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ABSTRACT 
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measure- 

ment errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the 
bisector of the two OLS lines, orthogonal regression, and “reduced major-axis” regression. These methods 
have been used by various researchers in observational astronomy, most importantly in cosmic distance scale 
applications. Formulae for calculating the slope and intercept coefficients and their uncertainties are given for 
all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulae 
was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to 
their mathematical properties, the nature of the astronomical data under consideration, and the scientific 
purpose of the regression. We find that, for problems needing symmetrical treatment of the variables, the OLS 
bisector performs significantly better than orthogonal or reduced major-axis regression. 
Subject headings: analytical methods — galaxies: general — numerical methods 

I. INTRODUCTION 

Linear regression is one of the most frequently applied sta- 
tistical procedures in observational astronomy. It is used to 
characterize quantitatively an apparent correlation between 
two properties of a sample of objects; to compare an observed 
correlation to relationships predicted by astrophysical theory; 
and, perhaps most importantly, to calibrate and quantify the 
“ cosmic distance scale ” necessary for study of the large-scale 
structure of the universe. Historically, astronomers have most 
often applied a single linear regression method for all of these 
purposes: ordinary least-squares regression of the dependent 
variable Y against the independent variable X, or OLS(Y| Y). 
In OLS(Y| Y), the regression line is defined to be that which 
minimizes the sum of the squares of the Y residuals. 

Some astronomers, however, have proposed using alterna- 
tives of OLS(Y|X). Conceptually, these alternatives can be 
divided into three groups. One class is motivated by the exis- 
tence of errors in X and/or Y due to the measurement process, 
in addition to possible intrinsic scatter. The second class is for 
problems where the choice of independent variable is not clear. 
The distinction between these two approaches is often not 
clearly made, though Bandiera and Hunt (1989) give a lucid 
presentation of similar issues in a multivariate context. We do 
not discuss a third group of alternatives, such as robust pro- 
cedures discussed by Branham (1982) and Lutz (1983), which 
are not least-squares procedures at all. 

When the measurement errors are known by virtue of 
detailed knowledge of the experimental conditions (signal-to- 
noise ratios, repeated measurements of standard objects, and 
so forth), then non-OLS regression lines incorporating this 
knowledge have been suggested. Measurement error regression 
models have a variety of mathematically optimum solutions 
and have been addressed by a number of classical and recent 
studies (e.g.. Scares 1944; Trumpler and Weaver 1953; 
Deeming 1968; Eichhorn and Clary 1974; Balona 1977; Jef- 
ferys 1980; Fich, Blitz, and Stark 1989; Trinchieri, Fabbiano, 

and Bandiera 1989; Simon and Drake 1989). A full discussion 
of measurement error regression models, integrating the solu- 
tions known to statisticians (e.g., Fuller 1987) with those devel- 
oped by astronomers, will be given in Paper II (Babu et al 
1990, in preparation). 

The class of alternatives to OLS(Y|Y) discussed in this 
study (Paper I) concentrates on problems where the intrinsic 
scatter of the data dominates any errors arising from the mea- 
surement process. Examples of this very common situation are 
given in § II below. This class of methods has been usually 
proposed in order to avoid specifying “independent” and 
“ dependent ” variables. Three methods that treat the variables 
symmetrically have been suggested by astronomers and others. 
One is the line that bisects the OLS(Y|Y) and the inverse 
OLS(Y I Y) lines, and has been used quite often in character- 
ization of the Tully-Fisher and Faber-Jackson relations to esti- 
mate galaxy distances (e.g., Rubin et al. 1980; Lynden-Bell et 
al. 1988, see their Appendix D; Pierce and Tully 1988, who call 
it “double regression”). A second method is the geometric 
mean of the OLS(Y|X) and OLS(X|Y) slopes, proposed 
many years ago as the “impartial” regression line by an 
astronomer (Strömberg 1940) and used occasionally in cosmic 
distance scale applications (Corwin 1974; de Vaucouleurs and 
Pence 1976; Branch 1981, 1982). It was independently derived 
by statisticians (Kermack and Haldane 1950, and references 
therein) who called it the “reduced major-axis.” A third 
method is the line that minimizes the sum of the square of the 
perpendicular distances between the data points and the line, 
often called “orthogonal regression” or “major-axis regres- 
sion.” It also has been used occasionally in observational 
astronomy (e.g., Notni 1984; Stephen et al. 1987; Starr et al. 
1988). It is rarely recognized that these three techniques, 
though all are invariant to switching the X and Y variables, 
lead to completely different regression lines, both mathemati- 
cally and in real applications. 

Astronomy is not the only scientific community with diffi- 
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culty choosing a single linear regression method. The field of 
biology known as allometry, for example, has vigorously 
debated the merits of the OLS line, orthogonal regression and 
reduced major-axis for decades (e.g., Pearson 1901; Kermack 
and Haldane 1950; Gould 1966; Sokal and Rohlf 1981; see 
Appendix B). 

