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ABSTRACT 
We examine the short time-scale variability in the X-ray flux of the quasi-periodic oscillations (QPOs) and 

low frequency noise (LFN) in GX 5 — 1. The data are drawn from a Ginga observation while the source was 
on the horizontal spectral branch. During the observation, the total X-ray intensity, 1.9 counts cm-2 s_1, and 
QPO centroid frequency, 24 Hz, were nearly stationary. We apply several new statistical tests for short time- 
scale variability and correlation among power spectral components to the GX 5 — 1 data in order to determine 
whether the QPOs are carried by LFN shots, as required by the beat-frequency modulated-accretion model. 
On time scales of ~ 1 s, significant, but uncorrelated, QPO and LFN Fourier power fluctuations are evident. 
Simulations of QPOs carried by LFN shots show significant QPO-LFN correlations for low shot rates, 
whereas in simulations of models with shot rates greater than 100 Hz the underlying relationship is masked 
by the intrinsic noise bias manifested by overlapping shots. However, other tests reveal the shot nature of the 
LFN when applied to simulations with shot rates as high as ~400 Hz: the mean intensity on a 1 s time scale 
is positively correlated with LFN power, and the intensity skewness is positive. For GX 5 — 1 the mean inten- 
sity on a 1 s time scale is uncorrelated with LFN power, and the intensity skewness is consistent with LFN 
shapes distributed symmetrically about the mean. 

In summary, there is no indication in the GX 5-1 data that QPOs are carried by positive shots with 
lifetimes of ~1 s or less, whereas our simulations show that some tests would reveal the shot nature of the 
LFN and its relationship to the QPO if it were present. Instead, the results are consistent with a picture of 
QPOs produced independently of an intensity-symmetric LFN component. 
Subject headings: stars: individual (GX 5 — 1) — stars: neutron — X-rays: binaries 

I. INTRODUCTION 

Low-mass X-ray binaries (LMXBs) contain a compact 
primary, typically a neutron star, which accretes matter from a 
Roche-lobe filling, low-mass secondary. Many of the brighter 
LMXBs have been observed to produce fast, low-amplitude 
quasi-periodic oscillations (QPOs) of their X-ray flux. 
Although it is not clear how many mechanisms are required to 
explain all of the observed QPOs, a coherent observational 
picture is beginning to emerge for a large subset of QPO 
sources. At least six LMXBs, referred to as Z-sources, exhibit 
up to three possibly distinct QPO modes (Hasinger and van 
der Klis 1989), and each QPO mode is associated with a differ- 
ent spectral state of the LMXB. For Z-sources, the character- 
istics of QPO peaks in Fourier power spectra are mode 
dependent and exhibit centroid frequencies v from ~ 2 to ~ 50 
Hz and (FWHM) widths Av/v from ~0.1 to more than 2. A 
mode-dependent noise component, which rises exponentially 
at low frequencies (v < 1-10 Hz), is also observed in the 
Fourier power spectra of QPO sources and is referred to as 
low frequency noise (LFN). Amplitudes of the incoherent 
waveforms which give rise to the QPO peaks are small, typi- 
cally a few percent. In consequence, individual oscillations are 
imperceptible with present instruments (exceptional case: the 
Rapid Burster). QPO observations and theories have been 
extensively reviewed by many authors, including Lewin, van 

Paradijs, and van der Klis (1988), Stella (1988), Lamb (1988), 
and van der Klis (1989u). 

Out of six Z-sources, QPOs have been observed from four 
sources while they were in the horizontal branch spectral state 
where spectral hardness is, to first-order, independent of inten- 
sity and strong correlations between QPO centroid frequency 
and source flux are evident (GX 5 — 1 : van der Klis et al 1985; 
Cyg X —2: Hasinger et al 1986; GX 17 + 1 and GX 340 + 0: 
Hasinger and van der Klis 1989). In GX 5 — 1 and Cyg X —2, 
Fourier power in the QPO and LFN is strongly correlated on 
intermediate time scales of a few minutes (van der Klis 1986). 

A beat-frequency modulated-accretion (BFMA) model has 
been developed to explain the strong correlations observed in 
GX 5 — 1 and other sources exhibiting horizontal branch 
QPOs (Alpar and Shaham 1985, elaborated in Lamb et al 
1985, and Shibazaki and Lamb 1987; also see Shibazaki, 
Eisner, and Weisskopf 1987 and Eisner, Shibazaki, and Weiss- 
kopf 1987). The beat frequency, which is manifest as the QPO 
peak in Fourier power spectra, is postulated to arise from 
the difference between the instantaneous Keplerian orbital 
frequency of clumped accreting matter—which enters the 
transition zone of a moderately strong magnetosphere 
(B ~ 109-1010 G) from the accretion disk—and the neutron 
star rotation frequency (~ 100 Hz). The X-ray temporal signa- 
ture of this clumped matter, generated upon encountering the 
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stellar surface, is the LFN (or a subcomponent thereof). The 
LFN envelope is modulated (chopped) at the beat frequency as 
it leaves the transition zone. 

The BFMA model views a portion of the X-ray flux as shot 
envelopes (from the accretion of clumped matter) carrying 
periodic pulsations (from the chopping of the clumps at the 
beat frequency). These shots are in addition to the persistent 
X-ray emission from essentially steady accretion; the propor- 
tions of the total X-ray flux contributed by these components 
(shots and steady emission) are currently unconstrained by 
observations or theory. The detailed physics involved in X-ray 
emission under the BFMA model is not well understood at this 
time; the result is a large number of free parameters for the 
mathematical representation of the BFMA model. Parameters 
describing the shots include the shot rate, the shape of the shot 
envelope, the distribution of the shot amplitudes, and the sign 
of the shot. Positive shots result from the accretion of a clump, 
whereas negative shots come from a hole (or region of lower 
mass density) in the accretion stream. Any of these parameters 
can be correlated with the persistent emission. 

The QPO is described by its underlying frequency, the life- 
time of individual QPO wave trains (related to the coherence 
length in cycles: Ncyc = vqpoTqpo), the amplitude of the pulsed 
component and its dependence on shot amplitude, and the 
phase coherence memory between shots. This latter property, 
referred to as shot clustering by Shibazaki and Lamb (1987), 
results in higher QPO peaks in the Fourier power spectra at 
high shot rates. With some degree of coherence memory, the 
pulsations in overlapping shots would add with partial coher- 
ence and have more total power, and the resulting QPO spec- 
tral feature would be narrower for a given LFN shape. An 
additional parameter which can affect the width of the QPO 
feature is the degree of QPO frequency drift or modulation 
(FM) which occurs while a shot crosses the transition region 
(Lamb et al 1985; Shibazaki and Lamb 1987). We do not treat 
the effects of FM in this paper. Preliminary modeling has 
determined that the width of the QPO peak is not very sensi- 
tive to the range of FM expected in the BFMA model for the 

QPO centroid frequency (24 Hz) in this observation (Norris et 
al 1989h): the presence of FM cannot be excluded, neither can 
it be affirmed with any confidence. Consequently, the param- 
eter most highly correlated with FM—coherence length 
(increasing FM requires increasing the coherence in order to 
keep the QPO width constant)—is not substantially affected if 
FM modeling is not included. 

