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ABSTRACT 
Basic dynamical mechanisms that produce an amplification of the accretion rate of gas clouds into the cen- 

tral regions of barred galaxies, and their subsequent effects on the evolution of barred galaxies, are discussed. 
Weakly dissipative orbits, representing gas clouds, are computed in a barred galaxy model with a central mass 
concentration such as a black hole, or a secondary small inner bar. We find amplified accretion across reson- 
ances that is especially rapid inside the Inner Lindblad Resonance, large excursions outside the galactic plane, 
and the existence of nontrivial attractors like strange (chaotic) attractors or limit cycles. The underlying physi- 
cal mechanisms are, in general, due to the presence of broad horizontal and vertical resonances through which 
weakly dissipative particles can rapidly traverse. The two principal physical implications are first that the 
growth of a significant central mass concentration in a barred galaxy induces broad radial resonance regions 
which can act to enhance the fueling rate of AGNs and starbursts. Second, the broad vertical resonances 
allow stars to diffuse into the bulge from the disk, indicating the possibility that a significant component of all 
bulges has formed in this way and should possess a metal-rich rotationally supported component. Secular 
evolution along the Hubble sequence due to increasing bulge-to-disk ratio with time is a natural consequence 
of this intrinsic resonant heating. 
Subject headings: galaxies: internal motions — galaxies: structure — stars: stellar dynamics 

I. INTRODUCTION 

The majority of disk galaxies are barred or ovally distorted 
in the region where their rotation curve is steep (see de Vau- 
couleurs 1963; Kormendy 1982; Gerhard, Vietri, and Kent 
1989). Dynamical studies of barred galaxies have shown that 
bars are, in general, rapidly rotating and are principally sup- 
ported by quasi-periodic orbits elongated along the bar 
(Contopoulos and Papayannopoulos 1980; Athanassoula et al 
1983; Pfenniger 1984h; Teuben and Sanders 1985). N-body 
simulations show that nondissipative bars are robust and can 
persist over at least a Hubble time (Sparke and Sellwood 1987; 
Combes et al 1990). A distinctive feature of barred galaxy 
dynamics is that a significant fraction of the phase space is 
occupied by stochastic orbits (Athanassoula et al 1983; Pfen- 
niger 1984a, hereafter P84). This is seen not only in single- 
particle studies of the phase space but also in orbit analysis of 
N-body simulations of bars (Pfenniger and Friedli 1991). The 
chaotic behavior is due to the presence of many strong res- 
onances such as corotation or Inner Lindblad Resonance 
(ILR) and the apparent absence of additional global integrals 
of motion beside the Hamiltonian (or Jacobi) integral 
(Contopoulos 1983). 

Gas flows in barred systems are particularly interesting for 
the studies of the long-term evolution of barred galaxies. Since 
iV-body bars are essentially stable over a Hubble time, dissi- 
pative effects due to the gas may alter this stability over a 
shorter time scale. Earlier studies (see Prendergast 1983) have 
shown that significant gas flows and associated mass transfer 
can be achieved; this may indicate the possibility of long-term 
evolution along the Hubble sequence. A number of numerical 
experiments suggest that when a galaxy develops a bar, some 

fraction of its gas accretes rapidly into the center (e.g., Roberts, 
Huntley, and van Albada 1979; van Albada and Roberts 1981 ; 
Schwarz 1981; Athanassoula 1989), though the effect of star 
formation has been often neglected. In addition, it has been 
suggested many times that the observed activity in the nuclei of 
disk galaxies is correlated with the presence of a bar or oval 
distortion (Adams 1977; Simkin, Su, and Schwarz 1980; Shlos- 
man, Frank, and Begelman 1989; Phinney 1990), and the pre- 
sumed reason for this is the build-up and fueling of a large 
mass concentration in the nucleus as a consequence of the 
overall gas inflow. NGC 1068 is a relevant example here with 
its central active nucleus, its inner bar, and its population of 
orbiting molecular gas clouds in the environment of the bar 
(Scoville et al 1988). 

We have undertaken to study a system with the typical 
properties described above. Our aim is to understand the 
dynamics of the central regions of a barred galaxy with a 
central mass concentration such as a black hole. Clouds are 
modeled as orbiting points with some degree of dissipation and 
drag. This latter assumption requires some justification. Mod- 
eling the interstellar gas is not a trivial task (Combes and Gerin 
1985). Considering its different phases (Spitzer 1978; McKee 
and Ostriker 1977; Norman and Ikeuchi 1989), which imply 
widely different time scales, its ability to transform itself into 
stars and vice versa, its dumpiness and turbulent behavior 
(Scalo 1987), a continuous representation of the gas entailed by 
using the Navier-Stokes equations is not obviously more justi- 
fied than a discrete representation using sticky particles. In 
order to show which physics is relevant, it is necessary to make 
simplified models mimicking the physical properties that we 
wish to elucidate. 
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First, we can reasonably assume that the gas is not normally 
gravitationally dominant, which allows us to neglect self- 
gravitation in most cases. Second, the dissipation time scale 
has to be generally long with respect to the local orbital rota- 
tion time; otherwise, gas would not be observed to move for 
many turns on circular orbits, as in disk galaxies, or on oval 
orbits, as in SB galaxies with rings. Third, a further simplifying 
aspect is that the dumpiness of the interstellar gas suggests a 
representation by a collection of weakly interacting particles, 
instead of a continuum. Inferred cloud lifetimes are short, of 
the order of 107 yr (Vogel, Kulkarni, and Scoville 1988), and 
therefore when we speak about a cloud here orbiting many 
turns, it is a succession of hypothetical clouds that have been 
formed and destroyed many times but that follow the orbit of a 
canonical nonevolving cloud having the properties of a slightly 
dissipative, ballistically orbiting particle. In summary, the 
physical conditions in the interstellar medium are such that the 
total energy density of all the energy types susceptible to inter- 
act is generally dominated by the gravitational and rotational 
kinetic energy; the Navier-Stokes equations can be viewed 
then as a dissipative perturbation of the equations of collision- 
less stellar dynamics. 

Therefore, as an initial approach to study the essential 
physics, we assume that the problem can be reduced to describ- 
ing the motion of weakly dissipative test particles, with various 
friction laws, in different barred galaxy potentials. This kind of 
system belongs to the class of dissipative systems in the limit of 
vanishingly small dissipation, close to the well-studied systems 
obeying purely Hamiltonian mechanics. In this way, we can 
examine the primary physical factors which control how and 
why gas accretes in bars, without being distracted by further 
complications such as collective or self-gravitational effects, or 
star formation. Also, we can check if the specific way in which 
dissipation occurs is crucial or not. 

We show how this generic combination of possibly chaotic 
orbits with dissipation leads to two important related effects. 
First, the inward flow of gas is greatly enhanced in the regions 
associated with broad resonance regions formed by the central 
mass concentration and bar interaction. Second, the central 
mass concentration broadens the region over which orbital 
energy can be pumped into the stellar orbits in the vertical 
region. The dissipation allows particles initially located in the 
disk to explore a large volume of phase space and to penetrate 
into resonant regions. In this way, significant heating of the 
disk up into thç bulge can occur. 

In this paper it is useful to comment on some general 
properties of weakly dissipative, almost Hamiltonian systems 
(§ II) showing how the effects of a weak dissipation may be 
amplified in a resonance region. In § III the orbit analysis is 
done for a singly barred potential and in § IV for a doubly 
barred potential. In § V we discuss in detail the astrophysical 
implications and give a summary and conclusions in § VI. 

