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ABSTRACT 
We investigate the dynamical stability of nonrotating oblate galaxy models constructed from thin short-axis 

tube orbits (“shell” orbits). Models as flat or flatter than ~E6 (axis ratio of ~2:5) are axisymmetrically 
unstable and laminate into thin, curved cylinders on roughly an orbital time scale. All shell-orbit models are 
unstable to a more global, nonaxisymmetric instability with an essentially dipole or “ m = 1 ” character, i.e., 
the perturbed density varies roughly as cos </> around the short axis. The strength of the m = 1 instability 
decreases with the roundness of the model, but models as round as El are still clearly unstable; the spherical 
model appears to be stable, in agreement with previous analytic and numerical work. The instability is appar- 
ent in integrations carried out with two very different Ai-body codes: a harmonic-expansion code, in which the 
accuracy of the integration depends strongly on the choice of grid center at each time step, and a (much 
slower) “ tree ” code, which has no preferred center. 

Our results imply that oblate stellar systems require a minimum amount of radial kinetic energy to be 
dynamically stable, even in the absence of net rotation. In the case of models flatter than ~E5, the radial 
velocity dispersions required for stability appear to be quite large, of order ^ to ^ the circular velocity. 
Subject headings: galaxies: internal motions — galaxies: structure — instabilities — stars: stellar dynamics 

I. INTRODUCTION 

Since the pioneering work of Toomre, Hunter, Kalnajs, and 
Hohl, there has been little doubt that dynamical instabilities 
are crucial to our understanding of the structure and evolution 
of disk galaxies. By contrast, theoretical work on elliptical gal- 
axies has so far focused on the more narrow problem of con- 
structing exact equilibrium models; questions of stability have 
mostly been swept under the rug. In part, this neglect can be 
attributed simply to the difficulty of the self-consistent problem 
in ellipsoidal geometry. Furthermore, as Antonov (1960, 1962) 
showed almost 30 years ago, spherical, isotropic stellar systems 
are generally stable, a result which suggests that pressure- 
supported galaxies are less prone to instabilities than flattened, 
rotating ones. This assumption is consistent with the smooth 
featureless appearance of most elliptical galaxies, an appear- 
ance which seems to rule out any ongoing instabilities of the 
sort that are believed to drive bars or spiral patterns in disk 
galaxies. However, the possibility remains that dynamical 
instabilities may be important in constraining the possible 
equilibrium shapes of elliptical galaxies, or the range of kine- 
matical solutions consistent with a given shape. These insta- 
bilities may also play an active role during galaxy formation. 

This paper is the first in a series that will systematically 
investigate the importance of dynamical instabilities in flat- 
tened, pressure-supported stellar systems. There are three com- 
pelling reasons for undertaking such an investigation at the 
present time. First, the analytical tools for constructing realis- 
tic, two- and three-integral equilibrium models of spheroidal 
and ellipsoidal galaxies are now largely at hand (Bishop 1986, 
1987; Dejonghe 1986, 1987; Dejonghe and de Zeeuw 1988h; 
Evans 1989). Second, the last few years have seen the develop- 
ment of a number of efficient iV-body algorithms that are well 
suited to evolving models of smooth, flattened systems like 
elliptical galaxies (as reviewed by Sellwood 1987). A-body 
techniques are probably unavoidable when searching for insta- 
bilities in nonspherical and nondisk models, because of the 

practical difficulties of performing a three-dimensional pertur- 
bation analysis; in addition, the nonlinear evolution is gener- 
ally interesting from an astrophysical point of view. Third, 
there is some reason to believe that dynamical instabilities are 
prevalent in nonrotating galaxy models—probably not as 
ubiquitous as in rotationally supported disks, but very 
common nevertheless. For instance, spherical models with a 
mean ratio of radial to tangential velocity dispersions as small 
as ~1.4 are generally bar-unstable (e.g., Merritt and Aguilar 
1985). Additional evidence comes from the recent work of 
Polyachenko and collaborators (summarized in Fridman and 
Polyachenko 1984) on the stability of idealized stellar systems 
with various geometries. The Soviet workers find hints that a 
wide variety of nonspherical, pressure-supported models might 
be unstable. For instance, based on a study of homogeneous 
spheroids, they suggest that nonrotating stellar systems with 
flattenings greater than ~1:3 may be unstable to global 
bending modes. Little of the Soviet work has been verified by 
AT-body studies of realistic models, however. 

In the present paper, we investigate the stability of perhaps 
the simplest family of nonspherical models with realistic 
density profiles, the oblate “ shell-orbit ” models first described 
by Bishop (1987). Bishop models are constructed entirely out 
of short-axis tube orbits with zero radial thickness. The exis- 
tence of these orbits, in particular oblate potentials, was 
demonstrated by Hori (1962), Meys (1981), and Richstone 
(1982). De Zeeuw (1985) showed that shell orbits are present at 
any energy in ellipsoidal Stäckel (1890) potentials, being just 
the limiting form of the “ tube ” orbits as the radial epicyclic 
motion vanishes. In spherical or disk models, shell orbits are 
exactly circular; in oblate models, they are inclined circles 
which precess slowly about the symmetry axis. Here we study 
the stability of shell-orbit models based on the Kuzmin-de 
Zeeuw oblate-spheroidal mass model 

p(m) = Po 
(1 + m2)2 

~ w z m = -y -f -T , a> c , (1) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

35
8.

 .
39

9M
 

400 MERRITT AND STIAVELLI Vol. 358 

for which the equations of motion are separable in prolate- 
spheroidal coordinates (Kuzmin 1956; de Zeeuw 1985). 
[Hereafter model flattenings will be given in Hubble’s notation 
En, where n = 10(1 — c/a).'] A method for constructing shell- 
orbit solutions to this mass model has been outlined by Bishop 
(1987). 

Because orbits in oblate potentials conserve one component 
of the angular momentum, shell-orbit models can be made to 
“rotate” by specifying that unequal fractions of stars travel 
clockwise and counterclockwise at any radius. In the present 
paper, and in future papers in this series, only completely non- 
rotating models will be considered. The primary justification 
for this restriction is that real elliptical galaxies, to the extent 
that they rotate, probably experience some degree of figure 
rotation (Binney 1987), and little progress has been made yet 
on analytic construction of models with rotating figures. 

In § II we consider the axisymmetric stability of Bishop’s 
models, first by presenting an approximate criterion for short- 
wavelength stability, and then by N-body integration. We find 
that models flatter than ~ E6 are axisymmetrically unstable. In 
§ III we present the results of three-dimensional iV-body simu- 
lations, which reveal that shell-orbit models of all flattenings— 
even nearly spherical—are subject to a dipole, or “m= 1,” 
instability that gradually increases the radial velocity disper- 
sion of these models. Thus our results show that no radially 
“cold,” oblate model can be stable, even in the absence of 
rotation. In § IV we discuss the possible relevance of these 
results to real elliptical galaxies. 