In this paper, we have several related goals. We provide 
formulae with consistent notation and offer computer codes 
for regression coefficients for different regression fits. We give 
theoretical relations between different regression slopes. A 
recurrent theme in our work is the need to apply the correct 
error analysis appropriate for a given linear regression method. 
Use of the standard OLS( Y | X) slope uncertainties (e.g., those 
provided in Bevington 1969) is not mathematically correct for 
many situations. We provide a self-contained account of error 
analyses, in some cases deriving the appropriate formulae for 
the first time. 

Section II provides a brief overview of linear regression 
when intrinsic scatter dominates. Equations of OLS, the OLS 
bisector, orthogonal regression, and reduced major-axis 
regression are presented in § III, with derivations given in 
Appendix A. Discussion and conclusions follow. Appendix B 
reviews discussions of these methods in other scholarly fields, 
and Appendix C gives information on computer codes. 

II. LINEAR REGRESSION WHEN ONLY (xf, ARE KNOWN 

We consider cases where the objects under study may have 
an intrinsic scatter about the regression line that is much larger 
than the uncertainties due to the measurement process. For 
example, a sample of galaxies in a Hubble diagram may have 
magnitudes measured to an accuracy of ±0.1 and redshifts 
measured to an accuracy of ±0.001, but different intrinsic 
luminosities and non-Hubble motions may cause the scatter of 
points to be one order of magnitude greater than these mea- 
surement uncertainties. In other cases, the property of interest 
may be highly time variable. Here, the error of an individual 
measurement of an object may be negligible compared to the 
intrinsic range of variation of that object. 

Whichever reason applies, the data in these cases consists of 
the bivariate observations (xh yt)9 and no additional informa- 
tion. It is recognized that OLS(Y| AT) is formally the best line 
when the following assumptions hold (e.g., Daniel and Wood 
1980; Tukey 1975): (a) the true relation between the variables is 
linear; (b) the values of the independent variable are measured 
without error; (c) the observed values of the dependent vari- 
able are subject to errors which have zero mean, finite common 
variance, and are independent from point to point; and (d) the 
errors do not depend on the independent variable. The stan- 
dard OLS analysis is not strictly valid when any of these 
assumptions are not fulfilled. One of our contributions here is 
to provide error analysis for OLS when assumption (d) is vio- 
lated. 

The five methods mentioned in § I—OLS( Y | X), OLS(Y | Y), 
the bisector of these OLS lines (OLS bisector), the “ orthogonal 
regression ” (OR) line, and the “ reduced major-axis ” (RMA)— 
are illustrated in Figure 1. Previous studies by statisticians, 
biometricians, and others have provided some insight into the 
merits and applicability of these methods (see Appendix B for 
more details and references). It is widely accepted that OLS is 
appropriate, even when its assumptions are violated, providing 
the purpose of the regression is prediction of a Y value given 
an X value. The scientific question being addressed then clearly 
indicates the dependent and independent variables. For pur- 

Fig. 1.—Illustration of the different methods for minimizing the distance of 
the data from a fitted line: (a) OLS(Y|X), where the distance is measured 
vertically; {b) OLS(Y| Y), where the distance is taken horizontally; (c) OR, 
where the distance is measured vertically to the line; and {d) RMA, where the 
distances are measured both perpendicularly and horizontally. No illustration 
of the OLS bisector is drawn in this figure. 

poses other than prediction, such as establishing the under- 
lying relationship between X and Y for comparisons with 
astrophysical theory, one of the methods treating X and Y 
symmetrically is most appropriate. 

The orthogonal regression line is geometrically most attrac- 
tive, being the axis of minimum moment of inertia and being 
invariant under rotation (Pearson 1901; Linnik 1961). 
However, it can only be used with scale-free variables, such as 
logarithmically transformed variables or ratios of observable 
variables (Kermack and Haldane 1950; Ehrenberg 1975). The 
reduced major axis was proposed to alleviate the scale depen- 
dency of orthogonal regression (Kermack and Haldane 1950). 
However, it has a number of undesirable properties (Wolpoff 
1985; § IV below). The use of the “inverse” OLS(AT | Y) regres- 
sion line is generally discouraged, though some controversy 
exists (Krutchkoff 1967, and the debate in following volumes of 
Technometrics). We have found no studies in the literature 
regarding the merits or deficiencies of the OLS bisector line. 

III. LINEAR REGRESSION FORMULAE 

We first introduce some notations. Let (x,-, yf), / = 1,2, ..., n 
be independent, identically distributed observations from a 
population with mean (jux, iiy) and covariance matrix: 

/ ff2x paxay\ 
\paxay g2 /’ (1) 

where <7*, Oy are the population variances of X and Y, respec- 
tively, and p denotes the population correlation. Unlike most 
studies, normality will not be assumed here. Let 

1 ” 
x = - L x¡ > (2a) 

n j= i 

ÿ = - Z Vi > (2b) n ^ 

six = t (*.- - *)2 > (3a) 
i=l 

=!()'■- y)2 > (3b) i= l 

sxy = Z (*.' - xiy, - ÿ), (4) 
¿=1 
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TABLE 1 
Linear Regression Formulae for Slopes 

Method Expression for Slope 
Estimate of the Variance of the Slope 

Var (£) 

OLS(^|7) 

OLS(Y\X) 