Figure 1 schematically illustrates several kinds of time series 
of overlapping LFN shots which carry QPOs, as described 
above. A small number of shots is shown for clarity ; at much 
higher shot rates the correlation between QPO and LFN 
strength is not obvious to the eye. The low counting statistics 
of real data render the individual QPO cycles and LFN shots 
indiscernible. In Figure la the positive intensity shots have 
exponentially decaying shapes, and the QPO waveform is 
incoherent from shot to shot; Figure lb shows a similar picture 
except that the QPOs retain phase memory between shots, and 
thus their amplitudes add coherently. The same two variations 
for rectangular shot shapes are shown in Figures 1c and Id. A 
distinction between the next two cases is relevant for models 
which include negative shots and QPO coherence memory. 
Figures le and 1 /show examples where the positive shots have 
phases shifted by 180° and 0°, respectively, relative to the nega- 
tive shots. As the shot rate increases, case e produces less QPO 
power, rather than more as in case f. Any QPO mechanisms 
with coherence memory which result in shots of “negative 
flux” with reversed phase are thus effectively excluded (the 
BFMA model does not explicitly predict such phase-reversed 
behavior). The QPO amplitude is always some proper fraction 
of the LFN amplitude since the shot carries the QPO. Cases 
a-d are modeled in this paper. 

Correlations between low signal effects, such as those 
studied here, can be masked by biases resulting simply from 
noise. There are possibly two different noise biases present in 
QPO data. The first is Poisson noise. The stochastic nature of 
the data can result in amplitude (and other) correlations even 
where none is present—fluctuations in the data necessarily 
contribute to the measured LFN and QPO. The second bias is 

Fig. 1.—Schematic illustrations of overlapping LFN shots carrying QPOs. (a) Positive intensity shots with exponentially decaying shapes and incoherent QPOs 
from shot to shot; (b) same as (a) except QPO phase coherence (memory) across shots, (c-d) Rectangular shot shapes, as in (a) and (h), respectively, {e-f) Both positive 
and negative shots with phase memory, positive shot phases shifted by 180° and 0°, respectively, compared to negative shot phases. 
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intrinsic to shot models. For example, one can construct a 
BFMA model where the amplitudes of the QPO and shot are 
independent. However, since only the product of these ampli- 
tudes (the shot carries the pulsations) is observed, analyses of 
the type we describe here show some degree of correlation at 
short time scales. As the shot rate increases, however, the 
correlation decreases (especially when integrating over time 
scales much longer than shot lifetimes) since overlapping shots 
of varying amplitudes tend to average out the individual 
amplitude fluctuations. We thus rely on simulations of shot 
models to calibrate the noise bias in our data. 

According to the BFMA model as presently formulated 
(Lamb et al. 1985; Shibazaki and Lamb 1987), the fundamental 
mechanism of QPO resulting from modulation of the LFN 
shot lends itself to various short time scale tests. Small (large) 
shot amplitudes necessarily imply small (large) QPO ampli- 
tudes (for each shot). If this version of the BFMA model is 
correct, QPO and LFN amplitudes should be found to be 
correlated, at some level, on the time scale of the shot lifetimes. 
Alternative mathematical formulations (which may seem 
physically artificial), e.g., in which the QPO amplitude varies 
inversely with the LFN amplitude, may be constructed. In this 
article we investigate QPO and LFN activity in GX 5-1 on 
the short time scales relevant to the proposed mechanism of 
the BFMA model. While individual QPO waveforms in the 
present observation are still overwhelmed by low counting sta- 
tistics, Ginga’s Large Area Counter (LAC) instrument affords 
sufficiently high count rates to permit a statistical search for 
correlations between QPO and LFN fluctuations. 

In § II we describe the GX 5 — 1 observations and a range of 
simulations, all of which reproduce the average GX 5 — 1 
power spectrum, i.e., the variance as a function of frequency; 
the simulations differ, effectively, in degree of correlation 
among the Fourier phases. In § III we show that significant 
LFN and QPO power fluctuations occur on short time scales 
in GX 5 — 1. We describe a test for correlation between LFN 
and QPO power fluctuations and show that LFN and QPO 
power are uncorrelated on time scales comparable to the shot 
lifetimes in GX 5 — 1. We also investigate shot amplitude dis- 
tributions showing that the third moment (skewness) of the 
intensity in GX 5 — 1 vanishes on LFN time scales and that the 
local mean is uncorrelated with LFN power. In contrast, in 
simulations the piling up of shots produces positive skewness, 
and random variations in shot rate produce a correlation of 
local mean with LFN strength. Finally in § IV we discuss the 
import of our results for QPO phenomenology in general and 
the BFMA in particular. In order for the BFMA model to 
remain viable, (1) shot profiles must be distributed such that 
approximately equal positive and negative excursions about 

the mean intensity occur, (2) the majority of the total X-ray flux 
must arise from the shots rather than from a steady com- 
ponent, and (3) shot rates higher than predicted must somehow 
operate, so that the intrinsic noise bias masks any possible 
correlations. 

II. OBSERVATION AND SIMULATIONS OF GX 5-1 

a) Observation 
We have analyzed data obtained during an observation of 

GX 5 — 1 on 1987 April 20 with the Ginga LAC instrument 
(Makino 1987; Turner et al. 1989). At the time of the observa- 
tion the source was on the horizontal spectral branch, which 
for GX 5 — 1 means that spectral hardness is approximately 
independent of intensity and QPO centroid frequency is 
strongly correlated with intensity (van der Klis et al. 1985). 
Four energy channels are available at -2 ms (1/512 s) 
resolution. We summed the two low-energy and two high- 
energy channels from the LAC A and B counters (total area 
~4000 cm2) to produce counting rates in overlapping energy 
bands, 0.8-7.9 keV and 5.7-18.0 keV. The average rates in 
these two bands are 12.7 and 4.4 counts per 2 ms bin, respec- 
tively. The entire analysis was performed for the two bands 
separately and combined; results are similar in all three cases. 
The details are discussed here only for the combined counting 
rates as these are more significant. 

Figure 2 illustrates the combined data in the time domain, 
uncorrected for collimator movement, and binned to 8 s. 
Ginga's attitude determination is uncertain to ~5' and 
maximum measured pointing drift was on the order of ~0?04. 
As a result the plotted rate differs from the incident intensity by 
~ 3.5%-4.5% with variations occurring on a time scale of 5-10 
minutes. We selected the first 2304 s of data (including two 4 s 
intervals containing zero data) in Figure 2 because the source 
intensity is relatively stable. This affords the possibility of 
studying fluctuations in the QPO and LFN amplitudes in the 
statistical aggregate without complicating effects (e.g., varia- 
tions in QPO centroid frequency, LFN slope, etc.). Averaged 
on an 8 s time scale, fluctuations in the local mean are such 
that 85% of the intervals fall within 2% of the global mean. 
Some of this 2% variation arises from collimator motion, for 
which the uncertainty in pointing attitude induces variations of 
the same order; thus, much more precise knowledge of intrinsic 
intensity is unavailable. From Figure 5 of van der Klis et al. 
(1985), we estimate that, if all the intensity variation were 
intrinsic to the source, variations of ±2% would imply varia- 
tions in QPO centroid frequency of ±2.25%, QPO power of 
± 3.6%, and LFN power of ± 2.3%. 

Figure 3 illustrates the combined data in the frequency 
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Frequency (Hz) 
Fig. 3.—Average Fourier power spectrum for first 2304 s of Fig. 2. 