Many V-body studies of rapidly rotating disks are based on 
models containing an inert “ halo ” component. All our calcu- 
lations are based on self-contained models, without halos. 

II. AXISYMMETRIC STABILITY 

A sufficiently cold disk is unstable to clumping on short 
radial length scales (Toomre 1964). The dispersion relation for 
tightly wound, axisymmetric (m = 0) oscillations in a smooth 
flat disk is 

cd2 = K2 — 2nGlkF ^ka/K) (2) 

(Kalnajs 1965; Lin and Shu 1966), with k the local epicyclic 
frequency, E the disk surface density, a the radial velocity dis- 
persion, and k = 2n/k the radial wavenumber; a>2 < 0 denotes 
instability. The function Fi < 1 is the standard “reduction 
factor ” that describes the decreased response of the disk below 
that of a perfectly cold one. This m = 0 instability is unaffected 
by the direction of rotation of the stars, and we expect that 
nonrotating shell-orbit models will be similarly unstable when 
their flattenings are sufficiently great. In disks with small but 
finite scale heights h, the dispersion relation (2) becomes 

co2 = k2 — InGYkF ¿ko/k)F2(kh), (3) 

where k and o are now defined by their values in the equatorial 
plane, and F2 < 1 is a second reduction factor arising (in part) 
from the fact that the potential disturbance caused by a given 
perturbation in surface density is weaker in a spheroid than in 
a perfectly flat disk. Toomre (1964), Shu (1968), and Vander- 
voort (1970) have given approximate expressions for F2 in the 
limit that the disk scale height is small compared to the radial 
wavelength, i.e., kh 

It is not clear to what extent the existing treatments of nearly 
flat disks are useful in predicting the critical flattening at which 
Bishop models become axisymmetrically unstable. We never- 

theless give, in Appendix A, the derivation of a heuristic 
reduction factor based on the assumption that the z- 
dependence of the perturbation is just proportional to the 
unperturbed density. That reduction factor—which is similar 
to the ones derived by Shu (1968) and Vandervoort (1970)— 
predicts in the limit of short-wavelength oscillations in a radi- 
ally cold disk that 

co2 = K2 — 4nG(p(m9 z))z , (4) 

where the angle brackets indicate a density-weighted average 
over z. For the Kuzmin-de Zeeuw oblate model, axisymmetric 
instability then requires 

k < 2.80[Gp(m, 0)]1/2 « coz , (5) 

where coz is the z-oscillation frequency. Figure 1 shows the 
functions k2(tu, 0) and 4nG<(p(uj, z))z for Kuzmin-de Zeeuw 
oblate spheroids of various flattenings. According to that 
figure, shell-orbit models flatter than ~ E7 should be axisym- 
metrically unstable. However, this conclusion is very depen- 
dent on the precise value of the numerical coefficient in the 
dispersion relation (5); increasing or decreasing that coefficient 
by only 20% shifts the stability boundary from E6.5 to E8. We 
conclude that the critical flattening for axisymmetric stability 
of radially cold, oblate models is probably difficult to compute 
with any accuracy from simple linear theory. V-body simula- 

G7 
Fig. 1.—Epicyclic and mean z-oscillation frequencies as a function of equa- 

torial radius in Kuzmin-de Zeeuw oblate mass models of various flattenings. 
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lions are therefore an indispensable guide. Nevertheless, the 
analysis in Appendix A does make one prediction that is likely 
to be qualitatively correct: unlike the case of an indefinitely 
thin disk, the growth rate in a cold oblate model remains 
finite as the wavelength is decreased. This means that IV-body 
simulations are likely to give qualitatively correct results even 
though limited in spatial and temporal resolution. 

Axisymmetric stability of a set of shell-orbit models was 
tested by evolving 20,000 particle realizations of Bishop’s 
models with an N-body code that enforces axial symmetry. 
The algorithm for generating initial coordinates and velocities 
is described in Appendix B. Since the Kuzmin-de Zeeuw oblate 
spheroid is infinite in extent, initial realizations were generated 
from models truncated on oblate surfaces such that 

m2 + (“)2z2 = 102 , (6) 

corresponding to ~5 half-mass radii. Truncation on an iso- 
density surface leaves the interior force field unchanged. Self- 
consistent orbital distributions were then derived using 
Bishop’s (1987) prescription, modified to include only orbits 
with turning points inside of the truncation surface. The 
resulting models are finite in extent and precisely in equi- 
librium. Although a sharp truncation may seem dangerous 
from the point of view of stability, the density of particles at 
our truncation surface is so low (~ 10 ~ 4 times the central space 
density; ~10-3 times the central surface density) that we do 
not expect the overall evolution to be noticeably affected. It is 
common practice in disk simulations to truncate models much 
farther in (e.g., Zang and Hohl 1978). 

The axisymmetric N-body code is similar to the one 
described by van Albada and van Gorkom (1977) is that the 
gravitational potential is evaluated through an expansion in 
spherical harmonics at each radius, assuming no dependence 
of the density on azimuthal angle <£ : 

N 
0)(r, 0) = -Gm £ P^cos d)Al(r), (7a) 

1 = 0 

A^r) = r~(l + 1) £ r^P/cos 6') + rz £ r'-(1+/)Pz(cos 0') , (7b) 
<r >r 

with Pz(cos 9) a Legendre polynomial, cos 9 = z/r, m the mass 
of an individual particle, G Newton’s constant, and N = 6 in 
the present case. The summations are over particles interior or 
exterior to the radius r. The radial functions Az(r) were evalu- 
ated at each time step on a uniform radial grid of 100 steps, and 
intermediate values were interpolated. Inclusion of terms up to 
/ = 6 was found sufficient to evaluate the potentials of models 
as flat as ~E8 without significant loss of accuracy. Finally, the 
innermost 5% of the particles were fixed throughout the inte- 
gration, to avoid problems with inaccurate potential expan- 
sions at radii containing only a small number of particles. 
Hereafter, all quantities are expressed in units such that 
G = M = a = 1, with M the mass of the untruncated model. 
The period of a circular orbit at the half-mass radius of the 
spherical model is 30.3 in these units; a circular orbit at the 
center of the E8 model has period 7.05. The integration time 
step was 0.02. 

