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ABSTRACT 
We present results for the cooling and heating that arise from cyclotron resonant and nonresonant scat- 

tering by photons injected into a planar slab plasma of thickness Ne electrons cm-2 that is threaded by a 
superstrong field (B) oriented parallel to the slab normal. From a balance of the cooling and heating, we 
calculate the equilibrium temperature 7^ as a function of field strength B and column depth through the slab. 
We obtain analytic expressions for Tc for both beamed and isotropic photon injection in the optically thin 
limit. For the optically thick case, we use Monte Carlo simulations to study the values of Tc resulting from 
isotropic photon injection into the slab plasma. We find that when Tc is determined by the cooling/heating 
balance due solely to cyclotron resonant scattering Tc/B remains fairly constant for ATC up to ~6 x 1021 elec- 
trons cm-2 in the optically thick regime. This line-dominated region comes to an end when the extra heating 
from the hard continuum photons (>100 keV) becomes competitive with the line processes and drives the 
equilibrium temperature well above the pure line value. With parameters characteristic of GB 880205, we 
determine the thickness of the line-dominated region to be ~1021-1022 electrons cm-2. Using the pure line 
cooling/heating model for the line-forming region, Wang et al computed theoretical line spectra and com- 
pared these spectra with the data from GB 880205. They found good fits to the data for line-forming regions 
with column depths «(0.6-1.8) x 1021 electrons cm-2. This qualitative agreement between the best-fit thick- 
ness of the line-forming layer demanded by the data and the thickness of the line-dominated layer determined 
in this paper strongly suggests that the line-dominated layer plays an important, if not central, role in the line 
formation process. 

Requiring that the line-enhanced radiation force exerted on the scattering layer be less than the gravita- 
tional force binding this layer to the surface of, for example, a neutron star, gives a limiting magnetic Edding- 
ton luminosity. Strictly speaking, we can find a limit on the spectral flux at the cyclotron lines. Applying this 
limit to GB 880205 constrains the distance to this burst to be <200 pc (3 o upper bound) and implies that 
the total luminosity L < 0.3LE, where LE « 1.26 x 1038 M/M0 (ergs s_1) is the nonmagnetic Eddington limit 
for an electron-proton plasma. A pair-dominated scattering layer cannot easily be accommodated in our 
model since the corresponding distance limit would be far smaller, <5 pc, which is highly unlikely. Both the 
cyclotron interpretation of line features seen in GB 880205 and the distance limit strongly suggest that this 
burst originates from a strongly magnetized neutron star in the Galactic disk. 
Subject headings: gamma rays: bursts — magnetic fields — plasmas — radiation mechanisms — 

radiative transfer — stars : neutron 

I. INTRODUCTION 

Photons impinging on electrons in a plasma permeated by a superstrong magnetic field may engage in single or multiple resonant 
cyclotron and nonresonant (magnetic continuum) scattering. Each scattering event exchanges energy and momentum between the 
electrons and photons. The energy exchange is a source of cooling and heating for the plasma, while the momentum exchange gives 
rise to a line-enhanced radiation force on the scattering plasma. In this paper, we study in detail the energetics, i.e., the cooling and 
heating, and the dynamics, i.e., the radiation force, resulting from electron-photon resonant (cyclotron) and nonresonant 
(continuum) scattering in a plasma with magnetic field B ~ 1012 G«BC = 4.414 x 1013 G). We discuss the scattering energetics 
and the scattering dynamics, in that order, presenting first the case in which the plasma is optically thin to resonant scattering in the 
cyclotron first harmonic ( = fundamental). Precise analytic results can be obtained in the optically thin limit, for which the basic 
physics is more transparent. We then present the numerical results for the optically thick case and, where possible, semianalytic 
estimates which aid in visualizing the details and results of the nontrivial radiative transfer physics involved. 

We assume the scattering region to be a plane-parallel slab threaded by a uniform superstrong magnetic field oriented parallel to 
the slab normal and populated by scattering electrons with a (quasi-)thermal distribution of momenta parallel to the field at 
temperature T. Although the electrons are subject to continual heating by incident photons, they may nevertheless maintain a 
quasi-thermal distribution (along the field) through their electrostatic coupling to protons (or other heavy ions) which we assume to 
populate the layer as well. For the distribution of electron momenta orthogonal to the field where the motion is quantized into 
Landau levels, we assume all electrons to be in the (n = 0, <7 = -1) Landau ground state. This is appropriate at sufficiently low 
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electron densities (ne 8 x lO27#^2 cm-3) where collisional excitation and de-excitation of higher Landau levels may be ignored 
(Ventura 1973) and at sufficiently low resonant photon densities where radiative population of higher Landau levels may also be 
ignored. We assume that the resonant scattering layer is static, thereby ignoring the possibility of significant bulk flow. Supra- 
thermal relative motion between electrons and ions is unstable (e.g., Buneman 1959), and we expect any such relative motions to be 
suppressed. Overall constant velocity motion of the scattering layer can be accounted for by Lorentz transforming to the rest frame 
of the plasma. We ignore differential motion in the scattering layer. Substantial, suprathermal differential motion is unlikely to be 
consistent with the relative narrowness of the lines observed in the bursts GB 870303 and GB 880205 (Murakami et al. 1988, 
Fenimore et al. 1988; Wang et al. 1989), although we cannot entirely rule out the possibility of differential flow at some level. 

Quite generally in this paper, we use polarization-averaged photon scattering cross sections, an approximation that is justified at 
low electron densities (ne <4 1022BÍ2 cm-3), where (strong field) vacuum polarization determines the photon propagation modes (see 
Gnedin, Pavlov, and Shibanov 1978). For a slab column density Ne = Ne>2i x 1021 electrons cm-2, the optical depth in the 
cyclotron first harmonic is 

/ J \ -1/2 

where B = B12 x 1012 G and T is in keV. In contrast, the continuum optical depth is 

tc x <TTNe = 7 x 10“4JVej2i , 

where <rx is the Thomson cross section, and the optical depths in the second and third cyclotron harmonics are 

/ T V1/2 

t, = 2.7AL \keV 

(1) 

(2) 

(3) 

and 

T3 = 0.23Are,21B12(j¿L) 1/2 . (4) 

Quite generally, we shall focus on scattering layers that are optically thin in the continuum, but we shall consider a range of values 
for Ti. 

In the optically thin case, for which 1, we calculate the cooling and heating due to resonant scattering at the cyclotron first 
harmonic analytically to first order in t1 for photons injected with a power-law (oc£-s) energy spectrum up to a cutoff energy E2. 
Balancing the cooling and heating rates gives the resonant equilibrium Compton temperature Tc which, we shall see, is proportional 
to the energy of the first cyclotron harmonic, 

Eb= 11.6B12 keV . (5) 

The constant of proportionality depends in detail on the energy and angular distribution of the incident photon flux, but the 
resonant Compton temperature reflects the characteristic energy of the resonant line, not the considerably larger characteristic 
energy of the photon continuum. This temperature is expected to be realized in the very outermost fringes of the scattering 
atmosphere, where line processes dominate the cooling and heating and ^ <0. 

Cooling and heating rates due to magnetic continuum scattering are also easily calculated for 1. Balancing these rates gives 
the continuum equilibrium temperature. For s ~ 1 and E2 ~ 2mec

2, this temperature is ~mec
2/4, the same as its nonmagnetic 

counterpart. We expect this temperature to be approached at very large depths (tc -► 1) inside the atmosphere where continuum 
cooling and heating dominates the corresponding line processes. 

The intermediate optically thick regime in which 1 but tc <0 cannot be treated analytically, and we investigate it numeri- 
cally using a Monte Carlo radiative transfer code. We include the first three harmonics in our treatment of the line processes, and we 
study in detail the regime in which the cyclotron first harmonic is optically thick in the line core but thin in the wings. This regime is 
relevant for the line-forming regions of the y-ray bursts GB 880205 and GB 870303, and possibly of many other bursts as well. 
Resonant scattering of higher harmonic photons contributes significantly to the energy balance when t2 > 1. Because excited 
Landau levels tend to decay by electric dipole emission, higher harmonic photons tend to “spawn” first harmonic photons 
whenever they are resonantly scattered. Thus, they affect the energy balance both directly, through their primary resonant scatters, 
and indirectly, in their subsequent manifestation as “spawned” photons. For isotropic power-law photon injection with sä 1, we 
find that the equilibrium Compton temperature due to resonant scattering is &0.21EB and is approximately independent of the 
column depth from Ne ä 102O-1022 electrons cm-2, corresponding to Ti ä (l-lOOjBf/ (see eq. [1]). Thus, the outer, cyclotron 
line-forming region in y-ray bursts is naturally expected to be relatively cool. 

Although we do not study the temperature dependence in nonisothermal layers in detail, it is clear that the minimal additional 
heating due to the continuum drives the equilibrium temperature above the pure line value, allowing us to speculate, at least 
crudely, about the expected temperature profile. The importance of the continuum in the atmospheric energy balance increases with 
column density and continuum spectral hardness (as measured by s and E2 in our models). The thickness of the line-dominated 
region is naturally defined as the depth at which continuum heating causes a significant deviation of the actual equilibrium 
temperature (a factor of 2, say) from its pure line value. As we shall see, we estimate that the overall energy balance shifts from 
exclusively line heated and cooled to predominantly continuum heated and line cooled at a column depth Ne ~ 1021-1022 electrons 
cm-2. 
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In the dynamics portion of this paper, we calculate the line-enhanced radiation force analytically in the optically thin case 
(tc T! <0) and numerically, by Monte Carlo methods, in the optically thick case (tc 1 In the optically thin regime, this 
force is linearly proportional to the injected photon spectrum at EB and to the column depth but is independent of the slab 
temperature. In the optically thick case, we shall see that the line-enhanced radiation force depends relatively weakly on column 
density (ocAT®*4) and depends explicitly on the slab temperature as well. Assuming that cyclotron lines are produced in a gravita- 
tionally bound, ion-dominated layer near the surface of a neutron star, we can derive an upper bound on the distance to the 
line-forming region by requiring that the line-enhanced radiation force be insufficient to expel the scattering layer. From the 
resulting distance limit, we can, in turn, set an upper limit to the total luminosity of the y-ray burst, the magnetic Eddington 
luminosity. In the optically thin case, the magnetic Eddington limit is ~0.01 times the ordinary (nonmagnetic) value and is 
independent of the field strength for s = 1. In the optically thick case, the magnetic Eddington limit for s » 1 is somewhat larger 
than the corresponding optically thin result, is moderately depth dependent (ccN^6), and depends explicitly on the temperature and 
field strength in the slab. 

In order to compare our results with observations, we have adopted the continuum spectral parameters of the burst GB 880205 in 
our optically thick studies. Our discussion of the scattering energetics and dynamics is otherwise quite general and our Monte Carlo 
calculations could easily be done for any input photon spectrum. 

The spectra of GB 880205 and GB 870303 acquired by the Los Alamos/ISAS Ginga team display statistically significant 
harmonically separated absorption-like features at æ20 and 40 keV (Murakami et al 1988; Fenimore et al. 1988). These observa- 
tions furnish the strongest evidence to date for cyclotron lines in y-ray burst spectra. Taken together with the earlier more 
controversial claim that line features are present in ~20% of all y-ray burst spectra (Mazets and Golenetskii 1981), these observa- 
tions strongly suggest that many, if not all, y-ray bursts originate from the environs of Galactic neutron stars. 

