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ABSTRACT 
As the angular momentum of a neutron star changes, as a result of electromagnetic or gravitational radi- 

ation or of accretion, its period changes. For slowly rotating pulsars, the moment of interia is constant and 
the period changes linearly with the angular momentum. For rapidly rotating pulsars, however, the star’s 
oblateness, and hence its moment of inertia, changes appreciably as the period evolves, with important obser- 
vational consequences. Here we examine how the oblateness of a spinning neutron star affects the evolution of 
its period. Modeling an evolving pulsar as a sequence of homogeneous, uniformly rotating Newtonian 
Maclaurin spheroids, we determine how the period P, the period time derivative P, and the braking index nB 
vary with time as a result of dissipation via electromagnetic radiation, gravitational radiation, or a com- 
bination of the two. We also examine how these observable parameters vary with steady accretion. We con- 
sider two evolutionary equilibrium sequences: incompressible and compressible. In the first the density is 
constant, while in the second it is controlled by a poly tropic equation of state. We find that it is possible (and 
by no means unlikely) that during the early evolution of a rapidly rotating star the rotational frequency may 
increase even as the angular momentum decreases. This behavior depends critically on the adopted nuclear 
equation of state. 

As illustrative applications, we analyze the Crab pulsar spin evolution from birth to the present time, and 
the future evolution of a very rapidly rotating pulsar with an initial period of 0.5 ms. We point out that a 
modest fractional triaxial deformation of ~5 x 10-7 in such a rapidly spinning neutron star can generate a 
gravitational radiation amplitude of ~2 x 10~25 at the Earth, which is detectable using present-day bar detector 
technology, tuned to the correct frequency. We also show that eventual collapse of such a pulsar to a rotating 
black hole is a real possibility following dissipation of its rotational energy by magnetic dipole and/or gravita- 
tional radiation. In one of our models, corresponding to a soft equation of state, the rapidly rotating pulsar is 
actually seen to be spinning up right to the moment of its collapse ! 
Subject headings: pulsars — radiation mechanisms — stars: neutron — stars: rotation 

I. INTRODUCTION 

The observation of several millisecond radio pulsars has established the existence of rapidly rotating neutron stars. The recent 
report of 0.5 ms optical pulses from SN 1987A (Kristian et al. 1989), while now known to be spurious (Middleditch 1990), promoted 
the idea that neutron stars can in fact be born rapidly rotating (Sorrell 1989; Woosley and Chevalier 1989). Quite apart from these 
observations, Brecher and Chanmugam (1978, 1983) and Arons (1983) have discussed the birth of low magnetic field, rapidly 
rotating neutron stars in a general context. The direct observation of millisecond pulsars, and the anticipation of observing a 
submillisecond pulsar in SN 1987A, have stimulated considerable work recently on the physics of rapidly rotating neutron stars 
(Friedman, Ipser, and Parker 1989: Shapiro, Teukolsky, and Wasserman 1989 and references therein). 

The spin-down of a rapidly rotating pulsar is qualitatively different from that of a slowly rotating pulsar. For a slowly rotating 
star, the configuration is essentially spherical and loss of angular momentum J results in a decrease of the angular rotation rate Q 
but no substantial change in the moment of inertia /. For a rapidly rotating star the configuration may be highly oblate, and the loss 
of angular momentum can result in a significant change in /. This change will affect the rate of spin-down for a given rate of angular 
momentum loss. 

In this paper we demonstrate that the relationship between the rotation rate and the rotational distortion of a neutron star, and 
hence the rate of oblateness change and spin-down, is sensitive to the structure of the star. The structure in turn depends on the 
appropriate nuclear equation of state. Accordingly, spin-down measurements of a rapidly rotating pulsar may provide useful 
information about the global structure and/or microphysics of a neutron star. 

Twenty years ago, Ostriker and Gunn (1969) quantitatively described the evolution of the Crab pulsar’s period via dipole 
electromagnetic and quadrupole gravitational radiation energy loss. They adopted a simple vacuum oblique magnetic dipole model 
for the electromagnetic radiation (a nonvacuum aligned model would give a similar energy loss rate). They assumed that the dipole 
moment is constant in strength and orientation over the pulsar’s entire life, and, most critically, that the pulsar was rotating much 
faster at birth than it is now. With this model they argued that neither electromagnetic nor gravitational radiation alone was 
sufficient to explain the Crab’s current P, P, and age, but that a suitable combination could be found to yield these values. Cowsik, 
Ghosh, and Melvin (1983) returned to the spin-down problem in the context of the 1.56 ms pulsar PSR 1937 + 214. They provided a 
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SPIN-DOWN OF NEUTRON STARS 445 

preliminary analysis of the effects of rotational distortion, but neglected gravitational radiation and only treated the evolution of 
incompressible fluid stars. 

We reconsider the spin evolution of rapidly rotating neutron stars, modeling them as Maclaurin spheriods: uniform-density, 
rigidly rotating Newtonian fluid configurations in hydrostatic equilibrium. We endow our models with a magnetic moment /i and 
perturbative “ mountain ” of fractional height e so that, as they rotate, they radiate energy and angular momentum via electromag- 
netic and gravitational waves. We also briefly consider gas accretion as a source of mass and angular momentum. The “hoop 
conjecture ” (Thorne 1972) gives us a crude criterion by which we can determine which nonspherical models collapse to a black hole. 

We confine our attention to secularly stable Maclaurin spheroids. These possess a limited range of angular momentum, with 
T/\W\ and eccentricity e satisfying 

0< T/IJTI <0.1375, 0 < e < 0.812670 , (1) 

where T is the rotational energy and W is the gravitational binding energy of the spheroid. Configurations with larger angular 
momentum J are subject to nonaxisymmetric bar-mode instabilities, driven by viscosity and/or gravitational radiation (cf. Chan- 
drasekhar 1986, § 37). For typical parameters the period at the onset of the instability is quite short: 

P < 0.66 ms 
M \ 

1.4 M J 

-1/2 a y/2 

10 km/ (2) 

where a is the semimajor axis of one of our stellar models (an incompressible Maclaurin spheroid, described more fully in § II). 
As our models evolve on slow electromagnetic dipole and gravitational radiation quadrupole time scales, they traverse a sequence 

of Maclaurin spheroids. All the properties of these spheroids are determined by their density /?, mass M, and angular momentum J. 
The mass and the angular momentum are determined by accretion and/or radiation equations, leaving us the choice of density to fix 
the sequence. Each prescription for density determines a different sequence, and we consider two such sequences. First, we examine 
incompressible Maclaurin spheroids, for which the density does not change during spin-down. Subsequently, we progress to the 
more realistic sequence of compressible spheroids, where the (still uniform) density is related to the central pressure through a 
polytropic equation of state and changes during spin-down. 

Even our compressible spheroids are highly idealized, especially compared with the fully general relativistic rapidly rotating 
neutron star models of Friedman, Ipser, and Parker (1986). Nevertheless, they provide a self-consistent, exact model of rotating 
equilibria. Their simplicity, in fact, is an advantage here: it allows us to explore the relationship between angular rotation and 
angular momentum more readily and in greater breadth than is now possible with fully relativistic, numerical models. We expect 
that, while some of the details resulting from a fully relativistic analysis would differ from those found here, the qualitative features 
we report below would remain. 

In § II we examine the spin-down of neutron star models based on incompressible Maclaurin spheroids. We first develop a general 
set of equations for the spin evolution of these models, encompassing mass and angular momentum accretion as well as magnetic 
dipole and gravitational quadrupole radiation. We then specialize to radiation-driven spin-down, examining separately the electro- 
magnetic and gravitational cases. We conclude our study of radiation spin-down of incompressible models with two applications : a 
model of the spin-down of a very rapidly rotating neutron star (born with period P ~ 0.5 ms), and an analysis of the Crab pulsar 
(PSR 0531+21) spin evolution. The latter is compared with the original Ostriker and Gunn (1969) calculation of the Crab pulsar’s 
spin evolution. 

