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ABSTRACT 
We study the dynamical interaction of a black hole or central mass concentration with the inner regions of 

a rapidly rotating barred galaxy. Stochastic regions appear as the central mass is increased. These are associ- 
ated with the appearance and outward movement of an inner Linblad resonance related to an increase of 
central mass. The fundamental family of orbits sustaining the bar will dissolve at approximately the point 
where this resonance reaches the end of the bar. More elongated bars dissolve more easily and orbits closer to 
the center become stochastic more readily. 
Subject headings: galaxies: internal motions — galaxies: structure 

I. INTRODUCTION 

The effect of the growth of a central mass concentration in a 
rapidly rotating barred galaxy on the stellar dynamics of the 
central regions of the parent galaxy is examined. This is an 
interesting problem because large mass concentrations are 
known to exist in the centers of elliptical galaxies such as M87 
(Sargent et al 1978; Dressier 1988) and nearby spirals such as 
M31 and M32 (Tonry 1987; Kormendy 1988; Richstone and 
Dressier 1988). Ultraluminous starburst galaxies such as Arp 
220 are inferred to have 1010 M0 or more within the central 
300 pc (Scoville et al 1987). The recently discovered counter- 
rotating cores seen in ellipticals have similar characteristics 
(Franx and Illingworth 1989; Jedrzejewski and Schechter 
1989). Theoretical estimates of the mass fuelling rates for 
quasars are of order 10 M0 yr-1 for ~108 yr. This central 
mass estimate of at least 109 M0 can be significantly higher if 
the efficiency factors are lowered. Although many papers have 
been written on how the formation of such central mass con- 
centrations can power AGNs and starbursts (see Rees 1984), 
relatively little has been done to try and understand their influ- 
ence on stellar motion. 

Certain features of stellar orbits in stationary or slowly 
rotating potentials with a small central mass concentration 
have been studied by other authors. Gerhard and Binney 
(1985) showed how a central point mass, Mh, embedded in a 
galactic nucleus of velocity dispersion a, will scatter stars that 
enter its sphere of influence of radius rh ~ GMJa2. Stars enter- 
ing in one family of box orbits have a probability of emerging 
in another family of orbits. They estimated that for typical 
parameters the box orbits would be disrupted out to ~2 kpc 
from the center if the ratio of Mh to the core mass, Mcore, was 
~2%. 

Norman, May, and van Albada (1985) studied the problem 
using self-consistent N-body models. They took a typical 
iV-body galaxy model, put in a central mass, and watched the 
evolution. The most difficult task was to disentangle the neces- 
sarily poor orbit integration of the N-body code within galac- 
tocentric radius, rft, from real secular evolution. They found 
significant roundening of the galaxy out to ~ 7 core radii. It is 

interesting to note that the overall orbit distributions were very 
well conserved, although there was frequent scattering between 
orbit families (due to both real and numerical effects) but the 
populations were consistent with slow secular evolution. A. 
May and C. A. Norman (1985, unpublished) studied orbits in a 
nonrotating bar system and looked at the relative areas of the 
surface of section populated by different orbit families as a 
function of the central mass. For a ratio of central to core mass 
of 0.1% or smaller, the orbits were the standard box orbits but 
as this parameter rose to between 0.1% and 10% the region 
was dominated by stochastic orbits. For values of MJMCOTG > 
10% the orbits became increasingly tubelike as is expected as 
the central mass begins to dominate. Lake and Norman (1983) 
gave a preliminary discussion of gas in very weakly dissipative 
Hamiltonian systems and showed how Mel’nikov’s theorem 
implied that the gas clouds orbiting in galaxies will attempt to 
find the stable periodic orbits. 

Udry and Pfenniger (1988) examined ellipsoidal potentials 
with Rood profiles and calculated the Liapunov exponents 
over ~2 Hubble times. Using the definition of the Kolmogo- 
rov entropy which is the sum of the positive Liapunov expo- 
nents they showed that the addition of a central mass 
concentration of order ~ 2% increases the average entropy by 
~ 80% and noted that this will force the evolution away from, 
for example, integrable Stäckel systems. Pfenniger and De 
Zeeuw (1989) studied the homogeneous triaxial ellipsoids with 
regular boxes in the core and found they exhibited stochastic 
orbits when a core mass was added. They conjectured that 
shapes of cores may stabilize at the resonant homogeneous 
ellipsoids with integral frequency ratios. Miralda and Sch- 
warzschild (1989) showed how the centrally concentrated sin- 
gular logarithmic potential cannot support box orbits, merely 
boxlets. These can become unstable due to scattering off the 
central mass concentration. 