The three outstanding characteristics of the lines observed by Ginga are (1) the comparable line strengths of the first (E » 20 keV) 
and second (E « 40 keV) harmonic line features, (2) the relative narrowness of the lines in spite of the hardness of the continuum 
emission, and (3) the absence of pronounced higher harmonic lines. A first harmonic feature centered at « 20 keV indicates a field 
stength B12 ~ 2 (see eq. [5]). The narrowness of the lines suggests a cool line-forming region with T ~ 5 keV, while the absence of a 
third harmonic implies a relatively thin line-forming region with Ne<; 5 x 1021 electrons cm-2 (see eq. [4]). Wang et al. (1989) and 
Lamb et al. (1989) argued that cyclotron resonant and Raman scattering in such a cool, moderately thin layer can explain the 
observed line strength hierarchy, provided that the characteristic optical depth of the second harmonic line t2 ~ 1, which in turn 
implies Ti ^ 10 and t3 < 0.1 (see eqs. [1], [3], [4]). 

Wang et al. (1989) and Lamb et al. (1989) further proposed that the line-forming layer would naturally remain fairly cool if its 
temperature were dictated by the exact balance of heating and cooling due primarily to resonant cyclotron scattering, which gives 
T » Eb/4 « 5 keV. Using Monte Carlo methods, Wang et al. (1989) calculated emergent line spectra imposed on incident continua 
passing through such Compton-balanced layers. The incident photons were injected isotropically outward with a fixed, two-power- 
law continuum. The field strength B and temperature T were assumed to be constant throughout the layer of thickness Ne. 
Theoretical spectra were convolved with the relevant Ginga response functions, and the resulting theoretical counts spectra were 
compared directly with observations of GB 880205. From this analysis, Wang et al. (1989) found best-fit and 1 a confidence intervals 
Bl2 = 1.71 ± 0.07 and We>21 = 1.2 ± 0.6 for this burst. The implied resonant Compton temperature Tc = 5.3ío!2 keV. The tem- 
perature in these models was fixed by the physical model, but the column depth was left as a free parameter. The range of acceptable 
column depths for the line-forming region implied by fits to the GB 880205 data is of the same order of magnitude as the thickness of 
the line-dominated region which we determined physically in the present study. This suggests that the line-dominated region plays 
an important, if not central, role in the line formation process. 

Applying the distance constraint derived from the line-enhanced radiation force to GB 880205 gives D < 200 pc, implying a total 
hard X-ray (^1 MeV) luminosity L < 0.3 times the nonmagnetic Eddington luminosity for an electron-proton plasma. This 
distance is consistent with the idea that GB 880205 originated from a neutron star in the galactic disk. In addition, at D < 200 pc, 
the number of photons received from GB 880205 is equivalent to the number that would be emitted by a blackbody at a temperature 
<0.3 keV. This is consistent with the idea that Compton upscattering of a soft photon background by energetic electrons may be 
responsible for the production of y-rays in this burst (and possibly also in GB 870303). 

In § lia we study the energetics of cyclotron resonant scattering and nonresonant continuum scattering analytically for optically 
thin lines. In § lib, we study the scattering energetics numerically using Monte Carlo methods for optically thick lines. In § Ilia, we 
study the radiation force exerted on the scattering layer due to cyclotron resonant scattering and nonresonant continuum scattering 
analytically for optically thin lines. In § III6 we study the line-enhanced radiation force numerically using Monte Carlo methods for 
optically thick lines. In this section, we also derive a distance constraint based on this radiation force. We argue that the distance to 
GB 880205 is <200 pc and discuss the implications of this distance bound. We summarize our results in § IV. 

II. SCATTERING ENERGETICS 

a) The Optically Thin Case 
i) Resonant (Cyclotron) Cooling and Heating Rates 

We specialize here to the limit in which the slab is optically thin in the cyclotron first harmonic so that the single-scattering 
formalism applies. In this regime, equations (l}-(4) imply that we may neglect continuum scattering and scattering involving higher 
harmonic photons to an excellent approximation. Therefore, we restrict ourselves here to the cooling and heating rates resulting 
from resonant scattering of photons at the first cyclotron harmonic. Our derivation generalizes the method used by Rybicki and 
Lightman (1979, pp. 199-201) to compute the single-particle power from ordinary Compton scattering. We first calculate the 
single-particle power from resonant cyclotron scattering, which we then convolve with an electron momentum distribution—taken 
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to be a nonrelativistic Maxwellian—to compute the cooling and heating rates. Aside from properties of the incident photon 
spectrum, the only physical parameters in this problem are the cyclotron energy, EB, and the electron temperature, T. 

For our analytic calculations, we use the polarization-averaged classical magnetic Compton cross section with zero natural line 
width. In the longitudinal rest frame of the scattered electron, where the electron velocity along the magnetic field is zero before 
scattering, this cross section is given by 

da 

Me 
I [si„> «■ sin3 + (* + , (6) 

In this expression, q'± = 1/(1 ± EB/E')2, r0 is the classical electron radius, (O', 6'sc) are, respectively, the incident and scattered angles 
of the photon relative to the magnetic field B, (pi',fi'sc) = (cos O', cos 0'sc), and all (primed) quantities are measured in the rest frame. In 
equation (6), there is one resonance at E' = EB which is described by the q'_ term; higher harmonic resonances, which we ignore, are 
absent in a classical treatment of the scattering. Since the resonance is very sharp (natural line width EB), we rewrite equation (6) 
in the following approximate form, 

da To 
sin2 0' sin2 0'sc + q‘ + - nr0 <5(£' (7) 

where 

_ [1 + 2fr(l — ^'2)]1/2 — 1 2b  
l-^'2 _ [1 + 2b(l — //'2)]1/2 + 1 W 

is the rest frame resonant cyclotron absorption energy and b = B/Bc. The singularity at // = 1 in the expression for E, is not 
physical as is evident from the latter expression for E, in equation (8). Throughout this paper, we use units for which h = c = kB = 1, 
where kB is Boltzmann’s constant. Equation (7) conveniently divides the continuum and resonant contributions to the cross section. 
Near the resonance, the ¿-function dominates, while far from resonance both for E' EB and E' P EB, equation (7) assumes the 
correct limiting forms (see eq. [6]) : 

da 
dasc 

0' sin2 0'sc, E Eb ; 

-1 [sin2 O’ sin2 ffsc + + /4c)] , E’>E 

The single-particle scattered power (in ergs s -1 per electron), Psc, is a Lorentz scalar so that 

where E'c is the scattered energy in the rest frame. The incident power, Pmc, is given by 

L„c = (§) =\dSÎ\dE n'(E’ii)£<Tlab ’ 

(9) 

(10) 

(11) 

where ny(E, Q)dE d£l is the photon density in the energy interval (E, E + dE) and solid angle interval (Q, Q + dQ), da/dCl'sc is the 
differential scattering cross section in the rest frame, and 

^lab (1 rest > ^rest ^ jq, • 

For da/dil'sc, we use the resonant portion of equation (7), viz., 

= I nro <5(£' - E?) ^ (1 + v'2) 5 (1 + ^c) • 

(12) 

(13) 

Using one-dimensional kinematics, we obtain 

EL = E' E'^iM' 2m, ' /^sc) (14) 

The first term on the right-hand side is only the one kept in the “Thomson limit,” in which electron recoil is ignored, and gives the 
leading order cooling of the electrons. The negative definite second term gives the leading order heating of the electrons due to 
recoil. 

To evaluate Psc, we invoke the Lorentz invariance of ny(E, CÏ)dE dil/E, i.e., 

ny(E', ÇÏ)dE' dQ' ny(E, Cl)dE dil 
E ~ E ' 1 J 
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We assume that ny is a separable function of // and E so that 

ny(E, Q) = N(E) ^ , (16) 

where Q(ß) gives the angular distribution of the photons and ¡-{d/i Q(ß) = 1. We rewrite the ¿-function in equation (13) in terms of 
laboratory frame quantities : 

<5(F - £r°) = —r— 0(E - Ef), 
yd - ßv) 

where 

(17) 

E 0 1 
E, 

7(1 -ßM) ‘ 
(18) 

Substituting equations (13), (17), (14), (15), and (16) into equation (10) for Psc and evaluating the integrals over energy and scattered 
angles gives 

dvQ(M)N(E°)E?(l + A (19) 

To evaluate Pinc, we use equation (13) in equation (12), substitute the resulting <rlab into equation (11), and evaluate the energy 
integral to get 

Pme = n2r0 J + \fi Q(m)N(E?)E?(1 + ¡i'2) y2~ . (20) 

Combining equations (19) and (20) gives the net single particle power from resonant cyclotron scattering: 

Ec — P P 
i: 

dtiQ(M)N(Ef)E?(l + (i1 
'f-: 

1 i 
>2(1 -ßfi) V 2 + 5 

(21) 

The first two terms in brackets give the net (cooling) power in the zero recoil limit, while the third term gives the leading order recoil 
heating. 

The electron velocity along the field is /?, while its characteristic gyration velocity (orthogonal to the field) squared is of 0(b). These 
are the two small expansion parameters in equation (21). The leading order cooling is 0(ß2) ~ T/me. Physically, an electron moving 
through the radiation field (photon gas) experiences a drag force,/drag, due to its collisions with photons. In one-dimensional motion, 
this drag force to leading order is simply proportional to —ß which vanishes on average (over any electron velocity distribution that 
is even in ß). The energy loss rate per electron (cooling) is then —/drag/? oc ß2, which does not vanish on average since ß2 ~ ß2

h = 
2T/me. In addition to the drag force, there is a velocity independent force (to lowest order in ß) due to the radiation pressure (see eq. 
[78]). The work done by this force is simply proportional to ß, which vanishes on average (for zero bulk flow velocity). The leading 
order heating comes from the term 0(h), which is just the recoil heating due to the fraction ~ E/me ~ EB/me = b of the incident 
photon energy given to an electron in a scattering event. 

We expand the integrand in equation (21) to 0(ß2) and 0(b) to get 

Ps = n2r0N(E B)EBj + 'c dnQ{ji)\ —ßlA\ + n2) + ß2[ß + 2/¿2 — 3^4 — <x//2(l + n2)] — 6(1 + n2)\ 6r + 7 ) + 0(ß2, bß) (22) 

where 

Eb dN 
N(Eb) dE e=eb 

(23) 

In arriving at equation (22), we have Taylor expanded N(E^) about EB to linear order in ß. Physically, this expansion means that 
only photons in the vicinity of the cyclotron first harmonic are allowed to engage in resonant scattering. This is a direct consequence 
of our assumption that the electrons are nonrelativistic; i.e., ~ /?th 1 (see eq. [18]). Indeed, from the resonance condition in 
equation (17), it is evident that given a photon arbitrarily far from the cyclotron first harmonic, there is always a sufficiently 
relativistic electron that can participate in resonant scattering. The frequency behavior of the resonant cross section is very sharp as 
measured in the electron rest frame, but it need not be so sharp as measured in the laboratory frame. For a nonrelativistic 
distribution of electrons, the laboratory frame does not deviate much from the rest frame. The first, second, and third terms in the 
braces in equation (22) give, respectively, the work done by the radiation force, the cooling due to the drag force, and the recoil 
heating. 