In § III we progress to the more realistic compressible models. After developing the equations describing the general spin evolution 
of these models (incorporating the effects of both accretion and radiation), we again restrict attention to radiation loss mechanisms 
and re-examine SN 1987A in more detail. We consider electromagnetic torques in isolation and combined electromagnetic and 
gravitational torques at the limits set by the observations of Kristian et al. (1989). We also consider the detectability of the resulting 
gravitational radiation. In § IV we return to the study of accretion spin-up, and consider gas accretion from an aligned Keplerian 
disk onto a weakly magnetized neutron star. Our conclusions are summarized in § V. 

The parameters we adopt to describe the very rapidly rotating pulsar are taken to be illustrative. They were triggered by the 
spurious report of an 0.5 ms pulsar in SN 1987A and some of the theoretical discussion surrounding this object, as well as the 
original conclusions of Shapiro, Teukolsky, and Wasserman (1983) that the shortest period of a rotating neutron star consistent 
with currently viable equations of state is 0.5 ms (see also Friedman, Ipser, and Parker 1989; Shapiro, Teukolsky, and Wasserman 
1989). For all cases we indicate appropriate scaling behaviors so that our calculations are generally applicable to other neutron stars 
with different periods. 

II. INCOMPRESSIBLE MODELS 
Here we employ constant-density sequences of Maclaurin spheroids with varying mass and angular momentum (owing to 

accretion, electromagnetic, and/or gravitational radiation) to describe the spin-down of rapidly rotating pulsars. After establishing 
the equations that govern the rate at which a neutron star progresses along such a sequence, we consider two applications: a pulsar 
born with an 0.5 ms period and the Crab pulsar. 

a) Evolutionary Equations 
The properties of oblate, homogeneous Maclaurin spheroids are summarized in Chandrasekhar (1986, § 2, 31-37) and Shapiro 

and Teukolsky (1983, hereafter ST, § 7.3). Central to their description is the relationship between the eccentricity e and the uniform 
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angular velocity of rotation Í2 : 
fi2 = 2npg(e), 

9(e) = 
(1 - e2)1/2 

(3 — 2e2) sin' 
3(1 - e2) 

(3) 

(4) 

(here and throughout this paper we adopt geometrized units where G = c = 1). The eccentricity establishes the relation between the 
semimajor (equatorial) axis a and the semiminor (polar) axis c according to c = a(l — e2)112. The angular velocity Q of the spheriod 
is related to its angular momentum J through the moment of interia / in the usual way, 

J = IQ = \Ma2Q , (5) 

and the (rest) mass is related to the density and the eccentricity according to 

M = jMl-e2)1/2. (6) 

Equations (5) and (6) can be inverted to express a and / in terms of the mass, density, and eccentricity : 

/ 3M\1/3 

a = a0(l - e2) 1/6 , a0 = , (7a) 

/ = /0(l-e
2)-1/3, I0 = ÍMa2, (7b) 

where a0 and /0 are the radius and moment of inertia of a spherical, homogeneous star of the same mass M and density p as would 
result if the original spheroid radiated away all of its angular momentum at constant density. 

With these relations, a Maclaurin spheroid is seen to be uniquely specified by its mass, density, and angular momentum, or 
equivalently by its mass, density, and eccentricity. Here we restrict attention to models of constant density. Consequently, the 
problem of describing the evolution of a stellar model reduces to determining the mass and eccentricity as functions of time. The 
variation of mass with time is described by the rate of accretion, M, which in turn is determined by the properties of an accretion 
disk (for example). It remains to determine the evolution of eccentricity. 

To describe the evolution of the eccentricity, take the logarithmic derivative of the equilibrium equations (3), (5), and (6): 

2 
dn 
Q 

dJ 
J 

dp , die) , 
= — + —- de 

P die) 

dM ^ da dQ 
= 4vF + 27 + 7i’ 

(8) 

(9) 

dM 
M 

dp „ da 
= —+ 3 —- 

p a 
ede 

\ — e2 ' 
(10) 

For now, hold the density constant so that dp Ip vanishes (we shall relax this assumption in § III). Then equations (8), (9), and (10) 
may be combined to yield 

Í 4 g y 
J — 3 M ~ 2\g' + 3 1— e2)e ’ (11) 

where a dot (as in j) denotes a time derivative (dJ/dt) and a prime (as in g') denotes a derivative with respect to the eccentricity 
(dg/de). Noting that J (eq. [5]) is expressible in terms of M and e through equations (3) and (7b), we see that equation (11) describes 
the evolution of the eccentricity e, once the sources and sinks of mass and angular momentum (i.e., electromagnetic or gravitational 
radiation, or accretion) have been specified. 

It is instructive to rewrite equation (11), replacing de/dt by dQ/dt: 

J_5M_^r 4 g(e)e 1 
J~ 3 M~ Cl\_l + 3 <sr'(e)(l - e2)J ' 

(12) 

The second term in the brackets on the right-hand side is the correction to the standard spherical model for the evolution of the 
angular frequency of a pulsar. This term allows for nonspherical distortions (oblateness) owing to rotation, and for rapidly rotating 
pulsars it is of order unity and cannot be ignored. 

Postponing the discussion of accretion until § IV, we consider two specific mechanisms of angular momentum loss : electromag- 
netic and gravitational radiation. For this purpose we endow our model pulsar with a test magnetic dipole moment p and an 
ellipsoidal deformation of fractional magnitude e. The projection of the magnetic moment perpendicular to the rotation axis is p sin 
a. The star continues to rotate about its semiminor axis, but cross sections normal to the rotation axis are slightly elliptical, with 
equatorial axes a and b such that 

a — b 
(a + b)/2 

(13) 

(cf. ST, § 10.5 and 16.6). 
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The magnetic moment fi and fractional ellipsoidal deformation 6 lead to energy and angular momentum loss via electromagnetic 
and gravitational radiation, respectively. Corresponding to this secular loss of energy from a rotating , equilibrium star is a loss of 
angular momentum according to 

dE = QdJ. (14) 

This is a general result proven by Ostriker and Gunn (1969) for Newtonian configurations of fixed mass, entropy, and chemical 
composition, and extended by Hartle (1970) to relativistic stars. For a Maclaurin spheroid, we can calculate the energy and angular 
momentum losses explicitly: the total energy of an incompressible spheroid is 

£ = VF + T , 

where W is the gravitational binding energy, 

3 M2 sin-1 e 
W = -    

5 a e 

and T is the rotational kinetic energy, 

T = i/O2 . 

(15) 

(16) 

(17) 

Equation (14) may be verified directly for incompressible Maclaurin spheroids by using equations (3) and (4) and (7a) and (7b) to 
express J, T, and W (eqs. [5], [16], and [17]) in terms of e, holding M and p fixed. It is then straightforward to show that dE/de and 
O dJ/de are equal. 

According to equation (14), the energy loss rate immediately determines the time rate of change of angular momentum. For 
magnetic dipole radiation we have 

¿EM = - fl/42 = -§()« sin a)2Q4 , 

and for gravitational quadrupole radiation 

É GR — 
1 /d%k d

3fjk\ 
5 \ dt3 dt3 / 

32 
- y / VO6 , 

(18) 

(19) 

where íjk is the reduced quadrupole moment (cf. ST, eq. [16.6.5] and discussion following), the angle brackets indicate an integration 
over all angles, and there is an implied summation over j and k. The corresponding rate of angular momentum loss due to 
electomagnetic and gravitational radiation is therefore 

J — Jem + Jgr ? (20) 

where 

Jem = -3ÍM sin a)2ß3 = -ß^3 (21) 

and 

JGR = -^/2e2Q5 = - e2y2l3il5 = -y0(l - e2y2l3Q5 . (22) 

In what follows, we assume that the projected magnetic moment p sin a and fractional deformation € remain constant. More 
generally, e may be sensitive to the rotation rate of the neutron star, although the degree of sensitivity depends upon the rigidity of 
the crust and its “frozen-in” reference oblateness (cf. Pines and Shaham 1972; Alpar and Pines 1985). Then ß and y0 are constant, 
and equation (11) may be written as 

de 
dt' 

co 
— (1 - e2)1/3\ 1 + 

t1 + (1 - e2)2'3!3'1 (^iST (23) 

where t' = í/t is a dimensionless time, t is the magnetic dipole damping time scale, co is a dimensionless angular frequency, and 2co2 

relates the relative importance of gravitational and electromagnetic damping : 

co EE il/p'i2 = [2ng(e)y/2 , 

(24a) 

(24b) 

_ JoPo 
ß 

In the special case where there is no electromagnetic radiation (ß = 0), we replace equation (23) with 

de 
dt' 

— (1-e2) 
71 ■í-i' 3 1 - e2 

(24c) 

(25) 
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where again t' = i/r but now 

yop2 

is the time scale for rotational damping by gravitational radiation. 

