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ABSTRACT 
This is the first in a series of three papers presenting a comprehensive, unified approach for radiative trans- 

fer in astronomical maser sources. This paper provides the general formalism and presents the detailed analy- 
tic solution of the linear maser, including the case of a source illuminated by background radiation. 
Subject headings: masers — radiative transfer 

I. INTRODUCTION 

The structure of astronomical maser sources is being probed 
in greater detail all the time, thanks to continuous, ongoing 
progress in high-resolution interferometry (e.g., Cohen 1989; 
Moran 1989). Maser observations are fulfilling a long-held 
promise by providing detailed information about the small- 
scale structure of the host environments. The study of these 
detailed observations, which will undoubtedly continue to 
improve, requires a general, unified formalism for analyzing 
the source structure and propagation of radiation in astro- 
nomical masers. Surprisingly, a consistent overall theory has 
never been formulated. Some of the general properties of maser 
radiation were first discussed by Litvak et al (1966) and Litvak 
(1970). These general discussions were followed by somewhat 
more detailed work by Litvak (1971, 1973) and culminated in 
the seminal study of Goldreich and Keeley (1972), which pro- 
vides the only complete analytic solutions of specific geome- 
tries available to date. That paper provides much of the basic 
theory that has been in use; the only additional detailed solu- 
tions presented since then involve the numerical studies of 
linear and rectangular masers by Alcock and Ross (1985). 
These different studies employed a variety of approaches, suit- 
able for the particular task at hand. Even the Goldreich and 
Keeley paper, which derived complete solutions for both 
spherical and cylindrical masers in the same work, treated each 
geometry as a separate case, solved anew with techniques 
devised specifically for it. These solutions were not obtained 
from general expressions where the particular properties of the 
desired geometry could simply be inserted; such a general solu- 
tion, in fact, has never been worked out in the literature as yet. 
The aim of this series of papers is to address this problem and 
rectify the situation by formulating a unified approach to radi- 
ative transfer in astronomical masers and providing the 
general solution for a maser with an arbitrary geometrical 
shape. 

Although many of the properties of maser sources are inde- 
pendent of the source geometry, the relation between the inten- 
sity /v and the angle-averaged Jv (= J Iydil/4n) does depend 
on the geometrical distribution of the radiation. As a result, the 
source geometry affects both the onset of saturation and the 
intensity in the saturated regime. The details of these proper- 
ties can therefore be studied only in the context of specific 
geometries. This paper, the first in a series of three, studies the 
simplest geometrical configuration, involving a linear setup. 
Although this simple geometry cannot be used to study 
beaming effects, it does display most of the essential features 

related to the structure of masers; in particular, the structure of 
the solution on a given ray in any geometry is always similar to 
that of a linear maser. And because exact solutions are avail- 
able for this geometry in various limits, it provides much 
needed insight for the more complicated three-dimensional 
models studied in the following papers. 

A complete solution of the linear maser has not yet been 
presented, the only detailed study in the literature being the 
numerical calculation of Alcock and Ross (1985). The aim of 
this paper is to provide the complete analytic solution for this 
model. The concepts and techniques developed for this solu- 
tion are then utilized in the study of more realistic three- 
dimensional geometries. Paper II of the series (Elitzur 1990u) 
provides the general solution for a three-dimensional maser of 
any shape and applies it to the specific case of spherical 
geometry. The complete solution of a filamentary maser is 
worked out in Paper III (Elitzur, McKee, and Hollenbach 
1991). Strong astronomical masers are most likely shaped like 
elongated tubes (e.g., Elitzur 1982; Genzel 1986; Elitzur, Hol- 
lenbach, and McKee 1989), and the filamentary model is the 
one most relevant for observations. 

The plan of this paper is as follows : Section II presents the 
general background material and overall framework. Many of 
the expressions are familiar and are included for completeness 
and for clarifying the concepts and assumptions involved. 
Some of the results are new, in particular equation (2.16), 
which is a general expression (applicable also to nonmaser 
radiation) for the product of intensities of the two streams on 
any given ray. The complete analytic solution of a linear maser 
without background radiation is worked out in § III, with an 
emphasis on the development of techniques and insight that 
can be employed in more realistic geometries. The results of the 
numerical calculations of Alcock and Ross (1985) are 
explained. The effect of background radiation on the maser 
sturcture, which has never been fully studied in any geometry, 
is incorporated in § IV. 

II. GENERALITIES AND FORMALISM 

The propagation of maser radiation is controlled by the 
behavior of the (absolute value of the) absorption coefficient kv 
of the inverted system, given by1 

1 The notation for absolute value is omitted from the expressions for /c, t, 
and Tx of the maser transition. This should not cause any confusion, as it will 
always be clear which are the intrinsically negative quantities. 
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where Js is the saturation intensity and k0v is the standard 
absorption coefficient in the limit Jv ^ Js. This result follows 
from the level population equations of the phenomenological 
two-level maser model and has been discussed at length many 
times (e.g., Elitzur 1982). Deviations from this standard form 
due to various frequency redistribution mechanisms (Elitzur 
1990h) do not affect the overall maser power and will be 
neglected here. 

In the unsaturated regime (Jv Js)9 kv = k0v9 and the equa- 
tion of radiative transfer can be solved immediately for any 
geometry, yielding 

/v = (S0 + Ie) exp (k0v t) — S0 9 (2.2) 

where l is length along the ray path, Ie is the intensity of an 
external source which may illuminate the maser backside, and 
S0 is the (radiation-independent) source function; it is related 
to the inversion efficiency rj ( = Ap/p, where p is the sum of the 
pump rates into the maser levels and Ap is the difference) 
through 

^ 2hv3 1 + rj 
= 2 ^ • cz 2t] 

(2.3) 

The various quantities can be expressed in terms of their equiv- 
alent temperatures. Assuming that all of these temperatures are 
in the Rayleigh-Jeans regime, the solution becomes 

— (^cO + ^e) eXP (^Ov 0 TjcO 5 P-4) 

where Tx0 is the (absolute value of the) excitation temperature 
corresponding to the unsaturated population difference. In the 
absence of external radiation, the intensity can be brought to 
the form 

/v = N2vl0 
e^v—1 , (2.5) 

where A21 is the coefficient for spontaneous emission and l0 
and tv are, respectively, the source dimension and gain along 
the ray trajectory. This result will be used to derive the escape 
probability for maser radiation (Paper II). 

