
second in rms fluctuations. One microsecond timing resolution 
may not be currently within observational possibilities for 
some of the objects included in this analysis. Low-flux densities 
require long integration times, wide bandwidths, and large col- 
lecting areas. These observational constraints are limited by 
the finite amount of time available on large telescopes and the 
limited bandwidth capability of current pulsar timing hard- 
ware. 

The above analysis was predicated on several assumptions 

Lag Number 
Fig. 7.—The linear correlation coefficient computed between the two terms 

shown in Fig. 6 is plotted as a function of separation lag. The highest point of 
correlation gives a value of 0.7 at lag zero. 
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TABLE 7 
Amplitudes of Propagation Terms at 1 GHz 

Geometric delay Barycentric error Dispersion delay 
Pulsar (/¿s) (/¿s) (//s) 

PSR 1620-26  0.08 0.42 4.2 
PSR 1821 — 24  0.24 0.47 6.4 
PSR 1855 + 09  <0.01 0.26 0.03 
PSR 1913+ 16  0.37 0.78 7.4 
PSR 1953+ 29  0.15 0.57 3.5 
PSR 1957 + 20  0.02 0.36 0.7 

Note.—The amplitude of each delay term is given in microseconds. The values given 
are the root mean squares of each term computed by the simulation over a four year time 
period. The phase screen was generated using a Kolmogorov power spectrum (a = 8/3). 
The refractive screens were each smoothed by the multipath scale. These data represent a 
single realization of a phase screen. 

that are in fact probably not appropriate to all fast pulsars. We 
have assumed that the background noise is truly Gaussian in 
nature and therefore additive. (See Cordes, Foster and Backer 
1990 for a discussion of timing errors that are independent of 
propagation effects.) We have kept the noise level deliberately 
low, ^0.1 fis, to allow us to “see” the geometric delay at high 
frequencies. This level of background noise is probably only 
appropriate for the fastest and brightest millisecond pulsars. 
The peak flux density at 1.4 GHz for 1937 + 21 is ~200 mJy 
(Erickson and Mahoney 1985), a factor of nearly 10 brighter 
than all the other fast pulsars studied by this simulation. On a 
purely signal-to-noise basis we would expect the residuals to be 
an order of magnitude larger for these other pulsars. Hence, 
determination of the parallax distance will be correspondingly 
more difficult. The lower flux density also makes the AOA and 
other refraction induced perturbations less important. 

The three objects that show the most potential for measur- 
ing parallactic distances are PSR 1620 — 26, PSR 1855 + 09, 
and PSR 1957 + 20. Pulsar 1620 — 26 is located in the globular 
cluster M4 at a distance of 2.1 kpc (Webbink 1985). While this 
parallax measurement would be interesting as a check on the 
globular cluster distance estimate, it also will prove to be more 
difficult than the other two. The pulsar has a rotational period 
of 11.08 ms and a peak flux density at 1.4 GHz of ~30 mJy 
(Foster, Fairhead, and Backer 1990). Microsecond level timing 
will require a timing accuracy better than 0.1 milliperiod. This 
object is located outside of the Arecibo declination range and 
will require longer integration times to obtain comparable 
sensitivity. 

Pulsar 1855 + 09 appears to be a better candidate for mea- 
suring parallax. It has the smallest dispersion measure of all 
known millisecond pulsars and is estimated to be at a distance 

of only 0.5 kpc. Our simulations easily solve for the parallax 
term to within 6% of the “ true ” value. The pulsar is observa- 
ble between 0.45 and 3.0 GHz (Foster, Fairhead, and Backer 
1990) due to its “flat” flux density spectrum, thus refractive 
perturbations can be minimized by observing at the highest 
possible frequencies. 

The other nearby millisecond pulsar, 1957 + 20, should also 
provide a system for measuring parallax. We estimate that a 
solution with 20% accuracy is obtained after four years of 
observations between 0.43 and 1.0 GHz. The fact that the 
system is in an 8 hr binary orbit and regularly eclipsed by its 
companion (Fruchter, Stinebring, and Taylor 1988) will 
increase the difficulty of making this measurement. The pre- 
sence of ionized gas surrounding the companion increases the 
dispersion measure delay by 0.017 pc cm-3 following the 
eclipse. There may also be an additional ionized region sur- 
rounding the entire system increasing the amplitude of disper- 
sion measure and refractive variations at orbital phases far 
from the eclipse region. These perturbations will contribute to 
the formal timing uncertainty and perhaps limit the ultimate 
timing precision. 