(26) 

b) Solutions 
i) General Evolution 

When there is no gravitational radiation (€ = 0), equation (23) may be integrated without reference to any specific mass, density, 
or magnetic moment. The result is a “ master curve ” which describes how eccentricity varies with time for any model where the 
angular momentum loss is governed entirely by magnetic dipole radiation. The evolution of eccentricity describes the observed 
properties of a pulsar: the period, through equation (3), the period derivative P = —Ù/Q2, through 

and equation (23); and the braking index, 

4n gf(e) de 
p= -^Usdt1 

pP 
nB~ ù2~ P2 ' 

(27) 

(28) 

An analytic expression for the braking index could also be found; however, we find it more convenient to determine the braking 
index numerically. Similarly, when there is no electromagnetic radiation (// sin a = 0), equation (25) may be integrated indepen- 
dently of M, p, and e to obtain a second “master curve” that describes any model whose evolution is governed only by 
gravitational quadrupole radiation. 

Figure 1 shows these two master curves. The solid and dashed lines are for stars with only electromagnetic and gravitational 
spin-down torques, respectively. The dotted and dot-dash curves show the equivalent master curves for the spin evolution of a 

Time [t/r] 

Fig. 1.—“Master curves” describing the spin evolution of the eccentricity e, period P, rate of period P, and braking index nB for a constant-density, constant- 
mass sequence of Maclaurian spheriods. The solid line describes the case of pure electromagnetic radiation spin-down with constant magnetic dipole moment, while 
the dashed line describes the case for pure quadrupole gravitational radiation with constant fractional ellipsoidal deformation. For comparison, the dotted (dot-dash) 
line shows the spin evolution of a spherical star for the case of pure electromagnetic (gravitational) radiation spin-down. Time is expressed in units of t and period in 
units of each of which depends on the moment of inertia, density, and strength of the radiation (see text). Note that only when the eccentricity becomes small does 
nB settle into the usual value of 3 (5) for magnetic dipole (gravitational quadrupole) spin-down. 
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spherical star of the same mass and density with electromagnetic and gravitational spin-down torques, respectively. The time scale t 
is given by equation (24a) for the electromagnetic and equation (26) for the gravitational master curve, and is related to the physical 
properties of specific models by 

T 

5/3f 3 x IQ14 g cm~3\5/3/IO30 G cnr 
p / \ // sin a 

3 x 1014 gcm^Y/VlO^Y 

for € = 0 , 

for // sin a = 0 . 
(29) 

We have normalized mass and density to mean values typical of neutron stars, and magnetic dipole moments to values inferred for 
typical strong field pulsars (corresponding to R ^ 1012 G). The “mountain height” parameter e is normalized to a value consistent 
with the Ostriker and Gunn (1969) calculation of the spin evolution of the Crab pulsar (current thinking is that 6 is considerably 
smaller than this value, as we shall see in § III). The origin of time is of course arbitrary; we have chosen it to correspond to the 
maximum eccentricity of a secularly stable Maclaurin spheroid (esec = 0.812670). For these constant-/? models, this corresponds also 
to the maximum angular frequency during the evolution [g'(e) > 0 for 0 < e < esec]. 

The upper left-hand panel of Figure 1 shows the variation of eccentricity with time for the pure electromagnetic and gravitational 
spin-down cases, while the upper right-hand panel shows how the period evolves for these cases. The units of the period are 
naturally related to the central density of a specific incompressible model: 

1 = 1.4^ 
3 x 1014 g cm 3\1/2 

ms . (30) 

The lower left-hand panel of Figure 1 shows how P evolves with time. While P is dimensionless, it does scale with the natural time 
and frequency of a specific model (eqs. [29], [30]), and we plot P in units of where 

3.7 x 10-13| 

1.9 x i(r10i 

{—V5T 
\l-4 Mj V 

/ M y/3/ 
\1.4 Mq) V 

7/6 

3 x 1014 g cm“ V \1030 G cm3 

5/6/ ^ \ 2 

p sm a 

3 x 1014 g cm" 

for € = 0 , 

for // sin a = 0 . 
(31) 

The angular momentum J, eccentricity e, and moment of inertia I all decrease together. When the star is rapidly rotating and e is 
large, the change in dl is great and,/or a given dJ, the corresponding dP is significantly smaller than it would be for a spherical star. For 
the electromagnetic case, we see that for large e, P increases by 50% even as the star is spinning down. Correspondingly, for the same 
angular momentum the period of a rotationally distorted Maclaurin spheroid is greater than for a spherical star of the same M 
and p. 

Viewed in another way, the rotational distortion is an angular momentum reservoir that is drained as the star spins down. In our 
incompressible models, the total angular momentum of the star is 

J = IQ = /0(1 - e2yll3[2npg(e)-]1/2, (32) 

and the variation with eccentricity may be cast in the form 

^ = / ^ fi , Í gg(e) ~| 
de de L 3 g'{e)( 1 — e2)J 

(33) 

(cf. eq. [12]). If the star remained spherical as its angular momentum varied, then / would remain constant and the bracketed term 
would be unity. As it is, both / and the bracketed term increase with eccentricity; hence, for a given change in angular momentum, 
the change in angular velocity is smaller than for a spherical star, and this correction is larger the larger the eccentricity. 

The effect of the changing rotational distortion is seen most vividly in the lower right-hand panel of Figure 1, which shows the 
braking index (cf. eq. [28]). For a spherical star, the braking index is a constant: exactly 3 for pure magnetic dipole spin-down 
torques and exactly 5 for gravitational quadrupole radiation torques (as is apparent from eqs. [21], [22], and [28]). The braking 
index, as shown in Figure 1, shows clearly that for large eccentricity P is positive (nB < 2) for both the electromagnetic and the 
gravitational cases. 

ii) An 0.5 ms Pulsar 
As an application of the electromagnetic master curves presented in the previous section, consider a rapidly rotating pulsar born 

with a period P ~ 0.5 ms (SN 1987A is a possible site for the birth of such a fast-spinning neutron star). In this subsection we 
examine its spin-down in terms of our incompressible Maclaurin spheroid model with strictly electromagnetic spin-down torques. 

Suppose we assume that the pulsar was born with its maximum angular momentum, which in our model corresponds to an 
eccentricity esec = 0.812670, and that there has been no significant change in the period since birth. Then equation (3) immediately 
tells us that the density of the neutron star is /? = 2.0 x 1015 g cm-3. Suppose we also assume that the pulsars mass is 1.7 M0, 
taking as our guide Friedman, Ipser, and Parker’s (1989) argument that this must be the pulsar’s approximate mass if any of the 
nuclear equations of state currently under consideration have any hope of being consistent with the observation. To determine the 
magnetic dipole moment, we need to fix the luminosity of the supernova. With the density, mass and initial eccentricity specified, the 
choice of magnetic moment p sin a only affects the time scale over which the period changes (cf. eq. [24a]). We take a lower limit to 
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Time (yrs) Time (yrs) 

Fig. 2.—Spin evolution, by magnetic dipole radiation, of an incompressible Maclaurin spheroid model of a pulsar born with an 0.5 ms period (solid line). The 
mass, density, and magnetic dipole moment of the model were chosen to be consistent with observations of the pulsar and the supernova remnant. The oblateness of 
the spheroid at high rotation supresses P and dramatically affects P, P, and the braking index nB compared with the more conventional model in terms of a spherical 
star (dashed line). 

that time scale by identifying the total luminosity of the SN 1987A remnant (L ~ 1038 ergs s-1; Middleditch et al. 1989) with the 
magnetic dipole radiation of the pulsar. This yields a projected magnetic moment // sin a of 4.2 x 1026 G cm3. With these values for 
p, M, and p sin a, the time scale r is 

5/3/4.2 x 1026 G cm3 

\ // sin a 

In Figure 2 the solid line is the electromagnetic master curve of the previous subsection, rescaled in physical units for this set of 
parameters, while the dashed line shows how the evolution would proceed for a spherical star of the same M, p, p sin a, and initial Q. 
As discussed above, rotational distortion reduces P at early times compared with the predictions of a spherical stellar model. If only 
magnetic dipole torques are acting on the pulsar, then our simple model suggests that present-day observations fall well within 
“ early times.” 