II. WEAKLY DISSIPATIVE SYSTEMS 

a) General Properties of Dissipative Systems 
In the broadest meaning, dissipation in dynamical systems 

corresponds to the contraction of phase space volumes with 
time. Energy dissipation is a particular but common case. In 
general coordinates, qh qi9 i = 1, ... N, where N is the number 
of degrees of freedom of the system, the forces in the system can 
be split into conservative and dissipative forces. The conserva- 
tive forces derive from a potential V, and can be inserted into a 
Lagrangian L^., ^ = T(qh q^ - V(qi9 q¡)9 where T is the 
kinetic energy. We describe the nonconservative forces by 
FMh <li\ J = 1» • • • N. In the next sections, they will be sup- 
posed to be proportional to a small and positive constant y. 
The corresponding Lagrange’s equations of motion read 
(Goldstein 1971,§§I-V), 

By the Legendre transformation, 
N 

H(q¡, Pi) = X Piili - Uqt, qt), 
i=l 

where Pi = dL/dqi9 we obtain the Hamiltonian H. The equa- 
tions of motion in canonical coordinates, qi9 pi9 become, 

Pi = 
dH i-» 

i = 19 ... N . (2) 

We recognize Hamilton’s equation with the additional dissi- 
pative terms Ff. By differentiating H with respect to the time, 
and using equation (2), we obtain that if all the friction forces 
Fi have a sign opposed to the respective velocities qi9 then H is 
a monotonically decreasing function of time, 

H(qt, Pi) = Pi 
N 
1 Fiqi<0. (3) 

This inequality is not necessarily true when H is an explicit 
function of time, H = H(qi9 pi9 t)9 as in § IV. 

Linearizing equation (2) around a given solution q^t), pt{t)9 
we get the linear differential equations for the variations ôqi9 

àPi, 

öqt = 

ôpi = 

ií, / d2H ' d2H ' , 
(ir^^j + Tnràpj)’ ' = j=1\dpidqJ dp¡ dpj 11 

" ( s ô2h s 

Wqj + Sqidpj Pj 

" fdF¡ c dFi „ \ 

 "■ 

(4) 

In this section we consider the general properties of slightly 
dissipative, almost Hamiltonian systems. For a perceptive 
review, see Schmidt (1987). This limiting case is important in 
general because natural systems frequently have some weak 
dissipation that limits the time over which the Hamiltonian 
system description is applicable. Galaxies are in a first approx- 
imation dissipationless over many rotation periods; however, 
over a Hubble time, dissipation, like the effect of water drip- 
ping on a stone, must be considered. 

Noting the vector of the variations Z = (ôqi9 öpi)9 we can 
rewrite this equation as 

Z = AMt), pmz 9 (5) 

where A is the 2N x 2N matrix containing the derivatives 
of the right-hand side of equation (4). The Wronskian 
W^q^t), p^ty] of this linear system of differential equations, the 
determinant of A, expresses the evolution of a small phase 
space volume around the solution q(t)9 p(t) (Arnold 1974, § 28). 
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Its rate of change is the trace of A. We obtain, 

1 dW ^ dFj 
w dt - ¿ ôPi ' (6) 

As expected, the conservative part containing H has disap- 
peared. If the Fi are proportional to a constant y, then the rate 
of contraction of phase space volumes is also proportional to y. 
A general property is that the frictional forces have to 
depend on the respective momenta for leading to dissi- 
pational effects. For the particular case that each Ft depends 
only linearly on ph then the rate of contraction din W/dt is a 
constant along any orbit. Liouville’s theorem is a particular 
case for which the rate of contraction vanishes. Such dissi- 
pative terms that are linear in the momenta are rather special, 
and without additional physical motivation one should adopt 
more general forms in order to get generic results. 

b) Phase Space Structure 

The phase space structure of dissipative systems is radically 
different from that of Hamiltonian systems, which is known to 
be made up principally by quasi-periodic and chaotic orbits. 
As soon as some dissipation is introduced, most of the quasi- 
periodic and chaotic orbits of a Hamiltonian system are 
destroyed. In the long time limit, the trajectories of bounded 
dissipative systems approach a small number of asymptotic 
orbits called attractors that have only three generic types. In 
phase space, attractors may be either fixed points, limit cycles 
corresponding to periodic motion, or strange attractors which 
are particular invariant chaotic orbits with a fractal dimen- 
sionality (see, e.g., Lichtenberg and Lieberman 1983, hereafter 
LL; Schmidt 1987). Fixed points in the weakly dissipative case 
correspond to stable fixed points in the Hamiltonian limit, 
whereas limit cycles correspond to particular degenerate stable 
quasi-periodic orbits (as, e.g., in Pfenniger 1985). The precise 
Hamiltonian limit of strange attractors has been considered 
only recently (Chen, Györgyi, and Schmidt 1986, 1987; 
Schmidt 1987). Apparently, by a cascade of bifurcations, these 
attractors dissolve into an infinity of pieces as the Hamiltonian 
limit is reached.1 Strange attractors need at least three phase 
space variables. So, in the long time limit, sufficiently simple 
systems, i.e., systems which can be decomposed locally into 
subsystems of dimension two or less, tend to either fixed points 
or limit cycles, or eventually combinations of these. Orbits in 
dissipative systems without strange attractors exhibit a regular 
behavior after sufficiently long time. In some cases, one can 
rule out the existence of strange attractors because the dissi- 
pative process monotonically decreases the energy toward a 
simple minimum, that is, typically a fixed point or a periodic 
orbit. 

Many nearly integrable physical systems perturbed by a 
weak dissipation tend to spend a long time in the quasi- 

1 If Jn < 1 is the value of the Jacobian of the transformation matrix associ- 
ated with the motion (a Poincaré surface of section) at which a strange attrac- 
tor made up by 2" pieces bifurcate into a 2"+ Apiece attractor, then, as 
dissipation is decreased, the Jn accumulate onto the Hamiltonian value Jœ = 
1, and a universal law holds, 

= 2, 

(Chen, Györgyi, and Schmidt 1986, 1987). The eigenvalue 2 is a universal 
number, distinct from the Feigenbaum numbers 4.67 ... and 8.72 .... 

periodic or regular regime and a relatively short time in the 
chaotic regime. This has been beautifully illustrated by studies 
of binary stars (Savonije and Papaloizou 1984) or planetary 
satellites (Wisdom 1987) undergoing tidal friction. The passage 
through resonances, where motion is chaotic, is rapid, and 
most of the time is spent in the quasi-periodic state. 

Our understanding of the physics of the dissipative orbits 
considered in this paper is based on two observations. First, a 
chaotic region is essentially filled with many resonance regions 
(frequently of high order) threaded by chaotic orbits (see LL, 
Fig. 3.5). Second, studies of dissipative systems in one space 
dimension, which are integrable, show that when crossing a 
resonance, the relevant action decreases with a discontinuous 
jump (Parson 1986). In terms of the action, a quantity which is 
well defined only in the regular regions, such a resonance 
crossing can be characterized by an increase in the rate of 
action decay. In simple dissipative oscillators, the equivalent 
statement is that energy is lost faster at resonances. The same is 
true for other actions. This resonance jumping phenomenon 
implies that less time is needed to cross chaotic multiresonant 
regions of phase space similar to those encountered in § III. 
Particles will spend relatively more time in regular regions. 
This is the main reason that dissipative orbits in nearly integra- 
ble systems are seen more often in regular regions; it is not 
merely that in such systems chaotic regions are rarer than the 
regular ones. 

General systems are not integrable, and dissipation laws 
have rarely the simplifying property to be linear in the 
momenta. However, we expect that in the weakly dissipative 
limit, most of the behavior will remain similar to the Hamilto- 
nian case for a limited time. The time scales to compare are the 
time to cross a resonance of a given width and the orbital time. 
If, in one turn, an orbit dissipates sufficiently to cross a reson- 
ance, clearly the resonance will have no effect. The higher the 
order of the resonance is, the narrower it is, and the weaker the 
dissipation has to be in order that an orbit can feel the reson- 
ance. Typically, around a resonance, phase space, as viewed in 
a Poincaré surface of section, is made up by a series of regular 
islands separated by a chaotic layer. If a slight dissipation is 
then applied, an initial orbit in the chaotic region is either 
trapped by islands, in which case the motion is ultimately 
periodic or remains chaotic by being trapped by a strange 
attractor. Numerical experiments show (e.g., Schmidt 1987) 
that when dissipation is sufficiently weak, strange attractors 
catch exceedingly few orbits, since these attractors dissolve 
before the Hamiltonian limit is achieved. Also, the larger the 
islands, the larger is their probability to attract trajectories. 
High-order resonances of small width are wiped out. Assuming 
a uniform rate of contraction of phase space across a reson- 
ance, and noting that the width of the chaotic region at the 
resonance is reduced by the presence of the islands, the phase 
space flow crossing the resonance must proceed faster across 
the gaps left between the islands. One can picture the reson- 
ance crossing by a fluid in a pipe which is forced to pass 
through a region occupied by slightly porous stones of various 
sizes. The velocity of the flow far from the stone region rep- 
resents the rate of dissipation far from the resonance. By con- 
tinuity, the flow has to speed up around the stones. The larger 
the dissipation rate or the smaller the islands, the more porous 
the islands become, up to the point that they do not block the 
flow at all. A given dissipation rate can erase resonances of 
higher order, while the lower order ones continue to act to 
increase locally the rate of action loss. 
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c) One-dimensional Time-dependent Dissipative Pendulum 
We now give a concrete illustrative example of the phenome- 