Figure 2a illustrates the axisymmetric evolution of the E8 
model. The central regions of the model laminate into thin, 
curved cylinders on a time scale that is of order the orbital 
period in the core; the amplitude of the density increase is 
roughly constant with height z. Not surprisingly, as Figure 2b 

shows, the loci of enhanced density lie nearly along the prolate- 
spheroidal coordinate surfaces that define the unperturbed 
orbital motion. What is more surprising is that these conden- 
sations, once formed, persist without much change until the 
end of the integration at i = 100. Toomre (1964) and Shu 
(1969), for instance, guessed that condensations like those in 
Figure 2 would rapidly dissipate due to random motions gen- 
erated during their formation. Evidently this is not the case, at 
least when the potential is forced to remain precisely axisym- 
metric. A plot of the final radial density profile of the E8 model 
(Fig. 3) shows that all the condensations are close to one grid 
cell in width, consistent with the expectation that the shortest 
radial wavelengths are the most unstable. The model is clearly 
unstable at all radii m < 5 and shows hints of evolution at 
larger radii. 

The most important question to be answered by the AT-body 
integrations is the critical model flattening at which axisym- 
metric instability is suppressed. We quickly discovered that 
this question is difficult to answer with any certainty, since 
perfectly cold models, even if (locally) stable, are responsive to 
collective effects which amplify any perturbations and lead to 
large transient enhancements in the local density. To reduce 
these transient effects, we computed, in each radial grid cell, the 
time-averaged overdensity; for truly stable models, this average 
should tend to zero after several orbital periods. Figure 4 
shows the dependence on time of the quantity 

/<jn¡ - m,- o>\ 

\ m¡,o ) 

2~|l/2 
(8) 

where mz is the mass in grid cell i, mz 0 is the initial mass in the 
cell, and the angle brackets indicate a time average from r = 0 
to the current time. Figure 4 suggests that models as flat as, or 
flatter than, E6 are axisymmetrically unstable; the amount of 
evolution does not appear to change as the flattening is 
reduced from E5 to E4. A plot of the actual time dependence of 
the density in the innermost grid cells likewise suggests that the 
stability boundarly lies near E6. Although rounder models 
may be axisymmetrically unstable at some level, Figures 3 and 
4 suggest that the nonlinear evolution of these models is so 
small as to be physically unimportant. 

The axisymmetric instability described here was apparently 
also seen in A-body simulations of radially cold, oblate models 
by de Zeeuw et al. (1983), Bishop, Duncan, and Lee (1987, 
reported in Bishop 1988), and Shapiro and Teukolsky (1987). 
The first set of authors analyzed a family of E5.8 models using 
an axisymmetric code and reported a ring instability in the 
coldest models. The second group of authors found (using as 
few as 1000 particles) that an E8 shell-orbit model was ring- 
unstable, while an E6 model appeared stable. The final set of 
authors saw an axisymmetric instability in homogeneous 
oblate models flatter than about E6, using a general relativistic 
code specialized to the Newtonian limit. 

III. THREE-DIMENSIONAL STABILITY 

a) Expectations 
Relatively little is known about the nonaxisymmetric or 

global stability of radially cold, nonrotating stellar systems. 
Work published to date suggests that, while a radially cold disk 
is likely to be unstable to a variety of modes, both axisym- 
metric and nonaxisymmetric, a radially cold sphere is stable. 

Spherical systems composed of circular orbits are stable 
to perturbations that preserve the spherical symmetry 
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a) 

o 10 

b) 

Fig. 2.—(a) Six snapshots of the E8 Bishop model, evolved with the axisymmetric N-body code (N — 20,000). Particles are plotted in the {m, z) plane, (b) The 
model at i = 16. The left frame shows curves of constant A, along which shell orbits lie at i = 0; the right frame shows circular curves with the same equatorial radii. 

(Bisnovatyi-Kogan, Zel’dovich, and Fridman 1968). Stability 
to general perturbations has been demonstrated for spherical 
shell-orbit models with r~2 density laws by Synakh, Fridman, 
and Shukhman (1972), and for homogeneous models by Mik- 
hailovskii, Fridman, and Epelbaum (1971) and Shukhman 
(1973). (However, Bisnovatyi-Kogan [1971] points out that the 
homogeneous model is susceptible to linearly growing dipole 
modes.) Recent N-body work, reported by various authors 
(e.g., Barnes, Goodman, and Hut 1986; Dejonghe and Merritt 
1988) has revealed no convincing indication of instability in 
spherical shell-orbit models with realistic (flat or declining) 
density profiles. 

The situation is very different for nonrotating disks. 
Reversing half the stars in a cold disk should greatly reduce the 
strength of at least the classic bar mode (Kalnajs 1977), but 
other modes may remain unstable. The only exact study of the 
global stability of a nonrotating stellar disk is that of Araki 
(1987), who analyzed the spectrum of normal modes of 
Kalnajs’s (1972) simple family of disk models when half the 
stars are counterrotating. Kalnajs disks have a surface density 
equal to that of highly flattened, homogeneous oblate spher- 
oids, E(r) oc (1 — r2/R2)112, r < R. (Kalnajs’s analysis, as well as 
Araki’s, was limited to perturbations in the plane of the disk.) 
Araki found that most of the unstable modes of the rotating 
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Fig. 3—Radial density profile at i = 100for axisymmetrically evolved Bishop models. Plotted, at each radial grid point, is 
spherical cell since i = 0. Tick marks on the vertical axes are separated by 1. the fractional change in the mass of the 

disks are stabilized in the counterrotating disks. However, suf- 
ficiently cold counterrotating disks—which are perhaps similar 
in their stability properties to highly flattened, shell-orbit 
models of the sort considered here—are unstable to a variety of 
modes. The simplest of these are the axisymmetric, or m = 0, 
modes discussed above and which are unaffected by reversal of 
half the stars. However, the most persistent mode is the 
(n, m) = (3, 1) mode, which is unstable in the counterrotating 

disks as long as the rms azimuthal velocity exceeds 2.1 times 
the rms radial velocity. This mode produces a change in 
surface density equivalent to that produced by a rearrange- 
ment of disk matter according to the rule 

'-[1 +€(i)xr>, (9) 
i.e., the density center of the disk moves away from the center 
of mass. The (3, 1) mode (like the other m = 1 modes) has zero 

Fig. 4.—Time development of the time-averaged, rms overdensity in axisymmetrically evolved Bishop models (see eq. [8]) 
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pattern speed and a growth rate that reaches a maximum of 
0.92 times the (constant) disk angular speed in a perfectly cold 
model. Araki argues that, at its onset, the (3,1) instability has a 
sort of “ two-stream ” character, since a model with the same 
orbital distribution but all stars orbiting in the same direction 
is stable to this mode. However even the rotating models 
become (3, 1) unstable when the orbits are made slightly more 
circular, and on this basis, Araki concludes that the instability 
is not fundamentally “ two-stream ” in character. 