The exponential growth of the intensity slows down once Jv 
becomes comparable to Js and the maser saturates. The 
absorption coefficient then obeys kv = k0v JJJv, and the stan- 
dard flux divergence relation V • Fv = 4tck:v(Sv — Jv) (e.g., 
Mihalas 1978) becomes 

V • Fv = 4nK0vJs , (2.6) 

since Sv <^JV. Thus the maser flux increases linearly with 
overall dimension for sufficiently large, saturated masers if the 
pump rates remain constant throughout; a more exact, formal 
derivation of this result is provided in Paper II. The intensity 
scale of maser emissivity is set by Js in the saturated domain 
and by the source function S0 in the unsaturated region. The 
ratio of these two intensity scales, 

y = JJSo , (2.7) 

is a measure of the amount of amplification the maser has to 
undergo before it saturates. From previous results it follows 
that 

y ^ rjT/A21 , (2.8) 

where F is the loss rate of the maser system. It is of the same 
order as the collision rate, ~ 10-10 s-1. The overall density N 

is probably of order 106,109, and 1012 cm-3 in the strong OH, 
H20 and SiO maser regions, respectively. It then follows that 
y ~ 107fj-108rj for astronomical masers. The inversion effi- 
ciency rj is probably a few percent, so y > 105. The masers are 
expected to saturate when their gains exceed ~ In y ~ 11. 

a) Radiative Transfer 
The luminosity of a saturated maser can be determined from 

volume integration, using the Gauss theorem, of equation (2.6), 
without the need to solve the equation of radiative transfer. 
However, this equation is still necessary for studying the inten- 
sity on individual rays. The equation for any maser can be 
written as 

dlv 

dK0vl 1 + JJJi 
+ (2.9) 

where the maser source function is Sm = €v/k0v and ev is the 
volume emission coefficient. This is different from the standard 
definition of the source function (S = €v/k;v), since the intensity 
dependence of the absorption coefficient has been explicitly 
removed. The maser source function is 

Sm — So 
1 + r,/(l + JJJS) 

1+rj 
(2.10) 

where S0 is the source function in the unsaturated limit. Gold- 
reich and Keeley (1972) integrate the radiative transfer equa- 
tion over frequency and introduce a line width, assumed 
constant, utilizing frequency integrals of /v. This step is not 
necessary, and the v-dependence is carried here explicitly. 

Throughout the discussion it was assumed, and we will con- 
tinue to do so, that the physical conditions in the source, e.g., 
pump rates, densities, etc., are uniform. Even with this assump- 
tion the maser source function Sm still varies across the source 
owing to the effect of saturation on the emission coefficient (i.e., 
the population of the maser upper level). This is a minor effect, 
however; Sm only varies from S0 for an unsaturated maser to 
S0/(l + rj) in the strongly saturated limit. This small variation 
is of little consequence and will be ignored in the subsequent 
discussion. Thus, equation (2.9) with Sm replaced by S0 will be 
used as the equation of radiative transfer that governs the 
maser behavior. It is easy to show that a simple transformation 
of the intensity and source function leads to an exact equation 
of the same mathematical form with an effective source func- 
tion that is intensity-independent: the functions S' = So/(l + rj) 
and /'v = Iv + rjS' obey a radiative transfer equation identical 
in form to equation (2.9). The intensity variation of the source 
function can therefore be easily incorporated, if desired. 

For rays strong enough that the source term can be 
neglected, the equation becomes 

^ = KV/V. (2.11) 

The gain along such rays therefore obeys 

drv = Kvdl = dlv/lv , (2.12) 

and the intensity varies according to 

/v(0 =/v(M exp T^, 0 , (2.13) 

where tv(/15 /) is the gain from the fiducial point This result 
shows that the saturated maser can be formally regarded as an 
amplifier, similar to the behavior in the unsaturated regime. 
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The difference is that whereas the unsaturated gain increases 
linearly with position along the ray trajectory, the gain growth 
in the saturated region is much more moderate (typically, only 
logarithmic) owing to saturation. 

Consider now the two streams of radiation propagating in 
opposite directions on a given ray (Litvak 1973; Alcock and 
Ross 1985). Denote the appropriate intensities by /v( + ) and 
/v(—), and the length element in the positive direction along 
this ray by ds. If both intensities obey equation (2.11), then 

rf/y( + ) 
ds — Ky Jv( + ) » 

dlv(~) 
— ds My(-) • (2.14) 

The radiation moving outward grows with distance, while the 
intensity of the inward-moving stream is decreasing. In fact, 
from these equations it follows that in their region of applica- 
bility, the product Jv(+)/v(—) is constant along the ray path, 
and the growing maser intensity increases at the expense of the 
oppositely moving radiation. An exact relation for this product 
can be obtained by combining the full equations of radiative 
transfer (eq. [2.9]) for the streams Jv( + ) and /v( - ) on any given 
ray. It follows immediately that 

rfJ>(,+ )Jv(~) = Sm[/V(-) - /v( + )] . (2.15) dK0v s 

Thus, 

/v(+)/v(-) = I C/v(-) - ¡v( + nSmK^ds . (2.16) 

This is obviously a general result, applicable also to nonmaser 
radiation when the product Sm k0v is replaced by the emission 
coefficient ev. It will be used extensively to obtain the intensity 
of the subordinate stream once the dominant intensity is 
known. As far as I can tell, this result is new. 