non of resonance jumping. The crossing of a resonance due to 
a weak dissipation is studied here by a simple model of a 
one-dimensional pendulum. This model is relevant here 
because the phase space of the pendulum is known to charac- 
terize typical resonances (see LL, § 1.3). The phase space of a 
conservative pendulum is generated by the equations of 
motion, 

x = v , 
. , (7) v — — sin 2nx , 

and is everywhere regular because it is time-independent. 
Phase space is periodic in x with an interval Ax = 1. Figure 1 
shows a surface of section (x, v) at constant time intervals 
At = 1. It represents a small region of the typical phase space 
around a high-order resonance inside a much larger island, for 
which the curvature of the chain of small islands is negligible. 
The chain of islands can then be unfolded and the topology of 
the pendulum’s phase space is obtained. The width of the res- 
onance is given by the amplitude in v which keeps the motion 
oscillating (Av « ±0.8 in Fig. 1). 

Normally, typical resonances have a chaotic layer around 
them. Chaotic motion is introduced by a time-dependent 
modulation of the natural frequency of the pendulum. Time 
dependence extends phase space by two dimensions (LL, 
§ 1.2b). In a usual pendulum, this could be achieved, e.g., by 
modulating either the length of the pendulum or the strength 
of the gravity field. Choosing a simple modulation law of 
period 1, the equations of motion become 

x = v , 
(8) 

t? = — (1 + € cos 2nt) sin 2nx . 

For a small € a stochastic layer develops around the separatrix 
between oscillating and librating motion (Fig. 2). 

Dissipation is introduced by a dependence on v in the equa- 
tion of motion. In order to simulate a resonance crossing, the 

Fig. 1.—Surface of section (x, v) of the unperturbed pendulum showing a 
regular phase space separated into a librating (top and bottom) and oscillating 
(middle) regions. The limit curve between the two types of motion is the 
separatrix. 

Fig. 2.—Surface of section (x, t;) of the pendulum with a time-dependent 
perturbation (e = 0.1). A stochastic layer develops around the separatrix, and 
new islands appear at x = 0, i; = ±1, due to the time-dependent perturbation. 

friction should not vanish when p = 0. We have retained the 
following nonlinear friction law: 

^fric = -y\v~ V0\(V - V0) , (9) 
where v0 and y are constants. The constant v0 corresponds to 
the velocity v at which friction vanishes and has the effect, 
when negative, of tending to pull orbits starting at large posi- 
tive v across the resonance at p = 0. The positive constant y is 
the friction coefficient. The final equation of motion reads 

x = p , 

p = —(1 + e cos 2nt) sin 2nx — y\v — v0\(v — v0). (10) 

The rate of contraction of phase space volume reads (eq. [4] 
and [6]), 

— = -2y|p - p0| , (11) 

so is proportional to y and is negative, but vanishes at p = p0. 
We have run many orbits starting at p > 1 and crossing the 

resonance at p = 0 with different initial conditions and sets of 
parameters. A typical orbit representing a weakly dissipative 
and slightly nonintegrable case is shown in Figure 3. This orbit 
starts at the top of the surface of section (x, p) and slowly sinks 
to the bottom, crossing the resonance region. The big regular 
island region is clearly avoided by the orbit. The time-averaged 
velocity <p>, averaged here over 50 periods, is closely related to 
the action outside the resonance, in the region of rotation. 
Figure 4 shows that the velocity drops abruptly at the reso- 
nance. 

In more general systems, such as those discussed below, 
major resonances are surrounded by numerous higher order 
resonances. Each crossing of a high-order resonance will be 
associated with similar jumps, the amplitudes of which are 
proportional to the corresponding resonance widths. The rate 
of action loss will be significantly accelerated in nonintegrable 
systems which have a high density of resonances of various 
orders. 

However, if the system is sufficiently chaotic and dissipative, 
orbits may be caught by a strange attractor, in which case the 
resonance is never crossed, the orbits jumps back and forth 
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Fig. 3.—Surface of section (x, v) of the pendulum with both time-dependent 
and dissipative perturbations (e = 0.001, y = 0.00001, v0= —10). Contrary to 
the two previous figures, only one orbit is plotted here, which, due to dissi- 
pation, explores phase space. It starts at the top(x0 = 0.4, v0 = 1.5) and ends at 
the bottom, avoiding the large central island. Note the two comet-like series of 
points at r = +1 ; they are produced by new small bent islands coming from 
the time-dependent and dissipative perturbations. 

across the resonance erratically. Such a case is shown in Fig. 5. 
In § III strange attractors are ruled out because H decreases 
monotonically (cf. eq. [3]), while in § IV, they are a priori 
possible, and indeed found. 

III. DISSIPATION IN A BARRED POTENTIAL 

a) Bar Model and Orbits 
We illustrate the preceding general considerations by com- 

puting the orbital decay rate of slightly dissipative single par- 
ticles, representing idealized gas clouds, onto a central mass, in 
the three-dimensional barred galaxy model used in earlier 
studies (P84; Pfenniger 1984h, 1985). The potential is made up 
of an axisymmetric potential Omn(R, z) (Miyamoto and Nagai 

Fig. 4.—Decay of the average velocity (v} of the orbit in Fig. 3 as a 
function of time t. Note the abrupt jump through the resonance at <t>> = 0. 
The two bumps at <t;> = +1 are due to the new small bent islands visible in 
Fig. 3. The velocity average is taken over 50 time units, which somewhat 
decreases the effective slope of the jump around t ä 890. 

Fig. 5.—Decay of the average velocity of an orbit in a strongly chaotic 
regime (e = 1). Instead of jumping through the resonance as in Fig. 4, it is 
apparently locked by a strange attractor. 

1975; Binney and Tremaine 1987, hereafter BT, p. 43) rep- 
resenting a disk-spheroid component of horizontal scale length 
A + B, vertical scale-height B and mass MD, 

®mn(K, z) = 
GMd 

s/r2 + (A + + z2)2 ’ 
(12) 

with A = 3, B = 1, GMd = 0.9, R2 = x2 + y2, and a triaxial 
n = 2 Ferrers bar (Ferrers 1877; P84) of semiaxes a, b, and c, 
and mass MB, the density of which is 

p(x, y, z) = 
105Mb 
32nabc 

(1 — m2)2 , for m < 1 , 

= 0, otherwise , 
(13) 

where 

x2 v2 z2 

m2 = -7 + fr + -7, and a = 6,b = 1.5, c = 0.6, MB = 0.1 . 
a b c 

(14) 

The bar corotation radius Rcr is located at the bar end (Rcr = 
a). The associated bar rotation frequency Qb = 0.05471 corre- 
sponds to a bar rotation period of about 115. In this section, a 
small Plummer sphere of mass Mbh and radius Rbh = 0.01, 
representing a dense mass condensation is also put at the 
center. The length unit can be chosen conveniently to be the 
kpc, and the time unit, the Myr. 

The method is straightforward. We integrate numerically 
orbits starting at rest in the rotating frame of the bar close to 
the Lagrangian points (near the end of the bar) for various 
dissipation laws. We use a th-8th order Runge-Kutta-Fehlberg 
integrator with adaptative time step and 16 digit arithmetic, 
which ensures that numerical errors are kept to a minimum, 
contrary to what is feasible, for instance, in V-body type codes. 
The value of the Hamiltonian at and at zero velocity corre- 
sponds to the highest value for which the orbits are necessarily 
bounded and decay toward the center. The initial position in z 
is chosen to be slightly above the galactic plane (20 pc) in order 
to observe the effects of vertical instabilities. As long as dissi- 
pation is weak, the orbits slowly visit the basin of attraction 
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made by the bar potential and are influenced successively by 
the different orbit families described in the conservative case 
(P84). We deliberately choose a dissipation rate that is much 
lower than any plausible one in order to let the particles 
explore in detail the basin of attraction. The integration is 
stopped either when the time t amounts to 125,000 (about 10 
Hubble times), or when the orbit is confined inside the central 
Plummer sphere. The orbit coordinates are sampled at regular 
time intervals Ai = 25, which has been fixed by the available 
mass storage capacity. 