In choosing constant density, we have effectively chosen an incompressible equation of state for neutron star matter. In this limit, 
the semimajor axis of the star clearly increases with eccentricity, and the minimum is a0 (cf. eq. [7a]). Applying the hoop conjecture 
(Thorne 1972) to this minimum radius, we find an approximate answer to the question of whether the star collapses to a black hole 
during the course of its spin-down. The hoop conjecture states that black holes with event hoizons form when and only when a mass 
M gets compacted into a region whose circumference in every direction is ^ < 4nM. Alternatively, if a star can pass through a 
“ hoop ” of radius 2M in any orientation, then it has collapsed to a black hole. Since the minimuip equatorial radius that the oblate 
star would achieve is a0 = a(J = 0), the radius reached when all the angular momentum has been radiated away, the hoop 
conjecture suggests that it collapses to form a black hole during spin-down only if a0 < 2M. For the incompressible model 
considered here a0/2M = 1.5, and a black hole is not formed. Nevertheless, it settles into a very compact final configuration. In § III 
we describe models with compressible equations of state, finding that for these more realistic models of an 0.5 ms pulsar, catastro- 
phic collapse is not only possible but likely. 

iii) The Crab Pulsar 
As a second application of our simple incompressible model, we reanalyze the Ostriker and Gunn (1969, hereafter OG) calcu- 

lation of the spin evolution of the Crab pulsar. Given its age and present-day values of P and P, OG found the projected magnetic 
moment p sin a and fractional mountain height 6 as a function of the star’s initial angular velocity and moment of inertia, which they 
took to be a constant. The calculation we carry out below differs from theirs in two respects : (i) our model accounts for the large 

T = 4.0 x 107 yr| 
M 

1.7 

5/3/2 x 1015 g cm“ 
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variation of the moment of inertia at rapid rotation rates, and (ii) we assume that at birth the Crab had the maximum permissible 
angular momentum (corresponding to an eccentricity esec). 

In the OG calculation, two equations determine the magnetic moment and the mountain height commensurate with a given /0. 
Introduce 

~ _ y0 

ß 
(35) 

with ß and y0 given by equations (21) and (22); let 7¿rab be the age of the Crab (e.g., 918 yr in 1972); and let no and Ù0 be the 
angular frequency and its rate at the current epoch (D0 = 190 Hz, Ù0 = —2.42 x 10“9 s-2 in 1972). Then ß and y0 are found by 
satisfying the two equations 

and 

(1 + A)( 1 — /i + A log 
1 + ft 
1+ 1 

— — 27¿rab 
ÛQ 
Q0 

(36) 

ßnl 

Io 
(1 + A) = Í2o 

Q0 
(37) 

(cf. ST, § 10.5). Equation (36) comes from integrating equation (12) in time, using equations (20)-(22) with dM ~ 0 and e = 0 
(spherical limit). Equation (37) arises from equation (9) with dM = da = 0 and equations (20)-(22). Once a value of ft is chosen, the 
first equation is a transcendental equation for 1 and the second determines ß from 1. Once ß is determined, € follows from 1 and the 
definition of y0 (eq. [22]). 

To draw the correspondence between the OG calculation and our own, we assume that the constant moment of inertia used in 
their calculation corresponds to our I0 (cf. eqs. [7b]); thus, we identify the OG model with the slow rotation (spherical star) limit of 
our own. In our nonspherical model, in contrast to the OG calculation, we cannot obtain an analytic, or even a transcendental, 
equation whose roots provide the ß and e that go with a given choice of I0 and Instead, having chosen p and M (equivalent to 
choosing I0 and a0; cf. eqs. [7b]), and Qt, we must search numerically for ft and e in the following fashion : 

1. Together with /?, Q0 determines e0, the eccentricity today, through equation (3). 
2. Pick a (ft, e) pair such that ¿2 takes on the desired value (cf. eq. [12]). This also determines À (cf. eq. [24c]) in equation (23). 
3. The initial angular rotation rate Q determines the initial eccentricity e, and allows us to integrate equation (23) until e = e0. 

The elapsed time is the age of the pulsar. If it does not agree with ícrab» then pick a new ft, e pair and try again. 
This search of a two-dimensional parameter space is simplified by noting that only at early times when the rotation is rapid will 

the evolution of the Crab differ significantly between the OG model and our own; consequently, since the Crab is now slowly 
rotating, the OG model provides good estimates for the magnetic moment and mountain height for our more general, nonspherical 
model. 

Figure 3 shows the evolution of a star with /0 = 1.4 x 1045 g cm2 and a0 = 12 km (corresponding to M = 1.22 M0 and 
p = 3.36 x 1014 gem-3) for both the OG model (dashed line) and our own (solid line). The initial angular velocity was chosen so 
that the initial eccentricity was at its maximum, e = escc. The magnetic moment and mountain height for the two models did not 
differ significantly: for our model // sin a = 3.9675 x 1033 G cm3 and e = 2.920 x 10-4, while for the OG model p sin 
a = 3.9678 x 1033 G cm3 and € = 2.914 x 10- 4 As expected, at very early times (compared to the Crab’s present age) there are 
significant differences between these models (cf. the braking index and P in Fig. 3); however, since the Crab has been rotating slowly 
compared with its maximum angular velocity for many years now, there are no longer any significant observational differences 
between the two models. 

III. COMPRESSIBLE MODELS 
In the previous section we focused on constant-density evolutionary sequences of Maclaurin spheroids. Here we consider more 

general models where the density varies during the star’s evolution. We assume that the central pressure is related to the density 
according to a realistic poly tropic equation of state. As an application we examine the spin-down of PSR 1987A, paying special 
attention to the gravitational radiation from the pulsar as well as the question of its final state. 

The rate at which a star loses angular momentum as a result of magnetic dipole radiation depends upon its projected magnetic 
dipole moment p sin a. If the magnetic flux is frozen into the surface of the pulsar, then, as the pulsar’s oblateness changes, so does its 
magnetic moment. In the last subsection below, we incorporate flux freezing in a model calculation, thereby replacing our earlier 
assumption of constant dipole moment. 

a) Evolutionary Equations 
Maclaurin spheroids are constrained to be homogeneous; however, we can choose the uniform density any way we wish. In 

particular, we can make it a function of the central equilibrium pressure Pc according to a prescribed equation of state. The central 
pressure of a Maclaurin spheroids is determined by integrating the equation of hydrostatic equilibrium, and is (cf. ST, § 7.3) 

Pc = np2a2(\ - e2)A3(e), (38) 
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Fig. 3.—The Ostriker-Gunn (1969) calculation of the spin evolution of the Crab pulsar suggests that at early times it was rotating rapidly, and so highly oblate. 
The solid line shows the spin evolution of an incompressible Maclaurin spheroid model of the Crab pulsar, while the dashed line shows the results of the 
Ostriker-Gunn (1969) calculation for a spherical star. 

where 

-?[ 
Me) ^ - 1 - (1 - e2) 

2U/2 sin 

Here we shall consider polytropic equations of state: 

Pc = JfPrJ 
(£)' 

The sound speed is 

dp p 

(39) 

(40) 

(41) 

and ptci is a reference density at which FjT is the squared sound speed. Density is now a function of eccentricity given by combining 
equation (40) with equation (38): 

= tc(1 - e^Aip^a2# 1 . 

It is convenient to introduce p0, the density at e = 0 of a spherical model with same mass M, 

ter-üiü"*-''" 

Then 

¿Ar“4/3 3 
M =j(1-c2)2/^3(c). 