III. THE LINEAR MASER 

The linear maser is characterized by radiation flow along a 
single axis in the forward and backward directions. This is 
different from cylindrical geometry, where the rays fill a solid 
angle that varies with location. Positions in the linear maser 
are labeled by the coordinate z, which varies in the interval 
[ — ¿f, ¿f]. The intensity can be written in the form 

/v(z, p) = Iv+(z)3(m - 1) + Iv-(z)S(M + 1), (3.1) 

leading to 

JÁz) = i[/y+(*) + h-W , Fv = 2n(Iv+ - Iv_). (3.2) 

The solution is thus completely characterized by the two func- 
tions /v±. In the absence of external radiation, which is the case 
studied in this section, the model is symmetric under reflection 
about z = 0, so /v+(z) = 7V_( —z) and Jv(z) = Jv( — z). Note that 
7V± are really components of Jv and not the actual intensities of 
the linear maser. The latter, 7v(z, p= ±1), diverge with the 
^-functions. This is an anomaly of the linear geometry which 
arises because the radiation has been squeezed into an infi- 
nitely narrow beam. However, this is a trivial divergence, and 
the meaningful content of the solution is contained in the func- 
tions 7V±, which will therefore be referred to simply as inten- 
sities. The equations governing 7V± are read from the 
coefficients of the ¿-functions in the radiative transfer equation. 

Consider first a maser that is unsatufated throughout, 
namely, Jv(z) < Js for all v and z. The intensity is then given by 

equation (2.2), yielding 

/v±(z) = s0{exp [K0v(<f ± z)] - 1} (3.3) 

and 

Jv(z) = is0{exp [k0v(/ + z)] + exp [k0v(/ - z)] - 2}. (3.4) 

These results display the required reflection symmetry. The 
intensity Jv(z) has its minimum at the center and reaches 
maximum at the maser endpoints. 

Consider next a succession of models with increasing length 
/ and with all the other parameters held fixed. When a certain 
length, /sv, is reached, the end intensities Jv(±/sv) exceed the 
saturation parameter Js. The saturation length ¿fsv can be 
found from 

exp (2fc0v/sv) = 2y , (3.5) 

where we utilized the fact that y > 1 (§ II). When the length is 
further increased, the maser develops a three-zone structure 
characterized by transitions at the (as yet undetermined) points 
± zsv : a core ( | z | < zsv), where Jv < Js and the maser is unsatu- 
rated, and two end regions ( | z | > zsv) with Jv > Js and a satu- 
rated behavior. The intensity in each zone can be obtained by 
solving the radiative transfer equation in the appropriate limit. 
The boundary conditions are 7v_(*f) = 7V+( — /) = 0 and 
Jv( + zsv) = Js. The dimension of the unsaturated core can be 
found from the continuity of the solution across its boundaries. 

In the unsaturated core the intensity is exponentially ampli- 
fied, and 

Iv+(z) = [So + exp [k0v(z + zj] - So . (3.6) 

The expression for Iv_(z) can be obtained from symmetry. The 
core amplifies two input terms : the source function S0 and the 
radiation flowing in from the z < — zsv saturated region. At 
this point we cannot tell which is more important, since the 
intensity 7v+(—zsv) has not yet been determined. 

a) The Saturated Zone 
The solution in the saturated zone will be obtained using the 

following technique : First, solve for the intensity of the domi- 
nant stream, which is equivalent to solving for the angle- 
averaged intensity Jv. Next, the intensity of the subordinate 
stream is obtained from equation (2.16). This technique can be 
easily extended to other geometries as well. 

Consider the saturated zone z > zsv. The angle-averaged 
intensity is obviously dominated in this region by 7V+. To 
demonstrate this, consider first the boundary point zsv. From 
equation (3.6) and the symmetry relation 7v+(—zsv) = 7v_(zsv), 
it follows that 

/v+(zsv) > /v-(zJ exp (2k0vzJ > /v_(zJ • 

The intensity of the radiation moving outward, having under- 
gone exponential amplification across the unsaturated core, 
greatly exceeds that of the opposite flow. Moving farther out, 
7V+ keeps growing with z while 7V_ decreases toward 7v_(if) = 
0, and the dominance of 7V+ is enhanced even more. Thus, the 
radiation propagating outward strongly dominates through- 
out the entire saturated region, and Jv(z) = jly+(z). From 
equation (2.11), the radiative transfer equation for the domi- 
nant stream is then 

dlv+(z) 
dz 

2k0v J Ov J s ’ (3.7) 
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subject to the boundary condition /v+(zsv) = 2JS. The solution 
is 

* V+(z) = 2Js "Jv(z), Jv(z) = Js mv(z), 

mv(z) = 1 + k0v(z - zsv). (3.8) 

The intensity in the saturated zone increases linearly with 
length; in particular, the intensity of the emerging radiation is 

JÁ¿) = ÍIv+V) = JsKoJ, (3.9) 

assuming / > zsv. The two halves of the maser can be regarded 
as independent sources, each one radiating outward from its 
endpoint in proportion to its length. The linear increase with 
length of the emitted intensity is a direct consequence of equa- 
tion (2.6) in the case of linear geometry. The linear increase 
with length of Jv is a general result, independent of geometry 
(Paper II). 

The intensity 7V_ can be obtained from the radiative transfer 
equation 

dJv-(z) _ /y-(z) 
dK0vz mv(z) 0 (3.10) 

subject to the boundary condition /v_(/) = 0. However, it is 
more convenient to use the general result of equation (2.16), 
which becomes 

/v—(z) = T“T7 P/v+(z>ov dz' . (3.11) 
^V+(Z) Jz 

The growth of /v_, moving from the z = endpoint inward, is 
governed by Jv+ because this stream controls the inversion. 
The intensity scale of the subordinate stream is set by the 
source function S0, while that of the dominant stream is given 
by the saturation intensity Js. This demonstrates again that 
/v+ > 7V_ in the saturated region and the solution is self- 
consistent. The integration is immediate, leading to 

/v-(z) = So 
m?(/) - m?(z) 

2mv(z) 
(3.12) 

Near the maser endpoint, 7v_(z) ^ S0 k0v(S — z) and the inten- 
sity of the inward-moving radiation quickly exceeds the source 
function. The intensity of this stream at the saturation edge is 

Iy-(zsv) = 2^o(Ko\^)2b , (3.13) 

where 

b = (l- zsv//Xl - + ¿/Ko,/) ; 

obviously, b ~ 1. Thus, 7v_(zsv) > S0, and from equation (3.6) 
and the symmetry relation 7v+(—zsv) = 7v_(zsv) it follows that 
the angle-averaged intensity at the edge of the unsaturated core 
is 