Further study of this fascinating problem is almost irresist- 
ible, and in this paper we have studied the two-dimensional 
problem of the dynamics of a bar and black hole. In particular, 
we examine the onset of stochasticity and establish the point at 
which the central mass concentration becomes sufficiently 
massive to dissolve the principal family of orbits sustaining the 
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^ bar. In § II we formulate the problem, in § III we give the 
; results, and in § IV we summarize. 

è II. MODEL POTENTIAL AND FORMULATION o 
S The galaxy was modeled by a two-component rotating 

potential to which was added a central compact object rep- 
resenting a black hole or central mass concentration. The 
model potential 'F was chosen to have an axisymmetric core 
which was taken to be a Plummer sphere given by 

^ ~GMC 
c VOÏTTW 

(i) 

where Ac is the scale length of the sphere, Mc, the total mass of 
the sphere, and G the gravitational constant. The second com- 
ponent of the galactic potential was modeled by an inhomoge- 
neous prolate ellipsoid with a density distribution of the form 

1^(1-m2)2 if m < 1 
^ jo if zn > 1 ’ 

where m2 = (x2/tf2) + (y2 + z2)/b2, with a> b. We shall restrict 
ourselves to the galactic plane where z = 0. This potential is a 
reasonable representation of a bar and has been used by 
several authors (e.g., Teuben and Sanders 1985; Athanassoula 
et al. 1983). It has a density falling smoothly to zero, giving a 
continuous potential at the edge of the bar. It has the advan- 
tage that its analytic form is well defined (Perek 1962, for the 
oblate case; de Vaucouleurs and Freeman 1972), and is easily 
computed in terms of index symbols (Chandrasekhar 1969) 
which are functions of b/a and are constant within the spheroid 
while they vary with the radial distance outside the bar. 
Teuben and Sanders (1985) also add a halo component to their 
potential. We ignore this component as we are interested only 
in orbits which are affected by the black hole. The effect of the 
halo is expected to be insignificant in this region. 

The central compact object was also modeled by a Plummer 
sphere. 

^hh = 
GMU 

\/i^bh + Æ2) 
(3) 

The free parameters of this potential are as follows: (1) the 
relative mass ratio of the bar Mb/MT, where MT = + Mc 
+ Mbh, (2) the semimajor axis of the bar a, (3) the bar axial 

ratio b/a, (4) the ratio of the length scale of the central com- 
ponent to the length of the bar AJa, (5) the ratio of the corota- 
tion radius to the length of the bar, Rcr/a, or equivalently the 
pattern speed Qp, (6) the black hole mass ratio MhJMT, (7) the 
ratio of the length scale of the black hole potential to the length 
of the bar AhJa. The black hole has been softened for com- 
puter efficiency and numerical accuracy since the force at small 
distances is very large and very short time steps would be 
required in the numerical integration of the equations of 
motion to follow the motion accurately. 

For normalization purposes it was found convenient to fix 
the bar semimajor axis a at 9 kpc and the total mass MT = 4.67 
x 1010 M0 (Teuben and Sanders 1985). For all cases studied 

this normalization resulted in a pattern speed Qp ~ 15 km s -1 

kpc so that Rcr/a = 1. 
We examined the effect of the black hole on the orbits of this 

potential for three sets of conditions : 
1. Black hole mass was varied. The bar parameters were fixed 

at Mb/MT = 0.3, b/a = 0.45, AJa = 0.5, Abh/a = 0.05. As the 

black hole mass was varied, the core mass was allowed to vary 
so that the total mass remained constant. The Jacobi constant 
was fixed so that a star could reach a maximum distance of 
0.45a. 

2. The value of b/a was varied. The value of b/a was changed 
from 0.45 to 0.35, 0.25, while the following parameters were 
held constant at MJMj = 0.3, AJa = 0.5, AhJa = 0.05, 
MbJMT = 0.03. The Jacobi constant was fixed so that a star 
could reach a maximum distance of 0.45a. 

3. Jacobi constant was varied. This was done so that a star 
could reach a maximum distance of 0.25a, 0.45a, and 0.65a. 
The potential parameters were fixed at Mb/MT = 0.3, 
b/a = 0.45, AJa = 0.5, AhJa = 0.05, Mbh/Mr = 0.03. 