Although Araki’s results apply strictly only to the Kalnajs 
disks, there is some evidence that m = 1 modes may be the 
dominant ones in more realistic, slowly rotating disk models. 
For instance, Zang and Hohl (1978) find increasingly promi- 
nent one-armed features, and increasingly weak bars, in 
AT-body simulations of two families of disk models as the per- 
centage of retrograde stars is increased, and they cite some 
linear theory calculations of a third family of models which 
predict similar behavior. Araki also argues via the WKB for- 
malism that m = 1 modes are the only ones (aside from m = 0) 
that are likely to be unstable, with zero pattern speed, in 
general disk models. Based on this work, we might expect that 
Bishop models—although probably stable in the spherical 
limit—become unstable to global, m = 1 modes as their flat- 
tening is increased. 

Finally we note that Bishop, Duncan, and Lee (1987, report- 
ed in Bishop 1988) carried out full A/-body integrations of 
essentially the same models studied here and noticed no non- 
axisymmetric instabilities. Their integrations were based on 
only 1000 or 2000 particles, and this fact may explain why they 
failed to notice the instability that we report below. 

b) Integration 
The general stability of the shell-orbit models was tested by 

evolving 20,000 particle realizations in a code that retained 
nonaxisymmetric as well as axisymmetric terms in the poten- 
tial expansion at each radius : 

<D(r, 0, </>) = - 

x 

A?(r) = €m 

Gm Z Z /T(cos 9) 1 = 0 m = 0 

[¿¡"M cos (m<j>) + B?(r) sin (m<£)] 

(i-m)! 

(10a) 

x j^r (i + 1> £ r'1 Poicos O') cos (m</>') 

+ rl Y, r'~{1+l)Ptp(cos O') cos (m</>')J , (10b) 

B?(r) = €, 
(l-m)l 
(/ + m)\ 

Y r'*Pi”(cos 0') sin (m</>') 

+ rl Y r' (1+l)P?(cos O') sin (m</>')J , (10c) 

where e0 = 1, €m = 2 (m = 1, 2, 3,...). This code is a version of 
the one described originally by T. S. van Albada (1982) and 
improved by later workers (Bontekoe 1988; Bertin and Stia- 
velli 1989). It differs in implementation from the axisymmetric 
code described above in two important respects. First, the 

three-dimensional code evaluates all quantities associated with 
the potential on an angular as well as a radial grid, in spite of 
the fact that the angular dependences are given explicitly and 
simply by the expression (15a). The use of an angular grid 
increases the computational speed. Second, the center about 
which the potential expansion was computed (hereafter 
referred to as the “ grid center ”) in the three-dimensional code 
was shifted every 20 time steps in such a way as to follow the 
movement of the density center, and no particles were 
“frozen.” The precise centering algorithm is discussed below. 
All the three-dimensional simulations were based on a grid 
with 50 radial steps, spaced quadratically, 12 steps in 0, and 24 
steps in (j). The time step was 0.01 in the units defined above. 
Modest changes in the time step and the radial grid spacing 
were found not to affect the evolution appreciably. Complete 
runs (until t = 320, or roughly 10 full periods of a circular orbit 
at the half-mass radius) required about 90 hours on a Vax 3500 
computer. 

i) Density Evolution 
Figure 5a shows the three-dimensional evolution of the E8 

shell-orbit model. (Only 4000 of the 20,000 particles are dis- 
played.) The snapshots in Figure 5a show the model, projected 
along the initial symmetry axis, at times 0, 5,10,20,40,..., 320. 
The most striking feature at early times (i « 10) is the forma- 
tion of a sharp circular ring at radius r » 0.5, presumably 
through the same axisymmetric mechanism discussed above. 
Note however that the core (which was not frozen in these 
runs) is completely evacuated during the formation of the ring. 
Between i = 10 and t = 20, the ring collapses, non- 
axisymmetrically, into a very tight nucleus which persists until 
the end of the simulation. Immediately after its formation 
(t = 20), the new core lies noticeably away from the original 
density center. After t = 20, the model continues to form sharp, 
essentially circular rings at larger and larger radii; however, 
the bulk of the matter within the largest ring is always clearly 
displaced from the original density center. This displacement 
occurs roughly along a fixed axis. By i = 320, the ring forma- 
tion has apparently stopped, and the model appears to be 
approaching an equilibrium, roughly axisymmetric state. 

Clearly the three-dimensional evolution of the E8 model 
differs strongly from the axisymmetric, fixed-center evolution 
shown in Figure 2. The most important difference is the slow 
growth of a lopsided, essentially dipole “mode” that first 
becomes noticeable after the formation and collapse of the 
central ring at i æ 10. We were initially skeptical of the reality 
of this nonaxisymmetric evolution. The harmonic expansion 
code (like virtually every AT-body code that does not compute 
forces from a direct pairwise summation) does not conserve 
total linear momentum, whether or not the grid center is 
allowed to move. In earlier runs (not shown here), we used a 
centering algorithm that placed the origin of the grid at the 
center of mass of the roughly 500 most bound particles. This 
algorithm performed poorly after the formation of the central 
ring : because there was no well-defined density center, the grid 
tended to wander erratically, leading to large shifts in the 
model’s center of mass. We therefore worried that the slow 
growth of the nonaxisymmetric deformation—which only 
appears after the evacuation of the core—might be a spurious 
effect. After some experimentation, we adopted a centering 
algorithm (used subsequently in all the AT-body integrations 
with this code) that simply followed the center of mass of all 
particles within a radius 1 from the previous grid center, a 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

35
8.

 .
39

9M
 

O 5 10 

Fig. 5b 

Fig. 5. Snapshots of the E8 Bishop model, evolved with the three-dimensional N-body codes Each nicture k a nrm>rt,Vm «ara» i 
expansion code ; N = 20,000 ; 4000 points plotted, (b) Tree code ; N = 4000. * Picture is a projection parallel to the z-axis. (a) Harmomc- 
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radius sufficiently large to contain the entire central ring. Both 
algorithms produced qualitatively similar results, but the latter 
resulted in center-of-mass displacements of only ~ 1 for the E8 
model. (By contrast, a run with fixed grid center produced a 
runaway of the center of mass.) 