The averaged net cooling rate (in ergs cm ~3 s “x) is given by 
r + ao 

F = Aline - rline = dpf(p)ps(p), (24) 
J — 00 
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where Aline is the average of the cooling terms in equation (22), rline is the average of the recoil heating, and p = yßme is the 
momentum of the electron along the field. In our model, the distribution of electron momenta along the field,/(p), is taken to be 
(quasi-)thermal. Although electron-photon scattering tends to accelerate electrons relative to ions, we assume that electrostatic 
coupling between electrons and protons (or other heavy ions) through collisional or collective processes suffices to maintain 
(quasi-)thermality (see § I). Thus, we take/(p) to be a one-dimensional nonrelativistic Maxwellian, 

f(p)dp = ne —r= du , 
/ n 

(25) 

where ne is the electron density and u = (p/me)/ßih. We justify this nonrelativistic approximation (i.e., T/me 1) a posteriori (see eq. 
[48], § IIh[ii]). From equations (22), (24), and (25) we obtain 

Alme « »e N(Eb)Eb(^^ j dfl ÖL)[1 + 2fl2 - 3/L - 0.p2(l + ß2)] , (26) 

and 

r line ne n2r0 N(EB)EB dpQ(p)\ b(\+pH (27) 

Equations (26) and (27) depend only on the local spectral photon density ny at EB. We assume that photons impinge on a 
scattering layer with an angular distribution Q(jli), and we relate ny (in photons cm-3 s-1 keV-1) to Nloc(E), the local photon flux 
density (in photons cm"3 keV"1 in units where c = 1), by 

ny(E, Q) = Nloc(E) Q(M) 
2n dp Q(ju)p ' 

For isotropic injection, Q(ju) = 0(p) (where 0(p) = 1 in // e [0,1] and is zero otherwise), and 

(28) 

ny(E, Q) = 
Nloc(£)0(p) 

so that 

Taking 

N(E) = 2Nioc(E) . 

Nloc(E) = AiocyYj ’ 

and substituting equation (30) into (26) and (27) gives the leading order line cooling 

16 
15 

Eb Aline = 77 ne 71 T0 ^loc (s + 2) — )Eb = ~ Aloc EJ — ) , mt 

16 

and the leading order line heating 

32 
15 

Eb \{Eb 
Fii„e = 77 He ^0 Aloc TT = 77 "e 71 r0 Aloc Eb b , 2mJ\El 

16 
15 

(29) 

(30) 

(31) 

(32) 

(33) 

where the second expression in each equation is for s = 1. 
ii) Nonresonant (Continuum) Cooling and Heating Rates 

We now calculate the cooling rate, Acont, and the heating rate, Fcont, due to magnetic continuum scattering in the limit tc 1. 
This calculation closely parallels the derivation in § Ila(i) above. We start with equations (10)-(12) but now use the nonresonant 

portion of equation (7) for d(j/dQ.'sc, viz., 

do 
sin2 0' sin2 0'sc + q'J- +^~ )(1 + p'2c) dn%Q 2 

Working to leading order in the cooling and heating, i.e., to 0(ß2) and 0(E/2me), the averaged cooling rate is given by 

2 ~ ' \m, 

and the averaged heating rate is given by 

1 tle (Tt 

K™, = T n„oJ—) ÍdpQ(fi) JdEAT(£)£|sin4 6 + ; E 

(E + EB)2 (1 + 4p2 -fi*) + 2 
E + E, 

M2(l+P2) 
]}• 

r = 
4 

dpQ(ji) dE N(E)E: sin4 0( p2 + 7 ) + 
5/ ' (£+-^(,+/ir +5 

(34) 

(35) 

(36) 
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where <rT = Snrl/3 is the Thompson cross section. Hereafter we specialize to isotropie injection into a forward hemisphere, i.e., 
Q(ß) = 0(//). We then have 

=^(X)Í:,™[1 + 
4E2 

+ ■ 
2E2E¡ 

(E + Eb)2 (E + E —1 
b)3J ’ 

and 

(37) 

r-=fin-^i‘'äEE‘N'Ai+(sfh?\- ,38) 

Taking equation (31) for Nloc(E), the energy integrals in equations (37) and (38) can be done analytically for integer s (see the 
Appendix). Here we take s = 1. This is approximately true, for instance, for the continuum spectrum of GB 880205 from 1 keV to 1 
MeV. Assuming in addition that E2> EB$> obtain 

A cont ^loc 

and 

T cont 
4 
3 

ne 0T Aloc 

(39) 

(40) 

In the classical nonrelativistic treatment presented here, equations (39) and (40) are strictly valid for T/me 1 and E2/2me 1. The 
expressions (39) and (40) are the same as their nonmagnetic counterparts. The expressions for Acont and Fcont for general indices s in 
the limit E2$> EB$> Et are given in the Appendix. 

iii) Resonant and Nonresonant Cooling and Heating Time Scales 
The resonant cooling and heating time scales are 

and 

ÿ-cool   
Mine = Alin 

(41) 

(42) 

where Ee ~ T is the characteristic electron energy. The continuum cooling and heating time scales are defined as in equations (41) 
and (42), but with Aline -► Acont and Fline rcont. From equations (39) and (32), we have 

and from equations (40) and (33), we have 

(43) 

fheat T“' 
Mine   cont 
fheat T"1 

^cont 1 line 
(44) 

where e2 is the fine-structure constant. From equations (43) and (44), it is evident that for h > 10“2 line heating and cooling 
dominate over continuum heating and cooling, even for E2/2me = 1. For softer incident spectra, with either a smaller high-energy 
cutoff (£2 ^ 2mc) or a steeper power-law index (s > 1), the line dominance is even more pronounced. 

In the very early phases of heating a cold (T « 0) electron gas, Acont and Aline are both negligible and the relative strength of 
the line and continuum heating is given by equation (44). The line heating thus dominates when b(E2/2me)~

2 >8 x 10“3, even 
though the bandwidth for the resonance approaches zero (more accurately, it approaches the natural line width) as T -► 0. This is 
because in the optically thin limit the heating depends on the oscillator strength of the resonance, not just on the bandwidth. Thus, 
F ~ ne Aloc Eb x (oscillator strength) x (fractional energy transferred per scatter), which gives Fline ~ ne Aloc Eb nr0 b and Fcont ~ 
ne Aloc Eb (tt E2(E2/2me), where oT E2 is the “ oscillator strength ” for continuum scattering. 

If the radiation source is a neutron star that emits isotropically from a patch on the surface, the local flux and the observed flux 
are related by 

Wioc^obs^/;1, (45) 

where R is the neutron star radius, D is the distance to the star, and the parameter fp depends in general on the covering fraction, fa, 
of the patch, on the orientation of the patch relative to the observer, and the angular distribution of injected photons from the patch. 
If the injection is isotropic and /fl = 1 (whole surface radiating), /P = 1. If the injection is isotropic and fa<l (radiating hot spot), 
fp Ä 'ffa- Taking Ee~ Tin equation (41) and using equation (32) with s = 1 and equation (45) gives 
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where R = 10Rlo km and D = 100Dloo pc. The flux AohsEb is normalized to that for GB 880205 between 1 keV and 1 MeV. 
Similarly, equation (42) gives 

¿.heat 
¿line «(5 x lO"9 (47) 

As we shall see later, Tc ~ 5 keV in the scattering layer, so equation (47) is a good estimate of the time for the layer to reach the 
equilibrium Compton temperature. 

iv) The Resonant and Nonresonant Compton T emper atures 
Substituting equations (22) and (25) into equation (24) for the net cooling rate, F, and setting F = 0 gives the equilibrium resonant 

Compton temperature 

Tc = r EbV + om, 12 

where 

(48) 

h 

h 

dfi 2(m)(1 + ^2)^y + ^ > 

+ 1 
djuQ(jLi)[l + 2/i2 - 3//4 - ccfi2(l + fi2)] . 

The properties of the injected photon spectrum are embodied in I ± and /2. 
We evaluate the leading order Tc for various We assume N(E) oc F~s so that a = — s. 
Case 1 : Q(//) = 0(//); photons are injected isotropically in // e [0,1] : 

(49) 

Tr = 
2 -h S 

(50) 

Case 2 : Q{ji) = y. This corresponds to a fully isotropic photon distribution. The expression for Tc is the same as in equation (50). 
Case 3 : Q(/¿) = ô(/i ± 1). Photons are beamed parallel ( —) or antiparallel ( + ) to the field : 

Tc = 
J_ Eb 
10 s ' 

(51) 

Case 4: Q(ji) = Photons are beamed orthogonal the field : 

(52) 

Case 5: Q(//) = 0(/¿ — jli0)/(1 — ju0). Photons are isotropically injected in ju e [//0,1] : 

Tr = 
2 + s 

15 
8(2 + s) ' Fol 1 + 

2 + s 
' Fo + ' 

s — 3 
FÓ (53) 

Equation (53) reduces to equation (50) when /¿o = 0 and when ju0-> — 1, and to equation (51) when //0 -► 1, as it must. 
It is evident from equations (50)-{53) that with the exception of injection orthogonal to the field (eq. [52]), the Compton 

temperature Tc is undefined for certain power-law indices. A simple explanation for this behavior follows from considering the 
(resonant) radiation drag force. The temperature Tc results from a balance of the kinematic cooling described by the first two terms 
in brackets in equation (21) against the recoil heating described by the third term. For beamed injection along the field (/i = 1), the 
kinematic cooling can be written exactly as —fß, where 

/= 27r2r( 
»^[Ä] 

2n2r0 EB MÍT7 ^ _i_ ÑJ7 dN 

Eb 
(54) 

is the force on the electron. This force depends on ß only through the photon density N. For a flat spectrum,/is manifestly velocity 
independent, and the kinematic cooling vanishes on average. The Compton temperature in this case diverges, in agreement with 
equation (51). If dN/dE\EB < 0 (corresponding to s > 0 for a power law), the drag force in equation (54) is oc —ß which gives an 
averaged positive kinematic cooling. This gives a well-defined Tc. If dN/dE \Eb > 0 (corresponding to s < 0), the drag force is oc +/? 
giving an averaged kinematic cooling that is negative (heating), resulting in an undefined Tc. Alternatively, from the resonance 
condition (see eq. [17], [18], [8]) and the scattering kinematics in the zero recoil limit (see eq. [14]), the scattered photon energy is 
given in terms of the photon energy by 

Ein 

Ein 
= (1 - /Ol 

£i„ (55) 
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Thus, photons redward of EB contribute to kinematic cooling, while those blueward of EB contribute to kinematic heating. If 
dN/dE\Eg < 0, low-energy photons (E < EB) dominate and kinematic cooling results, while if dN/dE\EB > 0, high-energy photons 
(E > Eb) dominate and kinematic heating results. 