(42) 

(43) 

(44) 
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and we can generalize our earlier definitions of I0 and a0 (eqs. [7a] and [7b]) to these more sophisticated compressible models: 

a — a( 

I = I0\ 

1/3 
(l-e2r1/6, 

/ 3M Y/3 

a° - \AnpJ ’ 
2/3 

(1 - e2) 1/3,, Jo = g Mao ■ 

(45a) 

(45b) 

So defined, p0,a0, and I0 are the density, radius, and moment of inertia of a spherical, uniform-density star of mass M whose central 
pressure satisfies the equation of the state (40). In the limit F -► oo (corresponding to polytropic index n = 0, where F = 1 + 1/n) and 
p-+p0, these reduce to the definitions we used for the incompressible models (cf. eqs. [7a] and [7b]). 

Since p now varies with the time-varying eccentricity of a model, equation (11) no longer describes its evolution along a sequence. 
To generalize equation (11), combine equations (8), (9), and (10) with the logarithmic derivative of equation (42), 

p a \A3 \-e2J 
(46) 

to obtain 

j _ /5 _ 1/3 \ M = 1 U 1 [~4(r - l)e ^"1") de 
J \3 3F - 4/ M 2 U + 3F - 4 L 1 - e2 ¿3Jj dt ' 

It is also useful to find the corresponding equation for Ù, which we give here for the case M = 0: 

Jäf 4 (Te ÆAIV , 1 (3A* 
J üj 3r-4Vl-e2 Ajlg 3T-4\A3 

(47) 

(48) 

Like the incompressible models, at each moment of the time these compressible models are in hydrostatic equilibrium. Angular 
momentum changes on radiation loss time scales, which are long compared with the hydrodynamic time scales that control the 
shape of the configuration; hence, virial theorems control the distribution of energy between internal, gravitational binding, and 
bulk kinetic forms. Each star moves along its sequence quasi-statically, and so the relationship between energy loss and angular 
momentum loss is again given by equation (14). 

E = W + T + Tint , (49) 

where W and T are defined as before (cf. eqs. [16] and [17]) and the internal energy is given by 

Tint = 
2 1 Pc 

s r — i p 
M . (50) 

Incidentally, while it is trivial to verify equation (14) for the incompressible models of § II, it is a nontrivial algebraic exercise to show 
that it also holds true for the more complicated compressible models where the internal energy plays a role and the density can vary. 
While straightforward, this computation was of sufficient complexity that to carry it through we resorted to the use of the algebraic 
manipulator Maple running on the Cornell National Supercomputing Facilities IBM 3090/600E. 

We postpone further discussion of accretion until § IV and consider here only electromagnetic and gravitational radiation 
spin-down torques. The rates of energy and angular momentum loss are still given by equations (14), (21), and (22), however, we 
must generalize the definition of y0 so that it remains constant for our compressible models : 

= - f IW S -Vo(y)4/V - e2r2/3n5 • (51) 

Assuming constant p sin a and 6, y0 and ß (cf. eq. [21]) are constant and the evolution of eccentricity is now described by 

de 
dt' 

where t' = t/z is a dimensionless time, and 

Jo_ 
Poß ’ 

, _ yoPo 
ß ’ 

œ — Çlpô1/2. 

(52) 

(53a) 

(53b) 

(53c) 
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Again, equation (52) reduces to equation (23) when F —► oo. In the special case where there is no electromagnetic radiation 
[ß = 2 (jiûn a)2/3 = 0] we write 

(54) 

where 

4(r - l)e ^3 
A, 

As with the incompressible models, the variation of eccentricity with time determines all other properties of the star. In the case of 
pure electromagnetic or gravitational radiation spin-down torques, integrating either of equations (52), and (54) only requires 
specification of F. If there are both electromagnetic and gravitational spin-down torques, then A must also be specified. No other 
information about the specific stellar model or equation of state need be given. Thus, in general there is a two-parameter family of 
sequences (A and F) that describe the evolution by electromagnetic and gravitational radiation torques of all models with equation 
of state (40). Once these curves are determined, the choice of a mass, a sound speed at some reference density (FjF atpref), and a 
magnetic dipole moment fi sin a or mountain height e completely determine the rest of the model. 

Consider the secular stability properties of compressible Maclaurin spheroids. Recall that along the usual sequences of incom- 
pressible Maclaurin spheroids, the eccentricity esec = 0.812670 is a point of bifurcation where the sequence of Jacobi ellipsoids 
branches off (cf. Chandrasekhar 1986, §§ 3, 39). The bifurcation point itself depends only on equilibrium relations and geometrical 
constraints and is independent of the nature of the sequence (e.g., constant density vs. eq. [40]). We must still check that the total 
energy oí compressible Jacobi ellipsoids (including the internal energy) is always greater than or equal to that of the corresponding 
e = esec compressible Maclaurin spheroid; otherwise, Maclaurin spheroids with e < esec might be unstable to triaxial deformation 
We have verified that this inequality holds true and that the total energy of compressible Jacobi ellipsoids increases with angular 
momentum. Consequently, there can be no instability that leads compressible Maclaurin spheroids with e < esec to evolve to Jacobi 
ellipsoids. For reference, the three contributions (gravitational, rotational, and internal) to the total energy for a compressible 
triaxial ellipsoid are 

W 3 M2 JCh 

10 a1 a2a3 ’ 

T. , 3 qj + qj 
,nt F — 1 uj \4a2 

3 + 20 a2 a3 

T __ 3 M2 al + aj 
20 a2 a3 

12 ’ 

where c/j > a2 > a3 are the three principal axes of the ellipsoid, 

Bn — — ^Ch 
20 ci y ci'. 

(56) 

(57) 

(58) 

3 
Jch = ZA¡a¡ - (59) 

i = 1 
and Au A2, A3, and B12 are index symbols defined in Chandrasekhar (1986; cf. §§ 17 and 21). For the Maclaurin sequence these may 
be written in the form 

W = - 
3 M2 

5 a0 

1/3 sin 1 e 
(1 - e2)1/6 , 

T = 
3/10 M2 

r-i a0 Po 

1/3 
AM^ (1 — e2)2/3 , 

1/3 

(60) 

(61) 

(62) 

The energy of the incompressible models in the last section is given by these equations in the limit F -> cc,p p0. Again note that 
in this limit the internal energy vanishes. 

b) Collapse to a Black Hole 
As before, we use the hoop conjecture (Thorne 1972) to determine when one of our evolving models has collapsed to a black hole. 

For the incompressible models it is clear by inspection that the semimajor axis a is a monotonie increasing function of the 
eccentricity (cf. eqs, [7a]), hence we can determine whether an oblate model collapses to a black hole by checking its semimajor 
radius at zero eccentricity, after all the angular momentum has been radiated away. For the more general compressible models it is 
no longer obvious that a is a monotonically increasing function of eccentricity. Nevertheless, we can still show analytically that for 
all F > 4/3, a/2M is monotonically increasing with e\ consequently, a0 is still a diagnostic of black hole formation during the 
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spin-down of a neutron star. In particular, we can find a condition for eventual black hole collapse based on the softness of the 
adiabatic index : 

for some value 1 > e > 0. 

4 
3 

log [2(1 - e
2)2/3/3/t3(e)] 

log [(327r/3)M2/>o(l - e2)-1/2] 
Black hole (63) 

c) An 0.5 ms Pulsar Revisited 
As an application of the compressible Maclaurin models, consider again the spin-down by magnetic dipole radiation of a pulsar 

born with an 0.5 ms period. As before, fix M = 1.7 M0, and insist that the initial observed rotation rate of 2000 Hz be matched with 
the maximum eccentricity of a stable Maclaurin spheroid esec = 0.812670. This determines the initial density (cf. eq. [3]) and, once F 
is specified, the equation of state (cf. eqs. [43] and [44]) : 

= I (y)1/3(l - 4c)2/3¿3(0(MVref)
1/3 

m y/y />ref y-y Z Y(r~4/3) 

1.7 Mq) \2.0 x 1015 g cm-3/ \0.5 ms/ 

r-4/3 
(64) 

(65) 

The only remaining free parameter, /z sin a, determines the time scale over which the evolution takes place. As before (cf. § II6[ii]), 
we choose the projected magnetic moment by assuming that the pulsar is responsible for the remnant’s total observed luminosity: 
// sin a = 4.2 x 1026 G cm3. 