Resolution is 1 Hz per frequency channel. 

domain. We have averaged the power spectra of 2296 512 bin 
fast Fourier transforms (FFTs). Because the QPO centroid 
frequency is very nearly at 24 Hz for the entire data sample, the 
detailed shape of the power spectrum in Figure 3 is character- 
istic of spectra on an intermediate time scale of a new minutes. 
The normalization is derived from the average of (essentially) 
Poisson-distributed white noise in the frequency range 
193-256 Hz. Since the count rate is nearly constant, the global 
mean of the white noise for the whole data set is used for 
normalizing individual FFTs; this procedure errs on the con- 
servative side by avoiding introduction of spurious power fluc- 
tuations which result from low statistics of short interval 
averages. Our normalization is unity rather than two, but is 
consistent with other treatments (Leahy et al 1983; van der 
Klis 1988). 

b) Simulations 
In analyses where the signal-to-noise ratio (S/N) is relatively 

low, a large noise bias is present which tends to level any 
correlation among parameters. As discussed in § I, two differ- 
ent kinds of noise bias may contribute to the problem of 
exploring the QPO-LFN relationship: that resulting from the 
Poisson noise, and the intrinsic noise bias of models with high 
shot rates. The problem is ameliorated in our treatment by 
employing a long data set with essentially stationary temporal 
behavior, as described in the previous section. Although noise 
does tend to level correlations, residual trends are potentially 
detectable if enough data is used since decreased error bars on 
data and models result. 

Simulated data sets were constructed in the time domain for 
the purpose of calibrating the significance of results found for 
GX 5 — 1. With models we are able to quantify the sensitivity 
of tests for correlations of power spectrum descriptors. We 
fully evaluated a range of simulations in which (1) shots have 
rectangular or exponentially decaying shape; (2) shots have 
positive intensity profiles; (3) the QPO wave train associated 
with a given shot persists the entire length of the shot; (4) 
Gaussian distributions were used for shot and QPO ampli- 
tudes, coherence length; (5) during a given shot the QPO 
amplitude is a constant proper fraction of the shot amplitude. 
Considerable attention was given to the effects of possible 
QPO coherence memory between shots. Some models were 

constructed with positive and negative shot distributions in 
order to demonstrate the effects on skewness. 

These limitations do not overly compromise the generality 
of the interpretations for several reasons. First, rectangular and 
exponential shot shapes define a range of possible LFN behav- 
iors. In addition, the piling up of shots at high shot rates pro- 
duces a resultant LFN waveform with arbitrary frequency 
content; unless individual shots have rather complex shapes, 
piling up is likely to be the dominant amplitude modulation 
effect for realizations similar to BFMA models (which can have 
shot rates as high as ~ 300 Hz for sinusoidal QPO, and life- 
times of ~ 0.05-5 s; Lamb et al. 1985). It is probably for the 
same reason that the results are relatively insensitive to the 
exact form of the distributions for shot and QPO amplitudes; 
uniform distributions gave end results similar to Gaussian dis- 
tributions. 

Second, we found similar degrees of QPO-LFN correlation 
for models with positive-only, or negative-only, shots and 
models with both positive and negative shots; therefore, the 
results presented here for positive-only shot models apply to 
all three kinds. The reason the correlations are so similar for a 
given shot rate is the same as that described above for shot 
shape: high shot rates give rise to a relatively arbitrarily 
shaped waveform, at least as far as the QPO-LFN relationship 
is concerned. The primary difference between the two kinds of 
models is the skewness on LFN time scales. 

Finally, we found that only shot models incorporating some 
degree of QPO coherence memory can fit GX 5 — 1 power 
spectra averaged on a 1 s time scale. That is, we were successful 
in fitting the GX 5 — 1 QPO relative to the LFN strength only 
by enforcing some degree of QPO coherence memory across 
shots (clustering) which pile up in a given time interval—the 
LFN distribution extends too high in frequency to produce a 
narrow enough QPO feature otherwise. Since some QPO 
coherence memory is required across several overlapping 
shots, the constraint that QPOs persist the entire length of a 
shot becomes a secondary concern in high shot rate models. 
There is an important effect associated with the possibility of a 
duty cycle for QPOs which is not quantified here: a less than 
100% QPO duty cycle during a shot would require that inter- 
vals of relatively stronger QPO within the shot occur, a con- 
straint that must be met by physical models. Also, the BFMA 
model has sufficient freedom to invoke “ swarms ” of clustered 
QPO waveforms (Shibazaki and Lamb 1987), each swarm 
having incoherent QPO contents relative to another. We did 
not model such swarms. The primary effect of including 
“ swarming ” would be to increase the required QPO amplitude 
of the swarms, and therefore to increase the QPO/LFN corre- 
lation; the effect of swarming offsets that of clustering. Thus in 
both of these simplifications, our modeling fortuitously errs on 
the conservative side in that inclusion of such possible effects 
would only serve to increase the observable degree of corre- 
lation between QPO and LFN. 

Construction of the simulated data sets proceeded as 
follows. For each model a shot rate and shot clustering fraction 
were selected as the independent parameters, then the remain- 
ing parameters were adjusted until the model’s average power 
spectrum accurately fitted that of the GX 5 — 1 data (Fig. 3). A 
successful fit reproduces the GX 5 — 1 variance as a function of 
frequency but does not address the relationship between 
Fourier phases. Shots were produced with a uniformly random 
distribution of start times and with uncorrelated durations. 
The LFN power spectrum shape is well described in the range 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
1.

 .
51

4N
 

NORRIS ET AL. Vol. 361 518 

~ 1-10 Hz by an exponential function. For models with rec- 
tangular shots a Gaussian distribution of LFN lifetimes with 
mean of 0.071 s and standard deviation of 0.022 s adequately 
reproduced the LFN e-folding frequency scale; for exponential 
shots, lifetimes in the range 0.053-0.046 s with deviations of 
~ 0.010-0.012 s were required. The shot amplitude was then 
adjusted until the power level matched that of Figure 3 in the 
LFN range. Exponential models required approximately twice 
the (initial) shot amplitude as did rectangular models for a 
given shot rate, reflecting the lower average amplitude of the 
exponential shape. The fitted ratio of QPO amplitude to LFN 
amplitude depends largely upon amount of QPO coherence 
memory and less on shot shape. 

A sinusoid with frequency fixed at 23.875 Hz reproduced the 
GX 5 — 1 QPO centroid for the coherence length range 
required. The shot amplitude, QPO amplitude, and coherence 
length were selected from Gaussian distributions with associ- 
ated widths. By adjusting these distributions, a fit was obtained 
to the QPO width and strength. For the clustered component, 
where the QPOs are coherent across overlapping shots, the 
resulting intensity time series can be expressed as the sum of 
the mean and a point by point product of a resultant shot 
shape function and a QPO amplitude function : 

i Ah) = ^ + S {AshoUll n L(h - tn)/zn - ü} 
n 

X n [(if - OAm - i][l + Am sin (î.îÎqpo + 0J] , (1) 
where n is the mean, and is the rectangle function (unity 
for I x I < ^, zero otherwise); for exponential shot models, the 
shot shape Y\ function is replaced by exp [(if — í„)/t„]. The 
LFN parameters are n, the shot number; Ashot „, shot ampli- 
tude; tn9 shot start time; t„, shot lifetime. For each interval m 
during which overlapping shots’ QPO contents are coherent, 
the independent QPO parameters are Am, QPO amplitude; tm9 

coherence start time; rm, coherence length; and </>m, start phase. 
For the nonclustered component, the QPO contribution is 
incoherent from shot to shot and is therefore described by 

ha,)=//+z Msh0, „ n [('. - tn)/rn - a 
n 

X [1 + ^QPO, n SÍ» (ti Qqpo + » (2) 
where </>m is regenerated only if the shot duration is longer than 
the coherence length. The clustered and nonclustered com- 
ponents were then summed and the time series renormalized to 
the GX 5—1 mean. 