The dissipation laws that have been considered include 
dynamical friction (BT, eq. [7-17]), friction laws proportional 
to vn

9 n > 19 where v is the velocity in the rotating frame, and 
more complicated laws depending on the projection of the 
velocity vector parallel and/or perpendicular to the effective 
potential. All these laws dissipate kinetic energy in the rotating 
frame, without special constraints, such as, for example, the 
conservation of angular momentum, since such quantities are 
not conserved in barred potentials anyway. Since the condi- 
tions of inequality (3) are fulfilled, i/ is a decreasing function of 
time. As a consequence, in all the cases considered the orbits 
converge toward the only attractor existing in this potential, 
namely the center.2 The results have been verified to be qualita- 
tively independent of the dissipation law, as long as dissipation is 
everywhere weak, i.e., much slower than the local orbital period. 
This is not surprising since weak dissipation does not change 
either the attractors of the system or substantially alter the 
structure of the basins of attraction. In the following, we there- 
fore display only the orbits having a friction force ^fric tangent 
to v and proportional to v2, 

*fric = - JW , (15) 

where v is the velocity in the rotating frame of the bar, and y a 
small constant. In terms of canonical coordinates px, py, and pz, 
we have, v = (px + Qby, py — Qb x, pz). The rate of contraction 
of phase space volume becomes (eq. [6]) 

W 
— =-4yv. (16) 

If y were to be a function of the total local density, then the 
assumption of weak dissipation would be invalid in the central 
regions, not only because the density is high there, but also 
because the local orbital period is short. On the contrary, as is 
easily checked, the velocity range does not vary much in most 
of the region that we are examining. 

b) Unperturbed Case 
We first consider the unperturbed case without a central 

mass concentration (Mbh = 0). The orbital decay time is 
directly dependent on the actual assumed dissipation param- 
eter y, which is presently far from being known accurately. 
Figure 6 shows that the decay of H as a function of yt is nearly 
the same for different y. The total decay time is therefore not 
particularly physically relevant, in particular whilst a satisfying 
representation of y is not available. However, the ratios of the 

2 In fact the Lagrangian points L4 and L5 can also be attractors, if stable, 
for particles with an initial H larger than the value of H at L4 5 at zero velocity. 
However, due to their associated high energy, these points do not belong to the 
part of phase space which is bounded by the Jacobi integral, and, as suggested 
by N-body simulations, in self-consistent barred galaxies these points could 
well be only marginally stable in the conservative case, i.e. no longer attractors 
in the dissipative case (Pfenniger 1990). 

7t 
Fig. 6.—Initial decay of H as a function of yt in the potential of § III, 

without central mass concentration, but different y’s. The average slopes of 
H(yt) are globally similar. The curves with the larger oscillations correspond to 
the larger y’s. Note the similarity of the curves, a factor of 4 of magnification of 
y produces similar but 4 times larger oscillations. 

orbital decay times of the perturbed and unperturbed prob- 
lems indicate the relative increase of the inflow rate when the 
central mass is increased. We have retained a very weak dissi- 
pation relative to the galactic time-scale (y = 0.0005), allowing 
the orbits sufficient time to explore in detail the basin of attrac- 
tion. Without the central mass concentration, the dissipation 
time-scale needed to reach the very central region amounts to 
typically 10 Hubble times, or 1000 bar rotation periods. 

In Figures la, lb, and 1c {top frames), the radius R, the height 
I z I, and the Hamiltonian value H for the case without a central 
mass are plotted as a function of time t. The positions of major 
axisymmetric horizontal and vertical resonances for direct cir- 
cular orbits are indicated, 

Q — Qb 
n — 

n-Qb 
n, m = 2, 3, (17) 

where Ü is the circular orbit frequency, k and v the radial and 
vertical epicyclic frequencies. The frequencies Q, k, and v are 
computed in the azimuthally averaged potential. The axisym- 
metric resonances correspond only approximately to the 
actual orbit resonances in the barred potential, because the bar 
perturbation is substantial, and some periodic orbit families 
are sometimes far from circular. For m or n small integers, a 
faster radial decay, or rapid vertical excursion respectively is 
apparent in Figure 7. At the beginning of the integration, the 
orbit is temporarily attracted toward a family of stable period- 
ic orbits, which, just inside the corotation radius, is the 4/1 
family (family O in P84). It follows this family in the sense of 
decreasing H until the family ceases to exist at the next large 
resonance, the m = 4 one. It enters then a chaotic region 
associated with this and other resonances, where it decays 
faster, both in the R(t) and H(t) curves. This is especially visible 
in the H(t) curve, which presents a corner at the transition. 
Since H decays monotonically, strange attractors are ruled out. 
As expected from the discussion in § II, the decay is especially 
fast in the region of resonances. Figure 8 shows a magnification 
of the curve H(t) in this chaotic region. At sufficient magnifi- 
cation, it is apparent that the curve is not smooth, though 
monotonically decreasing, but made of numerous small steps 
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Fig. 8.—Magnification of the curve H(t) as the particle leaves the regular 
4/1 oval orbit family on the left and enters, at i > 8400, into a large chaotic 
region. The curve in the chaotic region is steeper than in the regular region, 
and shows numerous steps corresponding to high order resonances. 

or oscillations (see also Fig. 6), corresponding to the crossing of 
high-order resonances. This explains why the orbit moves 
quickly through this chaotic region. After it reaches the zone of 
the regular quasi-periodic orbits supporting the bar (family B 
in P84), its orbital radius decays much more slowly. When the 
orbital period is comparable to the sampling interval one 
observes a slowing down of the oscillations in Figure 7, due to 
beats between the orbital frequency and the sampling fre- 
quency. Such an aliasing is physically irrelevant; only the 
average radius is interesting. The motion in the vertical direc- 
tion is slightly amplified at i « 10,000 due to the presence of 
vertical instabilities of this barred system associated with the 
n = 4 ultraharmonic resonance (UHR) and higher order reso- 
nances, as mentioned in P84. 

c) Effect of a Central Mass Concentration 
Next, we examine how the accretion rate is modified by 

different central point masses Mbh. In general, a peak of 
density at the center produces both horizontal and vertical res- 
onances in the epicyclic motions. This is illustrated in Figure 9 
which shows that even if the barred system without a central 
singularity has no ILR, a central point mass creates ILRs and 
higher order resonances, both horizontally and vertically. The 
radii of resonances increase as the central point mass grows. 
Figure 10 shows the radii of the horizontal and vertical reso- 
nances in different Miyamoto-Nagai disks with a point mass at 
the center and different scale heights. As the central mass 
increases, the resonance radii increase especially rapidly at 
small masses. The second effect is that the flatter the disk, the 
closer to the center are the vertical resonances. This is crucial 
for the understanding of the growth of bulgelike structures 
from flat disks, as discussed in more detail in § V. In the Appen- 
dix is shown that very general constraints such as the positivity 
of mass imply the existence of vertical resonances, both for 
direct and retrograde circular orbits in galactic disks subject to 
small nonaxisymmetric deformations. The width of resonances 
is principally determined by the amplitude of the bar pertur- 
bation. Since this perturbation is strong, the resonance widths 
are broad. Although it is difficult to estimate these widths ana- 
lytically, because they depend not only on the potential deriv- 
atives, but also on the orbit shapes, the fact is that the 
combination of a central mass concentration and the bar give 
large regions of both horizontal and/or vertical unstable 
motion associated with the broad resonance regions (see, e.g., 
Athanassoula et al. 1983, showing the effect of a singular center 
on the orbits at the horizontal ILR). 