With everything but F fixed, the results of the previous subsection tell us that a black hole forms during spin-down if a0/2M < 1 
or 

F - 4/3 < Fcrit - 4/3 = 0.293 . (66) 

Thus, for these parameters we find that collapse to a black hole is inevitable for almost all equations of state softer than a Fermi gas 
of free neutrons. 

Figure 4 shows the evolutionary paths of compressible Maclaurin models for three choices of F. The solid line, corresponding to 
F = 5/3, has the stiffness of a nonrelativistic Fermi gas and does not end its life as a black hole. The dotted line corresponds to a 
model with a slightly softer equation of state (F — 4/3 = 0.29). This model ends its life in a black hole (marked by a filled circle). The 
dashed line corresponds to a model with a very soft equation of state (F — 4/3 = 0.1) and collapses to a black hole at an even higher 
eccentricity. 

The models shown in Figure 4 are quite startling, because each one begins its life with a negative P: as these stars lose angular 
momentum, their moments of inertia initially decrease so rapidly that they spin up in the same way that a skater spins faster as his or 
her arms are drawn inward. The model with the softest equation of state (the dashed line, corresponding to F — 4/3 = 0.1) spins up 
at an ever-increasing rate up until the moment it collapses to a black hole with nearly half its original period ! The resulting Kerr 
black hole has an angular momentum parameter a/M = 0.24. 

We have also examined the spin evolution of these models by simultaneous gravitational and electromagnetic radiation. For our 
calculations we chose the deformation e = 5 x 10-7 about which we scale all of our results. For comparison, Pines and Shaham 
(1972) find that e<10_6isa reasonable triaxial deformation for a neutron star. Figure 5 shows the results of these calculations. 
Note that, owing the rapid rotation, the observed upper bound on | P | severely constrains e. It must be appreciably lower than the 
value required by the OG model of the Crab pulsar, for example (cf. § II6[iii]). 

The amplitude of the gravitational radiation from a triaxial, rapidly rotating neutron star is also affected by its evolving shape. 
Since the radiation is periodic and monochromatic, both bar and interferometric detectors can achieve high sensitivity by prolonged 
observation (cf. Thorne 1987). In order to evaluate the radiation from our models, we introduce a stationary spherical-polar 
coordinate system centered on the rotating neutron star, with the polar and symmetry axes coincident. An observer viewing the 
neutron star from the 6, </> direction can resolve the gravitational radiation field into two polarization components. These are 
commonly referred to as the “ plus ” and “ cross ” polarization states and are expressed as 

hJjTei ®ej = h + e+ + h + ex , (67) 

where the basis tensors e+ and e x are given in terms of the orthonormal basis vectors e0, and eê according to 

e+ =eê®eô-e(}>®e<j>, (68a) 

ex =e0®e<f, + e(¡>®e0. (68b) 

In the quadrupole approximation, the gravitational radiation field is given in terms of the trace reduced quadrupole moment f l7, 

2 TJ _ ^ YTT nij Tij (69) 
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Fig. 4.—Spin evolution, via magnetic dipole radiation, of a compressible Maclaurin spheroid model of an initially 0.5 ms pulsar. Cases corresponding to three 
different polytropic equations of state, parameterized by the polytropic index, are shown here. Note how all the models show a negative P at early times, 
corresponding to spin-up, even as they are losing angular momentum. The sequences corresponding to the two softest equations of state form black holes at finite 
times, indicated by filled circles. The model corresponding to the softest equation of state is rotating at nearly half its period at birth and still has a negative P at the 
time of its collapse to a black hole. 

(Misner, Thorne, and Wheeler 1973), or 

h + =: ~ (í$0 ~ ? (70a) T 

hx (70b) 
r ^ 

The components and are expressible in terms of the Cartesian components of as 

= (fxx cos2 0 + iyy sin2 0 + fxy sin l^) cos2 6 + fzz sin2 0 — (fxz cos 0 + ¥yz sin 0) sin 20 , (71a) 

= ïXx sin2 0 + ïyy cos2 0 - ixy sin 20 , (71b) 
= ~ 2$xx — ïyy) cos # sin 20 + ïxy cos 0 cos 20 + (¥xz sin 0 — ¥yz cos 0) sin 0 (71c) 

(Kochanek et al 1990). 
Equations (70a)-(70b) and (71a)-(71c) are completely general for any Newtonian source of gravitational radiation. We now 

specialize to triaxial rotating models. Shapiro and Teukolsky (1983, § 16.6) give the Cartesian components of the moment-of-inertia 
tensor /l7, and, substituting these into equations (71a)-{71c) and then (70a)-{70b), we find 

h + = - ? M(a + b)2eCl2 cos [2(0 - fit)] (72a) 
r 5 2 

~ — «2/ COs2 0 + 1 cos [2(4> - Í2í)] , (72b) 
r 2 

M(a + bfed2 cos 6 sin [2(0 - Qt)] (72c) 
r 5 

~ - — Cl21 cos e sin [2(0 - fii)] , (72d) 
r 
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Fig. 5.—Spin evolution, via both gravitational and electromagnetic radiation, of a compressible Maclaurin spheroid model of an 0.5 ms pulsar. The gravitational 
radiation is assumed to come from an ellipsoidal deformation of fractional amplitude €, and, like the magnetic moment, is chosen to be the maximum allowed by the 
observations of the pulsar and the supernova remnant. The three curves shown here correspond to the same equations of state shown in Fig. 4. The observational 
constraint on P forces a very small e; nevertheless, gravitational radiation can still significantly affect the rapidity of the pulsar’s evolution. 

where a> b > csltq the semiaxes of the ellipsoid, and the final approximate equality is for the limit of small ellipsodal deformation. 
The above result for the wave amplitudes agrees with the original formula of Shapiro (1979) for homogeneous, triaxial ellipsoids. 

It is convenient to express h + and h x in terms of a characteristic radiation amplitude h which is independent of time and the 
observer’s orientation angle : 

h=—in2 , (73a) 
r 

h + = h 
cos ^ + 1 cos [2(4> - Ut)] , (73b) 

h * = — h cos 6 sin [2(</> — QtJ] . (73c) 

In all our models of an 0.5 ms pulsar, we assume that P = 0.5 ms when e = esec, regardless of F or JT. In this case, the characteristic 
gravitational radiation strain at birth is independent of the equation of state : 

h =(2.3 x lO"25)! 
55 kpcV M y/3/0.5 ms\2/3 

(74) 

This periodic strain h is observable with 90% confidence in a\ yr integration time using present-day bar detector technology, though 
no currently operating bar detector has the correct resonant frequency. Present-day laser interferometric detectors are just shy of the 
necessary sensitivity to detect this strain; however, it will be easily measurable with the proposed Caltech-MIT LIGO antenna 
system (cf. Thorne 1987, § 9A.2b and Fig. 9.6, and also § 9.5.2d-e for bar detectors, § 9.5.3c, eq. [112] and Fig. 9.11, for present-day 
interferometric detectors, and § 9.5.30 for the proposed LIGO detector). 

In Figure 6 we look more closely at our models of an 0.5 ms pulsar that end in gravitational collapse to a black hole. Each curve in 
Figure 6 shows, for a different € (or, through eq. [74], present-day h), the time at which the hoop conjecture predicts black hole 
formation. Note that the contours in Figure 6 do not depend on JT. The key point of Figure 6 is that evidence of eventual 
gravitational collapse to a black hole following early detection of a fast pulsar would provide a stringent constraint on allowed 
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Fig. 6.—Age of a fast pulsar, born with an 0.5 ms period, at gravitational collapse to a black hole for different degrees of triaxial deformation as a function of the 
adiabatic index. In our model, collapse to a black hole is inevitable for all equations of state whose adiabatic index satisfies F — 4/3 < 0.2926. Contours of fixed 
fractional ellipsoidal deformation and present-day gravitational radiation amplitude are shown. 

Fig. 7.—Gravitational radiation luminosity of a test asymmetry on a rapidly rotating oblate spheroid relative to a spherical star. At zero angular momentum, 
both stars have the same mass and density. As the angular momentum is increased, the eccentricity of the oblate model is allowed to change while the spherical model 
is constrained to keep the same shape. The oblateness of a rapidly rotating star enhances the luminosity of a small mountain. Since softer equations of state lead to 
larger variations in the moment of inertia, the enhancement is greatest for the softest equations of state. 

equations of state. The inferred constraint would depend on the mountain height parameter, e, which can be measured by a 
gravitational wave detector before the final collapse. 