Finally, in order to simulate the fluctuations of photon 
counting statistics, the simulated time series was Poisson dis- 
tributed about the instantaneous intensity. Table 1 lists the 

parameter values for some models which successfully repro- 
duce the GX 5-1 power spectrum and which we discuss in 
detail. The tabulated shot amplitudes are the renormalized 
ones. 

Note that for the clustered component, an input QPO 
envelope which persists over an interval of QPO coherence is 
multiplied (and therefore bounded) by the instantaneous LFN 
waveform (resultant sum of shots). Our code includes the 
option for producing models where the input QPO envelope 
has varying amplitude (not associated with shot shape). In all 
models described here the input QPO amplitude is constant 
during a coherence interval (clustered component) or during a 
single shot (nonclustered), and therefore all amplitude modula- 
tion of the QPO arises from the LFN shape. 

As the shot rate increases, individual shots necessarily must 
have lower amplitudes to fit the data. For sufficiently high shot 
rates, overlapping shots give rise to an arbitrarily shaped LFN 
waveform with enough varying frequency content that the 
relationship between QPO and LFN can be effectively masked 
on a given time scale: integrations (e.g., 1 s FFTs) over many 
shots, each of which carries a relatively low amplitude QPO, 
average out the rapid LFN fluctuations. 

The 28 and 100 Hz shot rate models in Table 1 were con- 
structed to demonstrate that, given enough data, the relation- 
ship between LFN and QPO in shot models can be discernible. 
The 400 Hz models were selected to compare with some 
variants of the BFMA model (Lamb et al 1985). As we shall see 
in the next section, at 400 Hz shot rates the intrinsic noise bias 
is too high for one of our tests to be sensitive to the QPO-LFN 
relationship. At least two recourses are possible which counter- 
act the increased bias: the use of (1) longer data intervals in 
order to shrink error bars, and (2) algorithms which explore 
the QPO-LFN relationship on shorter time scales. Some suc- 
cessful alternative algorithms are suggested in § IV. 

in. ANALYSIS 

a) QPO and LFN Power Distributions 
Although the individual waveforms of the QPO are gener- 

ally indiscernible, one may still ask : Does the observed ensem- 
ble of QPO amplitudes differ from that expected if the QPO 
amplitude were constant, and if so, then by how much? A 
difference would not necessarily imply amplitude variations, 
but could reflect phase modulation, or a combination of effects. 
In the presence of photon counting noise, the expected QPO 
power fluctuations may be estimated, assuming a constant 
QPO amplitude, adapting the treatment of Groth (1975) to 
cover QPOs. Equation (16) of Groth expresses the probability 
of finding power less than or equal to a given power (P), 

TABLE 1 
Model Parameters 

Shot LFNb Coherence Shot 
Räte T 1 Shot QPO Length Clustering 

Model3 (Hz) (Hz) Amp/DC Amp/Shot Amp (cycles) Percentage* 

R400   400 14 + 4 0.011 ± 0.003 0.400 ± 0.090 3.40 ± 0.80 50% 
R100   100 14 + 4 0.023 + 0.005 0.410 + 0.090 3.35 ± 0.80 100% 
R28   28 14 + 4 0.043 + 0.009 0.720 + 0.140 3.75 + 0.90 100% 
E400   400 20 + 4 0.019 ± 0.005 0.550 ± 0.120 4.00 ± 0.95 50% 
E100   100 22 + 4.5 0.041 ± 0.010 0.930 ± 0.170 5.10 ± 1.20 50% 

a Rectangular shots: models R28, R100, and R400; exponential shots: models E100 and E400. 
b Inverse of shot lifetime. 
c Percentage of shots with mutually coherent QPO wave trains. 
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assuming that a coherent signal of constant power (Ps) is 
present and that the power spectrum is normalized such that 
the expected power from Poisson fluctuations is unity, 

oo m + n— 1 
/„(P;Ps)=l-exp[-(P + Ps)]X X PkP?/(k'.m\) 

m = 0 k — 0 
for 2n degrees of freedom (n power spectral channels). The 
average QPO powers per channel (Fig. 3) were used as the 
hypothetical constant signals. In other words, we measure the 
QPO fluctuations against the null hypothesis that the QPO 
bump in Figure 3 is comprised of a sum of coherent sinusoids 
at frequencies 22, 23, ... 26 Hz, with appropriate constant 
amplitudes. Indeed such a simulation, when divided into 1 s 
FFTs, precisely reproduces the shape of the QPO bump. Of 
course, longer FFTs of coherent signals would yield higher 
power peaks at discrete frequencies, unlike the actual QPO. 
Many alternative hypotheses can be tested, e.g., those in which 
various QPO amplitude distributions are assumed. For 
present purposes we estabish that QPO and LFN fluctuations 
do occur and then show that they are uncorrelated to within 
measurement errors. 

In order to determine the appropriate level of signal to 
ascribe to the QPO feature, we fitted the average power spec- 
trum of Figure 3 using a functional form comprised of an 
exponential for the LFN, a Lorentzian for the QPO, and unity 
for Poisson noise (van der Klis et al. 1985). The fit was slightly 
low in the valley between the LFN and QPO and at fre- 

quencies just above the QPO. Therefore, in order to realize the 
noise variance of unity as required by Groth (1975), both the 
expected and actual distributions were renormalized to take 
into account the local level of non-QPO power. This (close) 
approximation is just another way of adding a degree of 
freedom to fit the power spectrum, thus accounting for the fact 
that the QPO and the LFN are not exactly described by the 
chosen functional forms. 

The solid line in Figure 4a is the expected (constant 
amplitude) cumulative distribution for the 24 Hz channel. Tri- 
angles denote the observed distribution of powers at 24 Hz for 
the 2296 Is FFTs. Cumulative observed powers below 4 are 
underabundant relative to the expected value, while above 4 
the observed distribution is higher than expected. That the 
expected and observed distributions disagree is not surprising 
since the QPOs we study have short coherence lengths. Similar 
disagreements are found for all frequencies within the QPO 
feature, but not for control regions at 35 Hz (Fig. 4a, dashed 
line and circles) and higher frequencies. 

Figure 4b illustrates where the excess power is concentrated. 
The differential curve gives the difference between actual and 
expected occurrences, times the value of the power bin, and 
normalized to total power, i.e., dP(i) = 1 — Nexp(i)/iVact(0- The 
expected distribution has been evaluated every 0.2 unit, and 
then averaged over one unit of power; this results in a finite 
binning of expected powers which sufficiently precisely reflects 
a continuous binning. From the integral curve (integral from P 

Fig. 4.—(a) Expected (constant amplitude) vs. observed cumulative distributions of QPO power. Solid line {expected), triangles {observed) at 24 Hz. Dashed line 
and squares for control channel at 35 Hz, on edge of upper QPO wing, {b) Differential and integral excess QPO power over expected as fraction of total power at 24 
Hz. (c) Expected vs. observed cumulative distributions of LFN power at 1 and 16 Hz. {d) Same as {b) for LFN power at 1 Hz. <P> is average signal power (noise 
subtracted) per respective 1 Hz band. 
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to oo) we see that occurrences with power 7 or greater consti- 
tute a 20% excess. 