Although small, these center-of-mass displacements were 
still large enough to cast doubt in our minds on the reality of 
the slowly growing, nonaxisymmetric evolution found with the 
three-dimensional code. We therefore decided to carry out a 
second integration of the E8 model using a code with a poten- 
tial solver that is not dependent for its accuracy on a “ correct ” 
choice of the density center. Lars Hernquist kindly provided us 
with a copy of his “ tree ” code, a modified direct-summation 
AT-body code in which forces from distant groups of particles 
are approximated by a single contribution from their center of 
mass (see Hernquist 1987). The tree code contains only three 
important adjustable parameters: the time step, set to the same 
value, 0.01, as in the harmonic-expansion code; the particle 
softening length, set to 0.2; and the accuracy parameter 6 that 
determines the angular size of groups of particles whose inter- 
nal structure is ignored, set to 0.8 rad. Figure 5b shows the 
tree-code integration, until t = 160, of a 4000 particle realiza- 
tion of the E8 model. (This run required ~900 hours of CPU 
time on a Sun 4/260 computer.) The agreement with the earlier 
integration is very good: both runs produce a central ring at 
t ä 10, followed by formation of an off-center compact core 
and the slow growth of a lopsided deformation. The most 
obvious difference between the two integrations is the appear- 
ance of small-angular scale features in the tree-code simulation 
at early times (Fig. 5b, t = 10, 20). These features are no doubt 
“ real ”; they are precluded in the 20,000 particle integration by 
the limited angular resolution of the potential expansion. By 
contrast, the harmonic-expansion code permits the formation 
of very sharp radial features at small radii (Fig. 5a, t = 20, 40) 
which are not seen in the tree-code integration because of the 

relatively large softening length. In short, although there are 
differences in the abilities of the two codes to handle small- 
scale features, both predict essentially identical, large-scale 
evolution of the model. 

The two simulations shown in Figures 5a and 5b were based 
on different numbers of particles and therefore began from 
slightly different random realizations of the same model. As a 
further check on the global evolution, we used the harmonic- 
expansion code to integrate the same 4000 particle realization 
of the E8 model integrated by the tree code. Again the evolu- 
tion was very similar; but in addition, the azimuthal orienta- 
tion of the slowly growing deformation was nearly the same in 
the two runs, differing by at most 10°. This agreement confirms 
even more strongly that the instability is inherent in the model 
and not simply a spurious product of the iV-body codes. 

A further comparison between the two 4000 particle integra- 
tions of the E8 model is made in Figure 6, which shows the 
amplitudes, at i = 80, of the various angular components of the 
potential expansion. Plotted are the quantities 

1 m\A7\2 + \Br\2)/\A°0n=S0 
gl° ii(\Ar\2 + \Br\2)/\Ao

0\
2i=0’ 

[ > 

where the coefficients were computed with respect to the center 
of mass (not the grid center); the sum is over radial grid steps, 
without any additional weighting by mass or density. Figure 6 
shows that the model at i = 80 has developed substantial 
power in two sorts of angular harmonics. The “ odd-odd ” har- 
monics, e.g., (I, m) = (1, 1), (3, 1), (3, 3), imply a mass distribu- 
tion that is symmetric about the equatorial plane, but with a 
shift of the density center away from the center of mass (see 
Bontekoe 1988 for a graphical depiction of the spherical har- 
monic weighting functions). The “ even-even ” harmonics, e.g., 
(/, m) = (2, 2), (4, 2), (4, 4), correspond to barlike deformations 
parallel to the equatorial plane. Even-odd or odd-even 

12 3 4 5 6 
Fig. 6.—Angular components (/, m) of the potential expansion of the E8 models at i = 80, computed from the two runs with N = 4000 (see eq. [11]) 
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Fig. 7.—Snapshots of the E3 Bishop model, evolved with the three-dimensional iV-body codes. Each picture is a projection parallel to the z-axis. (a) Harmonic- 
expansion code; N = 4000. (b) Tree code; N = 4000. 
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harmonics—describing deformations that are not symmetric 
with respect to the equatorial plane, i.e., bending modes— 
remain small. These plots indicate that the E8 model evolves 
strongly on a variety of angular scales, including the smallest 
angular scales resolvable with the harmonic expansion code, 
and that the dominant evolution is symmetric about the equa- 
torial plane. In this sense, the model behaves in a manner very 
similar to that of the coldest nonrotating disk models analyzed 
by Araki (1987) (although our model at i = 80 has clearly 
evolved out of the linear regime). 

Once convinced of the reality of the nonaxisymmetric evolu- 
tion seen in the E8 model, we carried out a set of integrations 
of the E3 model. As Figures la and lb show, the latter model 
exhibits no tendency toward axisymmetric ring formation, 
consistent with the result described above that models rounder 
than ~ E6 are axisymmetrically stable. Nevertheless, there is a 
slow and very clear movement of the core away from its orig- 
inal location in both integrations. Figure 8 shows the ampli- 
tudes of the various angular harmonics for the 4000 particle E3 
integrations at i = 80, again compared to the values at i = 0. 
The (1, 0) harmonic appears large on these plots only because 
of a particularly small initial amplitude; otherwise, only the (1, 
1) dipole and (2, 2) bar terms show significant growth. The 
model flattening (as reflected in the axisymmetric coefficients) 
does not change appreciably, which suggests that the insta- 
bility moves particles roughly parallel to their orbital planes, 
without strongly affecting the orbital inclinations. 

Finally, we carried out a set of 20,000 particle integrations of 
a set of models with initial flattenings E7, E6, E5, E4, E2, and 
El using only the harmonic-expansion code. All these models 
showed significant nonaxisymmetric evolution; the dominant 
character of this evolution was always a gradual movement of 
the density center away from the center of mass. That the 
instability is present even in models that are nearly round is 
demonstrated in Figure 9, which shows the El model at i = 40 

in two projections designed to enhance detail. The diple defor- 
mation is very clear; it is also very simple, in that it shows little 
dependence on z. Figure 10 shows the evolution of the ampli- 
tude of the dipole contribution to the potential, computed with 
respect to the center of mass, in each of the 20,000 particle 
integrations. The quantity plotted is(\A{\2 + \B\ |2)1/2 /\A%\, 
where the coefficients were evaluated at r = 2, and only the 
contributions from interior particles were included (see [10]). 
Note that these coefficients are simply 

Í 
y4j(,nt)(r) oc r 2 pxd3x , B\imt)(r) oc r 2 pyd3x , (12) 

I- 

where the integrals extend over the entire model interior to r. 
Judging from Figure 10, there is a fairly steady decrease in the 
strength of the evolution as the initial models are made 
rounder. At early times (t < 40), there is a clear separation in 
this plot between the E7 and E8 models, which are strongly 
axisymmetrically unstable, and the rounder models. It seems 
likely that the early growth of the m = 1 deformations in the 
E7 and E8 models is strongly affected by the (rapidly 
nonlinear) formation of rings in these models. 