The gravitational radiation luminosity of our model of a fast pulsar is 

L 
32 

= y i2*2n 6 

It is instructive to identify 

-4/3 
(1 — e 2\ — 2/3 

32 r (0) = _ ¡2 2q6 -‘-'GW — ^ iQt 
0.5 ms\6 

5 x 10“ 

Í2.2 x 1042 ergs s 1 

< 1.8 x 1042 ergs s-1 

(0.87 x 1041 ergs s'1 

for T = 5/3 , 
for T = 1.6233 , 
for T = 1.4333 , 

(75) 

(76) 

which is the characteristic luminosity omitting the oblate distortion factors. Figure 7 shows how the oblateness distortion correction 
Lgw/^gw varies with e for the three values of F in Figures 4 and 5. It is immediately apparent that conventional estimates of the 
gravitational radiation from rapidly rotating pulsars omitting these factors may be vastly underestimated: for large eccentricity the 
star's oblateness greatly enhances its wave luminosity. Thus, even though the canonical ellipsoidal deformation is small (e < 5 
x 10-7), the strain itself is relatively large (cf. eq. [74]). Bearing this in mind, the detection of gravitational radiation from SN 1987A is 

particularly crucial if it never appears as a radio (or optical) pulsar. 

d) Flux Freezing 
Up to now, all of our calculations have assumed that the projected magnetic dipole moment p sin a is constant. As a spheroid 

spins down and its eccentricity changes, this condition leads to a changing magnetic flux through the surface. Here, for comparison, 
we consider models where the magnetic flux, and not the magnetic dipole moment, is held constant. 

Suppose that, at some eccentricity e, the magnetic field exterior to a spheroid is an exact magnetic dipole and that the magnetic 
field lines are rigidly attached to its surface. As the eccentricity changes and each surface element is translated and deformed, the 
resulting magnetic field does not remain dipolar. The calculation of the new field is quite complicated and of limited value, since the 
other approximations that have gone into our model do not justify this level of precision. There is, however, an approximation that 
simplifies the calculation and is within the spirit of our spheroidal models. 

First we introduce corotating body coordinates x, y, and z. The z-axis coincides with the symmetry (rotation) axis of the spheroid, 
and the magnetic dipole moment p is the presumed to lie in the x-z plane so that it may be expressed as pzez + pxex. Our 
approximation is to assume that the two fluxes ¿Fx and through the open surfaces of the spheroid defined alternately by x > 0 
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and z > 0 are separately constant and that the field readjusts itself as the oblateness changes so that it always remains dipolar, with 
dipole moment in the x-z plane. This is sufficient to completely fix the magnetic dipole moment during the spin-down of the star. 

To evaluate either and #'z, we use Gauss’s theorem on a closed surface that includes the relevant surface of the spheroid. For 
#'z, the closed surface consists of the z > 0 surface of the spheroid, the z > 0 hemisphere at large radius 01, and the z = 0 annulus 
that closes the surface : 

^ = {x, y, z: x2 + y2 + z2/(l - e2) = a2 and z > 0} , (77a) 

<9^0 = {x, y, z: a2 < x2 + y2 < and z = 0} , (77b) 

<9^ = {x, y, z : x2 + y2 + z2 = 0t2 and z > 0} . (77c) 

The flux J** is evaluated using the closed surface consisting of the x > 0 surface of the spheroid, a self-similar surface at large radius 
^2, and the elliptical annulus that closes the surface : 

<9^ = {x, y, z: x2 -b y2 + z2/(l — e2) = a2 and x > 0} , 

= {x, y, z: a2 < y2 + z2/(l — e2) < 0t2 and x = 0} , 

<9^ = {x, y, z: x2 -h y2 -f z2/(l — e2) = 0t2 and x > 0} . 

The total flux through either of these closed surfaces (^o + <9^ + <9^) vanishes (V • Æ = 0). Noting that 

„ _ 3w(i» * ft) /i 

(78a) 

(78b) 

(78c) 

(79) 

where h is the unit direction vector, the flux through either <9^ or <9^ vanishes as -► oo. Consequently, either of the fluxes or 
is the opposite of the flux through the corresponding annular surfaces <9^ or <9*0- These fluxes are simple to compute, and we 

find 

4E(e) 
a (1 - e2)1/2 ’ 

2njuz 

&z = 

(80a) 

(80b) 

where E(e) is the complete elliptic integral of the second kind : 

Cn/2 
E(e) = I d(¡)(l — e2 sin2 0)1/2 . (81) 

Our condition on fi is that 0'x and 0rz be separately constant, or 

ipx\_n{\-e2yi2ip\-^ 

Uy 2 E^ \pj 

= (1 ^-1/6 
-1/3 

(82a) 

(82b) 

where Pq and pz
0 are the components of the dipole moment at zero eccentricity. Only px = p sin a is important for the radiative loss 

of angular momentum. 
In Figure 8 we repeat the calculation shown in Figure 4 of the electromagnetic spin-down of an 0.5 ms pulsar, only now with a 

flux-frozen magnetic field instead of a constant magnetic dipole moment. For this calculation we take the initial projected moment 
px(ßsec)t0 be 4-2 x 1026 G cm3 (which is the value of the constant magnetic dipole moment assumed in the earlier calculation). The 
magnetic dipole moment sets the time scale for the evolution of the models, and its effects are most clearly seen in P and the braking 
index. Also shown is the variation in px as the star evolves. The effect of flux freezing is to slow the evolution of the pulsar : as the 
neutron star spins down, the projected magnetic dipole moment is reduced and with it the rate of energy and angular momentum 
loss. This is important in rapidly rotating pulsars where the eccentricity is large; however, when e becomes small, the magnetic 
dipole moment becomes constant and flux freezing is unimportant to the calculation. 

IV. ACCRETION 

Here we briefly renew our discussion of accretion deferred from §§ II and III. We focus on accretion from an aligned Keplerian 
disk in the equatorial plane of an oblate Maclaurin spheroid. We assume that accretion takes place at the inner edge r0 > a of the 
disk, with the deposited angular momentum being that of the gas in a circular orbit at r0- Then 

j = MQK(r0)ro = MQa2 Qjt JÍ 
Q a2 (83) 
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Fig. 8e 

Fig. 8.—If the magnetic flux through the surface of a pulsar is held con- 
stant, the magnetic dipole moment changes as the eccentricity changes, and 
this changes the time scale for spin-down from rapid rotation. Here we show 
the spin evolution of a pulsar born with a period of 0.5 ms via magnetic dipole 
radiation, modeled as a sequence of compressible Maclaurin spheroids. In 
contrast to Fig. 4, however, we assume here that the magnetic flux is frozen 
into the star’s surface (see the text). Panel e shows how the projected magnetic 
dipole moment // sin a changes with time. 

It is useful (Ghosh and Lamb 1978) to identify a “fastness parameter” cos which indicates how close the equatorial velocity of the 
spheroid is to the Keplerian velocity at the accretion radius : 

We also identify the bracketed term in equation (83) by/: 

For disk accretion induced by magnetic drag onto a magnetized neutron star, we expect that the accretion radius r0 is approx- 
imately half the Alfvén radius rA (boundary of the magnetosphere; Ghosh and Lamb 1978). To maintain a steady state accretion and 
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avoid the “propeller” effect at this radius, the fastness parameter must be less than unity; hence,/> 1 (cf. ST, Chap. 15 and 
references therein for further discussion). In applying equation (83), we are neglecting viscous and magnetic torques acting on the 
star-plus-magnetosphere, which may be important for “ fast rotators ” with large cos. 

To determine QK for a homogeneous spheroid, note that in the equatorial plane the gravitational force is 

3 M 
F(r) = ~2~^n 3[sin 1 »/ - »/(l - >72)1/2>r, (86) 

where r¡ = ae/r (Mihalas and Routly 1986). Consequently, 

oi&o) = ^ >r3[sin'1 f?2)1/2] (87) ro ¿ ro 
and 

/= rj-nd-r,*)^2 . (88) 

In the absence of electromagnetic and gravitational torques, equation (47) becomes 

dM 
dt 

Qa 
2 5F — 
5 3F 

1 
3F — 4 

/4(T - l)e 
\ 1-e2 (89) 

This equation encompasses both the compressible models discussed in § III and the incompressible models discussed in § II (which 
correspond to the limit F -► oo). 