We consider the motion of a star in the x — y plane of a 
galaxy rotating with a pattern speed Qp. The Hamiltonian of 
the system (Jacobi integral) in the frame of rotation is 

H = i(x2 + y2) + ¥(*, y) - ¿Q2(x2 + y2) (4) 

where (x, y, x, y) are the phase coordinates. The equations of 
motion have the standard form (Binney and Tremaine 1987; 
De Zeeuw and Merritt 1983) 

dx 
It 

x , (5) 

(6) 

dx 
dt 

-2i2.y- 
dx (7) 

-a=2n’x-^+c‘’r (8) 

For a particular value of the Jacobi integral, orbits were 
obtained by numerically integrating the equations of motion 
with initial conditions corresponding to the star being on the 
y-axis with y = 0 and x computed from equation (4). A seventh 
to eighth order Runge-Kutta integration scheme (Fehlberg 
1969, 1970) was used for the computation. Surface of section 
plots were made by storing the values of (y, y) every time the 
star crossed the y-axis with a positive value of x (or equiva- 
lently, values of (—y, — y) for crossings of the y-axis with nega- 
tive x-velocity). As a check of numerical accuracy, in a number 
of test cases values of | (J — J0)/J |, where J and J0 are respec- 
tively, the values of the Jacobi constant at the starting point 
and the surface of section point, were computed. They came 
out to be typically of the order of 10" 9 and nowhere exceeded 
lO"7. 

Before going on to examine the nature of orbits and surfaces 
of section, we shall outline the numerical technique employed 
to compute the phase space volumes discussed in later sections 
of this paper. Let us consider orbits with Hamiltonian values in 
the range (J + SJ, J) which fill a region D in the appropriate 
phase space surface of section [in our case (H = const, x = 0)]. 
The volume, <5t, in phase space occupied by orbits which start 
in the region D is given by (Binney, Gerhard, and Hut 1985) 

<5t = ¿J J T(y, y)dydy , (9) 

where T(y, y) is the time required for the orbit which starts 
from (0, y, x, ÿ) with Jacobi constant J to return to the surface 
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1 of section (H = J,x = 0). We use this formula in our computa- 
a tion of phase space volumes. 
o The numerical integration is carried out by using the NAG 
2 library routine D01DAF which employs the method described 

by Patterson (1968a, b), of the optimum addition of points to 
Gauss quadrature formulae. The routine attempts to evaluate 
to specified absolute accuracy a definite integral of the form 

n<t>2(y) 
f(x,y)dxdy, (10) 

>i(>0 
where a and b are constants and (¡)1 and </>2 are functions of the 
variable y. In our case, the limits a and b are replaced by the 
limiting values of y on the phase space curve. Since the phase 
space that we are interested in (see § III) is symmetrical about 
the y-axis (in the (y, y) plane), we need consider the bounding 
curve above the y-axis only. Thus we have </>!(>>) = 0, while 
</>2(y) is determined by the particular phase space area under 
consideration. In the case of the total phase space </>2(y) is just 

the “ zero velocity ” curve defined by the equation 

y = V{2[J-T(0, y)-] + n2
py

2} . (11) 

The other curves in the (y, y) plane that we shall be interested 
in are well-behaved univalued invariant curves symmetric in (y, 
— y). As before we consider the bounding curve above the 
y-axis only so that </>i(y) = 0, and </>2(y) is given numerically by 
the phase space points (or consequents) defining the invariant 
curves. The points are first ordered so that they follow one 
another along a smooth curve. Interpolation between the 
points is done by a cubic spline with end point conditions 
corresponding to the “not-a-knot” condition (De Boor 1978) 
which requires that the third derivative of the spline be contin- 
uous at the second and penultimate knots. The interpolation 
routine ICSCCU from the ISML library was used. 