Figure 4c reveals a similar picture for the strong LFN at 1 
Hz, and at 16 Hz near the minimum of the valley between 
QPO and LFN. Figure 4d shows that a 27% power excess at 1 
Hz is associated with occurrences of powers greater than ~ 10. 

We note that van der Klis (19896) has suggested another null 
hypothesis, namely, that the QPO and LFN are pure noise. If 
one assumes that all the power under the QPO and LFN 
features is due to noise, then the expected and observed cumu- 
lative distributions actually agree : the observed power follows 
a x2 distribution scaled to the local average power. However, 
there are at least two reasons to believe that the QPO signal 
reflects some determinism. First, clearly the QPO spectral 
feature in GX 5-1 stands well above the ambient noise level 
on either side, suggesting that some effect of a deterministic 
nature gives rise to the high local power. Second, in some QPO 
data (e.g., a later portion of this GX 5 -1 observation when the 
centroid frequency is higher) a very weak harmonic feature is 
seen at twice the fundamental QPO frequency. Thus, an accu- 
rate description of the QPO signal lies somewhere in between 
the pictures of pure noise and deterministic signal. We also 
note that if in fact a particular kind of QPO could somehow be 
demonstrated to be a pure noise process (see Scargle 1981), the 
BFMA model would not obtain in that case. Even if both the 
QPO and LFN arose from such processes it would still be 
appropriate to search for short time-scale correlations between 
these components, as we describe in the next section, since the 
processes need not be independent. 

Disagreement between observed and expected distributions 
is found for ensembles of FFTs on time scales ranging from 
0.25 s to ~ 8 s. As the time scale increases, i.e., for longer FFTs 
with the same sample bin size, the disagreement begins to 
vanish; for 16 s FFTs the expected (assuming constant signal) 
and observed cumulative distribution are in near agreement. 

A most likely explanation for the agreement on longer time 
scales is as follows: The signals in the QPO and LFN bands 
are comprised of random noise and (time-varying) determin- 
istic components. When the data is split into many short FFTs, 
those portions of the data set which have high (low) determin- 
istic content and which fall entirely within the finite FFT 
length, tend to yield a large (small) spectral power. Some length 
FFT (near the coherence length for the QPO) would be 
optimal for characterizing the instantaneous QPO power— 
except that often the nearly coherent QPO wave trains would 
be split between adjacent FFTs. Much longer FFTs will 
contain many QPO wave trains, whose associated spectral 
power will be relatively diminished because of their mutual 
incoherence; thus on the longer time scales the noise com- 
ponent will dominate. In fact, the expected distributions for the 
van der Klis null hypothesis and the constant signal (plus 
noise) hypothesis will converge. This is because the amplitude 
of a constant, coherent signal that is required to fit the QPO 
signal becomes diminishingly small for longer data streams 
(coherent signals add power as the length of the data, incoher- 
ent ones as the square root). 

Significant fluctuations which have distributions shaped 
similarly to those of Figure 4 are apparent when the data is 
divided into nine equal subintervals of 256 s apiece, indicating 
that the effect is not confined to one anomalous period. The 
fluctuations are also present in both the high- and low-energy 
data sets, with slightly lower significance in the latter. We con- 
clude that, unless the QPO and LFN processes are in fact 

completely due to random noise processes, as suggested by van 
der Klis (19896), power fluctuations in these components are 
present and quantifiable in the statistical aggregate with the 
present signal to noise strength of ~0.5. 

6) Search for Fluctuation Correlations: The Split Power Test 
The existence of QPO and LFN power fluctuations suggests 

that a search for correlations between the two can be per- 
formed by dividing 1 s power spectra into two subsamples: 
spectra with high or low QPO powers, or alternatively, spectra 
with high or low LFN powers. Some of the spectra in which 
QPO (LFN) power deviates from the average power per fre- 
quency channel will merely reflect statistical fluctuations. 
However, Figures 46 and 4d give estimates of the maximum 
degree of correlation to expect (assuming that some part of the 
signal is deterministic). For instance, if a high/low QPO 
dichotomy is constructed by selecting powers at 24 Hz, as 
much as ~ 20% of the QPO power fluctuations above a power 
of 7 might be found to be associated with LFN fluctuations; 
the actual percentage would depend upon the degree of corre- 
lation. In principle, a very low degree of correlation could be 
detected with a large enough data set. We proceed to describe 
the application of this split power test to GX 5-1 and the 
simulated data sets using QPO or LFN frequency and power 
band selector criteria. 

We performed split power tests in which the QPO was the 
selector using frequency bands 1, 3, and 5 Hz wide centered on 
24 Hz, and power discriminator levels from 5 to 9 units. Figure 
5a illustrates a typical result: the power spectrum with the tall 
QPO peak was generated by averaging individual spectra with 
any occurrence of QPO power in the three-channel band 
23-25 Hz greater than 7 units (open circles), while all spectra 
with no occurrence greater than 7 in that band comprise the 
average with the lower QPO peak (filled squares). There is no 
significant corresponding differential in the LFN peaks or in 
the LFN spectral shape. Similarly, when LFN is the power 
selector, no significant difference is observed between the two 
averaged spectra in the QPO bump, as illustrated in Figure 56 
where channels 1-6 Hz with powers greater than 10 units are 
the discriminator. For each variant on the split power test- 
band width, power discriminator level, combined, low-, or 
high-energy data sets—a null correlation was found. Table 2 
summarizes some of these results for GX 5-1. Entries in 
Table 2 are ratios of power above and below the discriminator 
level for both the selector band and the other band. The power 
ratios for the selector band are always significantly greater 
than unity, as expected. For GX 5-1, the power ratio for the 
other band is always consistent with unity. 

The simulated data sets were constructed to have varying 
degrees of correlation between LFN and QPO amplitude so 
that we might quantify the meaning of the null results for 
GX 5 — 1. The amount of correlation depends primarily on 
shot rate and secondarily on shot shape. The models are 
named according to these parameters. Model E100 has expo- 
nential shot shapes, R100 has rectangular shot shapes, and 
both have 100 Hz shot rates. Figures 5c and 5d illustrate 
results of the split power test for model R28I, constructed such 
that occurrences and amplitudes of LFN shots and QPOs are 
independent (this is the only model in the present paper in 
which shots do not carry the QPO). Like GX 5 — 1, no corre- 
lation is evident. The contrasting results of the split power test 
for shot model R28 are shown in Figures 5e and 5/ At low 
enough shot rates the relationship between LFN and QPO is 
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Frequency (Hz) 
Fig. 5.—Split power test: dichotomy of averaged power spectra, above (open circles) and below (filled squares) discriminator power level. QPO selection band: 

22.5-25.5 Hz; LFN band : 0.5-6.5 Hz. (a-b) GX 5 -1 data for QPO, LFN as selector, Models R281 (c, d) and R28 (ej) for same. 

clearly revealed by the split power test on a 1 s time scale. 
Positive correlations for model R28 are evident when either 
LFN or QPO is the selector band, as can be seen from the 
differing peak heights for the other band. 