A similar argument can be made for isotropic injection, for which the drag force is easily seen to vanish when s + 2 = 0. In this 
case, however, a simple “thermodynamic” argument can also be used to derive the Compton temperature, equation (50). In 
the absence of stimulated processes, the photon field will tend to equilibrate to a Wien distribution function, N(E)/E2 Kf(E) = 
exp ( —E/T), at the electron temperature T. Thus, for isotropic injection, the net resonant heating/cooling should be proportional to 
{Tdln [N(E)/E2yd\nE + E} \Eb, or — T(s + 2) + for N(E) ccE~s. The net heating/cooling vanishes when T = Tc = EB/(s + 2) 
for isotropic injection. 

For injection involving intermediate ranges of //, it is natural to expect critical values of s intermediate between those for beamed 
// = 1 injection and for isotropic injection. Thus, equation (53) spans the range between equations (50) and (51), to which it tends in 
the appropriate limits. Beam injection orthogonal to the field (// = 0) is a somewhat special case, because the drag force is 
independent of dN/dE \Eb, as is evident from equation (22). Therefore, Tc is independent of s in this case. (Note in this case that the 
component of the radiation pressure force along the field is zero, as expected.) The resonant scattering nature of the electron-photon 
interaction is central to these constraints on values of s for which Tc has sensible (finite and positive) values. Consequently, 
analogous restrictions do not arise for continuum scattering, magnetic or otherwise. 

We have compared the analytic results for Tc in equations (50)-(53) with the numerical Monte Carlo results. For the beamed 
injection models, we used B12 = 1.66 and a line-of-sight optical depth at the cyclotron first harmonic of äO.01 to ensure single 
scattering. The Monte carlo results agree with the analytical results in equations (51) and (52) to within ~ 5%. 

For isotropic injection with // e [0, 1], we used Bi2 = 1.71 and an optical depth along the field (parallel to slab normal) of »0.03 
and 0.3. In both cases, 7¿(Monte Carlo) » 4.7 keV, while equation (50) predicts 7.0 keV. The discrepancy arises because, in a 
plane-parallel slab, the limit of Tj 1 for all n is never attained. This is because the optical depth along any given ray with direction 
cosine ß to the field is tJh, which can never be much less than unity for all //. Thus, in our test runs with = 0.03 along the field, the 
region of //-space with // < 0.03 has an optical depth greater than unity. The multiple scatterings resulting from the ~ 3% of photons 
injected into this “ pathological ” region enhances the cooling, resulting in a lower than predicted from the single-scattering limit. 
Indeed, for t1 = 0.001, so that only ~0.1% of photons are injected with a line-of-sight optical depth greater than unity, we obtain 
agreement between the Monte Carlo and analytic results to within ~ 5%. Alternatively, we injected photons with // e [0.1,1]. Using 
T! = 0.03 along the field [so that 0.03 < (line of sight) <0.3] and B12 = 1.71, we find better than 5% agreement between the 
Monte Carlo results and the analytic result of 7.2 keV predicted from equation (53). 

Balancing the continuum cooling and heating rates, equations (39) and (40), gives the equilibrium Compton temperature resulting 
from magnetic continuum scattering alone, 

Tcont 
C 

1 
4 

(56) 

for s = 1, precisely the same as for nonmagnetic Thompson scattering. This agreement does not hold for all s, but the difference is at 
most in logarithmic factors (see the Appendix). 

h) The Optically Thick Regime 
Using a Monte Carlo code, we now turn to the cooling and heating arising from resonant cyclotron and nonresonant magnetic 

continuum scattering in media that are optically thick in the core of the cyclotron first harmonic but thin in the line wings; i.e., 

Kx^l/a, (57) 

where 

2£B(2r/mc)1/2 = 1.8 x 10 
-1/2 

(58) 

is the dimensionless natural line width (see Wang, Wasserman, and Salpeter 1988). At these depths, the continuum is always 
optically thin. 

In our simulations, we take the magnetic field to be parallel to the slab normal and adopt a power-law incident photon 
continuum of the form : 

Nloc(E) = Aloc(E/Eby
s, s = 0.846 for 1 keV < E < Eb , 

s = 1.174 for E„<E< 1000 keV , (59^ 

and Eb = 101.3 keV, where the parameters are determined from a fit to the GB 880205 spectrum outside its two cyclotron features 
(Wang et al 1989). Photons enter the scattering layer isotropically distributed in the outward half-plane, that is, with an angular 
distribution Q(fj) = 0(//). 

The code includes the first three cyclotron harmonics, employing polarization-averaged resonant scattering cross sections with 
finite natural line width derived using quantum mechanics in the weak field {h 1) limit (see Wang and Lamb 1989). We treat 
“ photon spawning,” which arises from scattering involving higher harmonic (n > 1) photons, fully, and incorporate relativistic 
kinematics in all aspects of the scattering process. In our code, we use classical, polarization-averaged cross sections for magnetic 
continuum scattering (see eq. [34].) We follow the life history of each photon scatter-by-scatter and simply sum the energy and 
dynamical quantities for a particular simulation. Details of the code will be given elsewhere (see Wang et al 1990). 
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The underlying assumptions made in constructing our Monte Carlo code should be valid for GB 880205 and GB 870303, and 
perhaps for other y-ray bursts as well. The weak field approximation is appropriate for both GB 880205 and GB 870303, whose 
cyclotron features imply b « 0.04 1. Polarization averaging is a fairly good approximation at low electron densities ne (electrons 
cm-3) 1022Bi2 (see Gnedin, Pavlov, and Shibanov 1978; Wang, Wasserman, and Salpeter 1988). For GB 880205, where the 
column density has been well-determined by Wang et al. (1989), ne (electrons cm-3) ~ 102O//lo, where /(cm) = 10/lo is the thickness 
of the line-forming region. [For comparison, the scale height of an isothermal layer in hydrostatic balance near the surface of a 
neutron star of mass 1.4 M0 and radius 10 km would be « 10T (keV) cm.] 

By simulating the transfer of a large number of photons (> 105), we can calculate the average net cooling within the slab due to 
electron-photon scattering fairly accurately. In order to isolate the resonant, cyclotron line cooling and heating, we only follow 
photons injected between 1 and 100 keV, which should suffice to completely include the resonant effects of the first three cyclotron 
harmonics. For all of the cooling calculations discussed in this section (and also for the momentum deposition calculations 
discussed below) we adopt the field strength B12 = 1.71, the field strength that gives the best fit to the line spectrum of GB 880205. 
However, to compute the equilibrium Compton temperature, Tc/B12, due primarily to resonant scattering (i.e., the bottom curve in 
Fig. 5), we employ a set of field strengths between B12 = 1.5 and 2.1. 

i) Cyclotron Line Cooling and Heating 
We define the net cooling due to resonant scattering in the line-forming region to be Knet. In Figure 1, we plot the net specific 

cooling, C = KnJNloc(EB)EB, in keV per photon due to cyclotron resonant scattering as a function of Ne for T = 8, 10.7, and 16 
keV. These temperatures correspond to 1.5, 2.0, and 3.0 times Tc = 5.35 keV, which is the resonant Compton temperature for 
Bi2 = 1.71 and Afe 2i = 1.2, the best-fit parameters for the line spectrum of GB 880205. Superposed on this plot is the net cooling 
found when photon spawning is ignored, i.e., the net cooling due solely to resonant scattering of photons at the cyclotron first 
harmonic (filled symbols). The 1 o Monte Carlo statistical errors for all the data in this figure are about the size of the symbols 
representing the data points and are not shown. Evidently, at large Ne, where t2 > 1, spawning increases the net cooling substan- 
tially (e.g., by a factor ~2 at iV«, 21 = 12; see § IIb[ii]). 

The net cooling Knet is the difference between the cooling K and heating due to line processes. Qualitatively, we may understand 
the Monte Carlo results in the following way. We may write the cooling K as 

K = fs Nloc(EB)AEw AEC , (60) 

where fs is the fraction of line photons that scattered, Nloc(EB) is the line flux density in photons cm-2 s“1 keV - \ AEW is the effective 
line width in keV, and AEC is the characteristic energy transferred to a photon that interacted. When 1 Ti l/a,/s ~ 1 for all 
photons within AEW æ £B(2T/me)1/2(lnT1)1/2 of EB . For the photons in this range, AEC ~ AEW. Assuming these photons to be the 
main contributors to K, we therefore obtain the rough estimate 

K ~ NtJEB)E¡ Eb ^ In (1 + tjl , (61) 

where we introduce the argument 1 + in the logarithm to ensure that K->0 when ^ -»O. When T Tc, cooling dominates 
heating so that Knet-+K. When T -► Tc, Knet^0. Combining these two facts together with equation (61), we construct the 
following Ansatz for the general expression for Knet : 

Knei ~ JV1oc(£b)£ -—— ln(l + Tj) . 
me 

(62) 

Fig. 1.—The net specific line cooling (keV per photon), C, as a function of Ne for T = 8 (diamond), 10.7 (circle), and 16 keV (triangle). These temperatures 
correspond to 1.5, 2.0, and 3.0 times Tc = 5.35 keV, the resonant Compton temperature at B12 = 1.71 and 21 = 1.2, the best-fit parameters to the line spectrum of 
GB 880205. The filled symbols represent the cooling due solely to resonant scattering at the cyclotron first harmonic. The fitting curve is given by eq. (63), represented 
by the dashed line. The open symbols represent cooling including the first three harmonics and photon spawning. The fitting curve is given by eq. (64), represented by 
the solid line. The 1 <r Monte Carlo statistical errors for all the data in this figure are about the size of the symbols representing the data points and are not shown. 
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This Ansatz suggests we plot C against the “natural” variable EB[(T - Tc)/mJ ln(l + when displaying the variation of the net 
cooling with Ne and T for all ^ 1/a, and this is done in Figure 2 (using the data in Fig. 1). The fits in Figure 1 are based on 
equation (62). For the data that ignore spawning (filled symbols), the fit is 

T — 5 98fkeV) 
C = 0.84F* ^1 ln(l + 0.89t!) , (63) 

me 

where Tc = 5.98 keV is a fitted parameter. The fit to the data is better than 20%. For the data that include spawning (open symbols), 
the fit is given by 

C = 1.23£b - - ^keV) + 1.50 Ml + 0.23^), (64) 

where Tc = 5.27 keV is derived from the best-fit constant to the bottom curve in Figure 5 (see § IIh[ii] below). This fit to the data is 
better than 25% ; dispensing with the correction factor to our6iAnsatz ” worsens the fit somewhat. 