OLS bisector 

Orthogonal regression 

Reduced major-axis 

ß3 = (A + -1 + V(i +ffii+ßii\ 

0* = Wßi -$:') + sign (s^ + ^-^r')2] 

ßs = Sign (sgoMz)1'2 

¿ (xi - x)2(y¡ - A** - P + 

¿(y¡ - ~y)2(y¡ -ÿ + ß2ü)2J 

4ßl + (fjß~ \)2 L^'2 ^ + 2 /?2> + ^ ^ ^2,] 

\ ^ Wr (ß,) + 2 Co\(fi¡, ß2) + ^ Var (42)J 

Note.—An estimate of covariance term is given by: 

Cov {ßv ß2) = (^10
_1| ¿ (^¿ - *Xyf - Kyi - y-ßMi - - y-ßi^t - *)]!>• 

and 

X? = xf - X , (5) 

y*? — yi~ÿ * (6) 

Note that fix and iiy denote real population means and x and ÿ 
denote estimated means from a given sample. Also, hereafter, 
any variable marked with a caret (e.g., represents an estima- 
tion of a real variable (e.g., /?f) for a given sample. 

a) Estimate of Slopes and Their Variances 
A summary of estimates of the slopes and their estimated 

variances we derived are given in Table 1. The reader will note 
that our expressions for the variance of the standard OLS 
slope differ from those usually seen in textbooks. The usual 
OLS slope variance is (e.g., Bevington 1989, p. 114) 

i=l ^xx 
The standard slope variance is strictly valid only under a 
rather restrictive assumption: the residuals in Y from the line 
are independent of the X value. Our slope variances apply even 
when this condition does not hold. They are calculated using 
the “delta method,” a technique that combines Taylor expan- 
sions, the central limit theorem, and Slutsky’s theorem of prob- 
ability theory (see Billingsley 1986, p. 380). The details of our 
derivation are given in Appendix A. 

We note that some of the formulae in Table 1 are derived 
elsewhere. The orthogonal regression slope /?4 was introduced 
by Pearson (1901), and the reduced major-axis slope ß5 was 
independently proposed by Strömberg (1940) and Kermack 
and Haldane (1950). They are discussed and compared with 
OLS fits by Ricker (1973), Sokal and Rohlf (1981, pp. 547ff and 
594fi), and other references given in Appendix B. The OLS 
bisector slope ß3 and the variances based on the delta method 
are, to our knowledge, not available elsewhere. 

b) Estimation of Intercept Coefficients and Their Variances 
Intercept coefficients are given by 

äj = y-ßjX, (8) 

where j here represents the regression slope selected from the 
five estimates given in Table 1. For each <x, the variance is 
obtained by 

Var (“j) = ^2 Z - fijX? - 

72, 
y?(y? ?2 X¡) 

where are given by 

Vn = 1 , 

712 = 0. 

713 =7i(l +ßl) > 

714 = ValAr1 > 

y i s i\/ßilßi > 

721 = 0, 

722 = 1 > 

723 = 7l(l + ßf) , 

724 = 1^1172 > 

725 = IsfßUßl ) 

with 

7i = ßzKß, + /W(1 +/^X1 +4!)] -1 

72=ß^ß\ + {ßj2-^rU2 ■ 

(9) 

(10) 

(ID 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

c) Theoretical Comparison of Slopes 
Theoretical values of the slopes /?* can also be written as 

functions of <7X, oy9 and p9 where <tx, oyi and p denote the 
population standard deviations of x and y, and the correlation 
coefficient, respectively. Under the assumption p ^ 0, 

OLS(71X) ß2 = pay/ax (22) 

OLSpnn ß2 = Gy/pox, (23) 
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OLS bisector ßz = 

OR 

l + p2 
-gx 

+ p2 +p 2 + 

(24) 

S)] 

1/2 

^4 = Wy - 
X Gy 

+ i(Gy - GÎ)2 + 4p2GlGyY/2} , (25) 

Gv 
ß s ~ ^ sign (p) (26) 

It is interesting to see relationships among the different esti- 
mated slope coefficients defined above for a given data set 
(xu yi)> •••> (*„> yny The following inequalities can be estab- 
lished using some elementary trigonometric identities ([Babu 
and Feigelson 1990). Suppose Sxy > 0 and ß5 < 1; then ß3 < 1 
and 

ß1<04<05<ß3<ß2. (27) 

If Sxy > 0 and ß5 > 1, then // , > 1 and 

ßl<ß3<ß5<ß4<ß2. (28) 

Finally, if Sxy > 0 and ß5 = 1, 

ß3=ß4=ß5 = l. (29) 

In fact, equation (29) holds if one of ß3, ß4, or ß5 is equal to 1. 
This holds if and only if Sxx = Syy. Similar inequalities hold 
when Sxy < 0. 

If /?3 = 1 (which holds if and only if Sxx = Syy), then 

Var (ß3) < Var (ß5) < Var (ß4). (30) 

In fact, 

i : 
Var iM 

- Var (ß3) 
00 as ßi 0, (31) 

that is, as the slope of the OLS(Y/X) approaches zero. Further, 

. ; Var (ß4) 
- Var (ß5) 

00 as 0 . (32) 

Such inequalities are difficult to obtain in case ß3 i=- 1. 