Figure 7 displays coordinates of orbits with identical initial 
conditions to the previously discussed unperturbed case, 
showing how their dissipation rate is modified by a central 
point mass. Again, the orbits spend most of the time in the 
regions where stable periodic orbits can be found in the non- 
dissipative case. Due to the presence of new resonances, the 

R 
Fig. 9a 

Fig. 9.—Resonance diagrams of the azimuthally averaged barred potential of § III, without (solid line) and with (dashed line) a central mass concentration of 
Mbh = 0.001. Figure (a) shows the usual horizontal resonances curves Q — fc/m, m = 2, 3, ... 8 and Q as a function of galactocentric radius R, where Q is the circular 
orbit frequency and k the radial epicyclic frequency. Figure (b) shows the vertical resonances curves Q — v/n, n = 2, 3, ... 8 and Q as a function of R, where v is the 
vertical epicyclic frequency. The divergence of the central curves implying low order resonances is a general behavior (see the Appendix) due to the transition from a 
spherical potential at the center to a flattened one at large radii. 
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Fig. 10.—Dependence of the resonance radii on the horizontal {solid) and 
vertical {dashed) resonances in a Miyamoto-Nagai disk {A = 3) on the central 
point mass Mbh, as the scale height B of the disk is varied, and for a corotation 
radius Rcr = 6 typical for a bar. The respective m and n values are indicated at 
the top of the curves. Top, B = 1 ; middle, B = 0.5 ; bottom, B = 0.2. The flatter 
is the disk, the closer to the center are the low order vertical resonances. 

plunging toward the center is dramatically accelerated by the 
presence of the point mass. As argued above, the fast contrac- 
tion of the orbital radius occurs inside resonances, mainly the 
lower order ones. The approximate radii of resonances in the 
barred potential is marked in Figure 7 by the radii of the 
corresponding axisymmetric resonances of the azimuthally 
averaged model. 

The height above the plane | z | is often temporarily amplified 
by vertical resonances and the interaction with the central 
mass concentration as illustrated in Figure 7b. Figure 11 shows 
that the orbits have a very flat initial shape in the disk, due to 
the initial conditions, which subsequently becomes a more or 
less spheroidal shape for a time depending on Mbh and the 
dissipation rate. Larger central mass concentrations produce 
larger excursions in z. This can be understood simply by the 
fact that, as shown in Figure 10, the larger the central mass 
concentration, the farther out in radius are the vertical reso- 
nances, so that they are encountered when the orbits have a 
higher energy. Once a particle enters the chaotic sea, its motion 
is bounded principally by the three-dimensional energy surface 
corresponding to its present energy, shown in Figure 12. This 
figure exhibits interesting similarities with real bulges, as we 
will discuss in § V. This implies that substantial heating of the 
disk particles will occur in this region. These excursions in z are 
only temporary here because, unlike real gas clouds potentially 
forming stars, here the particles dissipate constantly and the 
final attractor is the center. 

Therefore, for a given dissipation rate in a given barred 
potential, clouds are accreting faster inside resonances, prin- 

cipally the ILR, when a central mass concentration exists 
already. Since every mass concentration at the center of a 
rotating bar produces at least one ILR, the accretion onto the 
center is self-amplifying, unless some modifications of the sce- 
nario occur. Once the clouds have crossed the ILR, they can 
accumulate onto the nearly regular circular orbits around the 
central mass and form eventually a new disk. As soon as this 
small disk is massive enough, it becomes gravitationally inde- 
pendent of the large bar and at its own scale may develop its 
own bar instability (Norman 1988). 

IV. DISSIPATION IN A POTENTIAL WITH AN INNER AND 
OUTER BAR 

a) Double Bar Model 
Bars inside bars have been frequently observed (e.g., NGC 

1291, 1543 in Jarvis et al 1988), and we now explore this more 
complicated system. If a small inner bar develops on its own 
due to a sufficiently strong self-gravity, it is more likely that it 
rotates at a completely different speed than that of the large 
bar. The large bar feels only the averaged rapidly rotating 
potential of the small one, and the small bar, if dense enough, 
feels only a slowly varying perturbation of its potential by the 
large one. In order to reduce the chaos produced by the major 
resonances, a favorable configuration is to locate the ILR of 
the large bar at the corotation radius of the small bar. Such a 
situation is still difficult to simulate by fully consistent N-body 
simulations, as the ranges in masses, lengths, and time scales 
between the bars are large (more than an order of magnitude). 
However, it is obvious that for sufficiently small, but dense 
inner bars, it must be possible to construct such systems, at 
least for some reasonably long time-scales. 

A small bar provides a mechanism for regulating the accre- 
tion of gas into the inner regions. From hydrodynamical simu- 
lations (e.g., Sanders and Tubbs 1980), a rotating bar repels gas 
outside its corotation radius. Basically, it does so because the 
effective potential, like the rim of a crater, is maximum at 
corotation. In contrast to this, Shlosman, Frank, and Begel- 
man (1989) assume that a small bar increases the accretion rate 
through the corotation radius. The problem is to cross corota- 
tion and to enter the region where the bar can sweep the gas 
inward. This may occur when sufficient mass is accumulated 
outside corotation, it becomes progressively more self- 
gravitating, and our simplified treatment of the dynamics less 
valid. At some point, the gas self-gravitation can dominate the 
dynamics and allow crossing of corotation. This may lead to 
bursts of activity instead of a continuous fueling. 

We consider now the same barred potential as in the pre- 
vious section, except that the central Plummer sphere is now 
replaced by a second Ferrers bar, much smaller than the large 
one, and rotating in the same direction. The corotation of the 
inner bar is close to the ILR of the large bar. The mass of the 
small bar and all its linear dimensions amount to 10% of those 
of the large bar. The small bar rotation frequency is about 5.86 
times higher than that of the main bar; thus, they are not 
commensurable. The small bar introduces a periodic time 
dependence in the reference frame of the main bar which 
destroys the strict Jacobi integral H. 

b) Attractors 
Again we consider the same kind of weakly dissipative orbits 

and look for their attractors, starting, as before, at rest near the 
Lagrangian points Lx of the main bar. The initial phase differ- 
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DISSIPATION IN BARRED GALAXIES 401 

Fig. 12.—Zero-velocity contour lines, or the effective potential Oeff(Æ, z) = 
Q(R, z) — R2 (solid lines) corresponding to the barred galaxy potential of 
§ III, in the meridional plane (x, z) at y = 0. In other meridional planes, the 
figure would look nearly the same. Orbits are confined only by the oval zero- 
velocity surfaces passing inside the corotation radius around x = 6.12, z = 0. 
Note the similarities of these curves with real bulges. Outside corotation, the 
zero-velocity curves do not confine orbits, but the bar perturbation decreases, 
and at least near the galactic plane the potential tends to be separable. The 
lines orthogonal to the zero-velocity curves (dashed lines) suggest the effect of a 
new quasi integral of motion there. The border between the bulge and thick 
disk would be determined by the bar corotation radius. 

ence of the two bars is set arbitrarily to zero. This has no 
consequence for the orbits, as their starting point, near the 
Lagrangian point Li of the large bar, is far from the small bar, 
and the arrival time in the region of influence of the small bar is 
practically random. In such a time-dependent potential, the 
center is no longer necessarily the only attractor, but limit 
cycles or strange attractors are the known a priori additional 
possibilities. Due to the time dependence, the small bar can 
provide energy to the particle which eventually compensates 
the frictional losses. 

In Figure 13, the orbital radius R, the height |z|, and the 
Hamiltonian value H are plotted as a function of time t, for 
different friction coefficients y. In this experiment, the mass of 
the central component is not varied, and consequently the 
system can maintain the near coincidence of the radii of the 
outer bar ILR and the inner bar corotation radius. The varia- 
tion of y allows us to investigate the conflict between the ten- 
dency to accrete inwards and the repelling effect of the inner 
bar. For small y’s, R and | z | do not decrease the zero for very 
long times, and H fluctuates in an erratic manner. This is 
typical for a strange attractor. For y = 0.002, we obtain a limit 
cycle in the plane z = 0 with an oscillating R and nearly con- 
stant H. This oval ring is a retrograde periodic orbit, approx- 
imately 1.5-2 times larger than the small bar, but inside the 
large bar and perpendicular to its major axis. In a surface of 
section (y, j>) at x = 0, x < 0, the orbit spirals down toward the 
limit cycle, which is a point in the surface of section (Fig. 14a). 
In a frame at rest, the orbital period of this limit cycle turns out 
to be identical with the inner bar rotation period. For a limited 
range around y = 0.002, the limit cycle can coexist with strange 
attractors, both in three dimensions and in the plane z = 0. 
Figure 14b shows a surface of section of a strange attractor 
confined in the plane z = 0 coexisting with the limit cycle. 