•*v(zJ = 2Jv-(zsv) exp (2ic0vzsv). (3.14) 

The saturation condition Jv(zsv) = Js therefore becomes 

exp (2jc0v zj = 4y(x0v «?) " 2 , (3.15) 

and the core location can finally be determined: 

KovZsv = kov6v - ln(2-1/2fc0v/). (3.16) 

The unsaturated core is slowly shrinking with increasing maser 
length. This effect is dictated by the boundary conditions. 
Radiation emerging from the core entered it at the opposite 

end with intensity that increases with source length, and subse- 
quently underwent exponential amplification across the core. 
Yet its exit intensity is always 2JS, and thus the core gain must 
decrease. The core shrinkage is caused by the contribution of 
the inward-moving radiation to Jv(zsv\ which pushes the 
boundary closer to the center. The location of the boundary 
depends on frequency. Since k0v is peaked at v0, the radiation 
produced at line center will travel the shortest distance before 
saturation takes effect. If the unsaturated absorption coeffi- 
cient is Doppler-shaped, i.e., k0v = k0 exp ( —x2), where x is the 
dimensionless frequency shift from line center, then 

K0vzsx = K0z0 + x2 , (3.17) 

where z0 is the location of the saturation boundary at the 
line-center frequency v0. This result displays the explicit depen- 
dence on frequency of the boundary of the saturated region. 

The integral in the expression for 7V_ (eq. 3.11) is dominated 
by the upper limit of the integration when z <¿ and is thus 
independent of z. The product 7V+ 7V_ is therefore constant for 
most of the maser, as seen earlier (§ II; this was first pointed 
out for the linear maser by Alcock and Ross 1985), and can be 
evaluated at, e.g., z = zsv. Since at the center 7v+(0) = 7V_(0) = 
^v(O), 

7v+(z)7v-(z) = Jv
2(0) = y~KJsK0J)2 , (3.18) 

or 

= (3.19) 

The central and edge intensities of a linear maser are at a fixed 
ratio, which depends on the pumping scheme but is indepen- 
dent of the maser length; when the overall length increases, the 
central intensity grows in proportion to the intensities at the 
maser endpoints. 

The solutions obtained here are not entirely accurate near 
the saturation points, since they were derived under the 
assumptions of either Jv Js in the core or Jv > Js in the 
saturated zone. These conditions are equivalent to z zsv or 
z > zsv (namely, mv > 1), respectively. This is a minor point, 
however, which can be dealt with quite easily. The radiative 
transfer equation of a linear maser in the z > 0 half can be 
written as 

= 7T777 (3-20> dK0vz 1+JV/JS 

wherever one stream dominates and the source function is 
negligible. Thus, 

JJJs + \n(JJJs) = mv. (3.21) 

This solution holds everywhere, except near the maser center. 
Thus, previous results for the saturated and unsaturated limits 
are recovered. In particular, more accurate explicit expressions 
for Jv are 

= Jsml 1 —~"tV) (3-22) 
V mv + 1/ 

in the saturated zone, and 

Jv = Js[l + Ík0v(z - zj] (3.23) 

near the saturation boundary. 
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The gain in the saturated region, 

t,(z) = Í Kv(z)dz , (3.24) 
Jzsv 

can be obtained at once; since kv(z) = K0v/mv(z), 

tv(z) = In mv(z). (3.25) 

Thus, the function mv is simply the amplification factor exp 
tv(zsv, z). The gain does not increase linearly with distance 
anymore because the inversion (and, thus, the absorption 
coefficient) is reduced by saturation. The logarithmic increase 
of the saturated gain ensures that the dominant intensity grows 
only linearly with distance. The intensity of the subordinate 
stream (eq. [3.12]) varies exponentially with gain when 
mj(z) mJOO, in accordance with equation (2.13). 

By combining the contributions to the gain across the entire 
maser for frequencies obeying zsv /, it is easy to show that 

Tv(-/, ^) = ln4y . (3.26) 

This result can also be derived by considering the ratio of edge 
to center intensities. It shows that the maser overall gain can 
increase by only In 2 from the value it had when the maser had 
just saturated (eq. [3.5]). The total amplification grows by a 
factor of 2 toward the limit 4y, obtained when > *fsv. The fact 
that the overall gain is determined by the pump parameters 
and is independent of length is another manifestation of the 
self-regulating nature of the saturated maser. The shrinking of 
the core gets another explanation : the amplification across the 
core must decrease in proportion to (k0v Í)2 to offset the k0v t 
growth of the amplification factor in each saturated zone. 

A somewhat related result can be obtained for the absorp- 
tion coefficient. In the saturated zone, 

kv(z) = k0vJJJv - 1/z , (3.27) 

where the last equality holds for z zsv. Therefore, the product 
kvz simply approaches unity. It is altogether independent of 
the source parameters, such as pumping scheme or overall 
length. 

The solution for a saturated maser with an unsaturated core 
is now complete. It is worthwhile summarizing the results 
using dimensionless quantities. Natural scales for lengths and 
intensities are provided by k0v and Js, respectively, so intro- 
duce 

Cv = ’ Csv ^ ^Ov^sv ’ ^ K'Ov ^ v± := ^v±/^s ‘ 
The solution in dimensionless form is then 

Csv:= ln(2y1/2/^f v) > 

0<Cv<isv: /V±=2exp(±isv-Cv), 

Csv < Cv < : /v+ = 2mv(Cv), mv(Cv) = 1 + (Cv - U , 

/v_ = [mv
2(^v) - mv

2(Cv)]/[2ymv(Cv)] . 

(3.28) 

The solution for Cv < 0 is obtained from the symmetry under 
reflection. The dimensionless solution depends on only two 
free parameters: y ( = JJS0), and the overall scaled length ifv. 
The dependence on either of those is rather weak, however. 
These parameters affect only the profile of the inward-moving 
stream in the saturated zone, where it is of secondary impor- 
tance, and enter logarithmically in the determination of the 
boundary Csv. 

Fig. 1.—Intensities of the two rays in a linear maser as functions of position 
for various values of the parameter y, as marked on the curves. 