IV. PERFORMANCE OF THE FIVE REGRESSIONS 
We have applied, as an illustration, the five methods to a 

simple regression problem in the astronomical literature. The 
relation L ~ an between the velocity dispersion and optical 
luminosity of elliptical galaxies, known as the Faber-Jackson 
(1976) relation, can be used for two purposes: to estimate the 
luminosity of, and hence the distance to, galaxies from mea- 
sured values of cr; and also to compare empirical measures of n 
with values predicted from models of elliptical galaxy forma- 
tion. Model predictions range from n = 2 (Phillips 1987) to 3 
(Tonry 1981) to 4 (Sargent et al 1977). Conceptually, the 
astronomer might use OLS(L/a) for the distance estimate, 
because the question addressed clearly indicates which variable 
is dependent, and one of the symmetric methods (OLS bisector, 
orthogonal regression, or reduced major-axis) for comparison 
with models, because the physics does not clearly indicate 
which variable depends on the other. 

Fig. 2.—Example of a data set with large scatter obtained from Schechter’s 
(1980) measurements of the Faber-Jackson relation in elliptical galaxies. The 
luminosity is in solar luminosity units. The two solid lines present OLS(71X) 
(shallowest line) and OLS(2f | Ÿ) (steepest line). The dot-dashed line, dashed 
line, and dotted line represent the OLS bisector, OR, and RMA, respectively. 

Figure 2 shows the L — a data obtained by Schechter (1980) 
and the five regression lines using the formulae in Table 1. The 
calculated slopes are 2.4 ± 0.4 and 5.4 + 0.8 for the extrema 
OLS(L/cr) and OLS(cr/L), respectively, and 3.4 ± 0.4, 3.6 ± 0.4 
and 5.2 + 0.8 for the OLS bisector, reduced major-axis, and 
orthogonal regression, respectively. The scientific conclusions 
regarding distances and galaxy formation models obviously 
depend greatly on the regression method adopted. The disper- 
sion of the five estimates is considerably larger than the 
variance of any one estimate. In cases like these, the astron- 
omer would be wise to calculate all five regressions and be 
appropriately cautious regarding the confidence of the inferred 
conclusion. We note parenthetically that more recent studies of 
elliptical galaxy distances and streaming use OLS and OLS 
bisector estimates in different circumstances (see Appendix B of 
Lynden-Bell et al. 1988). 

We have performed an extensive series of Monte Carlo 
simulations to evaluate numerically how well each regression 
formula in Table 1 approximates the theoretical values given in 
equations (22)-(26). Numerical simulations can determine the 
performance of the regression coefficients for small N and 
evaluate whether the approximations made in our derivation 
of the coefficient variances (Appendix A) are accurate. Theo- 
retical values calculated from equations (22)-(26) are presented 
in Table 2 for selected values of population standard devi- 

TABLE 2 
Theoretical Values of Slope Estimates 

(ox,oy,pxy) OLS(7|Z) OLS(2f|y) OLS Bisector OR RMA 

(1.1.0)   0.0 oo 1.0 1.0 1.0 
(1,1,0.25) ... 0.25 4.0 1.0 1.0 1.0 
(1,1,0.5)  0.5 2.0 1.0 1.0 1.0 
(1,1,0.75) ... 0.75 1.3333 1.0 1.0 1.0 
(1.1.1)   1.0 1.0 1.0 1.0 1.0 
(1.2.0)   0.0 oo 1.0 oo 2.0 
(1,2,0.25) ... 0.5 8.0 1.4134 6.1623 2.0 
(1,2,0.5) .... 1.0 4.0 1.7662 3.3028 2.0 
(1,2,0.75) ... 1.5 2.6667 1.9522 2.4142 2.0 
(1.2.1)   2.0 2.0 2.0 2.0 2.0 
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ations, ox and ay, and correlation p. Our simulations used 
bivariate normally distributed data points with gx, Gy, and p 
given. Data samples ranging from N = 20-500 were con- 
structed, and the five regression methods applied. Details of the 
performance tests are given in Babu and Feigelson (1990). 

We find that, when averaged over many simulations, all five 
regression slope coefficients give values close to the theoretical 
values in equations (22)-(26). However, a notable difference 
appears in the size of the slope uncertainties presented in Table 
1. The uncertainties to the orthogonal regression slope are, on 
average, larger than those of the OLS(71 X\ OLS bisector, or 
reduced major-axis regressions. The effect is about a factor of 
1.5-2 for N = 500, but it can be very high for small N small p. 
This indicates that the orthogonal regression is considerably 
less accurate in estimating its theoretical value than the other 
regression methods. The small standard deviation of the OLS 
bisector can be understood from the cancelling effect of pulls 
and pushes of OLS(X | 7) and OLS(71X) on the variability of 
the middle line. 

We have also evaluated the reliability of the slope variance 
estimates using a chi-square test. The simulations indicate that 
the slope variances for all methods accurately reflect the actual 
dispersion of slope coefficients for sufficiently large N and p. 
But, for small N or small />, our variance estimates can be too 
small. For /? = 0.5, for example, our slope uncertainties may be 
too low by about 10% for N = 100, and too low by 40% for 
N = 20. We therefore urge caution in interpreting slopes when 
small samples and large scatter are present. 