When T < Tc, there is net heating. In Figure 3a we superpose the plot of net heating versus Ne for T = 3.6 keV = 2/3Tc with the 
plot for net cooling versus Ne for T = 8 keV = 3/2Tc. In Figure 3b, we repeat this for T = 1/2TC and 2TC. It is evident that the 
heating plateaus at large Ne more strongly than the cooling. We plot in Figure 4 the net specific cooling C as a function of 
temperature for iVe 21 = 0.12, 0.30, 1.2, 3.6, 12. Two features are evident from this plot. First, for temperatures not too far from Tc, 
the net cooling/heating is roughly symmetric in T about Tc. Second, in all cases, there are zero crossings at T ä 5 keV. This 
equilibrium Compton temperature, Tc, varies only weakly across two orders of magnitude inNe. 

ii) The Resonant Compton Temperature Tc 

From our Monte Carlo code, we have computed the equilibrium Compton temperature, Tc, that results from cyclotron resonant 
scattering. For this purpose, we only followed photons injected between 1 and 100 keV to ensure that the resulting Tc is due 
primarily to cyclotron resonant scattering. We have computed Tc for a variety of models with 0.12 < Nef21 < 12 and 1.50 < B12 < 
2.10. This range of column depths and field strengths includes the range of acceptable fits of the model of Wang et al (1989) to the 
GB 880205 spectrum. In their model, it was assumed that line heating and cooling dominate the thermal balance of the line-forming 
region. The temperature of the scattering layer (Tc) was therefore determined by following photons injected between 1 and 100 keV, 
and was not a free parameter but rather was determined by 2i and Bl2. The numerical results for Tc/B12 determined in this 
manner are shown as a function of Ne in the lower curve (circular data points) in Figure 5. Remarkably, Tc/B12 « 3.08 keV 
(equivalently, Tc « 0.21EB) for all models in this range. This constancy corroborates the results of Figure 4. The horizontal bars 
beneath the best-fit constant line at Tc/Bl2 = 3.08 denote the 1, 2, and 3 o confidence intervals in Ne derived from fitting the 
self-consistent temperature models of Wang et al. (1989) to a line spectrum of GB 880205. 

At higher column depths (iVe 21 > 6), the Compton temperature tends to decrease from the flat plateau at lower Ne’s. At such 
depths, the second harmonic becomes optically thick, and the optical depth at the third harmonic approaches unity (see eq. [l]-[4]). 
Consequently, essentially all second harmonic photons and many third harmonic photons resonantly scatter and spawn photons 

c o 
o rß a 
> 0) 

OjO ß 
O o o 
U o 
öfl ß 

CU ß 
J 

Fig. 2.—The net specific line cooling data of Fig. 1 plotted as a function of the “natural” variable, ^ = EB\_(T — TJ/mJ ln(l + tJ, with Tc = 5.35 keV and Ti 
given by eq. (1). The solid line corresponds to C = ^. The symbols have the same meaning as in Fig. 1. The deviations from C = & seen in the data with the open 
symbols is due to the higher harmonic transitions and the associated photon spawning. 

Fig. 3.—(a) The net specific line heating vs. Ne for T = 2.7 keV (=7^/2, Tc = 5.35 keV) (inverted triangle) superposed on the net specific line cooling vs. Ne for 
T = 10.7 keV ( = 27y (circle), (b) Same as (a), but for T = 3.6 keV( = 27^/3) (triangle) and T = 8 keV( = 3rc/2) (diamond). Bi2 = 1.71 for all the data. The 1 tr Monte 
Carlo statistical errors are about the size of the symbols representing the data points and are not shown. 
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Fig. 4 Fig. 5 
Fig. 4.—The net specific line cooling as a function of temperature for 21 = 0.12 (inverted triangle), 0.30 (diamond), 1.2 (circle), 3.6 (box), and 12 (triangle). 

Bi2 = 1.71 for all the data. The error bars are 1 o Monte Carlo statistical errors. Note the zero crossings at « 5 keV across the two orders of magnitude in Ne shown. 
Fig. 5.—The Compton temperature, Tc, in units of Bi2, as a function of Ne for injection spectra given by eq. (59) with an upper cutoff at E2 = 100 (circle), 300 

(inverted triangle), 511 (diamond), and 1000 keV (triangle). The Compton temperature with E2 = 100 keV is due primarily to resonant scattering at the first three 
cyclotron harmonics (see Fig. 4). The horizontal line at TJB^ = 3.08 is the best-fit constant to these data at iVe 21 > 0.1 (t^^ > 1). The influence of continuum heating 
becomes more pronounced with higher E2. The error bars are 3 <r statistical errors derived from the Monte Carlo statistical errors in the cooling and heating data. 
The horizontal bars depict the 1, 2, and 3 cr confidence intervals in Ne derived from fits of self-consistent temperature models (i.e., models with TJB^ fixed by pure 
line processes) to a line spectrum of GB 880205 (Wang et al. 1989). 

near the first harmonic. Because of the anharmonic separation of the Landau levels (EN < NEB\ spawning mainly produces first 
harmonic photons redward of line center. Resonant scattering of these “ red ” photons tends to cool the electrons. Spawning thus 
enhances the line cooling efficiency relative to the no spawning limit, thereby resulting in a lower value of Tc. 

iii) Influence of the Continuum on Tc and the Thickness of the Line-dominated Layer 
Wang et al. (1989) considered line formation models involving isothermal slabs with temperatures determined by line scattering 

processes only. Implicit in their treatment was the assumption that the continuum above 100 keV contributed negligibly to the 
thermal balance in the line-forming region. In this section, we investigate the effects of the high-energy continuum qualitatively and 
quantitatively and estimate the column density range in which the Wang et al assumptions are valid. Although, strictly speaking, we 
would need radiative transfer calculations for womsothermal scattering layers to do this problem justice, we shall nevertheless offer 
plausible conjectures for the full atmospheric structure using results gleaned from our isothermal simulations. 

In our model calculations, we assume that the scattering layer where the lines form lies above the region where the continuum is 
formed. While it seems necessary for the X-ray (<100 keV) portion of the continuum spectrum to be formed below the scattering 
layer, this may not be the case for the y-ray continuum (> 100 keV). We do not consider here the formation of the continuum (but 
see § IIIh[ii]). Rather we inject a given continuum into the scattering layer and investigate qualitatively, analytically and numeri- 
cally, the consequent temperature structure in this layer. The scattering layer where the lines form is optically thin in the continuum. 
The continuum heating is therefore linearly proportional to Ne. (The continuum cooling is unimportant compared to the contin- 
uum heating at T ^ me.) At low column depths, this continuum heating is negligible and line processes dominate, giving rise to a 
temperature T = Tc ~ EB (see eq. [48] and the lower curve in Fig. 5). At very large depths, the continuum ultimately dominates the 
line processes, giving rise to a temperature ~ me (see eq. [56]). In the intermediate region where the temperature is less than ~ mc, 
continuum heating and line cooling are in rough balance, which elevates the Compton temperature above the pure line value. It is 
difficult to make definite statements about this region from our single-zone calculations. Nevertheless, our basic picture of line and 
continuum cooling and heating can be used to make qualitative estimates of the actual temperature structure of this intermediate 
zone. We show in Figure 6 a schematic depiction of the temperatue structure in this scattering layer. 

At low densities, photon scattering (as described in the preceding sections) will dominate cooling and heating. In general, the 
energy balance equation for the atmosphere is 

#cont + #line = ^cont + ^line » (65) 

where Hi is the heating rate (in ergs cm-2 s"x) and is the cooling rate for process i. The continuum optical depth is much less than 
unity throughout the regions we discuss, i.e., Ne 21 1400 (see eq. [2]). We may therefore always use the optically thin results for 
Hconi and Kcont, i.e., equations (35) and (36) with ne -* Ne. For rough, order-of-magnitude estimates of the line heating and cooling, 
we ignore higher harmonic transitions and consider only the cyclotron first harmonic. For simplicity, we assume a 1/E incident 
photon spectrum injected isotropically into the scattering atmosphere. 

At very low depths, t1 <£ 1, or from equation (1), 

JVCj21 « 0,1B12(^)1/2 . (66) 
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Fig. 6.—Schematic depiction of the temperature structure in the scattering layer 

Line processes dominate here (see eq. [43], [44]), and the equilibrium temperature is proportional to EB (see eqs. [32], [33]), 
independent of Ne. Inclusion of the continuum heating would raise the equilibrium temperature only slightly and would not alter 
the Ne dependence. 

At larger depths where 1 <| 1/a, or from equation (58), 

<67> 

the continuum heating is unimportant at first but becomes increasingly significant as Ne increases. For the line processes, we 
estimate the cooling as 

(see eq. [62]) and the heating as 

^line ~ A\oc Eb eb — In T! oc ÆTln Ti YYlp 
(68) 

B , 
line ~ ^loc Eb Eg — In Tj oc B2 In (69) 

(see eq. [62]). As long as line processes dominate, the equilibrium temperature is the line-dominated value of Tc discussed above, and 
the temperature does not vary significantly with depth. The situation changes when continuum heating becomes larger than line 
heating. From equations (40) (with ne -► Ne) and (69), we find that Hcont > Hlinc when 

21 > -^e.crit 
-2 Inti 

In 100 
(70) 

where we have chosen Tj = 100 as a fiducial value in this region. When ATe 2i < NetCriv the line processes dominate. When 
Ne,2i > Ne,crit> so that Hline < Hcont, the balance of continuum heating and line cooling gives 

T ~ (71) 

which, using equation (70), can be written as 

T \5Bl: 
N* 
N e.crit 

keV . (72) 

Thus, for Ne 2i < crit, the equilibrium temperature is approximately independent of Ne, while for 21 > cri„ the temperature 
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rises approximately linearly with Ne. This thickness of the line-dominated layer is given by crit. As is evident from equation (70), 
this thickness decreases as the hardness of the input spectrum (as parameterized by E2) increases. 

The linear rise of T with Ne may be altered when continuum cooling becomes important compared to line cooling. Exactly where 
this transition occurs is hard to estimate because at large depths the line cooling may be modified significantly from equation (68) by 
increasingly significant contributions from higher harmonics, line overlap, and optical depth of the line wings. For a rough estimate, 
however, we use equation (68) for KUne. Combining this with equation (39) (with ne -► Ne\ Kcont > KUnc when 

Ne,21 
N L ' e,crit 

(73) 

which is much less than the Thomson depth. At greater depths, the continuum cooling and heating dominate the line processes, and 
we can write the energy balance in this region as 

^cont ^cont "b ^ (74) 

where € = Klinc — Hnne is the small but finite perturbation due to the net line cooling. The temperature in this region is expected to 
approach a constant (independent of Ne) that is generally less than that given by equation (56) due to the residual line cooling, but 
tends to equation (56) with increasing depth. 

In the previous section, we computed Tc under the assumption that only line heating and cooling is significant. That assumption 
was implemented by restricting ourselves to injected photon energies less than £2 = 100 keV. In this section we extend our 
calculations to include continuum heating and cooling in an isothermal “ one-zone ” atmosphere with column depth Ne, using our 
Monte Carlo code. To do so, we inject photons with the spectrum given by equation (59) and include the continuum heating for 
photons injected up to E2 = 300, 511, and 1000 keV for comparison. We investigate a sequence of slabs with column depths that 
satisfy equation (67). At much higher column depths, our treatment of the line radiative transfer becomes invalid. 