Figure 1 displays on a logarithmic scale the intensities of a 
linear maser whose overall length is = 30 for y = 105, 106, 
and 107. These values of y span the probable range encoun- 
tered in astronomical masers, as mentioned above (§ II). The 
value of is also representative. For example, the gain of the 
OH 1612 MHz maser can be obtained from 

k0v¿ = 5.6 x 10_17iVOH^-2/At;1 , (3.29) 

where NOH (cm-2) is the OH column density, t/-2 is the inver- 
sion efficiency in percent, and Avt is the line width in kilo- 
meters per second. The calculations of Goldreich and Scoville 
(1976) show that NOH can exceed ~3 x 1016 cm-2 in the 1612 
MHz maser region of a late-type star. The inversion efficiency 
of this maser can be as high as 25%, and J£?v can reach ~ 30 or 
so. In the case of the strong H20 masers in star-forming 
regions, the recent model of Elitzur, Hollenbach, and McKee 
(1989), which describes the masers as filamentary structures 
behind shock waves, produces 

K0J~3.9a, (3.30) 

where a is the aspect ratio (length/width) of the maser filament. 
The numerical coefficient is for a prototype model with H2 
density 109 cm-3, temperature 400 K, H20 abundance relative 
to H2 of 6 x 10-4, and filamentary diameter 1013 cm (the 
calculated efficiency is rj = 8.7 x 10-3). A filament with an 
aspect ratio of 25 therefore corresponds to jS?v close to 100. 
These results for the values of k0v £ provide estimates for the 
degree of saturation, Jv/Js, in each of the relevant sources, as 
evident from equation (3.9). 

The figure reproduces all the features of the numerical solu- 
tions of Alcock and Ross (1985). It is instructive to follow the 
rightward-moving stream across the maser. Entering the 
source from the left, its intensity is zero. Although the source 
function S0 is completely negligible here in comparison with 
the maser intensity Jv, some spontaneous decays do occur, and 
half of those produce photons that travel inward. The maser is 
strongly saturated by the outward-moving dominant stream 
£/v_, and the c/v+ stream builds up quickly. Initially, fv+^ 
y-1(jS? — ICI); the subordinate stream is made up of the lin- 
early amplified source function. A little deeper into the source 
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Fig. 2.—Central region of a linear maser with y = 105. The arrows mark 
the core boundary points. 

Jv+ exceeds S0, becoming itself a more significant input source, 
and its growth with distance is quadratic. However, as the 
figure demonstrates vividly, is still completely negligible 
in comparison with in the entire left saturated zone. The 

stream becomes significant only after entering the unsatu- 
rated core (at — C ^ 3-5), where it undergoes exponential 
amplification, emerging from the core as the dominant stream. 
Afterward, its intensity increases linearly with distance and the 
dependence on the model parameters is essentially gone. The 
intensity of the dominant stream, which also controls the 
behavior of the subordinate stream, is determined by the 
pump. The detailed solution demonstrates why the intensity of 
a saturated maser does not depend on the source function, 
even though spontaneous decays provide the original seed 
photons. 

The logarithmic scale, necessary for the display of the full 
solution, is somewhat misleading in the prominent exposure it 
provides to negligible intensities. Figure 2 therefore plots the 
central region of the y = 105 maser on a linear scale. The satu- 
ration boundary points, Cs = ± 3.05 in this case, are marked 
with arrows. It is obvious that, to a good degree of approx- 
imation, each stream can be considered as if it originated from 
the far end of the unsaturated core. Insofar as only observed 
quantities are concerned, a very satisfactory solution can be 
obtained by neglecting altogether the inward-moving stream in 
each saturated zone. The core boundary is then approximated 
by the fixed value zsv = ^sv. The expressions for all the quan- 
tities relevant for observations are the same as for the full 
solution. It is also worth emphasizing that in spite of its great 
significance for the buildup of maser intensity, the core 
occupies only a negligible fraction of the source. Neglecting the 
core altogether and employing the expressions /v+ = 2Jsk0vz, 
/v_ = 0 for z > 0 is a reasonable approximation for all the 
relevant properties of the saturated linear maser. Obviously, 
though, this approximate solution misses entirely the essence 
of the physics. 

Some further insight into the behavior of the linear maser 
can be gained from an integral of motion, recently obtained by 
Alcock and Ross (1985). To derive it, note that for any maser, 
whatever the geometry, the radiative transfer equations for the 

two streams along any ray can always be combined to produce 

dlv+ _ JsIv+ Sq(Jv + Jg) (331) 

“ d/v_ " Js/V_ + S0(JV + Js) ' 

From this it follows that for the linear maser 

[Jv(z) + JJ2 + y/v+(z)/v-(z) = [Jvw + JJ2 , (3.32) 

which is the Alcock and Ross result. This relation can be used 
to derive the intensity of the subordinate stream in the saturat- 
ed zone (eq. [3.12]) and the intensity at the maser central point 
(eq. [3.19]). The Alcock and Ross integral of motion can also 
be derived from the equations for the angle-averaged intensity 
Jv and the normalized flux Hv = FJ4n = ^(Jv+ — /v_). The 
transfer equations for these two quantities are 

^^ + S0 , (3.33) 
dK^Z 1 + JJJS dK0,z 1 + JJJS 

and the boundary conditions are Hv(0) = 0, Hv(¿) = 
These equations lead to the integral of motion 

(Jv + Js)
2 + y(j2 - H2) = const » (3-34) 

which is the same as equation (3.32). 

b) Core Saturation 
When the maser length is sufficiently increased, the intensity 

of the subordinate stream can become so high as to equal Js at 
the core boundary. This happens when K0yS = (2y)1/2 (eq. 
[3.13]). Thus, for maser lengths exceeding this limit, the core 
saturates because of the effect of the inward-moving stream. 
Indeed, equation (3.18) shows that Jv(0) = Js when the length 
equals <fcv, defined by 

KovC=?1/2- (3-35) 

The maser is saturated throughout, and the solution must be 
modified. When complete saturation sets in (/ > <fcv ; Jv 
exceeds Js everywhere), the equations for Jv and Hv are easy to 
solve. The solution for all z > 0 to leading order in y ~1 is 

ffv = Js k0v z , Jy = Js Kov(z2 + Z2)112 , (3.36) 

where 
zc=^-1/2. 