V. DISCUSSION AND GUIDELINES FOR THE ASTRONOMER 

We first emphasize that the five methods described here give 
regression coefficients that are theoretically different from each 
other, and are not five different estimates of the same quantity. 
For example, the orthogonal slope will differ from the OLS 
bisector slope even if the entire population could be sampled. 
Only in special cases will these methods give a single relation 
(see eqs. [22]-[26]): when /? = 1, all five slopes are identical; 
and when ox = oy, ß3 = ß4 = ß5 = 1 for all /? # 0. Unless there 
is additional prior knowledge regarding the data (e.g., there are 
no horizontal residuals about the line) or the scientific question 
being asked (e.g., the goal is to predict new Y values from 
measured X values), there is no mathematical basis to prefer 
one regression method over another. 

However, as described in §§ I and II, astronomers have a real 
need for regression methods that treat the variables symmetri- 
cally, which OLS does not satisfy. Examination of the repre- 
sentations given in equations (22)-(26) and the numerical 
simulations described above reveal problems with two of the 
three methods which treat both variables symmetrically. First, 
the slope of the reduced major axis (known to astronomers as 
Strömberg’s 1940 “ impartial ” regression line) does not depend 
at all on the correlation coefficient p9 and thus cannot help us 
in understanding the underlying relation between X and Y (see 
Wolpoff 1985, and references therein for further discussion of 
this point). Thus, we believe the reduced major axis should not 
be used. Second, the orthogonal regression slopes have greater 
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dispersions than those of other methods in numerical simula- 
tions. This is evident from both the simulations and the theo- 
retical relations given in equations (30)-(32). 

We thus arrive at the following conclusions and guidelines 
for the astronomer performing linear regression. They are 
based on our own work and that of past researchers (Pearson 
1901; Kermack and Haldane 1950; Tukey 1975; Sokal and 
Rohlf 1981, and other references in Appendix B). 

1. These methods address only data for which there is no 
understanding of the nature of the scatter about a linear rela- 
tion. If the dispersion is principally due to the measurement 
process and is calculable, then weighted or “ errors-in- 
variable ” regression models should be used (see Paper II). The 
present discussion concerns cases where unknown variations 
within the objects under study cause the scatter. 

2. Astronomers should first fit all five lines, each with its 
corresponding error analysis, to their data. The formulae are 
given in Table 1, and the computer code is available (Appendix 
C). If the differences between the lines are not greater than the 
errors on any one line, the choice of fitting method will not 
seriously affect the result. OLS(71X) is probably best in these 
cases, since it is widely known and understood. 

3. If the scientific problem is such that one variable is clearly 
an “ effect ” and the other the “ cause,” then OLS(71X) should 
be used, where X is the causative variable. Similarly, if the 
problem is to predict the value of one variable from the mea- 
surement of another, then OLS(71X) should be used, where Y 
is the variable to be predicted. The latter situation is common 
in cosmic distance scale applications, where one wishes to 
predict the distance of an object from a linear regression fit 
generated from a sample with known distances. 

4. If the goal is to estimate the underlying functional rela- 
tion between the variables, as may apply when data are com- 
pared to astrophysical theory, then one of the regression lines 
treating the variables symmetrically should be used. Based on 
the problems with the orthogonal regression and reduced 
major-axis methods discussed above, we recommend use of the 
OLS bisector. This is a somewhat unexpected conclusion; in 
decades of debate on these issues (see Appendix B), the OLS 
bisector is rarely mentioned. To our knowledge, the present 
study is the only one which derives the OLS bisector coefficient 
variances, and examines their performance in simulations. 

5. Whatever method is adopted, we can unequivocally state 
that the derived regression coefficients should be accompanied 
by their appropriate error estimates, which we provide in 
Table 1. 
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APPENDIX A 

DERIVATION OF VARIANCE FORMULAS 

I. TWO PRELIMINARY RESULTS 
First, we give two preliminary results that will be used in the derivation of the variance formulae. The first lemma follows from the 

standard multivariate central limit theorem (Billingsley 1986, p. 398). 
Lemma Al. In the notation introduced in § III, 

J~nl^i -Æi> ft2 Z {(x¡-ßAiyi-ßy)-ßßXi-ßx)]a;2,(y¡-fiy)[_(y¡-fiy)-ß2(xl-/ixy]ß2 

tends to zero in probability. Hence, 

~ ßu ß2 ~ ßi) 
converges to bivariate normal distribution with mean zero and covariance matrix S = ((l7), where i= 1,2 and j = 1,2, with 

in = <7* 4 Var [(x - ßjy -ß^- fiy + ßlnx)~\ , 

C22 = ß\s4 Var [(y-VyXy-ßix-Hy + ß2nxy], 

C2I = £12 =ßl°:*E{{x - flx\y - ßy)ly -My- ßl(x - y«x)][(y -My- ß2(x - fix)]} . 