Power ratios from the split power test for some of the 
models are also given in Table 2. As the shot rate increases, the 

power ratio in the other band approaches unity to within 
errors; this is the leveling effect of the intrinsic noise bias (in 
addition to the extrinsic noise bias of photon counting 
statistics). For model R100 the test is significant at the ~2-3 a 
level, depending on the discriminator band and power level. At 
400 Hz shot rates, both the exponential and rectangular 

TABLE 2 
Test of QPO, LFN Correlation 

Band Power Ratio: Above/Below Filter Level 

Band Model Model Model Model 
Level (Hz) GX5-1 R400 R100 R28 E400 

QPO Filter 

5.0   1-6 0.97 ± 0.02 1.01 ± 0.03 1.07 ± 0.03 1.25 ± 0.03 1.01 ± 0.03 
23-25 3.67 ±0.17 4.15 ± 0.20 4.20 + 0.20 4.89 + 0.24 4.02 + 0.18 

7.0   1-6 0.99 ± 0.03 1.00 ± 0.03 1.09 ± 0.03 1.32 ± 0.04 1.01 + 0.03 
23-25 2.93 ± 0.11 3.41 +0.14 3.33 + 0.14 3.79 + 0.15 3.22 + 0.13 

9.0   1-6 1.00 ± 0.03 1.01 ± 0.04 1.09 ± 0.04 1.33 ± 0.04 0.95 ± 0.04 
23-25 2.76 ± 0.12 3.27 ± 0.16 3.21 ± 0.15 3.61 ± 0.16 3.09 ± 0.15 

LFN Filter 

8.0   23-25 1.07 ± 0.04 0.99 ± 0.04 1.08 ± 0.04 1.36 ± 0.05 0.98 ± 0.04 
1-6 2.27 ± 0.06 2.43 ± 0.06 2.29 ± 0.06 2.51 ± 0.06 2.36 ± 0.06 

10.0   23-25 1.05 ± 0.04 1.00 ± 0.04 1.11 ± 0.05 1.38 ± 0.06 1.01 ± 0.05 
1-6 2.18 + 0.06 2.32 + 0.06 2.24 + 0.06 2.40 + 0.06 2.26 + 0.06 
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models are consistent with no correlation—the constructed 
relationship is masked for 1 s integrations. Therefore, with the 
amount of data utilized, this test precludes the possibility of 
LFN shots carrying the QPO in GX 5-1 for shot rates less 
than ~ 100 Hz. 

c) Third Moment Test: Skewness 
Other statistical tests may be performed which yield infor- 

mation concerning the LFN and QPO shape distributions and 
the distribution of LFN waveforms relative to the local mean. 
Skewness, the third moment of the intensity distribution of the 
time series, may be defined. 

Sk = (1/N) £ [(/(í¡) — n)/o]3 , (3) 
i 

where /(if) is the count rate time series, ¡i is the mean, o the 
standard deviation, and N the number of samples. Note that 
for this definition skewness has no dimensionality. Unlike a, Sk 
does not scale with the mean. Skewness and moments of higher 
order characterize the degree to which a distribution departs 
from a normal one, thus measuring its shape. Skewness 
describes the asymmetry of the data about the mean. For refer- 
ence, Sk for a negative rectified sinusoid (i.e., — | sin x |), is + j. 

Skewness of real and simulated data sets reflects the convol- 
ution of several factors. The low count rates of data sets with 
shorter time scale binning will have positive Sk merely because 
the distribution is Poissonian rather than Gaussian. If the data 
were exactly Poisson distributed then the expected skewness 
would be 

Sk Pois =1 
n 

e-^ 
n\ = M -1/2 (4) 

and the formal error would be 

eskew = C(VN) X (Sk - Skpois)
2]1/2 

= [(15 + 24/ju + l///2)/AT]1/2 . (5) 

Note that as oo, Skpois -► 0, as expected for a normal dis- 
tribution. The actual error in the skewness determination will 
depend upon the degree to which the data depart from a 
Poisson distribution on a given time scale and can be several 
times eskew. Note that equation (3) is insensitive to temporal 
ordering, and therefore many non-Poissonian distributions 
with differing phase relationships between Fourier components 
can manifest similar skewness. 

The QPO and LFN are examples of non-Poissonian com- 
ponents. For the generic case in which LFN is a manifestation 
of shots, if all shots had unit amplitude, unit width, rectangular 
shape, and uniformly distributed start times, then the resulting 

skewness of the piled up shots would be Poissonian. For data 
in which amplitude, width, and shape distributions are present, 
the resulting skewness becomes a complicated function of these 
quantities. Also, from equation (3) we see that skewness is 
nonlinear: contributions from separate components do not 
simply add to give total skewness. If the QPO component is 
not sinusoidal, then the skewness is further altered on the rele- 
vant time scale. Measurement factors such as dead time may 
enter the equation on shorter time scales as well. Finally, com- 
ponents of skewness on long time scales contribute to short 
time scale skewness measurements, but not vice versa since 
short time-scale waveforms are lost when binned up above 
characteristic periods. All these considerations must be taken 
into account when attempting to interpret skewness determi- 
nations. 

We computed the skewness of GX 5-1 and the simulated 
data sets on time scales ranging from 2 ms to 1 s. The results 
are summarized in Table 3. The errors quoted in Table 3 are 
from equation (5). Empirical errors were estimated by comput- 
ing skewness for fractions of each data set. For GX 5-1 the 
skewness is significantly less than that of a Poisson distribution 
on time scales ~62 to 16 ms. On longer (LFN) time scales, 
skewness is still below that of Poisson noise, but not very 
significantly. It is likely that finite binning and/or dead time 
effects account for the excess skewness at 2 ms (and possibly 
they affect the measurement at 8 ms); since Fourier power 
above the QPO band is nearly Poissonian, we do not expect an 
appreciable deterministic component at high frequency which 
would contribute to the skewness. Therefore, we conclude that 
the waveforms present on time scales ranging from shorter 
than the QPO period ( < 40 ms) to near the coherence length 
(~100 ms) have some asymmetrical, negative skewness shape, 
whereas LFN shapes on longer time scales are approximately 
equally distributed about the mean intensity level. Methods for 
estimating the characteristic shape near the QPO time scale 
are briefly discussed in § IV. 

In contrast, all the positive-only shot models which fit the 
average GX 5 — 1 power spectrum exhibit significant positive 
skewness on time scales 250 ms or less. For models with higher 
shot rate the (monotonie) trend is lower (but still significant) 
skewness. The trend is more complex for variations in shot 
shape. At low shot rates rectangular models manifest higher 
skewness than exponential models (compare R100 and E100, 
> 62 ms) because the latter have long tails which, when over- 
lapped, produce a smoother LFN component (the contribu- 
tion to skewness of tails overrides that of spikes). However, for 
exponential shots the distribution of LFN lifetimes must be 
lowered as shot rate increases in order to fit the GX 5 — 1 LFN 

TABLE 3 
Skewness on QPO and LFN Time Scales 

Time 
Scale 

Poisson 
Noise GX 5 — 1 

Model 
R400 

Model 
R100 

Model 
R28 

Model 
E400 

Model 
E100 

Formal 
Error* 

2ms ... 
8ms ... 
16 ms .. 
31 ms .. 
62 ms .. 
125 ms 
250 ms 
Is   

0.242 
0.121 
0.086 
0.061 
0.043 
0.030 
0.021 
0.011 

0.266 
0.113 
0.039 
0.031 

-0.057 
-0.011 
-0.028 
-0.012 

0.295 
0.247 
0.244 
0.196 
0.176 
0.178 
0.115 
0.152 

0.311 
0.315 
0.334 
0.260 
0.243 
0.228 
0.210 
0.277 

0.343 
0.454 
0.553 
0.460 
0.445 
0.409 
0.350 
0.311 

0.297 
0.252 
0.231 
0.172 
0.153 
0.151 
0.140 
0.013 

0.315 
0.328 
0.362 
0.282 
0.231 
0.212 
0.136 
0.046 

±0.004 
±0.007 
±0.010 
±0.014 
±0.020 
±0.029 
±0.040 
±0.081 

1 Error for Poisson-distributed data. Empirical errors are comparable to formal errors; see text. 
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j ^-folding frequency scale (more exponential spikes, more high 
^ frequency content, therefore longer lifetimes required; see 
g Table 1). Thus, less pile-up results and skewness increases, 
^ becoming comparable to that in rectangular models (compare 
^ R400 and E400, > 62 ms). The trend is for skewness to increase 

on shorter (QPO) time scales. This must be attributed to the 
effect of piled up shots since the QPOs themselves are con- 
structed to be sinusoidal. 