In Figure 5 we plot the equilibrium Compton temperature (actually Tc/Bi2) as a, function of Ne from this sequence of “ one-zone ” 
models. As expected, the additional heating caused by the continuum forces the Compton temperature to rise above the value 
derived solely from line processes (recall that the cooling is proportional to T). From Figure 5, we estimate the thickness of the cool 
(~5 keV at Bl2 ~ 2) line-dominated layer to be the thickness where the continuum heating causes the temperature to deviate 
significantly from its pure line value. This critical column depth depends on the hardness of the injected spectrum, being smaller for 
a harder spectrum, but is generally ~(0.1-10) x 1021 cm-2 (for the curves with E2 > 100 keV), in qualitative agreement with the 
expression for Ae crit in equation (70). Beyond ~ A* crit, the temperature begins to rise more steeply (e.g., see data point at Ac 2i = 12 
for E2 = 1000 keV), again in qualitative agreement with the above discussion (see eq. [72], and the following discussion). Because 
our code employs the classical magnetic continuum cross section, which asymptotes to the Thompson scattering cross section 
instead of the smaller Klein-Nishina cross section at photon energies E > me, we tend to overestimate continuum heating at high 
energies. As a result, we tend to overestimate Tc at E2> me particularly at relatively large column depths (Ae 21 > Ae crit). 
Moreover, our code does not include n > 4 harmonics, which increase the line cooling and tends to lower Tc. Both these 
approximations lead us to overestimate Tc, and, hence, to underestimate the thickness of the line-dominated layer. However, even for 
E2 ^ me, we believe that our results for the value of the line-dominated layer thickness remains correct, at least in order of 
magnitude. 

In their fits to the lines in a spectrum of GB 880205, Wang et al (1989) assumed perfect heating and cooling balance due to 
resonant cyclotron scattering in the line-forming region, so that the temperature of this region was determined physically by pure 
line processes and was not an independently adjustable fitting parameter. Their fits indicate that the line-forming region is very thin, 
~(0.1-10) x 1021 cm-2, which agrees in order of magnitude with the thickness of the line-dominated layer estimated above, both 
numerically and analytically (see Ae crit in eq. [70] with E2/2me ~ 1 ; note that Tc for E2 = 1000 keV in Figure 5 is probably higher 
than the actual value). This qualitative coincidence between the thickness of the line-dominated layer and the thickness of the 
line-forming layer strongly suggests that the line-dominated layer plays an important, if not central, role in the line formation 
process. To ascertain rigorously the connection (if any) between these two regions requires one to follow the spectral evolution 
through a multizone atmosphere whose temperature structure is determined from physical processes such as electron-photon 
scattering. Such studies are currently under way. 

III. SCATTERING DYNAMICS 

Radiation impinging on the scattering layer deposits momentum as well as energy. The energy deposition gives the cooling and 
heating balance discussed in § II. The momentum deposition gives the radiation force on the scattering layer (Mitrofanov and Palov 
1982). In our model, the magnetic field is oriented parallel to the normal to the plane-parallel slab. Photons strike this layer from 
one side, which for concreteness, we take as the bottom side. We are interested in the component of the radiation force parallel to the 
magnetic field ( = slab normal) along which the electrons move classically. Thus, we are interested in the force acting on the 
one-dimensional electron gas. (Protons, if present, are dragged along due to the strong electrostatic coupling with the electrons.) 

a) The Optically Thin Case 
i) The Resonant and Nonresonant Radiation Force 

The radiation force is given by 

^ = jsE Jánny(£,í2) (75) 
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with ôp the momentum change of the electron along the field per scattering. The corresponding force per unit area acting in the 
direction of the slab normal is 

ôp 

where Ne is the column density of electrons through the slab (in cm 2). 
We work to zeroth order in v and E/2me. Assuming v 1 and E/2me 1, 

(76) 

öp^Qi- psc)E . (77) 

To calculate the resonant line force, we use equation (13) for d(r/dQsc (dropping the primes and letting £? = EB) and equation (77) 
with E -+ Eb. Using equation (16) gives 

(¿í) = n2r0N(EB}EB J dß + /?). (78) 

Using equations (16), (28), and (31) gives 

v- (79) 

where 

= L dßQ(ß)ß(l + ß2) 
dfi Q{ß)ß 

The corresponding radiation pressure force is 

(80) 

(81) 

where we have used equation (1). The expression in brackets is Nloc(EB)El, the photon energy flux density at £ = EB. If the 
scattering layer is bound to the surface of a neutron star by gravity, we may obtain a limit on Nloc(EB)El by requiring that this line 
radiation force not exceed the force of gravity. The gravitational binding force per unit area is given by 

P grav 
GMy 

R2 9 (82) 

where M is the neutron star mass, R is the neutron star radius, and we assume an e-ion plasma for the scattering layer by taking 
y = juempNe, where jue is the mean molecular weight per electron for the plasma (jie= 1 for an e-p plasma; see Shapiro and 
Teukolsky 1983, pp. 25-26). Requiring < Pgrav gives a distance upper bound to the line radiation source. Taking D to be the 
distance to the source, using s = 1 in equation (81), and using equation (45), we obtain 

/A F\~1/2 

D(t1 «IX 38M;^^P) n^n,2S-112 pc , (83) 

where MlA = M/1.4 M0, and where for specificity, we have normalized ^4obs^b t° that for GB 880205 between 1 keV and 1 MeV. 
(The optically thick bound relevant to GB 880205 is computed in § IIIh[ii].) For isotropic injection in the forward hemisphere 
(ÔM = ®[XI), ^ = 3/2, while for beam injection along the field (Q[//] = ö[ß — 1]),,/ = 2. If fP is comparable for these two modes 
of injection, then the distance bound is only weakly dependent on the injection angular distribution, varying by a factor of order 
unity between these two extreme modes of injection. From the distance bound, we infer the corresponding luminosity bound. Thus, 
using equation (83), assuming a l/£ spectrum for Afloc(£) with£2 ^ 

we have 

£(1! <U) < 4tcR2FLoc = 47tR2 
dEENloc(E) < (84) 

where 

(85) 

is the nonmagnetic Eddington luminosity. The right-hand side of equation (84) is the magnetic Eddington luminosity for a l/£ 
spectrum in the optically thin limit. As with its nonmagnetic counterpart, this Eddington limit is independent of the scattering layer 
thickness. However, since it is derived fundamentally from a physical limit on the spectral flux N(EB) at EB9 the magnetic Eddington 
luminosity depends on the shape of the continuum spectrum. 

The calculation of the radiation force due to magnetic continuum scattering parallels the derivation of equation (78) except we use 
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equation (34) for da/dilsc (dropping the primes) : 

(tL - ? [>««{”’ °+(i+',!)] ■ (86» 
Taking Q(ji) = 0(//) and using equation (30) gives 

J iJ áfi ENloc(£)|^l + 
3E2 

(E + Eb)2 J 
(87) 

Taking equation (31) for Nloc(E), the integral in equation (87) can be done analytically for integer s (see the Appendix). Specializing 
to s = 1 and assuming E2> EB$> have 

Ä ^"t ^ioc E}j E2 • (88) 

This expression is the same as for nonmagnetic Thomson scattering. This is not true for all power-law indices s, but the difference is 
at most in logarithmic factors (see the Appendix). (In the nonmagnetic case, eq. [88] gives the force along the z-direction for 
radiation injected isotropically into the xy-plane. The forces in the x and y directions average to zero.) 

ii) Acceleration Time Scales 
We assume in our model that the scattering layer is bound by gravity. If, however, the resonant line radiation force on this layer is 

the dominant force, the time to accelerate this layer to relativistic speeds, assuming an e-p plasma, is 

.accel = ymP 
Hne (Sp/ôt)Une 

2 x 10 s , (89) 

where y is the Lorentz factor of the electrons and protons and where we have used equations (79) and (45), have taken fP = s= 1, 
and have normalized AobsEb to that for GB 880205. For a.ne+e~ plasma, this acceleration time is reduced by ~mp/me to ~ 10-8 s. 

For comparison, the continuum acceleration time scale is given by 

Cnf _ (Ôp/Ôt)Une _ .-/M“1 

Cf (<5p/<5t)c0rU ~ \2mJ 
where we have used equations (79) and (88) (see eqs. [43] and [44]). 

(90) 

b) The Optically Thick Case 
i) The Radiation Force 

Let E2) be the photon number flux (in photons cm-2 s-1) between energies and E2 impinging (isotropically) on the 
slab and 1EB be the mean momentum deposited along the field in this layer (to the electrons) per photon. (Recall that we use 
ft = c = 1 so that Eb/c -► Eb.) The radiation force per unit area acting on the slab (along the slab normal) is then given by 

Erad = F^kEB . (91) 

The function 2 is determined numerically by directly averaging the momentum deposited by individual incident photons in the 
course of being either transmitted through or reflected from the scattering slab. The flux F]yc = Jf J dE Nloc(E\ with Nloc(E) the 
photon number flux density. Taking equation (31) for Nloc(E), we rewrite equation (91) as 

with 

and 

E2
b = N\oc(Eb)Eb 

(92) 

(93) 

V = (94) 

where x2 = E2/Eb and x1 = EJEb. The quantity P0 is the radiation pressure force arising from the line photons at the cyclotron first 
harmonic in an £-s spectrum if the effective line width were EB. All of the physics of the momentum deposition resulting from the 
radiative transport of line and continuum photons are contained in rj. 

In each panel of Figure 7, we plot for given T, the dimensionless radiation pressure force >7 as a function of Ne for E2 = 100, 300, 
511, and 1000 keV. Without exception, we use B12 = 1.71 and = 1 keV in these simulations. The 1 a Monte Carlo statistical 
errors are about the size of the symbols representing the data points and are not shown. For Nloc{E) we use equation (59). The filled 
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Fig. 7.—The dimensionless radiation pressure force, t], as a function of Ne for T = (a) 2.7, (b) 3.6, (c) 5.35 (=TC), (d) 8, (e) 10.7, and (/) 16 keV. The injection 
spectrum used is given by eq. (59) with an upper cutoff of E2 = 100 (inverted triangle), 300 (box), 511 (triangle), and 1000 keV (circle). Bi2 = 1.71 for all the data. The 
1 a Monte Carlo statistical errors are about the size of the symbols representing the data points and are not shown. The radiation pressure force with E2 — 100 keV is 
due primarily to resonant scattering at the first three cyclotron harmonics. The filled symbols in (c)-(f) represent the radiation pressure force due solely to resonant 
scattering at the cyclotron first harmonic ( = fundamental) i.e., higher harmonic transitions and the associated photon spawning are ignored. The vertical bars denote 
where the optical depth is unity in the second and third harmonics (see eq. [3], [4]). In (/), the location where the optical depth is unity for the first harmonic is also 
depicted (see eq. [1]). 
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symbols in Figures 7c-7/correspond to the case in which the radiation pressure arises solely from resonant scattering of photons at 
the first harmonic, with all higher harmonic transitions (and hence photon spawning) ignored. It is evident from Figures Ic-lf that 
the higher harmonic transitions contribute very substantially to the momentum deposition, especially at large Are’s. These tran- 
sitions contribute in two ways: the actual scattering of the higher harmonic photons that (usually) spawns photons and the 
spawning itself which produces photons (mostly) near the cyclotron first harmonic. 