Finally, it is instructive to look at three-dimensional plots of 

Fig. la 
Fig. 1.—Three-dimensional plot of T(y, ÿ) for a rapidly 

T(y, y) versus y and y values corresponding to direct orbits. We 
show two examples in Figure 1. The first case (Fig. la) is that of 
a rotating bar with no black hole. We see that T is fairly 
constant over the entire range considered. Some points of dis- 
continuity are found for small values of y. An examination of 
the orbits at these points shows that they are partially retro- 
grade as they develop a loop along the y-axis which causes 
them to return to the surface of section much faster than the 
orbits which are purely direct. Excluding these points of dis- 
continuity the values of T fluctuate between roughly + 8% and 
roughly —12% of the mean. The second case (Fig. lb) is that of 
a rotating bar with a black hole mass 0.17 Mr. In this case 
there are larger fluctuations in T, between roughly -1-31% and 
roughly — 33% of the mean. This is not surprising as almost all 
orbits in the region of phase space considered are stochastic 
(see § III). Binney, Gerhard, and Hut (1985) pointed out that 
the phase space volume is proportional to the area occupied by 
the orbits in the surface of section only if T = const. Thus 
while it might be a reasonable approximation to compute the 
area of the surface of section for the rotating bar without a 
black hole as a measure of the phase space volume, this can no 
longer be done when stochastic orbits are dominant and the 
full phase-space volume should be computed according to 
equation (9). 

III. DISCUSSION OF RESULTS 

a) Variation of Black Hole Mass 
An examination of the surface of section (Fig. 2a) shows that 

in the absence of a black hole there is one family of direct orbits 
aligned with the bar, represented by the invariant curves on the 
right of the figure, and one family of retrograde orbits, rep- 
resented by the invariant curves on the left of the figure. We 
shall not discuss the retrograde orbits further as they are unim- 
portant for supporting bars. Following Athanassoula et al 

Fig. lb 
rotating bar with (a) no black hole and (b) Mhh/MT = 0.17 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

36
1.

 . 
.6

9H
 

Y (KPC) 
Fig. 2a 

Y (KPC) 
Fig. 2b 

 1 1 ' 1 ' 1   1 1 i i » . ■ . . . i 
-5-4-3-2-10 1 2 3 4 

Y (KPC) 
Fig. 2c 

Fig. 2.—Surface of section plots for a rapidly rotating bar with 
b/a = 0.45, Jacobi constant corresponding to the particle reaching a 
maximum distance of 0.45a and with (a) no black hole (b) 
Mbh/Mr = 0.01, and (c) Mbh/Mr = 0.17. 
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CHAOTIC ORBITS IN 

X (KPC) 
Fig. 3a 

X (KPC) 
Fig. 3c 

Fig. 3.—Evolution of an orbit starting at (0, 0.21) for a rapidly rotating bar 
with (a) no black hole, (b) Mhh/MT = 0.01, and (c) Mhh/MT = 0.07. 

(1983), we shall refer to this family of direct orbits as family B. 
The orbits are all loops as is apparent from the invariant 
curves (IC) representing them in the surface of section. The 
introduction of a central black hole with MhJMT = 0.005 does 
not change the nature of the surface of section. Increasing the 
black hole mass ratio to 0.009 causes the appearance at small 
radii of a minor family of loop orbits. For Mbh/Mr = 0.01 this 
minor orbit family leads to well-defined invariant curves in the 
surface of section, lying between the retrograde family and the 
B family (Fig. 2b). These direct orbits are anti-aligned with the 
bar. We shall refer to them as “ looplets ” in analogy with the 
minor family of box orbits christened as “ boxlets ” by Miralda 
et al (1989). The corresponding parent periodic orbit is shown 
in Fig. 3b. The looplets persist as the black hole mass ratio is 
increased to 0.011, although the outermost looplet gets con- 
verted to a loop of the major orbit family. As Mbh/Mr is 
further increased to 0.013 all the looplets join the major orbit 
family B. Between Mbh/Mr = 0.013 and 0.05 the two outer- 
most orbits become stochastic and the corresponding invariant 
curves in the surface of section dissolve. As the black hole mass 
is increased further more orbits become stochastic until at 
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X (KPC) 
Fig. 3b 

mass ratio 0.17 all B family orbits have become stochastic and 
the bar dissolves completely. At mass ratio 0.11 we see the 
appearance of some orbits antialigned to the bar (A type of 
orbits) at large distances from the center. These remain as the 
mass ratio is increased. 

The evolution of the orbit of a particle which starts off at (0, 
0.21) with j = 0, with increasing black hole mass is illustrated 
in Figure 3. An orbit of family A which appears at large black 
hole masses is shown in Figure 4. 