(Al) 

(A2) 

(A3) 

Remark Al. We observe that Cu and C22 give the asymptotic variances of (n)1/2/?i and (tt)1/2/?2, respectively; C12 gives the 
asymptotic covariance of (n)1/2/?i and (w)1/2^2* Their estimates are given by 

1 Cn = Var (ßj = 4- 'J Z (x¡ - - ÿ) - 4i(^¡ - x)Ÿ [• , c2 , à XX U= 1 

1 C22 = Var (ß2) = 4- •) z (^ - ÿfiiyi -ÿ)- ftliXi - Xj]2 , 
xy U = 1 

and 

fti 
~ Cl2 = COV (ßy, ß2) = „2 n à xx U=1 

Z (x¡ - *)(.v¡ - >')[(>’, - y) - fti(x¡ - 3c)][(y¡ - ÿ) - ft2(x¡ - x)] >. 

(A4) 

(A5) 

(A6) 

Remark A2. If the residuals yt — ßiXi — are independent of xh then Cn reduces to the standard expression given in the 
textbooks, and, in this case, its estimate is given by equation (7). Similarly, if — /?2 1(yi — a2) is independent of yh then C22 reduces 
to the standard expression. 

Lemma A2 (delta method), (a) Let 7^, n = 1, 2, ... be a sequence of random variables such that (Tn — T)has asymptotically a N(0, 
b2) distribution. Then, if H(t) is a function differentiable at T, 

[H(Tn)-H(T)]^V{0, lH'(t)-]2b2} . (A7) 

(b) Let (Tln, T2n), n = 1, 2, ... be a sequence of random vectors such that(n)1/2[(Tln, T2n) - (Tu T2)] has asymptotically a bivariate 
normal distribution with mean zero covariance matrix C = (c0)2, where ¿=1,2 and j = 1,2. Then, if H(tu t2) is a function with 
continuous first-order partial derivatives, 

where 
H(Tln, T2n) - H(T^ T2)->jV(0,<72), 

ai = IHßTt, T2)1
2c11 + T2)]

2c22 + IHßTt, T2)H2(T1, T2)Cl 

(A8) 

(A9) 

where T2) and H2(TU T2), respectively, denote the partial derivative of H with respect to Tu and T2, respectively. Part (a) is 
proved in Arnold (1981, p. 152). Part (b) is given in Billingsley (1986, p. 380). 

II. ASYMPTOTIC VARIANCES OFy£3,/?4, AND ß5 

Now define the function 

dith t2) = (h + U) 1ítlt2 — 1 + “*■ ^X1 ¿2)] 5 

so that ß3 = g(ßu ß2) and ß3 = ß2). It can easily be verified that the first two partial derivatives of g are 

Qiißu ^2) — 

92ißu /y = 

l+ß\ 

{ß^+ßjJüTßW+ß 

(Ai + A2)V(1 + Aî)(i + Al) 

dißu A2) > 

9ißu ßi) 

(AlO) 

(All) 

(Al 2) 
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Thus, from Lemma A2, the asymptotic variance of (/?3 — /?3) is 

Var [(/?3 - /?3)] = lgi(ßu ß2)T Var (ßj + Ig^ß,, ^2)]2 Var (ß2) + 2g¿ß,, 

Ldißu ßlJ]2 r/1 . o2\2 AT //5 \ , 02 

By taking 

Míi, h) = K(t2 - tr1) + \/ 4 + îh - tr1)2], 

we obtain ß4 = hiß^ ß2) and /?4 = hiß^ ß2). The first two partial derivatives of h are given by 

M/?i, ß2) = (ßJßlW + (ß2 - ßi1)2)-112, 

and 

h2(ß1,ß2)=ß2Mßu ß2)- 

The expression for asymptotic variance of (/?4 — ß^) can now be written using Lemma A2 as 

Var (fh) = ßim + ißißi - l)2rl[/?r2 Var (fh) + ßl Var (ß2) + 2 Cov (/?„ y?2)] 

(Al 3) 

(A14) 

(Al 5) 

(Al 6) 

Finally, let 

^2) _ \/ ^1^2 5 

so that /?5 = /c^i, ^2) and ^5 = Kßu ^2)* The first two partial derivatives of k are 

¿2) ~ \/^2/^1 5 

^2(^15 ^2) = \fßJ^ß~2 • 

Thus, from Lemma A2 the asymptotic variance of (/?5 — /?5) is given by 

Var (/?5) = ¿[(^2/^^ Var (/?,) + (^i/^2) Var (^2) + 2 Cov (/?,, ^2)] • 

(A 17) 

(A 18) 

(A 19) 

(A20) 

III. CONSISTENCY OF THE ESTIMATORS 

Lemmas A1 and A2 and representations of as functions of ß^ and ß2 give the asymptotic normality for (n)1^/?, — /?*) for i = 1, 
2, 3, 4, and 5. Hence, (n)1/2(^¿ — /?,) is bounded in probability as n becomes large. Consequently, consistency of the estimators ß{ 
follows for i — 1,2, 3,4, and 5. 

APPENDIX B 

A MULTIDISCIPLINARY OVERVIEW OF LINEAR REGRESSION TECHNIQUES 

In this Appendix, we give a short review of the issues discussed in this paper from a historical and multidisciplinary perspective. 
The treatment is far from complete but should provide astronomers with a glimpse of how researchers in other fields have wrestled 
with these issues. Examples of treatment of a linear regression problem by astronomers are given in § I above. 