Consider, for definiteness, the incompressible models, for which equation (89) may be reexpressed as 

(90) 

(91) 

The expression in brackets multiplying Ö is positive e < esec ; consequently, for incompressible models, accretion spin-up versus 
spin-down is determined by the sign of (/—§): positive for spin-up and negative for spin-down. Thus, for steady disk accretion onto 
a magnetized neutron star where/ > 1, we always expect spin-up in the abstnce of magnetic torques. 

The alternative special case of unsteady accretion with vanishing Ù, which corresponds to/ = f, or 

^ ^[sin-1 r,-rid- >/2)1/2] = ^ j^i/z (92) 

for rç < e < esec, is impossible in this model. Equation (92) has no solution for 0 < e < esec, so for these self-consistent models 
accretion from an aligned disk only leads to spin-up. For the compressible models the situation is more complicated. The evolution 
of eccentricity is described by equation (89), so accretion that does not change the star’s eccentricity requires 

i/-2[sin-1 - „(1 - i/2)1'2]1/2 = ~5 [(1 Z%1^\ ' ■ (93) 

In the domain F e (oo, 4/3), this equation also has no roots, and so accretion from an aligned disk always increases the eccentricity 
of the star. However, as we saw in § III, Q is not monotonie in e for rapidly rotating stars, and so accretion can lead to spin-down 
even as the angular momentum increases. For reference, the relationship between M and Ù for the accretion discussed here is 

Qa: dM / 2 IT 4 f 
dt V 15 [5 _ 3F - 4 j1 + 

1 Te 

t) F - 4/3 Vl - e2 

= m{i + 

Yii_4 
,g r - 4/3 \A3 

4/3 / Te 
r-4/3 V.1 - e 

3 1 

A', 1 A\ 
r - 4/3 V^3 3 1 - e2 

ff! 
(94) 

V. CONCLUSIONS 
We have used exact compressible and incompressible sequences of Maclaurin spheroids to model the evolution of rapidly 

rotating pulsars by accretion, electromagnetic radiation, and gravitational radiation. Using the hoop conjecture (Thorne 1972), we 
have explored the formation of black holes by the loss of rotational support during pulsar spin-down. 

We have found that a rapidly rotating pulsar’s changing oblateness has observable consequences in measurements of its P and 
braking index. During spin-down from rapid rotation, the star’s decreasing oblateness reduces its moment of inertia. For very stiff 
equations of state, this suppresses P somewhat at high rotation rates, but for softer equations of state P can actually be negative. 
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corresponding to spin-wp, even as the pulsar is losing angular momentum. (At slower rotation rates, the star is spherical, the moment 
of inertia constant, and P is proportional to J.) 

Two examples are used to illustrate the usefulness of these exact models: a rapidly rotating pulsar born with an 0.5 ms period, and 
the Crab pulsar. 

In modeling the 0.5 ms pulsar, the results of Friedman, Ipser, and Parker (1989) suggest that the mass of the pulsar is greater than 
1.7 M0. We show in a self-consistent calculation that for this mass almost all equations of state softer than that of an ideal 
nonrelativistic Fermi neutron gas lead to the eventual gravitational collapse of the pulsar and the formation of a black hole 
following loss of rotational energy and angular momentum. The age of the pulsar when it collapses depends sensitively on the 
equation of state and the strength of the gravitational quadrupole and magnetic dipole radiation from the star. 

We have also reexamined the Ostriker and Gunn (1969) calculation of the age of the Crab pulsar. While the Crab is not now 
spinning rapidly, the original calculation of its spin evolution suggested that it was spinning rapidly at birth. Not surprisingly, we 
found that its oblateness at early (e > 0.3) times would have had observable consequences in the first several years following its 
birth. 

In our simple homogeneous, uniformly rotating Newtonian models, the oblateness of rapidly rotating stars increases the 
efficiency of gravitational radiation well over what one would estimate without taking the rotational deformation into account. 
When we adopt even a very modest ~5 x 10“7 (which is consistent with current theoretical suggestions), the amplitude of the 
gravitational radiation is large enough to be detectable at the 90% confidence level with a 3 month integration time using present-day 
bar detector technology. 

Our models also suggest how P and the braking index of rapidly rotating pulsars can be used to probe the star’s structure and 
equation of state. 

While the models explored here are all Newtonian, relativistic generalizations of Maclaurin spheroids have been constructed 
(Butterworth and Ipser 1976). Most of the conclusions we have reached are independent of the detailed rate of angular momentum 
transport and depend only on the fact that the moment of inertia of a rapidly rotating star changes with its angular velocity. 
Accordingly, we expect that a similar analysis of homogeneous relativistic spheroids is possible and would yield similar results. 
Moreover, the same qualitative conclusions should apply to inhomogeneous equilibrium stars (Newtonian or relativistic) but are 
less dramatic, the more centrally condensed the configurations. 

We would like to thank Ira Wasserman and David Chernoff for stimulating and helpful discussions, and Gerald Quinlan for 
assistance with the algebraic manipulator Maple. This work was supported by National Science Foundation grants PHY 86-03284 
and AST 87-14475 to Cornell University. Some of the computations in support of this research were carried out at the Cornell 
National Supercomputing Facility, which is supported in part by the National Science Foundation, IBM Corporation, New York 
State, and the Cornell Research Institute. S. L. S. also gratefully acknowledges fellowship support from the John Simon Guggen- 
heim Memorial Foundation. 

REFERENCES 
Alpar, M. A., and Pines, D. 1985, Nature, 314, 334. 
Arons, J. 1983, Nature, 302,301. 
Brecher, K., and Chanmugam, G. 1978, Ap. J., 221,969. 
 . 1983, Nature, 302,124. 
Butterworth, E. M., and Ipser, J. R. 1976, Ap. J., 204,200. 
Chandrasekhar, S. 1986, Ellipsoidal Figures of Equilibrium (New York : Dover). 
Cowsik, R., Ghosh, P., and Melvin, M. A. 1983, Ap. J., 303, 308. 
Friedman, J. L., Ipser, J. R., and Parker, L. 1986, Ap. J., 304,115. 
 . 1989, preprint. 
Ghosh, P., and Lamb, F. K. 1978, Ap. J. (Letters), 223, L83. 
Hartle, J. B. 1970, Ap. J., 161, 111. 
Kochanek, C. S., Shapiro, S. L., Teukolsky, S. A., and Chernoff, D. F. 1990, Ap. 

J., in press. 
Kristian, J., et al. 1989, Nature, 338,234. 
Middleditch, J. 1989, preprint. 
 . 1990, reported at A A AS Meeting New Orleans, 1990. 
Mihalas, D., and Routly, P. M. 1968, Galactic Astronomy (San Francisco: 

Freeman). 

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973, Gravitation (San Fran- 
cisco: Freeman). 

Ostriker, J. P, and Gunn, J. E. 1969, Ap. J., 157,1395 (OG). 
Pines, D., and Shaham, J. 1972, Nature Phys. Sei., 235,43. 
Shapiro, S. L. 1979, in Sources of Gravitational Radiation, ed. L. Smarr 

(Cambridge: Cambridge University Press). 
Shapiro, S. L., and Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and 

Neutron Stars (New York : Wiley) (ST). 
Shapiro, S. L., Teukolsky, S. A., and Wasserman, 1.1983, Ap. J., 272,702. 
 . 1989, Nature, 340,451. 
Sorrell, W. H. 1989, preprint. 
Thorne, K. S. 1972, in Magic without Magic: John Archibald Wheeler, ed. J. 

Klauder (San Francisco: Freeman). 
 . 1987, in 300 Years of Gravitation, ed. S. Hawking and W. Israel 

(Cambridge: Cambridge University Press), p. 330. 
Woosley, S. E., and Chevalier, R. A. 1989, Nature, 338,321. 

Lee S. Finn and Stuart L. Shapiro: Space Sciences Building, Cornell University, Ithaca, NY 14853 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