An estimate of stochasticity was obtained by computing the 
percentage P of the phase space volume occupied by the B 
family of orbits following the method outlined in § II. In order 
to decide which invariant curve should be used as the bound- 
ary of the space, each curve was plotted individually on the 
screen and its endpoints tabulated. The curves were examined 
by eye, and the outermost curve that looked smooth was used. 
In cases where it was difficult to distinguish between the 
smoothness of two adjacent curves, volumes were computed 
for both cases and the mean taken. The results are plotted in 
Figure 5 versus the black hole mass ratio. Between mass ratios 
0 and 0.005 the phase space occupied by B orbits goes from 

Fig. 4.—An example of a type A orbit appearing at large black-hole 
masses. This is a short time snapshot. 
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Fig. 5.—Percentage of phase space occupied by B orbits. The lines are a 
guide to the eye and do not represent a fit. 

~48% to ~42%. For Mbh/Mr = 0.01 this percentage, P, falls 
to ~25% because of the appearance of the looplets. The value 
of P goes back to ~42% for a black hole mass ratio of 0.015 
and stays around that value until MhJMT = 0.03, after which 
it starts falling until it reaches zero for a black hole mass ratio 
of 0.17. 

Physical insight may be gained by using the results of the 
epicycle theory of nearly circular orbits in an axisymmetric 
potential as applied to loop orbits in weak bars (Binney and 
Tremaine 1987). It has been shown that a self-consistent weak 
bar is composed primarily of orbits which are parallel to the 
bar and that such a bar can only be present inside corotation in 
regions where Qp > Q — /c/2, where Q(R) and k(R) are the cir- 
cular and epicycle frequencies, respectively, of an orbit at the 
radial position R. A detailed study of orbits in bars by Conto- 
poulos and Papayannopoulos (1980) also shows that for weak 
bars the B family of orbits lie between the outer inner Lindblad 
resonance (ILR), when Qp = D(Rilr) — /c(Rilr)/2, and the coro- 
tation radius, when Qp = Q(RcR). Extending these results to the 
case of a rapidly rotating bar perturbed by a small central mass 

concentration we rould qualitatively expect the region in 
phase space occupi 1 by B orbits to decrease as the outer ILR 
moves outward. It lust be kept in mind that these ideas are 
very approximate f< * this problem, and although the Lindblad 
resonance is not str ;tly defined we only use the concept to get 
some physical insig it (see Teuben and Sanders 1985 and van 
Albada and Sanders 1982 for a discussion of the Lindblad 
resonances with reference to rapidly rotating strong bars). 

Since the potential we consider here is not circular we con- 
sider the behavior of Q(R) and k(R) along the x and y axes. For 
the Lagrangian points in a nonaxisymmetric potential they are 
given by (Pfenniger 1990) 

Q2
X ^ 0) = Wx(x, 0)/x , (12) 

il2
y ^ «(O, y) = %(0, y)/y , (13) 

k2
x = k2(x, 0) = ^xx(x, 0) + VJx, 0) + 2^x(x, 0)/x , (14) 

Kl EE K2(0, y) = 'Fxx(0, y) + ^(0, y) + 2^(0, y)/y . (15) 

Here ^(x, y) and y) represent partial derivatives of the 
potential with respect to x and y, respectively, and 'F^x, y) 
and Tyx, y) are the corresponding second derivatives. In real 
bars, periodic orbits are not circular, and at a given radius 
different transverse frequencies hold for each family. The above 
expressions are good for circular orbits but only approximate 
for elongated orbits. 

An examination of the curves for fíx(y) and Qx(y) — Kx{y)/2 
shows that in the absence of a black hole the pattern speed 
is much higher than Q — /c/2 so that there are no Lindblad 
resonances (Fig. 6a) and all direct orbits are of the B type. The 
situation does not change with the introduction of a black hole 
of mass 0.005 Mr. However, as the mass of the black hole 
increases the peak in Q — /c/2 rises sharply (Fig. 6b) and we see 
the appearance of the inner Lindblad resonances (ILRs). In 
Table 1 we show the values of the outer ILRs along the x- and 
y-axis, respectively, as the black hole mass increases. The 
pattern speeds along x and y are computed from equations (12) 
and (13) at (Rcr, 0) and (0, Rcr), respectively. The ILR along a 
particular axis corresponds to the radial distance along that 
axis when the pattern speed is equal to Q — /c/2. The outer ILR 
along the x-axis moves out from 0.8 kpc to 2.3 kpc while that 

R 
Fig. 6a 

R 
Fig. 6b 

Fig. 6.—Frequency plots for (a) no black hole and (b) Mhh/MT = 0.17. The corotation radius is 9 kpc 
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Fig. 7.—Surface of section plots for a rapidly rotating bar with 
black hole mass MhJMT = 0.03, Jacobi constant corresponding to 
the particle reaching a maximum distance of 0.45u, and axis ratio 
(u) b/a = 0.45, (b) b/a = 0.35, and (c) b/a = 0.25. 
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S TABLE 1 
! Variation of ILR with 