It would clearly be of interest to demonstrate rigorously that 
the nonaxisymmetric evolution found here is a true mode, and 
to calculate its functional form and growth rate in the linear 
regime for each of the models. We consider these questions to 
be beyond the scope of the present paper. Here we simply 
show, in Figure 11, the evolution of the radial dependence of 
the A\(r) dipole term (calculated with respect to the center of 
mass) at early times for the three roundest models. In each 
case, the radial shape of the dipole term remains approx- 
imately fixed as it grows. The growth rate at early times (t « 5) 
appears to be of order 0.1 for these models and to decrease 
with increasing model roundness; however, these models 
appear to be already in the nonlinear regime by i = 5. An E0 

Fig. 8.—Same as Fig. 6, for the two E3,4000 particle integrations 
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Fig. 9a 

Fig. 9b 
Fig. 9—Snapshot of the El Bishop model at t = 40, as evolved with the harmonic-expansion code (N = 20,000). (a) Particles have been rotated onto the 

equatorial plane with fixed r2 = m2 + z2; thus a spherical shell appears as a ring, (b) Particles have been rotated onto the y = 0 plane with fixed w2. 
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Fig. 10.—Time development of the amplitude of the dipole contribution to the potential in each of the 20,000 particle integrations (see eq. [12]) 

(spherical) model, which we also evolved, showed no sign of 
unstable evolution in any of the potential terms, suggesting 
that the growth rate of the dipole “mode” goes to zero for a 

 1 i i i  
0 1 2 3 4 5 

radius 
Fig. 11.—Evolution of A\(r) for the three roundest models. Curves are 

shown at times i = 0, 5,10,20,40. 

perfectly round model. This result is consistent with the earlier 
work on global stability of spherical stellar systems sum- 
marized above. 

We consider next how the overall mass distribution of the 
Bishop models is affected by the instability. Figure 12 shows 
initial and final density profiles, as seen from the z-axis, for the 
E8 and E3 models. The E3 model has hardly evolved in this 
plot; however, the E8 model shows a much higher central 
density and a more extended envelope. Both features are 
natural end-products of gravitational torques resulting from 
the nonaxisymmetric instability. However, the high central 
density is probably more a result of the formation and collapse 
of a central ring at i æ 10 in this model. Note the “knee” at 
R « 5 : in a plot of the projected density at i = 440, this knee 
has moved outward, suggesting that it is a signature of incom- 
plete relaxation. The change in flattening of these models is 
shown in Figure 13. Again, the E3 model appears nearly 
unchanged, but the E8 model has clearly become rounder, at 
least near the center, as a result of the instability. Measurement 
of the isophotal contours gives approximate flattenings of E0 
(m < 0.5), E5 (m « 1), and E7 (m « 4) at t = 320. At larger 
radii, the model is clearly not relaxed. Nevertheless, it is 
intriguing that, within the nearly relaxed region, the (initially) 
E8 model is never flatter than observed ellipticals (E0-E7). 
This result provides a certain amount of support for the 
hypothesis of Fridman and Polyachenko (1984, Vol. 2, p. 159) 
that dynamical instabilities are responsible for setting a limit to 
the flattening of real elliptical galaxies. However, the mecha- 
nism that they invoke for enforcing the limit—namely, a buck- 
ling or “ firehose ” instability—does not appear to be active in 
these models. 

ii) Kinematic Evolution 
One product of the development of nonaxisymmetric insta- 

bilities in the Bishop models is a gradual increase of radial 
kinetic energy. Figure 14 shows the evolution with time of the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

35
8.

 .
39

9M
 

No. 2, 1990 NONROTATING STELLAR SYSTEM STABILITY. I. 411 

rV4 

Fig. 12.—Surface density profiles, projected parallel to the z-axis, for the 
E8 and E3 models at initial (lines) and final (crosses) time steps 

quantity 2Tr/(2Tr + Tt) for each of the models, where Tr is the 
total kinetic energy in radial motions and Tt is the tangential 
kinetic energy, including both 6 and </> components. This 
parameter varies from (approximately) zero in the initial 
models to ^ for an isotropic sphere and f for an isotropic disk 
(i.e., a disk in which the velocity dispersion is independent of 
direction in the disk plane). All the models appear to be still 
evolving slowly at the final time step; nevertheless, it is obvious 
that by i = 320, the various instabilities have acted to greatly 
increase the radial kinetic energy in the flatter models. Very 

Fig. 13.—Snapshots of the central parts of the E8 and E3 models at initial 
and final time steps, as evolved with the harmonic-expansion code. Each 
picture is a projection parallel to the y-axis; boxes are 10 units square. Ten 
thousand particles are plotted. 

Fig. 14.—Time development of the global velocity anisotropy in each of 
the 20,000 particle integrations. Crosses: E0 (spherical) model. 

roughly, the relation between the final global velocity aniso- 
tropy and the initial flattening En is 

2Tr 

2Tr + Tt 

n 
20 ’ 

1 < n < 8 . (13) 

We also show for comparison in Figure 14 the evolution of the 
anisotropy for the E0, or spherical, model, which we believe to 
be stable. The slow, essentially linear increase of Tr in this 
model is probably due just to accumulated errors in the orbit 
integrations. 

The internal kinematical structure of the E3 and E8 models 
is displayed more fully in Figure 15, which shows initial and 
final velocity dispersion profiles in the prolate-spheroidal coor- 
dinate system (A, v, (p) defined by equations (B2). In this coordi- 
nate system, shell orbits in the equilibrium models lie along 
surfaces of constant À, which are confocal prolate spheroids; 
thus = 0 initially. The dispersions in Figure 15 were aver- 
aged in bins of constant 2, centered on the grid center; in the 
equatorial plane, 2=1+ w2. Both E8 and E3 models develop 
nearly isotropic cores, i.e., crA « o-v ä for r < 0.5. In the E8 
integration, the final “radial” dispersion ctx exceeds <jv by a 
substantial factor at larger radii, although both dispersions 
remain small compared to It follows that this model at the 
final time step is more radially anisotropic than an oblate two- 
integral (E, Lz) model, for which (rx = av. This result suggests 
(though certainly does not prove) that two-integral models as 
flat as E8 will be unstable to nonaxisymmetric modes. The E3 
model shows substantially less kinematic evolution, with ox 
<jv and Ö-0 for r > 1. A two-integral model as round as E3 
would therefore probably be stable. 

The local velocity distribution in a shell-orbit model is pecu- 
liar, since all stars pass through a given point with nearly the 
same speed, producing a sharply double-peaked distribution of 
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Fig. 15.—Initial (lines) and final (symbols) velocity dispersion profiles for two models, expressed in prolate-spheroidal coordinates. Abscissa is equal to w for a 
particle in the equatorial plane. Dashed line triangles: Dash-dot line, circles: o*; Solid line, crosses: of. 

tangential velocities. Figure 16 shows how this velocity dis- 
tribution is modified by the nonaxisymmetric evolution. 
Plotted as a function of (A — 1)1/2 = U7Z=0 is the “tangential” 
velocity ptan = (p2 + p|)1/2, i.e., the component of the velocity 
parallel to the local surface of constant À. The sign of ptan is 
taken to be the sign of the z-angular momentum. Clearly the 
distribution of tangential velocities is greatly broadened in 

both models by the instability, although the basic bimodality 
remains, even near the center. This fact suggests that the “ two- 
stream” character of the local velocity distribution is not 
inherently unstable. The sharp change in the shape of the 
velocity distribution near tn = 5 in both final models is prob- 
ably due just to incomplete relaxation; similar features are seen 
at the same radius in the density profiles (Fig. 12). 
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Fig. 16.—Tangential velocities of particles in the E8 and E3, 20,000 particle integrations. Abscissa is equal to w for a particle in the equatorial plane; ordinate is 
±(”? + i$1/2- 