VII. STRUCTURE FUNCTION ANALYSIS 
Our simulations show that data taken at several frequencies 

can be fitted to remove most of the arrival time perturbations 
but that it is difficult to infer the slope of the wavenumber 
spectrum by fitting for the wavelength dependence of the non- 
dispersive TOA fluctuations. Consequently we have used our 
simulations to explore alternative means for estimating the 
spectrum. 

The phase-structure function (eq. [4.11]) gives complemen- 
tary information about the wavenumber spectrum because it 

TABLE 8 
Simulated Parallax and Proper-Motion Fits for Millisecond Pulsars 

Pulsar ffrmsf/'s)3 D(Kpc) /¿«(mas) /¿¿(mas) 

PSR 1620-26  0.47 1.9 ± 0.4 -1.04 + 0.03 -1.27 + 0.15 
PSR 1821 -24  0.31 3.0 ± 0.7 -0.97 ± 0.02 -1.37 + 0.44 
PSR 1855 + 09  0.35 0.52 + 0.03 -0.99 + 0.01 -1.03 + 0.02 
PSR 1913 + 16  0.78 13.6 + 54.6 -1.03 + 0.02 -0.91 +0.03 
PSR 1953 + 29  0.57 -2.5 ± 2.0 -1.03 ± 0.02 -1.04 ± 0.02 
PSR 1957 + 20  0.34 1.1 ± 0.2 -1.01 ± 0.01 -1.01 ± 0.01 

Note.—The frequencies 333,430, 750, and 1000 MHz were used for the four frequency 
fit. All simulations assume a proper motion of /za = —1.0 mas and //¿ = —1.0 mas. 

a <rrins the postfit residuals level after removing a À2 term (includes 0.1 //s of a white-noise 
background). 
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scales in a manner sensitive to the wavenumber spectral index 
a. It is possible to estimate the phase-structure function from 
dispersion measure perturbations, <5ídm(t), that measure the 
difference in TOA perturbation between two epochs separated 
by timeT(eq. [3.2]): 

D^b) = (2nv)\lôtDM(T)-]2yz=b/v± . (7.1) 

In writing equation (7.1) we assume that the effective transverse 
speed VL convects a frozen phase screen across the line of sight. 

We have estimated D^b) for phase screens at 1 GHz by 
using equation (7.1) and the ôtDM perturbation produced by 
the screen using the simulated PSR 1937 + 21 data.5 The 
results are shown in Figure 8 (with t as the independent 
variable) for irregularity spectra with a = 7/3, 8/3, and 3. In 
addition to the estimated structure function, we show the dif- 
fraction time scale rd = IJVL that, by definition, gives 

rd) = 1- The lines in Figure 8 with slopes of a — 1 = 4/3, 
5/3, and 2 are the theoretical structure functions (The scaling 

oc Ta_1 holds for a one-dimensional screen; the exponent is 
a — 2 for two-dimensional screens.) Over a five decade range in 
t, the theoretical lines and the computed structure functions 
estimated from one realization of pseudodata agree. For large 
lags, h, the estimated and theoretical structure functions dis- 
agree because these lags are comparable to the lengths of the 
data spans. The structure functions at large lags are clearly 
larger for increasing a. This is to be expected because larger 
values of a imply more power in the large irregularities that 
cause dispersion measure variations. 

Figure 9 shows the phase-structure functions estimated from 
the total arrival time perturbation produced by the screen. Of 
course, equation (7.1) does not hold for the total arrival time 
perturbation, but in the limit where DM variations dominate 
the perturbation, equation (7.1) may be used as an approx- 

5 Note that with simulated data, we can isolate this term, but with real data 
this is not possible unless the barycentric and geometric terms are negligible. 

logic ^ (days) 
Fig. 8.—The phase structure function for dispersion measure variations 

generated by the simulation code for different index of the power spectrum are 
plotted. The closed circles assumed a power spectrum slope of a = 3, the open 
circles assumed a = 8/3, and the closed squares assumed a = 7/3. The expected 
slopes scaled from the diffraction bandwidth are drawn on the same figure. 

log10 T (days) 
Fig. 9.—The same phase structure function is plotted as in Fig. 8, but this 

time the refractive terms in the arrival time data are included. Note the excess 
power at all lags below 100 days from the refraction terms. 

imation. Figure 9 demonstrates that the variance in TOA per- 
turbations is in excess of that produced solely by DM 
variations, particularly at lags below 100 days. The logarithmic 
slopes of the structure functions in this lag range are smaller 
than the theoretical slopes by a few tenths. 