The intensities can be obtained from Jv± = Jv± Hv. The struc- 
ture of this solution undergoes a complete change across the 
point z = zc. Inside this transition point, 

z < zc : 

Jv = JsKovzc > Hv = 0 , Jv+ = Jv_ = Jv (3.37) 

to leading order in z/zc. That is, the intensities of the two 
streams are equal, both intensities and the angle-averaged 
intensity are constant, and the flux vanishes. Outside the tran- 
sition point, 

z > zc : JV = HV = ±IV+=JS k0v z (3.38) 

to leading order in zc/z. This solution is the same as the one 
obtained previously in the saturated zone of a maser with an 
unsaturated core. Therefore, the maser is again divided into 
three zones, as before : a central core ( | z | < zc) where the inten- 
sity Jv is nearly constant, the flux is approximately zero, and 
the two streams are approximately equal, and two end regions 
( I z I > zc) where all the expressions are essentially the same as 
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when the core was unsaturated. The frequency-independent 
point zc therefore defines the boundary of a core, which is now 
saturated. The solution is identical to the previous one, except 
inside the core. The shrinking of the core during its unsatu- 
rated phase is reversed, and its size grows with the overall 
length during complete saturation. However, the core still 
occupies only a negligible, constant fraction of the maser 
during this phase. Outside the core, which is most of the maser, 
the solution is the same as when the core was unsaturated. 

The approximate properties of the core in the limit of com- 
plete saturation can also be obtained from general arguments, 
an approach useful for other geometries where an exact solu- 
tion is not available. A core of finite size is always necessary for 
the structure of the maser to enable the intensities 7V+ and 7V_ 
to reverse their roles as dominant and subordinate streams in a 
continuous fashion near the center. To leading order in y-1, 
the only possible solutions for equations (3.33) during satura- 
tion are 77v = Jv, which is the solution in the saturated zones 
where one stream dominates, and 77v ~ 0 and Jv ~ constant, 
which is the saturated core solution (this is also evident from 
the integral of motion [3.34]). The two streams are therefore 
equal across the saturated core, and the angle-averaged inten- 
sity can be approximated by a constant inside the core and by 
Jsk0vz for z > zc. The core boundary is determined by the 
condition that at that point both streams contribute equally to 
Jv. For the linear maser this implies 7v+(zc) = 7v_(zc) = Jv(zc). 
The core equation is thus 

7v+(zc)7v_(zc) = J?(zc). (3.39) 

But this product must also obey equation (3.18) because that 
relation follows from the properties of the saturated region and 
is independent of the behavior at the core. Therefore, zc = 
/y-1/2, as before. The equality of the two streams across the 
core follows also from the fact that the relation 7V+ = 7V_ 
holds both at the core’s endpoints and at the center z = 0 (from 
symmetry). Thus, 77v ~ 0 across the core and Jv is constant. 

It is unlikely that core saturation ever occurs in astronomi- 
cal masers because (2y)1/2 is at least -500. In contrast, fc0v/ 
probably never exceeds —50 in most sources other than the 
strong H20 masers in star-forming regions. For those, the 
estimate of equation (3.30) shows that k0v¿ can reach -500 
only for aspect ratio a in excess of -130. Such high aspects are 
unlikely, though not impossible (Elitzur, Hollenbach, and 
McKee 1989). However, it must be noted that this is a hybrid 
estimate, since the results of a filamentary model calculation 
are inserted in a linear maser model. When the proper result 
for a filamentary maser is used, the relevant gain is across 
rather than along the filament and it is evident that core satu- 
ration is essentially impossible in H20 masers (Paper III). In 
addition, core saturation has no effect at all on the maser’s 
observed properties, since the solution in the end regions is 
independent of the core properties. This limit is therefore 
mostly only of theoretical interest. 

IV. BACKGROUND RADIATION 
The only source of input radiation considered in the dis- 

cussion so far was spontaneous decays inside the maser itself. 
An additional source of seed photons is sometimes provided by 
external radiation entering the maser. The effects of such input 
radiation are discussed now. 

Consider first an unsaturated maser illuminated by external 
radiation 7e. For any geometry, the intensity along rays that 
intersect the external source is then given by equation (2.2) (or, 

Völ.x 

equivalently, eq. [2.4]). The intensity modification is comprised 
of S0 -► S0 + 7e, and the effect of the background source on the 
solution is thus measured by the parameter 

ye = iJSo, (4.1) 
equivalent to Te/Tx0. An extended, unsaturated maser cloud in 
front of a point source will therefore display enhanced emission 
in the directions that intersect the background source, 
resulting in the appearance of a bright spot. The contrast x at 
the bright spot is defined as 

X = (4.2) 

where the subscript nb denotes the intensity in the absence of 
external radiation. For an unsaturated maser, 

* = 1 + 7* (4.3) 

The bright spot contrast is thus determined exclusively by the 
parameter ye. 

When the maser is saturated, the effects of the background 
source depend on the model geometry, and the discussion is 
confined from now on to the linear maser, which can be solved 
exactly. The behavior of the solution can actually be derived 
from some simple arguments, without even solving the equa- 
tion of radiative transfer. To do that, consider first doubling 
the maser length to while keeping all the other parameters 
constant. The core is then located at the center of the new 
structure, its size shrunk by 2 In 2 from the value given in equa- 
tion (3.16). From equation (3.13), the intensity of the internally 
generated rightward-moving stream at the core entrance is 

7in = 2So0cOv/)2 (4.4) 

Now remove the left half of this maser and replace it with 
external radiation whose intensity is equal to 7in, entering from 
the left. All the properties of the 7V+ intensity remain exactly 
the same, and since this stream controls the maser structure, 
this too remains unchanged. Therefore, external radiation 
whose intensity is as high as 7in will cause the core to move all 
the way to the left edge and shrink by In 4. The maser emergent 
intensity Iv+(¿) would obviously double. When the external 
intensity is slowly turned off, the solution with Ie = 0 must be 
recovered with the core back at the center and in its original 
size. Therefore, the reverse process, wherein the external radi- 
ation is slowly turned on, obviously causes a leftward motion 
of the core, coupled with its slow shrinkage. The external radi- 
ation begins to affect the maser structure once its intensity at 
core entrance, 

h, = leKoJ (4.5) 
(as can be easily seen from eq. [2.16]), becomes comparable to 
7in. The impact of external radiation on the solution is there- 
fore expected to be measured by the parameter 

Ju 2koJ 
(4.6) 

In this definition, the ratio of intensities 7V was replaced by that 
of angle-averaged Jv, which is the same for a linear maser. This 
substitution ensures the general nature of the definition, 
making it suitable also to three-dimensional geometries. 