IV. DISCUSSION 
Our results imply that oblate stellar systems, of any flat- 

tening (except precisely spherical), require a minimum amount 
of radial kinetic energy to be dynamically stable, even in the 
complete absence of rotation, and that the dominant unstable 
mode has a dipole or “m = 1” character. For relatively flat 
models—say, flatter than E5—the large amounts of evolution 
seen here suggest that the radial velocity dispersions required 
for stability may be quite large, of order 4 to ^ the circular 
velocity. For rounder models, the minimum, stable, radial 
velocity dispersion is less, and the spherical shell-orbit model 
appears to be stable, at least on time scales no greater than a 
few orbital periods. It is clearly important to extend these cal- 
culations to self-consistent models composed of more general 
orbits, and to determine the precise ratio of radial to tangential 
velocity dispersion required for stability as a function of model 
flattening. Such models have been constructed by Bishop 
(1986) and Dejonghe and de Zeeuw (1988h), among others. 
Until the results of these calculations are available, we limit 
ourselves to making the following points about the astro- 
physical importance of the m = 1 instability in nonrotating 
oblate systems. 

1. Radially anisotropic, spherical models are often bar- 
unstable (Polyachenko and Shukhman 1981; Barnes 1985; 
Merritt and Aguilar 1985), and there are hints that oblate 
models with large radial velocity dispersions are likewise 
unstable (Aguilar and Merritt 1990). It follows that, for any 
flattening, there is only a limited range of anisotropies— 
neither too tangential nor too radial—for which an oblate 
model can be stable. In the case of very flat oblate models, this 
range could conceivably be narrow, or even nonexistent. Thus 
we should be able in the future to limit substantially the range 

of kinematical solutions consistent with a given model shape, 
and perhaps even rule out oblate models (in favor of prolate or 
triaxial ones) with flattenings greater than some limiting ellip- 
ticity. 

2. Shell-orbit models do not seem very suitable representa- 
tions of real elliptical galaxies : it is difficult to imagine a forma- 
tion mechanism that could completely dissipate radial motions 
without also greatly reducing the tangential velocity dispersion 
at each radius. Nevertheless, these models have already been 
invoked in two contexts to explain otherwise puzzling kine- 
matical data (Dejonghe and de Zeeuw 1988a; Fillmore and 
Levison 1989). For instance, Fillmore and Le vison (1989) show 
that, in order for very flattened oblate models to exhibit veloc- 
ity dispersion profiles that decline with radius along both prin- 
cipal axes, as some observed galaxies do (e.g., Illingworth 
1981), the orbits in these models must be fairly thin. Our results 
show that such flat, radially cold galaxies would very likely be 
unstable. 

3. At the same time, our work suggests that observers 
should be alert to the possibility of m = 1 deformations in real 
elliptical galaxies. Most elliptical galaxy isophote fitting is 
based on the assumption that the isophotes are concentric; 
deviations from elliptical form are then searched for in the 
higher order harmonics, i.e., m = 2, 3, 4, However, there is 
at least one elliptical galaxy that is known to show a substan- 
tial m = 1 deformation, namely NGC 6487 (R. Bender, private 
communication). The strong global response of this galaxy 
(perhaps to a recent encounter with a neighboring galaxy) may 
indicate that NGC 6487 was formed with a very tangential 
velocity distribution. 

4. Polyachenko (1987) and Palmer, Papaloizou, and Allen 
(1989) have recently discussed mechanisms for instability of 
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spherical systems constructed from circular or nearly circular 
orbits. For instance, the latter authors show that spherical 
systems with small but finite radial velocity dispersions are 
subject to overstable, quadrupole oscillations which grow on a 
time scale of tens of crossing times and which gradually 
increase the central concentration and radial velocity disper- 
sion of the models. While these instabilities, or ones like them, 
may have important implications for the long-term evolution 
of elliptical galaxies, the m = 1 instability discovered here 
afflicts precisely the same sorts of systems, grows on a much 
shorter time scale, and substantially increases the radial veloc- 
ity dispersion. Palmer, Paploizou, and Allen failed to see the 
m = 1 instability because they considered only exactly spher- 
ical models and restricted themselves to m = 2 perturbations. 

It is important to understand the physical mechanism that 
drives the m = 1 instability in radially cold, spheroidal systems. 
The data from the A/-body integrations suggest a picture in 
which the centers of the (nearly circular) orbits move collec- 
tively toward one side of the model or the other, producing 
lopsided density enhancements, while the orientations of the 
orbits remain roughly fixed. Such a picture is consistent with 
the general appearance of the instability, in particular the weak 
dependence of its amplitude on z (e.g., Fig. 9b), and with the 
fact that the instability seems to grow substantially on a single 
orbital time scale. In a general way, it is reasonable that such 
an instability should be strongest in flattened systems: in a 
spherical model, a shift of any spherical shell produces no 

change in the force on interior shells, while in a flattened 
system, neighboring rings attract one another. A logical first 
step in understanding the instability in more detail would be to 
verify that it is indeed active in the linear regime in oblate 
models, perhaps by applying the adiabatic deformation tech- 
nique of Binney and May (1986) and Goodman (1988) to the 
models analyzed here and observing the changes in individual 
orbits. A second step might be to study analytically the stabil- 
ity of homogeneous shell-orbit models (Bisnovatyi-Kogan and 
Zel’dovich 1970), for which the normal modes of oscillation are 
finite polynomials in the coordinates (Fridman and Polya- 
chenko 1984). 

The successful completion of this project would not have 
been possible without the timely assistance of Lars Hernquist, 
who graciously lent us a copy of his tree iV-body code and 
guided us in its implementation. The harmonic-expansion 
AT-body code used here is a descendant of a code first written 
by Tjeerd van Albada. Suguru Araki provided us with detailed 
information on his disk stability calculations. A number of 
people, including Martin Schwarzschild, Jerry Sellwood, Scott 
Tremaine, Peter Vandervoort, Tim de Zeeuw, and especially 
Herwig Dejonghe, examined our Af-body results and made 
comments that affected the content and organization of this 
paper. This work was supported in part by a Fullam/Dudley 
Award from the Dudley Observatory. 