The simulation results can be compared with structure func- 
tions estimated by Cordes et al (1990; see also Rickett 1988) 
for the millisecond pulsar 1937 + 21. Dual-frequency data were 
used to estimate DM(t) under the assumption that AOA varia- 
tions were negligible. The time series DM(t) was then used to 
calculate the structure function of the phase. The real data 
yield structure function values (Fig. 13 of Cordes et al 1990) 
that fall between theoretical lines D# oc t5/3 and t2. Moreover, 
the logarithmic slope for lags t « 30 to 300 days is much flatter 
than any of the simulated data. Some flattening may be due to 
AOA effects, but most of it is probably due to contamination 
by other effects, as discussed by Cordes et al (1990). 

To summarize, the simulation results indicate that, in prin- 
ciple, the structure function can be used to constrain a but that, 
in practice, it is difficult to use the structure function to deter- 
mine a to better than about one-third. 

VIII. DETECTABILITY OF REFRACTION EVENTS FROM INDIVIDUAL 
PLASMA CLOUDS 

Fiedler et al (1987) reported several deterministic events in 
the radio “ light curves ” of active galactic nuclei from a moni- 
toring program conducted with the Green Bank interferome- 
ter. The inferred sources of these events are AU sized plasma 
clouds with a space density of 102 per cubic parsec. The largest 
“ event ” gives a size of 7 AU and an electron-density enhance- 
ment of 4 x 103 cm-3. Two additional, but smaller amplitude 
events were also reported. A dispersion measure change of 
~0.13 pc cm-3 along the line of sight to a pulsar would be 
produced by such a cloud. 

High-precision timing of pulsars can place constraints on 
the amplitude and frequency of deterministic events in the 
interstellar medium. If a cloud passed in front of the pulsar 
1937 + 21, it would perturb the arrival time residuals. The 
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duration and signature of a deterministic event depends on the 
observing frequency. Multifrequency monitoring of milli- 
second pulsars should place a limit on the amplitude and fre- 
quency of refractive effects in the interstellar medium. 

The size and density distributions of these deterministic 
plasma clouds are unknown. From the Fiedler et al data we 
expect a single plasma cloud (of a large enough size to produce 
ADM = 0.1) to cross any line-of-sight roughly once every 
hundred years. Assuming that the clouds have a logarithmic 
size distribution of slope —1, we might expect clouds that 
produce ADM = 0.001 to cross a line of sight at a rate of about 
once per year. A ADM = 0.001 is the amplitude of variations 
seen in the dispersion measure variations from PSR 1937-1-21 
over one year time scales (Cordes et al. 1990), but these are 
completely consistent with those expected from a Kolmogorov 
spectrum. A perturbation producing a ADM = 0.01 might 
occur once every 10 years. 

The signature of a small event on pulsar arrival time 
residuals is shown in Figure 10. The data simulate an event 
from PSR 1937 + 21 at 1 GHz. The mean DM perturbation is 
8 x 10“3 pc cm-3, slightly less than 1/15 the size estimated by 
Fiedler et al. In terms of the underlying phase screen the ampli- 
tude of the event rises eight times above the rms of the phase 
screen. The underlying phase screen obeys a Kolmogorov 
power distribution. Note the characteristic double-peaked 
caustic structure in the timing residuals shown in Figure 10. 
The residuals around the caustic are all positive valued indicat- 
ing they are delayed from their mean value. An even larger 
refractive event could cause the phase delay of the pulse to 
wrap by more than one period. More than seven years of data 
have been collected from PSR 1937 + 21 since its discovery in 
1982. No such event has been seen in the published data. Final 
residuals of 1 /¿s at 1 GHz place a limit on the electron-column 
density fluctuations due to discrete structures to be less than 
2.4 x 10-4 pc cm-3 in DM units. 