These properties are displayed by the detailed solution of the 
equation of radiative transfer. This equation contains no refer- 
ence to the external radiation, so the structural form of its 
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solution must remain the same. The information about the 
external radiation is contained only in the boundary condition 
Iv+( — ¿) = Ie, for a maser illuminated from the left, whose 
effects propagate through the various maser zones. The start- 
ing point of the discussion is therefore a linear maser strongly 
saturated by its own radiation. This implies that / > <fsv, which 
also ensures that ¿ zsv. Consider now a series of models with 
an increasing external intensity Ie (i.e., ye) and with all the other 
parameters held fixed. Since the model is not symmetric upon 
reflection anymore, the core need not be centered on the origin. 
The left and right core boundary points will be denoted by zsv_ 
and zsv+, respectively; in the absence of external radiation, 
zsv± = ±zsy obviously. The radiation emerging from the core 
in either direction corresponds to saturated intensity, so 

7v+(zsv+) = /v_(zsv-) = Us • (4.7) 

Both streams are amplified across the core by the same 
amount, so their intensities must also be equal upon entry to 
the core on either end : 

effect on the location of the core boundary. Obviously, x <2; 
the contrast of a saturated maser is limited because the length 
of the saturated region can only increase by a factor of 2 when 
the core shifts all the way to the left. 

The core-amplification relation for Jv_ (eq. [4.8]) becomes 

exp [kov(2zsv + sv_ - sv+)] = + S-y) ’ (4-14) 

where we utilized the fact that k0v ^ > 2. Inserting the expres- 
sion for zsv (eq. [3.15]) yields 

Kov(sv+ - sv_) = 21n* . (4.15) 

From equations (4.13) and (4.15) it follows that 
(sv+ - sv_)/sv+ ^ 2/Kov/ l,so 

sv+ ^ sv_ = sv . (4.16) 

To lowest order, the core moves to the left as a whole unit. 
Combining equations (4.8), (4.11), and (4.16) produces 

7V+(zsv _ ) = 7V _ (zsv+) = 2JS exp [ - k0v(zsv + - zsv _ )] . (4.8) 

But the intensity 7V+ in the z < zsv_ saturated zone contains 
also the external radiation and is therefore larger than 7V_ at 
the reflected point in the z > zsv+ region. The only way to 
reconcile this asymmetry with equation (4.8) is for the core to 
shift to the left. The subordinate 7V+ stream requires less ampli- 
fication to meet the core entry condition, and the core is situ- 
ated closer to the left edge of the maser. The core boundaries 
thus correspond to leftward shifts by the amounts sv± from 
their locations in the absence of external radiation, namely, 

zsv ± i zsv sv ¿ . (4.9) 

The intensities at the core entry points can be determined from 
the equation for the subordinate stream (eq. [2.16]), which 
becomes 

7v+(z)7v_(z) = 7v+(-/)7v_(-0 

+ S0 J ;[/v-(z') - /v+(z')]K0ydz' (4.10) 

in the left saturated zone (z < - zsv ); note again that 
/v+(-0 = /e-Thus, 

iv + (zsv-) = + zSofav- - 1) , 

/v_(zsv+) = |s0(mj+ - 1), 
mv± = 1 + Kov(? — zsv ± sv±) • (4-ll) 

At the core entry, the amplification of the external radiation is 
linear, while that of the source term is quadratic. The reason is 
that the source term generates photons throughout the entire 
maser. The intensity emerging from the right end of the maser 
is 

7V+00 = 2Jsmv+ . (4.12) 

Because zsv it can be neglected in the expression for mv+ 
always, and also in mv_ so long as > sv_. The maser contrast 
factor x, the intensity enhancement due to the external radi- 
ation (eq. [4.2]), is thus 

/ = 1 + sv+/*f . (4.13) 

This result simply reflects the fact that the saturated maser 
intensity is proportional to the length of the saturated region. 
The maser contrast depends only indirectly on Ie through its 

, = /■ 
1 +; 

(4.17) 

as expected (note the discussion leading to eq. [4.6]). The emer- 
gent intensity is enhanced over its value in the absence of 
external radiation by 

*= 1 + 1+^/ 
(4.18) 

The contrast factors for saturated and unsaturated behavior 
can be written in a combined form : 

, ) 1 , unsaturated, 
X~ + Ml/iy* + 2k0J) , saturated. (419) 

This displays the unlimited contrast that can be obtained for 
an unsaturated maser (as long as the external radiation is not 
so strong as to cause saturation itself) and the bound provided 
by the saturation process. 

The behavior of the contrast factor x and the maser structure 
with increasing Ie are best analyzed in different intensity 
regimes : 

1. ye< 2k0x {: In this regime, le < 2S0 k0v if, that is, 7ex < 7in 
or < 1. The external intensity at core entrance is a pertur- 
bation on the internally generated radiation. The core shifts 
steadily to the left in proportion to ye. This shift is accompa- 
nied by a slow (logarithmic) shrinkage of the core and a steady 
increase in the contrast factor x- 

2. 2k0v ¿ <ye< 2(k0v /)2 : Because ye exceeds 2k0v ¿,0le> \ 
and sv ^ The intensity enhancement factor is / = 2, or 

7v+(0 = 4JsK0v<f. (4.20) 

The saturation is dominated by the external radiation, which 
needs to be amplified in the left saturated zone before it can 
induce saturation. The core has shifted all the way to the left 
edge of the source and shrunk by the maximum amount of In 4 
(eq. [4.15]), as expected. Various terms have to be modified 
now because zsv cannot be neglected in the expression for mv_ 
anymore. The intensities entering the core are 

7v+(zsv-) = 7e(l + k0v dv), 7v_(zsv+) = 250(k:0v/)2 , (4.21) 
where 

dx = ¿ + zSx- 

is the core distance from the maser left end. The value of dv can 
be obtained by equating the two core entry intensities. As long 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
3.