^ Black Hole Mass 

S Mbh/MT ILRX ILRy 

0.01 
0.05 
0.09 
0.13 
0.15 
0.17 

0.8 0.90 
1.5 1.88 
1.8 2.10 
2.1 3.94 
2.2 4.06 
2.3 4.16 

along the y-axis moves out from 0.9 kpc to 4.16 kpc as the mass 
of the black hole increases from 1% to 17% of the total mass. 
An increase in the outer ILR causes the region in phase space 
occupied by orbits of the B family to decrease (see Conto- 
poulos and Papayannopoulos 1980). For a black hole mass of 
15% the outer ILR along the y-axis reaches 4.06 kpc which is 

the edge of the bar along this axis. The volume in phase space 
occupied by B orbits has gone down to ~2% for this case (Fig. 
5). When the outer ILR moves outside the bar all B orbits are 
destroyed. 

b) Variation of Bar Axial Ratio (b/a) 
The effect of a black hole of mass 0.03 MT was examined for 

three bars with b/a = 0.45, 0.35, and 0.25 and all other param- 
eters held constant. In each case Rcr/a = 1, and the Jacobi 
constant was fixed so that the star could go to a maximum 
distance of 0.45a. The surface of section for the three cases is 
shown in Figure 7. There does not appear to be a major change 
in the structure of the surface of section as b/a decreases from 
0.45 to 0.35. However, when the bar axial ratio is reduced to 
0.25 most of the outer invariant curves dissolve because the 
orbits they represent have become stochastic. Only a very 
small region of the surface of section is now occupied by 
regular orbits. An examination of the variation of the phase 

Y (KPC) 
Fig. 8b 

Fig. 8.—Surface of section plots for a rapidly rotating bar with black hole mass Mbh/Mr = 0.03, b/a = 0.45, and Jacobi constant corresponding to the particle 
reaching a maximum distance of {a) 0.25a and (b) 0.65a. 
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; space volume ratio, P, with the bar axial ratio (Fig. 5) shows 
^ that while P varies slowly from ~44% to ~41% as b/a 
g decreases from 0.45 to 0.35, the effect is much more dramatic 
S for b/a = 0.25 when P goes down to ~3%. In each case a 
^ computation was done for a bar without a black hole, and it 

was found that P ~ 48% in all cases. It seems quite clear that a 
very small black hole will destroy a thin bar, while a thicker 
bar is far more robust to black holes. 

c) Variation of Jacobi Constant 

A black hole of mass 0.03Mr causes greater ergodicity when 
the Jacobi constant corresponds to a maximum distance of 
0.25a reached by the star than for distances 0.45a and 0.65a. 
This is appparent both from the surface of section (Figs, la and 
8) as well as from the variation of the phase space volume ratio 
(Fig. 5). The surface of section for stars with the largest energy 
considered here shows strong invariant curves with regions 
containing islands of higher order resonances. As the energy is 
decreased these islands disappear, but the volume in phase 
space occupied by B orbits increases slightly from ~38% in 
the previous case to ~44%. Decreasing the energy further 
causes the outermost orbits to become stochastic and only 
~9% of the phase space contains regular orbits. Thus the 
orbits of stars which do not have enough energy to go far from 
the black hole become stochastic more readily than those of 
stars with higher energy. 

IV. SUMMARY 

In summary, a black hole or central mass concentration in a 
barred galaxy can act to dissolve a bar. The fundamental orbits 
(called B orbits) supporting the bar are the orbits elongated in 
the direction of the bar. As the black hole mass increases, an 
ILR appears and moves outward. The B orbits disappear when 
the ILR reaches the end of the bar. This effect is significantly 
increased if the bar is thinner. Orbits that stay closer to the 
central mass with smaller Jacobi constants become stochastic 
more easily. 

It is well known that ergodicity sets in when neighboring 
resonances overlap (see Ford 1978). It seems intuitively appar- 
ent that in the cases studied in this paper the resonance overlap 
between the forced family of B orbits and the natural family of 
A orbits anti-aligned with the bar accounts for the stochastic 
behavior of the orbits within the ILR. No attempt has been 
made here to examine this theory and it remains an obvious 
candidate for future research. 
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