We note that to first order the small fluctuations in the mean 
of the GX 5 — 1 data do not influence the global skewness ; as 
can be seen from equation (3), variations of order 2% on a 
several second time scale should produce little effect. We veri- 
fied that this is the case by computing the skewness with and 
without low frequency filters applied to the data (8 and 16 s 
rectangular smooths). Smoothing has a minor effect on time- 
scales from 62 ms to 1 s, shifting the skewness closer to the 
Poisson noise values by approximately the magnitude of the 
quoted errors. For the simulated data sets, there is no corre- 
sponding effect since the mean on a time scale of several 
seconds more closely tracks the global mean. 

We conclude that the lack of significant skewness in 
GX 5 — 1 on time scales longer than ~ 100 ms is inconsistent 
with rectangular or exponential shots. This conclusion is 
actually more general since skewness is insensitive to time ord- 
ering. For instance, bi-exponential shots (with both exponen- 
tial rise and decay) on the quoted time scale are also excluded. 
Table 3 shows that such skewness should be detected for shot 

rates up to ~400 Hz, although shot rates much higher than 
400 Hz may be consistent with our results. The limit on shot 
rate is somewhat dependent on shot shape; however, we see 
from the above discussion that at high shot rates the piling up 
of shots is a more important factor in total skewness than the 
shape of individual shots. 

d) Correlation of LFN with Average Flux: Local Mean Test 
We have seen that the skewness test for GX 5 — 1 implies 

that the LFN shape distribution is nearly symmetrical about 
the mean. Since some variation in shot rate must occur, inter- 
vals with many positive-only shots would enhance the local 
intensity more than intervals with few shots, regardless of shot 
shape. Thus we may generalize the skewness results by search- 
ing for a correlation between LFN power and local mean on a 
1 s time scale in both GX 5 — 1 and the shot model simulations. 
This test is similar to the split power test except that a dichoto- 
my of local mean distributions is computed for occurrences of 
LFN power above and below a given discriminator level. 

The GX 5 — 1 data were first convolved with a 16 s wide 
rectangle function (i.e., a running average) since some intensity 
variation is present (see Fig. 2) which is either intrinsic to the 
source or due to collimator modulation. Collimator movement 
occurs on time scales of minutes, and therefore its effects 
should be eliminated by the 16 s smooth, whereas intrinsic 
source variations on a ~ 1 s time scale are preserved. Figure 6a 
illustrates the result of the test for GX 5 — 1. The LFN dis- 

Dev. from Global Mean (%) Dev. from Global Mean (%) 
Fig. 6.—Distribution of local (Is time scale) mean intensities selected by LFN power. Above (open circles) and below (filled squares) discriminator power level of 

10 units. LFN selection band : 0.5-6.5 Hz. (a) GX 5 — 1 data and (b-d) models R400, E100, and E400. 
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criminator power level is 10 units for the LFN band 1 - 6 Hz. 
The local mean distributions associated with high (open circles) 
and low (filled squares) LFN powers do not show any signifi- 
cant relative shift. A similar result is obtained when the test is 
performed on the data without the smooth. Thus the local 
mean test corroborates the skewness test for GX 5 — 1 in that 
no evidence for positive-only shots is found. In fact, for a “ split 
spectra” test where local mean is the discriminator, the 
average power spectra computed for occurrences of local mean 
either above or below the global mean are indistinguishable, 
within errors, in the LFN band. 

The results of the local mean versus LFN power test for 
some shot models are also shown in Figures 6b-6d. The 
expected positive correlation which arises from variations in 
the number of overlapping shots is evident from the relative 
shift of the local mean distributions. The difference is signifi- 
cant in each case, albeit less pronounced for the higher shot 
rate models. Therefore, with this test we can discern (random) 
variations in the shot rate for positive-only LFN shots at shot 
rates as high as 400 Hz and probably somewhat higher, at least 
in the 1-6 Hz LFN component. 

The lack of a positive correlation between LFN and local 
mean in the GX 5 — 1 data, and the clear presence of such 
correlations in simulations with shot rates up to ~400 Hz, 
implies that, for any shot model to be viable, the shot rate of 
positive-only LFN shots in GX 5-1 must exceed -400 Hz, 
or that a second component of negative shots with comparable 
strength must be present. 

We also considered a test for correlation between local mean 
and QPO power, van der Klis et al. (1985) first showed for 
GX 5 — 1 that as the source intensity increases, the QPO power 
peak diminishes while it broadens, and the QPO centroid fre- 
quency increases. Even though the source intensity is relatively 
stable in this observation, local mean variations of a few 
percent in source intensity make these effects in the QPO band 
perceptible in a “split spectra” test. Therefore, a test for corre- 
lation between local mean and QPO power might yield results 
with ambiguous interpretation. 

However, we would expect that the corresponding effect for 
the local mean versus LFN power should be more nearly negli- 
gible since the change in the LFN component with intensity is 
approximately half that in the QPO for the same intensity 
variation (§ lía), and since the LFN power is distributed (and 
measured) over a wider bandwidth. In fact, as stated previously 
the shape of the average spectra in the LFN band are indistin- 
guishable for GX 5 — 1 spectra grouped on the basis of the 
local mean. 

IV. DISCUSSION 
In this article we have primarily addressed the questions: Is 

there an association between LFN and QPO in GX 5 — 1 on 
the horizontal branch, in that LFN shots are the envelope of 
the QPO? Are positive-only shots responsible for a significant 
component of the LFN power? In view of the low S/N of the 
QPO, a range of simulations were performed in order to cali- 
brate the sensitivity of our tests to possible correlations in the 
real data. 

For GX 5-1 the split power test yields no indication of 
correlation between the QPO and LFN components on time 
scales near 1 s. By itself, the split power test for this observation 
is not sensitive enough to rule out a QPO-LFN relationship 
for shot rates higher than —100 Hz. Nevertheless, in principle, 
the sensitivity of the split power test increases with the integra- 

tion time and therefore may provide more stringent limits 
when applied to larger data sets. This test provides a straight- 
forward conceptual example of the kinds of statistical tests of 
QPO shot models which are possible. A similar test using an 
optimal linear filter is superior since it probes time scales com- 
parable to the QPO coherence length and nearer the rapid 
fluctuations of intrinsic noise bias introduced by many over- 
lapping shots. Preliminary results from this test indicate that 
the QPO-LFN relationship can be distinguished in model 
simulations with shot rates at least as high as 400 Hz (Norris et 
al. 1990). 