 .
62

8E
 

636 ELITZUR Vol. 363 

TABLE 1 
Variation of Core Position and Size with / 

Ie 
(1) 

1 + zsv-/l 
(2) 

- zsv-)/(2zsv) 
(3) 

0 
[0, 2S0 k0v f] 

[2S0k0X 2S0(k0v /)2] 
[2So(k0v0

2, 2JJ 
>2J' 

1 
V(1 + &e) 

2K0J/ye - \Ik0J 
0 
0 

1 
l-(l/K0vOln[l+^e/(l+^)] 

1 -{VK0vzJ\n2 
(l/2/c0vzsv)ln(2Js//J 

0 

Note.—Col. (1) lists the appropriate intensity range. Cols. (2) and (3) list the distance 
of the left core boundary from the edge and the core size, respectively, both normalized 
to their values in the absence of external radiation and assuming zsv /. The dimen- 
sionless parameters ye and $e are defined in eqs. (4.1) and (4.6), respectively. 

as ye < 2(k0v /)2, the resulting equation can be solved and the 
core distance from the maser left end obeys 

tt0t<iv = 2(>Co'/) -1. (4.22) 
le 

This result is self-consistent because dj¿ ^ 2ic0v¿/ye < 1, as it 
should. The core-amplification condition, obtained by insert- 
ing the intensities from equation (4.21) in equation (4.8), 
becomes 

Kovfov + - zsv - ) = 2k0v 2Sv - In 4 . (4.23) 
This demonstrates once again that the core has shrunk by In 4, 
verifying the consistency of the solution. 

3. 2(k0v¿)2 <ye<2Js: Since > 2(/cOv<02, the external 
radiation can saturate the maser without any amplification in 
the left saturated zone. Equivalently, /v_(zsv+) < Ie : the inten- 
sity of the leftward-moving stream at its core entry point is 
smaller than Ie; thus Jv_ is too weak to saturate. The left 
saturated zone disappears, and the unsaturated region shifts all 
the way to the left edge. 

4. ye>2y: The unsaturated region disappears altogether, 
since Ie > 2JS. The external radiation does not require even 
core amplification to saturate the entire maser. Since the maser 
is fully saturated by Je, its structure can best be obtained from 
equation (3.33). The angle-averaged intensity Jv and the nor- 
malized flux Hvobey 

Jv(z) = Hv(z) = i/e + Js K0v(¿ + z) . (4.24) 

Note that / -h z is simply the distance into the maser from its 
left end. The maser intensity /v+ = 2JV reflects the combined 
contributions of background radiation and saturated maser 
emission generated over the entire length [ —z]. The 
observed intensity is 

/v+M = /e + 4Js/c0y , (4.25) 

which finally displays again an explicit dependence on the 
external radiation. The intensity of the opposite stream can be 
obtained from equation (3.32); the intensity emerging from the 
z = —/end is 

/v-(-0 = 2SoKov^l + Y Kov^) • (4.26) 

Note that /v_(—/) decreases with /c, demonstrating explicitly 
that the Iv+ stream grows at the expense of the opposite 
stream. When the external radiation is so intense that Ie > 
2Jsk0vS9 Jv_( —<0 reaches a lower limit of 2S0 k0x¿. This is the 
intensity of a saturated maser whose emissivity is characterized 
by %S0 instead of Js. 

Table 1 summarizes the variation of the relative 
distance of the core from the edge of the maser, and of 
(zsv+ — zsv_)/(2zsv), the relative core size, with increasing exter- 
nal intensity. The results derived here can be analyzed in light 
of the general properties of the maser, derived in § II. The 
luminosity of a saturated maser depends only on its volume 
and the pumping scheme. The saturated region does not 
amplify input radiation but rather converts pumping events to 
maser photons. The dependence of luminosity on input radi- 
ation should thus disappear during saturation. Indeed, the 
emergent intensity of the linear maser shows no explicit depen- 
dence on the external radiation (eq. [4.12]); a weak depen- 
dence on Ie is only caused by the length increase of the right 
saturated region from / to 2/. The emergent intensity remains 
unchanged, at ~4Jsk;0v/, while Ie varies over a rather large 
range from 2S0k0v¿ all the way to 2JS. The reason for this 
insensitivity to le is that the solution carries no reference to it 
in the z > zsv+ zone; neither the radiative transfer equation nor 
the boundary condition Jv(zsv+) = Js depends on it. The only 
dependence on le is caused by its effect on zsv+, the location of 
the saturation edge. But / — zsv+ ~ 2/ over this entire range of 
/c, since the right saturated zone essentially encompasses the 
whole maser. The /^dependence finally displayed by the fully 
saturated maser (eq. [4.25]) does not reflect any additional 
photon generation. Rather, this parameter region corresponds 
to Ie > 2JS, so the input radiation itself must be the result of 
maser emission. This is therefore the case of a maser amplifying 
input maser radiation, corresponding to an effective increase of 
the maser volume. 

The fact that the intensity amplification is limited to a factor 
of 2 is a peculiarity of the linear geometry which arises because 
it does not have a true intensity; the functions /v± are actually 
angle-integrated intensities. The linear maser solution provides 
a correct indication of the behavior of Jv, but not of /v. Indeed, 
external radiation can only increase the maser Jv by about a 
factor of 2 in any geometry, larger values being precluded by 
fundamental maser properties, but the intensity 7V can be 
enhanced indefinitely along selected rays as long as their 
overall contribution to Jv is negligible. The contrast at the 
bright spot can be arbitrarily high, provided that the spot is 
sufficiently small. The explicit expressions appropriate for 
cylindrical geometry illustrate this point. They are presented in 
Paper III. 

Discussions with D. J. Hollenbach and C. F. McKee are 
gratefully acknowledged. This work was supported in part by 
NSF grant AST-8716936. 
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