After having computed many orbits, the conclusions are as 

follows. If the dissipation is sufficiently strong (or the bar 
strength sufficiently weak) to overcome the repulsion due to 
the small bar, the attractor is in most cases still the center. For 
a given bar strength, there exists a dissipation rate below which 
the repulsion of the small bar is effective enough to prevent 
most orbits from crossing the small bar’s corotation radius. 
They are attracted toward limit cycles or strange attractors. 
The energy and angular momentum lost by dissipation are 
supplied by the small bar. As in the single bar potential, the 
orbits can reach sufficiently large heights above the galactic 
plane (1-2 kpc) so that they fill an essentially three- 
dimensional volume, which has morphological similarities to 
the typical galactic bulges. In Figure 15, the particle positions 
are plotted at regular time intervals, showing the large excur- 
sions outside the galactic plane, the spheroidal shape of the 
strange attractors, and the oval shape of the limit cycle at 
y = 0.002. 

As we have not explored fully the phase space and parameter 
space of this time-dependent system, attractors other than 
those described here can exist. We do not expect further fixed 
points, but other limit cycles or strange attractors are likely. 
These qualitative results are exploratory and would need 
further investigations. With the adopted bar mass and axis 
ratios, the longest dissipation time scale Tdiss ~ y_1 necessary 
to overcome the inner bar repulsion amounts to about 103, or 
of order of 9 outer bar rotation periods. If the actual dissi- 
pation time scale of the galactic gas is larger or smaller than 
this critical value, its behavior in the central regions would be 
very different. 

V. ASTROPHYSICAL IMPLICATIONS 

From the previous orbit calculations, two principal implica- 
tions for the evolution of the central regions of galaxies have 
been found: (1) the radial inflow of mass to the central regions 
and (2) the vertical disk heating phenomenon that may lead to 
bulge building. The basic physical phenomenon responsible for 
the behavior described here is the association of resonances 
and weak dissipation. The generality of the physical laws con- 
sidered means that many more situations of astrophysical 
interest could be relevant. For example, in any axisymmetric 
galaxy with a central peak of density, nearly all non- 
axisymmetric perturbations will broaden the resonances near 
the center. Bars are especially strong and frequent perturbers, 
but other factors such as spiral arms or satellites should also 
contribute to similar evolutionary effects as described below. A 
different example could be a triaxial elliptical galaxy which 
would have a nearly integrable potential. A central peak of 
density, as examined in Pfenniger and de Zeeuw (1989), would 
also be a resonance broadening perturbation and act to 
enhance the effect of dissipation. 

a) Mass Inflow 
First, a rapid inflow of gas clouds in systems with bars and 

central mass concentration can occur. This follows from the 
unavoidable presence of low-order resonances throughout the 
region inside the bar. These resonances are caused by the pres- 
ence of the central mass concentration and are broadened by 
the strong bar perturbation. As seen in the calculations of §§ III 
and IV, the radial accretion rate is boosted inside the reso- 
nances. This process tends to build up the central mass concen- 
tration and increases the radial extent of the resonance region. 
This will increase the mass that can rapidly accrete and indi- 
cates a self-amplifying process, which may lead possibly to a 
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Fig. 13.—(a) Radius R, (b) height | z |, and (c) Hamiltonian value H of tu orbit in the potential with outer and inner bars, for different friction coefficients y. In 
contradistinction to Fig. 7, we observe that in many cases (y < 0.0015), the orbits do not decay to the center, but its coordinates fluctuate in a quasi-stationary 
fashion, tracing a strange attractor. In the case y = 0.002, the coordinates tend toward a regular behavior corresponding to an oval limit cycle. 
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starburst or AGN phase in the central regions. The process can 
end when the gas supply is exhausted due to star formation or 
expelled from the central regions due to energy input from the 
starburst or AGN. 

This analysis is based on studying orbits of clouds which can 
characterize the flow of a multicomponent and turbulent 

medium such as the ISM. More realistic models of the gas flow 
incorporate the possibility of shocks that are clearly seen in 
gas-rich galaxies and simulations (Roberts, Huntley, and van 
Albada 1979; van Albada and Sanders 1982; Athanassoula 
1989). The viewpoint taken here is that such shocks merely 
increase the dissipation in the domain where the clouds 

Fig. 14a 
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Fig. 14b 
Fig. 14.—(a) Two-dimensional projection (y, j>) of a Poincaré section at x = 0, x < 0 of an orbit converging towards a limit cycle, a point, (b) Surface of section 

(y, ÿ) at x = 0, x < 0, z = 0, z = 0 of the limit cycle (large dot) coexisting with a strange attractor (cloud of points). 
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encounter them. As the mean-free path shortens and pressure 
forces begin to dominate the motion, our simplified description 
will break down. The only way to analyze this is with realistic 
simulations of the gas which are beyond the scope of this 
paper. Clearly, however, this approximation still holds while 
clouds have slightly dragged orbits between shocks. A review 
of such previously calculated simulations (e.g., Roberts, 
Huntley, and van Albada 1979; van Albada and Sanders 1982) 
shows that the fluid elements still approximately follow purely 
gravitational orbits between shocks, essentially because the 
local energy density associated with the gas pressure is still an 
order of magnitude smaller than the gravitational energy. 
Another refinement is to consider realistic equations of state, 
including an accurate representation of the cooling and 
heating mechanisms. But such complications, which in any 
case can not yet be properly simulated because the collapse 
time scale associated with the cold gas component is much too 
short with respect to the orbital time, will not help us to eluci- 
date the primary factors which determine the global gas flow. 
A conclusion of Hernquist (1989), using a sophisticated hydro- 
dynamical code, is that his results concerning the accretion of 
gas in a spiral galaxy are in good agreement with the ones of 
Carlberg and Freedman (1985), who used a much simpler dis- 
crete cloud method. This confirms that the global gasdynamics 
in galaxies is, in first order, only weakly sensitive to its detailed 
dissipative properties, essentially because the energy density in 
the gas pressure is lower than the gravitational and kinetic 
energy densities, typically by an order of magnitude. 

We have seen that an inner bar may repel clouds moving in 
from the outer bar to form a ring structure outside its corota- 
tion radius. This is consistent with previous simulations of gas 
flow in bars, which repel gas outside corotation, and is also 
consistent with the sense of angular momentum transfer by 
nonaxisymmetric perturbations (Lynden-Bell and Kalnajs 
1972; Schwarz 1981). A massive central ring or torus around 
the inner bar may be formed in this way. As the gas dissipates, 
the inner bar clearly must supply energy and gas angular 
momentum to the torus. As the mass of this torus builds up, its 
own self-gravity will begin to dominate the local dynamics, and 
our simplified description will break down. 

b) Disk Heating and Bulge Formation 
The second principal astrophysical implication is that at 

least a significant component of bulges can form from the 
disk heating due to vertical resonances broadened by non- 
axisymmetric perturbations. In the presence of a central mass 
concentration, these vertical resonances are unavoidable in the 
central regions as shown in Figures 9 and 10 and in the Appen- 
dix. The broadening of the vertical resonances by a bar or an 
oval distortion is typically of the same importance as the 
broadening of the horizontal resonances (see P84). Central 
nonaxisymmetric distortions are frequent, since about f of disk 
galaxies are detected to be SB or SAB, and even the bulge of 
some galaxies classified S has been inferred to be triaxial 
(Gerhard, Vietri, and Kent 1989). In the extreme case that a 
disk galaxy could form without any bulge and be very flat (as 
suggested by the Sm, Sd galaxies), some slight dissipation 
would bring some mass to the center and create horizontal and 
vertical resonances. Dissipation would be also favorable for 
cooling the disk and leading to a bar instability, broadening 
the resonances. As either the central mass grows or the pattern 
speed of the bar decreases, the resonances sweep the disk 
outward and can affect a substantial fraction of it. Particles 
inside a vertical resonance region have access to the whole 

three-dimensional stochastic region, the envelope of which is 
delineated by the zero-velocity surface at a given energy as 
visible in Figures 11, 12, and 15. This heating is purely a 
dynamical effect and is not inhibited by the weak dissipation 
effects discussed here, essentially because the growth rate of the 
vertically unstable regions are larger than the dissipation rate. 