When E2 = 100 keV, the radiation pressure t] is mainly due to the line photons (in the range of Ne shown). We therefore take 
r¡(E2 = 100 keV) as the radiation pressure due to the lines. As expected, the continuum contribution increases with E29 especially at 
large iVc’s. It is nevertheless remarkable that the effect of neglecting the continuum is far less serious than ignoring harmonic 
transitions. For example, at iVe 2i = 12, rj(E2 = 100 keV)/fy(0 -► 1 -► 0) = 2.3, while rj(E2 = 1000 keV)/rj(E2 = 100 keV) = 1.3. It is 
also evident from Figure 7 that although rç(0 -► 1 -► 0) starts to saturate at larger iVe’s where Ti > 1, the curves including the higher 
harmonics and/or continuum keep on rising. The rise may be attributed to two distinct causes. First, the continuum radiation force 
rises linearly with Ne. Second, and more importantly, the higher harmonic forces are always effectively optically thin, in that at 
B Bc higher harmonic photons tend to undergo only a single resonant scatter before being degraded into multiple first harmonic 
photons. When ^ < 1, the first harmonic always dominates, but for > 1, its contribution to the radiation pressure ultimately 
levels off. However, as Ne increases, the second harmonic becomes important, and then higher harmonics (see Fig. 7). Ultimately, at 
sufficiently large depths such that Tcont ^ 1, continuum scattering dominates the radiation pressure. 

To construct fitting formulae for the line force, we begin with a qualitative discussion analogous to our discussion of the line 
cooling above. Consider first the contribution to the momentum deposition due to resonant scattering at the cyclotron first 
harmonic, i.e., ignoring higher harmonic transitions. In Figure 8, we plot the resulting radiation pressure rç as a function of Ne for 
T = 5.35, 8, 10.7, and 16 keV (Tc = 5.35 keV), In analogous fashion to the description of the energy deposition, we write the 
momentum deposition (radiation pressure) as 

Prad —fsN\oc(EB)AEwApc , (95) 

where/s is the fraction of line photons that scattered, Nloc(EB) is the line flux density in photons cm-2 s~1 keV-1, AEW is the effective 
line width in keV, and Apc is the characteristic momentum transferred (in keV) to the electrons per photon that interacted. When 
Ti < 1>/S ~ ~ the thermal Doppler width = EB(2T/me)1/2, and we recover the optically thin result within factors of order 
unity (see eq. [81]). 

When t1 > l,/s ~ 1 for photons within AEW « £B(2T/me)1/2(lnT1)1/2 of EB. Photons deep in the core suffer many scatters before 
escaping the medium either by reflection (emerging from the bottom of the slab) or by transmission (emerging from the top). Those 
that escape by reflection always push on the slab, while those that escape by transmission may either push or “ pull ” on the slab. 
Photons in the outer fringes of the core (and in the wings) suffer a single or at most a few scatters before escaping the medium. These 
photons give a net push to the slab (as in the optically thin limit). There are therefore three populations that contribute to Apc : A, 
the transmitted population that experienced multiple scattering; B, the reflected population that experienced multiple scattering; C, 
the “fringe” population that experienced at most a few scatters. To zeroth order, we assume that the push and pull contributions 
from the population A photons roughly cancel. The mean momentum transfer for a population B photon is ~EB since it turns 
around with only a modest fractional energy change. The mean momentum transfer for photons in population C is also It is 
reasonable to assume that populations B and C occupy a significant fraction of the photons that interacted, i.e., offs in equation (95). 
With this assumption, we have for the Tí 1 limit, 

Prad ~ Nioc(EB)El (96) 

Fig. 8.—The dimensionless line radiation pressure force due solely to resonant scattering at the cyclotron first harmonic (higher harmonic transitions ignored) as 
a function of Ne for T = 5.35 (= Tc, circle), 8 (box), 10.7 (triangle), and 16 keV (pentagon). Bl2 = 1.71 for all the data. The 1 o Monte Carlo statistical errors are about 
the size of the symbols representing the data points and are not shown. The solid curves are given by the fitting formula in eq. (97). 
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A function for PRAD that approaches the correct Ti <0 (eq. [81]) and Ti > 1 (eq. [96]) limits and which fits the data very well is 

0.32tÍ 
1 + 0.55tJ_ 

1/2 
(97) 

This function is plotted in Figure 8 for T = 5.35, 8,10.7, and 16 keV. The fit is good to better than ~ 5% for all the data shown. 
Next, let us consider the contribution of the higher harmonics to the momentum deposition. In Figure 9, we plot for E2 = 100 

keV the radiation pressure rj including the first three harmonics. The discussion of the physics of the contribution from the first 
harmonic is unaltered. For the contribution from the higher harmonics, we focus our discussion on the second harmonic. This 
discussion applies in general to all the higher harmonics. 

When t2 1, equation (81) still holds with -► t2 and EB 2EB. When t2 > 1,^ ~ 1 in equation (95) for the photons within 
AEW ~ 2EB(2T/me)1,2(\nT2)1/2 of 2EB. Because B/Bc 1, the single scattering approximation still applies when t2 > 1. Consequent- 
ly, Apc ~ 2Eb. For t2 > 1 we then have 

/2rV/2 

n"ÄD2) - Nloc(2FÄX2FB)2(^—J (In t2)1/2 (98) 

for the direct contribution ofn = 2 single scatters. A function with the same form as equation (97) can be used for Prad2)- In addition 
to the direct contribution to the momentum transfer from the single scattering, there is also an indirect contribution arising from the 
(mostly) cyclotron first harmonic photons that are usually spawned from the higher harmonic single-scatter event. Since the amount 
of spawning is proportional to t2 at t2 < 1, this indirect contribution should enter as a T2-dependent coefficient in front of the 
expression for PRAD for the first harmonic (see eq. [97]). In general, a transition involving the nth harmonic where n > 1 contributes 
to all the lower harmonics up to n — 1 via spawning. For fitting the data in Figure 9, we include just the first two harmonics, which 
we expect to be the dominant contributors to PRAd f°r the range of Ne we consider. In addition, we take, for simplicity, pure 
constants for the coefficients for the contributions from each of these harmonics. 

Thus, for the general expression for PRAD, we have 

Prad 
Po 

= n = 2.51 —V^ 
0.34t? 

1 + 1.9t 
1 + 

0.085t2 yi1/2) 
1 + 1.5tJJ J* 

(99) 

This function is plotted in Figure 9 for T = 2.7, 3.6, 5.35, 8,10.7, and 16 keV. The fit is good to better than 5% for all the data shown. 
In Figure 10, we repeat Figure 9, but now for E2 = 1000 keV. This is the radiation pressure relevant to the burst GB 880205. 

Because of the stronger continuum contribution, r¡ rises more sharply at large column depths compared to the case with E2 = 100 
keV. (This is very apparent in Fig 7.) To construct a fitting formula for the data in Figure 10 that includes the proper physics, we 
need to include the (optically thin) continuum contribution. For consistency, we must then include the first three harmonics (which 
we follow in our model). Since the added functions and parameters are not required by the data (eq. [99], e.g., fits the data in Fig. 9 
very well), we have opted here for a simple numerical fit to the data. We find that the function 

P RAD 
^0 

(100) 

fits the data in Figure 10 to better than ~ 10%. This function is plotted in Figure 10. 

Fig. 9.—The dimensionless line radiation pressure force due primarily to resonant scattering at the first three cyclotron harmonics (E2 = 100 keV) as a function 
or Ne for T = 2.7 (inverted triangle), 3.6 (diamond), 5.35 (=TC, circle), 8 (box), 10.7 (triangle), and 16 keV (pentagon). Bl2 = 1.71 for all the data. The 1 o Monte Carlo 
statistical errors are about the size of the symbols representing the data points and are not shown. The solid curves are given by the fitting formula in eq. (99). 

Fig. 10.—The dimensionless radiation pressure force with E2 = 1000 keV as a function of Ne for T = 2.7 (inverted triangle), 3.6 (diamond), 5.35 (= Tc, circle), 8 
(box), 10.7 (triangle), and 16 keV (pentagon). B12 = 1.71 for all the data. The 1 o Monte Carlo statistical errors are about the size of the symbols representing the data 
points and are not shown. The solid curves are given by the fitting formula in eq. (100). 
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ii) Distance Constraint 
Following the arguments given in § IIIa(i), we may calculate a distance bound and the corresponding luminosity bound for the 

line radiation source. We assume here that the scattering layer is an e-ion plasma that resides on or near the surface of a neutron 
star. We found in § Illa(ii) that if the line-enhanced radiation force much exceeded the force of gravity binding the layer to the 
neutron star, the layer would be pushed out and disrupted in ~ 10“5 s (see eq. [89]). We therefore require that PRAd < ^Vav (see ecl- 
[82]). Hereafter in our calculations, we specialize to the burst GB 880205. 

Wang et al. (1989) and Lamb et al (1989) have argued that the observed spectral dips in GB 880205 can only arise in the 
“transmitted” spectra of photons emerging through the top of a slab irradiated from below. (“Reflected” spectra tend to show 
spectral peaks, not dips.) It is an observational fact that the lines observed in this burst persist for at least a 5 s interval in the 16 s 
burst. A minimal requirement for the survival of a statistic scattering layer is that the line-enhanced radiation force on the scattering 
layer not exceed the force of gravity binding it to the neutron star. For an optically thick scattering layer, the radiation pressure 
force on the slab is given by equations (100) and (93). For GB 880205, Aobs = 0.08 photons cm-2 s_1 keV-1, EB = 19.84 keV 
(Bl2 = 1.71), Eb = 101.3 keV, and s = 0.846 (see eq. [59]). Requiring PRAD < Pgrav then gives 

D(pc) < 
5.35 keV 

0.3 fl/2 
y - 3j p (101) 

(see eq. [83]). Using y_3 = 2pe, the best-fit column depth for GB 880205, we get D < llOju^fp2 Pc f°r = 1- The distance 
upper bound is proportional to y0*3 and so varies by only a factor of 4 between y-3 = 0.2pe (55//g 3/¿/2 pc) and y_3 = 20pe 

(220fie ‘3fp/2 pc). These column depths delineate the approximate 3 o boundaries (in column depth) of the fits to GB 880205 by Wang 
et al. (1989). 

The distance constraint, equation (101), is only weakly dependent on E2 since the line-enhanced radiation force depends only 
weakly on the continuum (see § IIIh[i], Fig. 7). Our simulations were run for isotropic photon injection, so it is not possible for us to 
extrapolate the results to other modes of injection. However, angular redistribution associated with resonant scattering should, if 
anything, decrease the dependence of the distance constraint on the angular distribution of the incident continuum (cf. §IIIa[i]). 
However, for incident photons that are beamed along the magnetic field, the component of the force due to higher harmonic 
transitions will be suppressed. The n = 2 spectral feature in GB 880205 (Murakami et al. 1988; Fenimore et al. 1988) suggests that 
the incident continuum is not strongly peaked parallel to the field in this source. 

From the distance constraint, we also infer that the total hard X-ray luminosity of GB 880205 at 1 keV < E < 1000 keV is 
sub-Eddington. Thus, using equations (59), (45), and (101), we have 

L < 4nR2FB
c = 4nR2 

piOOO keV 

Jl keV 
dEENloc(E) < (102) 

(see eq. [84]). The right-hand side of equation (102) is the magnetic Eddington luminosity for optically thick media for our model. 
Note that this limiting luminosity is independent of/P (see eq. [84]). 