The moment tests performed on GX 5-1 and shot model 
simulations strongly suggest that positive-only shots are not 
operating in GX 5 -1 for shot rates at least as high as 400 Hz. 
In GX 5 — 1 the intensity skewness vanishes on LFN time 
scales, within errors, suggesting that the distribution of LFN 
shapes at frequencies 1 Hz or greater is symmetrical about the 
mean. Furthermore, no correlation between local mean and 
LFN power is observed. Results for shot model simulations 
show that for shot rates up to — 400 Hz, the piling up of shots 
gives rise to positive skewness and a correlation of local mean 
with LFN power. 

It might be possible to construct physical models with 
positive-only shots such that the skewness vanishes, e.g., with 
negative skewness shape distributions for individual shots. 
However, for the BFMA model still to be viable, the null result 
for the local mean test requires that two LFN components in 
the range 1-6 Hz operate, one being a positive amplitude shot 
component (perhaps associated with the QPOs) and the other, 
a negative amplitude component with a similar distribution. 
With this arrangement a symmetric (zero skewness) LFN 
would result. 

Another possibility not excluded by our analysis is that the 
shots responsible for the QPOs have lifetimes longer than -1 
s. This seems counterintuitive, however, since in the BFMA 
model context we would expect LFN envelopes with lifetimes 
of approximately the QPO coherence length (two to three 
cycles, -0.1 s) to carry the QPOs. For the LFN band from 1 to 
10 Hz not to be associated with the QPOs would require some 

REGIMES EXCLUDED BY VARIOUS TESTS 

LFN Power & BFMA Model | -► 

Split Power Test 

i Local Mean Test 

i Skewness Test 

 1 1 1 i i 100 200 300 400 500 
Shot Rate (Hz) 

Fig. 7.—Shot rate regimes excluded by split power, skewness, and local 
mean vs. LFN power tests, compared to regime excluded by BFMA sinusoidal 
model. See text. 
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sort of exclusionary principle which is not postulated by the 
BFMA model (Lamb et al 1985; Shibazaki and Lamb 1987). 

Figure 7 summarizes our results, comparing the range of 
excluded shot rates for the three statistical tests with the range 
excluded by the BFMA model of Lamb et al. (1985). We follow 
their argument to obtain an upper limit on the number of shots 
resident simultaneously in the magnetospheric transition 
region, and then assuming a characteristic time scale for shots 
to traverse the region, we derive an approximate upper limit on 
the shot rate. The total mean intensity is the sum of the steady 
component, 70, and the contribution of the average number of 
simultaneous shots, <N>, 

</> = /0 + <JV><A> = (/+ l)<iV><A> , (6) 

where <A> is the average amplitude per shot and J0 has been 
expressed as a fraction of the shot component. The normalized 
power in the LFN component is 

7lfn = Plf*/P o = 0.5<N><A2>/<7>2 (7) 

(where, as in Lamb et al, two is the spectral normalization, 
rather than unity as in the rest of this paper). For 
<A2) = <A>2 and yLFN = 0.13, corresponding to an rms frac- 
tional intensity of the GX 5 — 1 LFN of ~ 6% (see van der Klis 
et al 1985), equations (6) and (7) yield 

<JV> = 0.5[yLFN(l +/)] -1/2 =, 30/(1 +/)2 . (8) 

If none of the luminosity arises from a steady component, 
<iV> ^ 30; else <iV> < 30. This agrees with the limit derived by 
Lamb et al (1985) for an approximately sinusoidal QPO, 
which is implied by the absence of a conspicuous first harmo- 
nic in the average GX 5 — 1 power spectrum (Fig. 2). Values for 
<iV> which agree with Lamb et al (1985) are discussed in 
Lamb (1986) and Shibazaki and Lamb (1987). These authors 
are misquoted by Lamb (1989), who is apparently referring to 
shot rates of ~200-3000 s_1 (the former value being applic- 
able to the sinusoidal BFMA model), rather than <iV> itself. 
The shot rate is 

*shot = WAtrans > (9) 

where Ttrans is the time for shots to cross the transition region. 
This is much longer than the free-fall time ( ~ 1 ms), since the 
clumps of accreting matter describe quasi-Keplerian orbits. A 
plausible value for Ttrans is the QPO coherence length of two to 
three cycles, ~ 100 ms. At ~ 100 km from the neutron star, 6 
Keplerian orbits in the transition region is ~ 100 ms, during 
which time a few QPO beat periods would occur. These values 
are also close to the average lifetime of LFN shots in some 
models. Thus an estimate for Rshot is — 300 Hz or less for the 
BFMA sinusoidal model. 

The shot rate limit provided by the skewness test assumes 
that individual shots have approximately zero skewness; shots 
with negative skewness could give rise to a total resultant 
skewness of approximately zero. However, the limit imposed 
by the local mean test is independent of shot shape; random 
variations in shot rate are discernible with this test for average 

shot rates up to 400 Hz by their contribution to the local mean. 
This is a difficulty which must be solved for the BFMA 
(sinusoidal) model to remain viable. Either shot rates higher 
than 300 Hz must somehow operate, giving rise to a larger 
intrinsic noise bias, or a separate negative shot component 
must be present. 

The BFMA model was originally advanced to explain the 
correlation of QPO centroid frequency with X-ray intensity in 
GX 5 — 1 (Alpar and Shaham 1985; Lamb et al 1985). An 
important consequence of the theory is that it also required a 
correlation of LFN and QPO strengths, which is observed on 
intermediate time scales of minutes (van der Klis et al 1985). In 
an analysis performed using standard correlation techniques, 
Mitsuda et al (1990) find that the QPO-LFN strength corre- 
lation develops on time scales longer than ~ 8 s, corroborating 
our result for GX 5 — 1. Thus, it is possible that QPOs and 
LFN at frequencies ~ 1 Hz and higher are only phenomeno- 
logically connected by a third parameter, for instance, accre- 
tion rate. 

We note that inclusion of possible effects such as QPO coher- 
ence across shots, QPO amplitude decay, timing correlations, 
and other features can mask the relationship between QPO 
and LFN in the BFMA context (Shibazaki and Lamb 1987; 
Shibazaki, Eisner, and Weisskopf 1987; Eisner, Shibazaki, and 
Weisskopf 1987). We do incorporate the important feature of 
QPO coherence across shots—shot clustering—which lessens 
the correlation with LFN. In fact, it is necessary to include 
some shot clustering in order to fit the narrowness of the QPO 
peak, unless LFN on time scales longer than 1 s is predomi- 
nantly responsible for carrying the QPO. We note that these 
additional theoretical effects are not relevant to the constraint 
provided by the local mean test, which is insensitive to LFN 
shape. 

Additional progress on the question of the QPO-LFN 
relationship can be made by using algorithms which explore 
the QPOs on shorter time scales near the coherence length. 
Also, theory could be better constrained with knowledge of 
attributes such as the average pulse shape which gives rise to 
QPOs, the relationship between adjacent pulses, and spectral 
hardness as a function of pulse phase. These problems can be 
successfully pursued in the statistical aggregate using available 
data—if proper account is taken of the large noise bias. We 
suggest the use of time domain analysis techniques such as 
autoregressive-moving average models (Scargle 1981; 1990) 
and optimal linear filters (Norris et al 1989b, c) for probing 
QPO shape, phase relationships, and duty cycle. For instance, 
optimal filter algorithms can be used to probe directly the 
QPO coherence length distribution, and search for frequency 
modulation and phase mode switching (Norris et al 1989a, b). 
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