The vertical disk heating mechanism might seem to counter- 
act the radial accretion enhancement discussed before. Clouds 
lifted above the galactic plane, by accessing a new region of 
space, should see their effective collision rate strongly 
decreased, lowering their dissipation and their radial inflow. 
However, the gaseous part of clouds should still suffer 
enhanced shocks at each crossing of the galactic plane, because 
they all have to crowd near the plane periodically. This can 
contribute to limit the amplitude of their motion in z but not 
their radial inflow. On the contrary, stars formed in clouds, 
once lifted above the galactic plane, should keep their high 
amplitude of oscillation above the plane and be confined in 
their radial and vertical motions only by the Jacobi integral. 
Therefore, the disk heating in z should principally concern 
stars moving close to the plane, presumably young stars ini- 
tially formed in the clouds. In a fraction of an orbital period, 
say of order 108 yr, only stars of type A or later should remain 
observable. In recent self-consistent A-body simulations with 
gas component, Katz and Hernquist (1989) find that a bulge 
can grow spontaneously from stars formed in a gaseous disk. 

The time scale for the bulge building process is relatively 
short, of the order of the growth rates of the vertical instability 
strips, typically 10 bar rotation periods. On the other hand, it is 
a known property of gas in bar models that it can be depleted 
also in about 10 rotation periods (e.g., Roberts, Huntley, and 
van Albada 1979). It is also a known property of many gal- 
axies, including ours, to exhibit a hole of molecular gas inside 
about 5 kpc (Young 1987), corresponding to the size of a 
typical bar. So the overall aspect of a gas-rich (Sc, Sd galaxy) 
forming a bar will have changed substantially after a few 
billion years, leading to evolution along the Hubble sequence 
toward earlier types. This is consistent with the well-known 
correlation that the size of bulges is larger in early galaxy types 
than in late ones (e.g., Kormendy 1982). Another correlation is 
that the rotational velocity of early galaxy types is higher than 
in late ones (e.g., Rubin 1983). In the sequence Sc-Sa galaxy 
types, the typical rotation velocities pass from 100 to 300 km 
s-1. This can be understood, in first order, by the virial 
theorem of purely self-gravitating systems, 

£.ot = £grav + £kin = ~ ^kin > (18) 
where Etot is the total energy, Fgrav is the gravitational energy, 
and Ekin is the kinetic energy. If the initial conditions of gal- 
axies have a vanishingly small total energy (the mass of a 
protogalaxy is supposed to be extended and nearly at rest), the 
present kinetic energy amounts to the dissipated one, which is 
minus the present total energy. Clearly, the general effect of 
dissipation is to let disk galaxies evolve toward higher rotation 
velocities and central binding energies. 

In the case where an inner bar is present, a time-dependent 
energy input is added to the vertical heating of the outer bar. 
A strange attractor can develop since the energy lost by dissi- 
pation can be balanced by the time-dependent potential of the 
inner bar. This shows also that the effect of repulsion of a bar 
persists in three dimensions. Provided that the density of 
clouds is not too high, forcing them to stay in the plane by 
frequent collisions near the galactic plane, a quasi-equilibrium 
cloud distribution might take a significant vertical extent. 
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This leads to the question why are not all galaxies with 
bulges barred? The answer might lie in the same dissipational 
property which causes or helps the formation of disks, then 
bars, central mass concentrations and bulges. It would be also 
responsible for the destruction of bars by a central mass con- 
centration. Such a mechanism for the bar destruction has been 
studied recently by Norman and Hasan (1990) and Hasan and 
Norman (1990), who calculated how much mass has to be put 
at the center of a bar to destroy the main family of orbits 
supporting the bar. Their conclusion is that if the central 
region has accreted sufficient mass to produce an ILR radius 
comparable with the bar minor axis, then the elongated orbits 
supporting the bar do not exist anymore and the bar should 
dissolve, leaving a dynamically hot central part. 

This scenario has a number of significantly different predic- 
tions for stellar populations and kinematics in the bulge com- 
ponent of disk galaxies. The metallicity and stellar population 
content of bulges reflect that of their associated disks at the 
epoch when the bar heating mechanism was in operation. The 
kinematics of bulges and spheroids are more closely associated 
with rotationally supported systems than for ellipticals 
(Kormendy 1982). We suspect that merging and interactions 
can also play a significant role in building bulges and spher- 
oids. A relatively clean test of our models is to find barred Sc 
galaxies with metal-rich youngish populations in small rota- 
tionally supported bulges that have been formed by this 
process on a time scale of order a billion years or so. Such 
bulges could be dominated by A- or F-type stellar populations 
that have been formed at a high star formation rate in the disk 
and resonantly heated to form the bulge. While this scenario 
radically alters the conventional models of bulges forming first 
and consisting of old metal-deficient populations (Eggen, 
Lynden-Bell, and Sandage 1962), we have been unable to find 
any convincing evidence that rules out our model. On the 
contrary, with the discovery that the inner Galactic bulge is 
metal-rich ([Fe/H] « 0 ± 1) (Freeman 1987; Frogel 1988; 
Rich 1989), that thick disks have a continuity of properties 
with bulges (Gilmore, Wyse, and Kuijken 1988), that stellar 
bars have the colors of their bulge (Kormendy 1982), and that 
the length of bars is roughly twice the size of their bulge 
(Athanassoula and Martinet 1980), this vertical heating mecha- 
nism appears quite natural. The bulges of M31 and our Galaxy 
seem to be metal-rich ([Fe/H] > — 2) rotationally supported 
flattened systems (Mould 1986), consistent with disk heating at 
intermediate times (after globular cluster formation). In addi- 
tion, the thick disks of M31 and our Galaxy have similar 
properties to their respective bulges, and in fact, thick disks 
and bulges have more in common with each other in terms of 
both populations and kinematical properties than they do with 
the more extended, metal deficient spheroidal component 
(Wyse and Gilmore 1988). That a general disk heating occurs 
in the central regions of our Galaxy is clear from the work of 
Lewis and Freeman (1989) who find a significantly increased 
velocity dispersion toward the Galactic center in their K-giant 
sample. However, for the more extended and more massive 
spheroidal component, such as the extended globular cluster 
component, bar heating would seem to be energetically insuffi- 
cient. 

VI. SUMMARY AND CONCLUSIONS 

We have taken a highly simplified model of the gas dynamics 
of the interstellar medium and analyzed the basic effects of a 

weak dissipation in barred galaxies with central mass concen- 
trations, either a central point mass or a second small inner 
bar. The model assumes that in first order the behavior of the 
gas can be modeled by gas clouds moving on ballistic orbits 
with a dissipative drag force. The physics of this weakly dissi- 
pative, nearly Hamiltonian system has proved to be not only 
fascinating in its richness of behavior, such as exhibiting 
strange attractors etc., but has demonstrated the possibility of 
two major astrophysical consequences. The first is the rapid 
radial inflow of gas in broad resonant regions created by the 
dynamical interaction between a bar and a central mass con- 
centration. This is important for the fueling of active galaxies 
and starbursts. The second effect is that substantial vertical 
heating of the disk can enhance the bulge component of disk 
galaxies leading to such components having a significant 
content of relatively young, metal-rich, and rotationally sup- 
ported stellar populations. 