IX. SUMMARY AND CONCLUSIONS 

We have simulated interstellar propagation effects on the 
arrival time precision of radio pulsars. We find that for a Kol- 
mogorov electron-density turbulence spectrum, TOA pertur- 
bations are dominated by dispersion measure variations. 
Multiple frequency observations remove DM variations to 
better than one microsecond (~0.3 //s in the best simulations). 
Multiple frequency observations remove the refraction induced 
TOA variation component with difficulty, since the size of the 
refractive perturbations scales with frequency. The remaining 
refraction induced perturbations limit the absolute precision of 
pulsar timing data dominated by errors in the AOA term. 

500 1000 1500 
Day Number 

Fig. 10.—Post-fit timing residuals in microseconds are plotted vs. day 
number showing the effect of a plasma cloud passing between the Earth and 
the pulsar as observed at 1 GHz. The total change in dispersion measure is 
8 x 10_3pccm_3. 

Observing at the highest possible frequencies probably offers 
the best solution for avoiding the problem of refraction 
induced variations in the arrival time data from millisecond 
pulsars. 

A structure-function analysis of the timing residuals can 
constrain the nature of the electron-density power spectrum. 
The phase-structure function computed from the single- 
frequency arrival time residuals in the case of PSR 1937 + 21 
agrees with the expected values from DM fluctuations alone on 
time scales of 100 to < 300 days. Below 100 days excess power 
exists in the structure function from nondispersion measure 
variations in the arrival times. Above 300 days the structure 
function begins to turn over because the long lags are a large 
fraction of the entire data set. 

With four years of data the simulation easily distinguishes 
between a Kolmogorov spectrum and other power-law spec- 
trum. The phase-structure functions generated from the simu- 
lated data fitted the expected slopes of the original power 
spectrum. If the real electron-density turbulent spectrum is well 
approximated by a one-dimensional phase screen model, then 
long-term uncorrected timing data can provide a measure of 
the index of an underlying power spectrum. The structure func- 
tion values for lags greater than ~ 100 days give the best indi- 
cation of the true spectrum as they are only weakly influenced 
by short time scales of the refractive perturbations (this time 
scale is dependent on the source distance, its transverse veloc- 
ity, and the observing wavelength.) 

If discrete scattering events contribute to the timing errors 
they should show up with very strong frequency dependencies 
and will contribute excess power to a structure function 
analysis on scales of order the size of the events. Both the 
timing data and the structure function analysis can identify or 
at least place constraints on the amplitude of discrete scat- 
tering events. Final residuals of 1 //s at 1 GHz limit the 
electron-column density fluctuations, in terms of a fractional 
dispersion measure change, to less than 2.4 x 10"4 pc cm" 3. 

Frequent sampling of the pulse arrival time data allows for 
better probing of the electron distribution in the interstellar 
medium. Comparable timing measurements are obtained with 
biweekly sampling using a large telescope and daily sampling 
using a telescope one-half as large, if both are equipped with 
receivers of the same quality. Frequent sampling provides a 
better technique for probing the turbulent nature of the elec- 
tron distribution in the interstellar medium and removing 
refractive variations from pulsar timing data. 

Recent millisecond pulsar surveys (Biggs and Lyne 1990; 
Fruchter et al. 1988; Lyne et al. 1987, 1988, 1989, Manchester 
et al. 1989, and Wolszczan et al. 1989a, b) have found low- 
luminosity objects that are either very weak or invisible at 
frequencies above 1 GHz. If these objects are to be timed with 
submicrosecond accuracy, then multiple frequency observa- 
tions will be needed to remove propagation delays associated 
with refraction in the interstellar medium or at the very least, 
place an upper limit on the amplitude of these delays. These 
results are very sensitive to the particular slope of the electron- 
density spectrum. Assuming a Kolmogorov turbulence spec- 
trum, low-frequency observations will be strongly influenced 
by refractive variations, thus limiting the reliability of measur- 
ing the pulsar’s astrometric parameters of proper motion and 
parallactic distance. 
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the importance of examining the influence of angle-of-arrival 
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