I. STATISTICS 

Ordinary least-squares (OLS) linear regression was introduced by F. Galton in an 1886 study of the relationships between the 
heights of parents and children. The related concept of the least-squares method and normal error distribution of random 
variates had been introduced earlier in the 19th century by A. Legendre and C. F. Gauss, respectively, in their studies of planetary 
and cometary orbits (see Stigler 1986 for a full historical discussion). Though most scientists, and the statistics books they commonly 
read, use OLS exclusively, a variety of alternatives have been suggested during the subsequent 100 years. These included minimizing 
the absolute values rather than the squares of the deviations, methods adapted to studies where both variables are measured with 
error (see Paper II) and the methods discussed in the present paper. Of the latter, the study by Karl Pearson (1901) entitled “On 
Lines and Planes of Closest Fit to Systems of Points in Space ” is particularly important. He notes that OLS gives: 

“... one straight line or plane if we treat one variable as independent, and a quite different one if we treat another variable as the 
independent variable  

... In many cases of physics and biology, however, the ‘ independent ’ variable is subject to just as much deviation or error as 
the ‘ dependent ’ variable ... [and we seek] a unique functional relation between them Of course the term ‘ best fit ’ is really 
arbitrary; but a good fit will clearly be obtained if we make the sum of the squares of the perpendiculars from the system of 
points upon the line or plane a minimum.” 

Pearson’s line is variously called the “major axis,” “line of best fit,” and “orthogonal regression” line. Unlike the OLS lines, it 
passes through the centroid of the distribution of points and is invariant under rotation of the axes. Linnik (1961) showed that, if one 
considered each point to have a unit of mass, the major axis is the line that minimizes the moment of inertia of the system. 

Despite these attractive mathematical properties, it was repeatedly pointed out that the major axis suffers from the problem that it 
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is not invariant when one of the axes is multiplied by a constant scale factor. Economists, for example, have shunned the orthogonal 
regression for this reason (e.g., Allen 1939, Ehrenberg 1975). However, astronomers (and biometers dealing with allometry; see 
below) frequently use scale-free variables, either logarithms of measured quantities or ratios of variables with the same units. This 
objection does not apply in such cases. 

II. GEOLOGY 
In geochemistry, the ages of rock samples are frequently estimated from their content of radioactive isotropes and their daughter 

products. For example, for a collection of coeval rocks, the age is a function of the slope of the “isochron” in the 87Sr/86Sr versus 
87Rb/86Sr diagram, and the initial 87Sr/86Sr ratio is its intercept. However, it was realized that simple OLS is inadequate for 
isochron calculation due to errors in both variables (Brooks, Hart, and Wendt 1972). Diagrams similar to our Figure 1, and the 
accompanying discussion that astronomers might find valuable, appear in the review article by Jones (1979) and the text Numerical 
Petrology (Le Maitre 1982). The methods developed generally require prior knowledge of the measurement errors in the variables, 
so we postpone discussion of these treatments until Paper II. 

in. PHYSICS 
In physics, sources of errors are frequently measurement ones, and the measurement errors are often known in advance. Assuming 

that an independent variable is exactly assignable (experimental physicists often can accurately control input values), researchers 
typically used weighted OLS (e.g., Bevington 1969). Several researchers, however, suggested regression methods which include 
errors in both variables. These methods, however, assume the measurement errors are known and hence will be discussed in Paper 
II. For the case with unknown errors in both variables, Ross (1980) reintroduced the orthogonal linear regression for a simpler 
alternative to previously suggested methods requiring iterative procedures. Miller and Dunn (1988) find that the Ross’s (1980) 
method is not invariant for scale changes and reinvented the reduced major-axis method. Ross (1980) and Miller and Dunn (1988) 
however, did not provide any error analysis for the resulting regression coefficients. 

IV. CHEMISTRY 
In chemistry, researchers were aware of the limitations of ordinary least-squares linear regression but generally accepted it. A 

manual of statistical methods for chemical experimentation states (Gore 1952) mentions orthogonal regression along with 
OLS^Y/Y) and OLS(Y/Y), stating that the standard OLS(Y/Y) “is believed the most useful since this line is the best one for 
predicting form cause (variable X) to effect (variable Y).” More recent monographs on chemometrics do not provide consistent 
advice. In discussing OLS regression, Massart, Dijkstra, and Kaufman (1978) state that the standard OLS (Y/Y) is “somewhat 
arbitrary,” and that the “ most logical procedure when errors occur in both Y and X ” is orthogonal regression. Shorter (1982) states, 
however, that orthogonal regression is “ seldom used ” in organic chemistry and usually give results that “ differ but little from those 
given by ‘ improper ’ application of the simple least-squares method.” 