In § II we have given a general discussion of weakly dissi- 
pative systems showing that dissipation can be amplified by 
resonances and their associated stochastic regions. In the limit 
of weak dissipation, the results have been found to be qualita- 
tively independent of the dissipation law. The phenomenon of 
resonance jumping was discussed and illustrated using the 
generic model of a pendulum. A specific barred galaxy model is 
studied in § III, where it is shown that a central mass concen- 
tration in a barred galaxy creates horizontal and vertical reso- 
nances that are significantly broadened by the strong bar. As 
the large chaotic regions grow, this implies that the radial 
inflow of dissipative clouds is greatly enhanced. This is clearly 
evident in the numerical simulations (Fig. 7) and is particularly 
effective near lower order resonances such as the ILR. The 
strong radial inflow could form a new inner disk and inner bar. 
Many such possibilities can arise, and we have analyzed here 
the case of an inner bar and its interaction with an outer, larger 
bar. It is shown how clouds can be trapped in a ring, or in 
reality a torus, inside the large bar but outside the corotation 
point of the inner bar. A fascinating result here is that a strange 
attractor can form for slightly dissipative orbits of clouds in the 
time-dependent potential of the inner bar, which one cannot, in 
general, transform away in the rotating frame of the outer bar. 
In summary, radial gas flows in barred galaxies can generate a 
positive feedback mechanism where the growth of the central 
mass concentration enhances the inflow rate (due to the 
regions of broad resonances and enhanced stochasticity) 
further enhancing the central mass concentration. The end of 
this runaway process, which we associated with starbursts and 
AGNs, may occur due to the dissolution of the orbits sustain- 
ing the bar, leaving a kinematically hot inner spheroid, that 
will eventually become weakly triaxial. 

In all cases, vertical resonances in bars are strong enough to 
heat perhaps the gas but certainly the stars to heights compa- 
rable with the size of bulges. The time scale for this process to 
develop once the bar is formed is rapid, of order 10 bar rota- 
tion periods, or of order one-tenth of a Hubble time. Clearly a 
mechanism for switching off or saturating this process must 
occur, and among the various possibilities suggested here we 
include (1) dissolution of the bar by the growth of a sufficiently 
large central mass concentration, or (2) the exhaustion of the 
gas supply due to star formation, inward and outward sweep- 
ing of the gas by the bar, or (3) mass expulsion and winds due 
to the energy input from supernovae or an active galactic 
nucleus. In summary, the disk heating mechanism to form the 
bulge can be visualized as stars diffusing through the regions of 
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vertical resonances, loosing all previous constraints on their 
motion (except the Jacobi integral) which trapped them on 
islands of regular motion in phase space. Once free of the 
islands, which confined them to the disk, they can wander 
through the stochastic sea, exploring the available phase space, 
the spatial envelope of which has an approximately spheroidal 
shape. 
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APPENDIX 

RESONANCES IN TYPICAL DISK POTENTIALS 

Some general constraints on the existence of radial and vertical resonances can be deduced from simple arguments. Let 0(R, z) be 
an axisymmetric gravitational potential, and Q the rotation frequency of circular orbits in the plane z = 0,k the horizontal epicyclic 
frequency of circular orbits, and v the vertical epicyclic frequency, 

Í22 = — 
R z — 0 

K = i ^ V2 = 
z — 0 

(Al) 

For stable circular orbits, Q2, k2, and v2 have to be positive. Since the density p has to be positive too, by Poisson’s equation we have 
in the plane z = 0, 

0 < V20(R, 0) + 0>z = K2 + v2 — 2Q2 , (A2) 

or 

202 < K2 + v2 . (A3) 

Considering the convexity of galactic potentials, let us assume that the axisymmetric potential can be approximated at z = 0 locally 
by a function of the elliptic distance d, 

O = O(d), where (A4) 

and c is the local z/R potential axis ratio. By differentiation one deduces, 

Q2(R) = c2<Dzz(R, 0), or O = cv . 

The inequality (A3) becomes 

K2 > (2c2 — l)v2 . 

(A5) 

(A6) 

In a spherical potential c = 1, so Q = v, and the property k > v holds. Now, an arbitrarily flat disk has an arbitrarily large v, i.e., 
v > /c. It follows that a potential which passes from a spherical shape at some radius to a sufficiently flat shape at another radius 
must have, by continuity, jc = v at one intermediate radius at least. In some range of radii, k and v are comparable, and their 
associated resonances too. From inequality (A6) one deduces also that the equality k = v can occur only in oblate potentials (c < 1), 
and that k2 can not be negative in potentials less flattened than c = 1/21/2. Further insight can be gained by assuming that the 
axisymmetric potential Q>(d) is locally a power law of d, 

dp 

0(d) = C — , 
P 

for p # 0 , 

= Clnd , 

where C is a positive constant. For such potentials, we get, 

Q2 = CRP~2 , K2 = C(p + 2)Rp~2 , v2 

for p = 0 , 

v2o = C(p + c~2)Rp'2 . 
z — 0 

(A7) 

(A8) 

The positivity of k2 implies p > — 2, and the positivity of mass implies p > — c-2. If one assumes that the radial density gradient pR 
is negative, we get, p < 2. If furthermore one assumes that the density at constant R is maximum at z = 0, then (V20)zz < 0, which 
gives p < 2, and p > 2 — 3c-2. In short, reasonable assumptions constrain the power p and c by 

2 > p > max ( — 2, —c 2, 2 — 3c 2). (A9) 

Figure 16 shows the regions in the plane (p, c) which are excluded by the positivity of p, and /c2, and the negativity of the derivatives 
pR andpzz. 
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For a nonaxisymmetric perturbation of corotation Rcr and pattern speed Qft, normalizing C by C = Q£/R£r 2, the conditions of 
major resonances for direct circular orbits are 

K + 2 
m = =    

ÍÍ-Í2, 1 -(R/Rcr)‘-^2 ’ 

v 1/c 
n = ñ~~ñb 

= r^(R/R¿J^’ 

m, n = 0, ±1, ±2,... . (A10) 

The denominators behave both as f(x) = 1 - x1 ~p/2
9 with x = R/RCr- This function is plotted in Figure 17 for - 2 < p < 2 (solid). It 

is monotonically decreasing for each p, except for the degenerate case for the potential of an harmonic oscillator (p = 2), so m and n 
are increasing with R. This property implies that typically between the center and corotation m and n increase from their minimum 
value at the center, m0 = (p + 2)1/2 and n0 = c-1 respectively, shown in Figure 16, to +oo at corotation, and from corotation 
outward, m and n increase from — oo to 0. 

The conditions of major resonances for retrograde circular orbits are 

VP + 2 
l+ÍR/Rc*)1-'/2’ 

. . m, n = 0, ± 1, ± 2, ... . (Al 1) 
1/c 

l+ÍR/Rc*)1-'/2’ 

K 
O ~b Of, 

V 
O + Of, 

The denominators behave now both as ^(x) = 1 + x1 ~p/2, i.e., they are monotonically increasing functions. This function is plotted 
in Figure 17 for —2<p<2 (dash). A similar analysis as above shows that only resonances m, n of lower order than m0 = (p + 2)1/2 

and n0 = c~1
9 respectively, occur at some radii. If p < 2, then m < 2, and only the m = 1 resonance occurs. In many cases, c > 0.5, 

then similarly n <2 and only the n = 1 resonance occurs. This later resonance corresponds to Binney’s instability strip (Binney 
1981). 

Fig. 16 Fig. 17 
Fig. 16.—Regions in the plane (p, c) of possible gravitational spheroidal potentials which can be approximated locally by a power p of the ellipsoidal radius of 

axis ratio c. The shaded regions are excluded by the indicated constraints. The curve k = v is also indicated. The dashed linesm0 = 1, 2 andn0 = 1, 2,... are the 
resonant values extrapolated at R = 0, i.e., they correspond to m0 = (p + 2)1/2 and n0 = c_1. The potentials of harmonic oscillators, along the line p = 2, are 
especially degenerate, because the resonance lines no>0 exist only on the left side. Kepler’s potential is located at p = -1, c = 1, at the intersection of the curves 
p = 0,k = v, pzz = 0, m0 = 1, and n0 = 1. Typical disk galaxy potentials are often located in the region p « 0, c < 1 which have flat rotation curves. The flatter the 
disks are (c 1), the more crowded are the vertical resonances. 

Fig. 17.—Functions/(x) = 1 - x1_p/2 {solid) and g{x) = 1 + x1-p/2 {dash) for different values of p, p = -2, -1.5, ... 2. The case p = 2, the potential of a 
harmonic oscillator, is clearly degenerate. 
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