In equation (102), LE is the Eddington luminosity appropriate for an e-p plasma. For a pair (e+e-)-dominated plasma (i.e., 
ne+/np > 1), the Eddington luminosity is ~mp/me = 1836 times smaller than that given in equation (85). To accommodate a 
sub-Eddington pair-dominated plasma in our model requires placing the burst GB 880205 at D < 5 pc, which seems highly unlikely 
(Hartmann, Epstein, and Woosley 1990; Paczynski 1990). 

Our distance bound (eq. [101]) also implies an upper bound to the photon number flux at the y-ray source, 

^ =fa4izR2F^ =fa4nR: 

Î 
dE Nioc(E) < 3.9 x 1043M14i 

1.71 5.35 keV y°îfas-1 (103) 

For comparison, the blackbody number flux emitted from an area of size AÍIR2 at temperature TBB is 

= 3.0 x ^5{^JRlofa s~1 , (104) 

where fa = A£l/4n and R = 10Rlo km. Setting jV' = .yLBB in equation (103), we obtain an upper bound on the equivalent blackbody 
“ number ” temperature of the radiation from GB 880205 between 1 keV and 1 MeV : 

(r> \ — 0.39 / j, \-0.1 

i(t) /-äkeV- ,105, 

Thus, if GB 880205 is located at D < 200 pc, then its total hard X-ray photon number flux at 1 keV < E < 1000 keV is comparable 
to that from a blackbody at temperature <0.3 keV. This is suggestive of the possibility that the y-ray burst arises due to some 
transient phenomenon that triggers the production of high-energy electrons (Blaes et al. 1989; Melia 1990a, b; Ho and Epstein 1989; 
Dermer 1989, 1990) which Compton upscatter the soft photon background to produce a burst of high-energy y-rays. Since 
scattering conserves photon number, the number flux of the high-energy photons in the burst is the same as the soft photon number 
flux. Interestingly, Murakami (1988) reports that the late time flux in the burst GB 870303 can be fitted by a blackbody at a 
temperature ~ 1 keV. 
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IV. CONCLUSIONS 

In this paper, we have investigated, in both the optically thin (rl 1) and thick (1 < < 1/a) cases, the cooling and heating 
arising from cyclotron resonant and nonresonant (magnetic continuum) scattering. We find that the equilibrium temperature 
resulting from a balance of the cooling and heating due to resonant scattering is ~EB and is fairly independent of depth up to 
Ne& 6 x 1021 electrons cm-2 (see Fig. 5). The extra heating due to the continuum drives the equilibrium temperature above the 
pure line value (see Fig. 5), thereby limiting the extent of the line-dominated layer. With an injection spectrum ~l/£ up to 
E2 ~ 2me, and B12 ~ 2, the thickness of the line-dominated layer ~ 1021-1022 electrons cm-2. The thickness decreases for increas- 
ingly hard incident spectra (see Fig. 5, eq. [70]). 

We have also studied, in both the optically thin and thick cases, the line-enhanced radiation pressure force acting on the slab 
electrons in the direction of the field (parallel to the slab normal). If we assume that the scattering layer is gravitationally bound and 
ion-dominated, then we can derive distance and luminosity bounds for y-ray bursts by requiring that the radiation pressure force on 
the line-forming region not exceed the gravitational force per unit area (along the field in our model) (see eqs. [83], [84], [101], 
[102]). The luminosity bound, or magnetic Eddington limit, is ~0.01 the nonmagnetic Eddington luminosity when tí 1, and 
increases as increases. 

Our optically thick analysis may be directly applied to the burst GB 880205. From the current work and that of Wang et al 
(1989), we believe we have at least a qualitative physical understanding of the three fitted parameters (B, T, Ne) needed to model the 
line-forming scattering layer in this burst. To summarize: (1) the teragauss field (~2 x 1012 G) is naturally explained as originating 
from or near the surface of a neutron star. (2) The low temperature (~5 keV) is the equilibrium temperature that results from 
balancing cooling and heating due primarily to resonant cyclotron scattering at the first harmonic ( = fundamental). (3) The 
thickness of the line-forming layer derived from the fits is of the same order of magnitude as the thickness of the cool layer where 
lines dominate the energy balance. This coincidence suggests that the cool line-dominated layer plays an important role in the line 
formation process. Our one-zone models, however, do not allow us to rigorously establish a connection between the line-dominated 
region and the line-forming region. To do this, and in particular, to determine the relationship (if any) between the thickness of these 
two regions requires a study of the spectral evolution through a multizone (nonisothermal) atmosphere where the temperature is 
determined self-consistency from physical processes such as electron-photon scattering. This is the next step in our analysis. (4) The 
line-enhanced radiation force on the scattering layer gives a distance constraint D <; 200 pc (3 <r bound) for GB 880205, which 
implies a total hard X-ray luminosity L < 0.3LE. This constraint is calculated based on a well-understood physical process— 
electron-photon scattering. The line-forming region is probably not pair-dominated because in our model this would give a very low 
distance bound ( < 5 pc), which seems highly unlikely. Both the cyclotron interpretation of the line features and the 200 pc distance 
limit strongly suggest that the burst GB 880205 originated from a neutron star in the Galactic disk. 
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APPENDIX A 

THE MAGNETIC AND NONMAGNETIC Acont, Fcont, Tc
c
on\ AND (ôp/ôt)cont 

Substituting equation (31) for Nloc(E) into equations (37), (38), and (87) gives 

Ac„„, = 77 «<• ffxi — Mice Ej Ic , 15 m. 

_2LM1a F3 I A ront — . - ^loC 1H > 15 mp 

ôA =, 
ôtjc 

where 

^ioc Et Ip > 

^ 4x2 2x2^ 
1 +: ^7 + (x + O2 (x + í)3 

4x2 

and = EJE,,, x2 = E2/Eb, l = EB/Eb. 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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The integrals in equations (A4)-(A6) have the form 

and 
Í 

Í; 

xmdx 
(x + ’ 

dx 

\x + <?)" ’ 

where m > 0 and n = 2, 3. Assuming integer s and making repeated use of equations (2.153) and (2.155) in Gradshteyn and Ryzhik 
(1980, pp. 66-67), these integrals reduce to the following cases: 

m > 0: 

m > 1: 

m > 0: 

f- J (* 

ldx 

h 

+ t)2 X + ^ 

dX 11 1 / ,m-l m , 
'(x + {)2 £ x"1-1 (x + ^) ' ’ r+1 

+ (—)'”_1m^m_1 ln(x + ^) - m X (-)f Z—1 ^■1 • 
m — i 

x + 

m — 1 / \t 
+ (1 — ^m,l) T Z 

(-)1 1 1 

Í 

1 x^ m x"1 m(m — 1) 

Í 

m > 1: 

dx 11 

(x + ^)3 2 (x + £)2 2 x + i 

m+ 1 1 1 

+ (-r "'v'3 " ^m-2\n(x + ^ + 

£ ¡=i m - i xm-' 

m(m - 1) "Z1. ... x"1“' 
m — i 

(A7) 

(A8) 

(A9) 

1 
+ (_r-i^+1) ln 

xm( + ^)3 2{ xm_1 (x + ^)2 2^2 xm-1x + ^ 1 ’ 2Çm+2 ■ + ■ 
X + £ 

,, , , m(m + 1) (-y 1 1 
+ ( m’l) 2{2 ^ m-i x™-1 

(A10) 
Hereafter, we assume x2 > £ > x1. 

Equation (A4) then simplifies to the following cases: 

r v2 -s 
5 2 

In 

2 — s 

E 
E 

1 1 

»4 

— 2 x\ 

where e = 2.7182818.... 
Equation (A5) has the following cases : 

Irw « « 

o*3 s ^2  
3 — s ’ 

E2 

E 

1 1 

Equation (A6) has the following cases : 

5 — 3x1 

2 — 5 

Ip ~ < 

¡■[ex»'--']' 

1 _J 1_ 
4 s — 2 Xi- 

s < 2 ; 

s = 2 ; 

s > 2 ; 

s < 3 ; 

s = 3; 

5 > 3 . 

5 < 2 ; 

5 = 2 ; 

5 > 2 . 

(All) 

(A 12) 

(A13) 

Equations (A11)-(A13) are valid for all real s. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
3.

 .
67

O
L 

692 LAMB, WANG, AND WASSERMAN 

Equating Acont and rcon, gives the equilibrium Compton temperature, T“nt, due solely to magnetic continuum scatterir 

Tcont   
c — Eh. 

From equations (All) and (A12), we have 

5/2(E2/2me) 
ln[(E2/E1X£2/£ii)

4e-3] 

fe-KSHS'-F 

s < 2 ; 

s = 2 ; 

s = 3 ; 

s > 3 . 

Note that unlike the resonant scattering case (see eq. [50]-[53]), the continuum Compton temperature exists for all s. 
In nonmagnetic (B = 0) continuum scattering, if the (three-dimensional) electron distribution is isotropic or if 

distribution is isotropic, then the cooling and heating rates are given to leading order in ß2 and £/me by 

Acont(B = 0) = 4ncaTQ0 ^2dEEN(E), 

and 
J%E2 

dEE2N(E) . 
Ei 

To do a direct comparison with the magnetic results, we assume the photon flux is emitted isotropically into a scattering 
near the surface of a neutron star so that we may use equation (30) to relate N(E) to Nioc(E). Taking equation (31) for ATloc( 

and 

2-s X2 
2 — s 

KoJB = 0) = SneaT(jp)AlocE¡ x . ln^ , 

J 1_ 
u - 2 xsr 

s < 2 ; 

s = 2; 

s > 2 ; 

rcont(B = 0) = 2 AiocE¡ x < 

v-2 -s A2 

In 
(!) 

s < 3 ; 

s = 3 ; 
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Equating equations (A 16) and (A 17) gives the nonmagnetic Compton temperature. Taking N(E) oc E s gives 

Böö- 

Tc
c
on\B = 0) = <( 

Í (E2/2me)/4 
XlniEJE^2 

[(a"©”]-' 

s < 2 ; 

s = 2 ; 

s = 3 ; 

s > 3 . 

Consider a local xyz-coordinate system with the electron at the origin. With photons injected along the +z-d 
xy-plane, the component of force along the z-direction owing to ordinary Thomson scattering is simply 

(ti) 
\ôt)0 

(B = 0) = <TTFir , 

where 

Fl
E
oc = dE ENioc(E) . 

JEi 
Taking equation (31) for Nloc(E) and assuming E2 > Et gives 

v-2 —s X2 

Floe E = AlocE¡ x- 

1 1 

s-2xr2 ’ 

s < 2 ; 

s = 2 ; 

5 > 2 . 

For s < 2, the force is the same as its magnetic counterpart (see eqs. [A3] and [A 13]). This is because in both tl 
nonmagnetic cases, unlike cooling and heating, only one dimension is active, i.e., (ôp/ôt)coni is the projection of the 
dimension. For s > 2, the magnetic force is weaker owing to the reduced cross section at the dominant low photon ei 
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