In one important chemical problem, however, the use of OLS regression apparently led to a major error. Krug, Hunter, and 
Grieger-Block (1977) document that the functional linear relation reported to exist between the enthalpies and entropies of 
equilibrium chemical reactions is an artifact of the OLS method. The situation is confounded by measurement errors in both 
variables and the fact that they are both correlated with extraneous chemical parameters. 

v. BIOLOGY 
The discussion of linear regression methods without consideration of measurement errors is most fully developed in the field of 

allometry, the branch of zoology devoted to the quantitative study of sizes and other properties of different species. Important 
allometric relationships include the finding that body surface area scales as body mass m° 63 over seven orders of magnitude for 
vertebrates, and that metabolic rates are proportional to m0,75 over five orders of magnitude in mammals (Kleiber’s law; see the 
review by Gould 1966). Unlike geological applications, allometric data have little measurement error but considerable “biological 
variability ” within and between species. The seminal paper of Kermack and Haldane (1950) outlines the linear regression issues that 
have been widely debated in the field : 

“For [cases where biological variability dominates measurement error] the conventionally used regression lines are quite 
unsuitable, since here the terms ‘ dependent variate ’ and ‘ independent variate ’ have no real meaning. It would perhaps be more 
reasonable in our case to follow Karl Pearson (1901) and choose the line which minimizes, not the sums of the squares of the 
deviations of one of the variates as do the regression lines, but rather the sum of the squares of the normal deviations of the 
observed points— For us, [Pearson’s line] suffers from the disadvantage that, while invariant under rotation of the axes, it is 
not invariant under scale changes.” 

They then proceed to discuss the “reduced major axis,” which is invariant under scale changes but not rotation, and apply three 
versions of the reduced major axis (e.g., with and without assuming normally distributed logarithms of the observed variables) to the 
height-length relationship of 338 species of fossil. They did not, however, provide estimates of the variance of the calculated slopes. 
Gould (1966) notes that later researchers were prone to overinterpret reduced major-axis fits, which can be meaningless when 
samples with small N or large scatter are considered. 

More recent discussion of allometric relations have highlighted how the purpose of a given regression affects the regression 
methods to be used. In their text Biometry, Sokal and Rohlf (1981, pp. 460-461) discuss cases where both variables show random 
variations, “Model II” regression. In these cases, “the appropriate regression line may vary depending on whether functional 
relationship or prediction is the aim of the investigator ... [However, in] the familiar ‘ regression ’ of statistics texts and research 
articles, the same equation served both purposes.” This textbook (see pp. 552ff and 596ff) and the review article by Ricker (1973) are 
recommended for presentation of formulae and computational details for various regression models, though researchers should 
note that their confidence limits may differ from those presented in the present work. 
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A recent conference on allometric relations in primate biology reveals that, even today, debate wages on regarding which 
procedure is best under different circumstances. In comparing the size of gastrointestinal organs and body weight in 73 species, 
Martin et al (1985) choose to take the logarithm of both variables and fit Pearson’s major-axis line. When the 95% confidence limit 
of the slope includes 0.75 (Kleiber’s law), they recalculate the best intercept consistent with this fixed slope. In a study of the relation 
between tooth size and body weight, Gingerich and Smith (1985) also use the major axis on logarithmic variables to examine the 
“ structural ” significance of tooth size on primate metabolism, but recommend least-squares regression when one wishes to predict 
body weight from a fossil tooth size. Wolpoff (1985), however, argues that both the major axis and reduced major axis have 
limitations (they both give high and misleading slopes if the scatter is large, and the reduced axis will always give a slope greater 
than unity if the Y variables is by nature more variable than the X variable) and least-squares regression slopes can in some cases be 
directly computed from theoretical models. Steudel (1985) similarly favors least squares, in part because a casual link between size 
variations and other body properties is “ inherent in the study of allometry.” 

VI. SUMMARY 

In these many fields of scientific research, we see a situation similar to that in astronomy: an awareness that the experimental 
situation may not satisfy the assumption of OLS ; leading to the (re)introduction of alternative regression procedures that treat the 
two variables symmetrically; a lack of adequate error analysis for non-OLS methods; and little contact with discussions of the 
treatment of the problem in other fields. We attempt in this paper to alleviate some of these deficiencies, in particularly providing 
self-consistent error analysis for five different linear regression methods. However, the conceptual issues are still not fully resolved, 
though the present study shows that neither orthogonal regression nor the reduced major axis perform as well as a third method, the 
OLS bisector. Our result may help the community of allometers, which has the longest history in dealing with these methodological 
issues, to reach consensus regarding the best approach for problems similar to those frequently encountered in astronomy. 

APPENDIX C 

LINEAR REGRESSION COMPUTATIONS 

A 300 line computer program in Fortran 77 is available from the first two authors to calculate the regression coefficients and 
uncertainties for the five regression methods described here. Interested users can request a hard copy, or an ASCII file by electronic 
mail (Internet address: ti@space.mit.edu or edf@astro.psu.edu). The code may also be incorporated into the IRAF/STSDAS 
software system. 
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Note added in proof.—We recently learned that a sixth linear regression formula has been used in astronomical studies of the 
cosmic distance scale: the arithmetric mean of the OLS(Y|X) and OLS(Y| Y) slopes (M. Aaronson, G. Bothun, J. Mould, J. 
Huchra, R. A. Schommer, and M. E. Cornell, Ap. J., 302, 536 [1986]). We give its regression coefficients and variance and discuss its 
performance in Babu and Feigelson (1990). It does not perform as well as the OLS bisector, and thus does not impact the conclusion 
of this paper. 
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