APPENDIX A 

REDUCTION FACTOR FOR OBLATE MODELS 

Following Shu (1968) and Vandervoort (1970), we derive here a heuristic reduction factor by assuming that an unstable oblate 
model laminates into thin cylinders whose density, in the linear regime, is proportional to the unperturbed density at any point z 
above the equatorial plane. The density perturbation is then the real part of 

Piim, z)ei{kw-m) 

^w) 
p(m, zy^-03», (Al) 

where £(07) and p(xu) are the unperturbed surface and volume densities and ^(m) = 1-00 dzp^m, z). The perturbed potential 
corresponding to the assumed density perturbation is «^(oj, z)eiikw~m), where, from Poisson’s equation, 

z) « 
— 2tuG ^(m) 

k I(m) 
e k/z z \p{m, z')dz' . (A2) 

To obtain a dispersion relation, we need a second expression that gives the density response to the imposed potential. For an 
infinitely thin, cold disk, this relation is 

^(w) = £(07)0^07) 

(e.g., Kalnajs 1965). In the present case, we assume that the response density is simply 

k2 

p^w, z) « - 2 2 ^ Z)>z > 1C CO 

(A3) 

(A4) 

where the angle brackets indicate some average over z; this average reflects the fact that stars contributing to the perturbed density 
at z feel the perturbed potential at a range of different heights above the equatorial plane. To be consistent with our assumption that 
p1 values have the same z-dependence as p, this average must be independent of z; we assume 

<0l(G7, z)>z = dzp(w, z) . (A5) 

The weighting with p is reasonable, since the time that a star spends in the vicinity of z is proportional to the unperturbed density 
there. 
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Equating the imposed and response densities then gives an approximate dispersion relation for axisymmetric oscillations of a 
shell-orbit model : 

2nGk f00 f00 

co2 = K2 — - /?(c7, z)p(w, z')e 'k]z~z'ldzdzf . (A6) 
J — 00 J — 00 

As in the case of a razor-thin disk, equation (A6) predicts that the shortest wavelength oscillations are the most unstable. In the limit 
k oo, equation (A6) becomes 

co 2 = K2 — 4nG io P 
2(w, z)dz 

J? p(m, z)dz 

- 4nG(p(m, z))z 

(A7a) 

(A7b) 

APPENDIX B 

INITIAL COORDINATES 

Generation of initial conditions for the AT-body code required, first, numerical computation of the orbital distribution function; 
and, second, Monte-Carlo calculation of positions and velocities. Computation of the distribution function was carried out 
according to the prescription of Bishop (1987) (with one minor modification, described below). To maintain consistency with more 
recent work, we present the basic equation (B7) also in the notation of de Zeeuw and Hunter (1990). 

In prolate spheroidal coordinates (2, v, </>), the Kuzmin-de Zeeuw oblate-spheroidal mass distribution (1) becomes 

p(l v) = 
1 

n2 AV 

where 

*> + yw = (A-1)(1-v) 

l-c2 ’ - 

in units such that a = total mass = 1. The potential is 

^ _ (¿-c2)(V-c2) 
1 — c2 c2 <v < 1 < À . 

G(t) = - (t — c2) 1/2 tan 1 

n 

where the gravitational constant has also been set to unity. “ Shell ” orbits lie along surfaces defined by 

À — Aj , C < V < v0 0 <(/) <2n . 

(Bl) 

(B2) 

(B3) 

(B4) 

Let n(Al9 v0)dl1 dv0 be the mass of stars with turning points (Ài9 v0) in the annulus between (y^, v0) and (Àl + d2l5 v0 + dv0). The 
distribution of orbital parameters that reproduces the density profile (Bl) in the potential (B3) is 

«(Ai, v0) = - T(A1( v0) — , 
dv0 

where T = 4 dv/\ v | is the period of a complete oscillation in v, 

, 1 p0 mu y) 
^1» v0) = - 71 Jo 

mi 

^(Ai, v) = - 

y/ÿo-y 

(Ai - v) 

dy, 

Ptti, v), 

and 

y = v) = 

^ v/Ai — c2(A! — 1) ‘ 

2(A! - 1)>(1 - v) r_ ^ , G(Ai) , cl 
(i-c>*j,-v) LK(i"v)+~+ri;J: 

(B5) 

(B6a) 

(B6b) 

(B6c) 

y0 = ^(^i, v0) = L2, the z-angular momentum of an orbit with turning point v0) (Bishop 1987). In the notation of de Zeeuw 
and Hunter (1990), 

n(¿i, Vo) = 
72(1 - c2XAi - C2) 

T(Ai, Vo^JAi, v0), (B7) 
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where F*m (À1, v0) is expressed elegantly in terms of “divided differences” by their equation (2.32). Equations (B5)-(B6) were solved 
numerically. 

Given n(Àl9 v0), we can generate initial coordinates and velocities for the Af-body code as follows. The cumulative distribution of 
the “ radial ” coordinate Ai is 

p! fl f27C 

Jl Jc2 JO 
, d(x,y,z) ^ v ^ TT ¿¿i dv d(f> dtti, v, <A) 

= - ( tan 
71 

i Mi - ^ 1 Mi - c2 

yj c2 Ai v 1 — c2 tan 

Given a value for the cumulative distribution of v0 is 
ÍVO 

«(Ai, v0)dv0 , 

J'v° IJ 
— v0)dv0 . 

ci dv0 

(B8a) 

(B8b) 

(B9a) 

(B9b) 

The fraction of stars with turning points (A^ v0) that lie between v and v + dv at any instant is 2/| v | T(aí, v0); thus the cumulative 
distribution of v for a given (A,, v0) is 

2 fv dv 
N(<v; Aj, v0) = —   — , 

T(li, v0) JC2 |v| 
v < v0 , 

where 

v(v; A1( v0) = ±2 ^ v) - ^z2(5, v0). 

The cylindrical velocity components are then 

zli — 1 v 
2(1 — c2) m ’ 

— c2 v 
2(1 — c2) z ’ 

m (¡) = ± ¿i - 1 Í 2(1 
m ((1 - c2)(A 

3oL_ [ _ CIA,) - (Ai - c2) ^ - K(Ai, Vo)]}1" 

(BIO) 

(Bll) 

(B12a) 

(B12b) 

(B12c) 

Equations (B6)-(B8) apply to a model with infinite extent. For the purposes of the iV-body code, which evaluates forces on a finite 
grid, we required a finite model. The simplest way to modify the infinite model is to truncate it on a surface of constant m2 = ; 
doing so leaves the interior force field and the particle equations of motion intact. In terms of À and v, the truncation surface is 
defined by 

c2<v<l, 1<2< c2ml ; 

c2 < v < vmax(A), c2ml < A < /ño , 

where vmax(A) = c2ml/À. Since shell orbits of a given At can extend all the way to v = 1, it is clear that the orbital distribution of the 
truncated model must be adjusted to include only orbits that remain inside the truncation surface. It is easy to show that 0* for the 
truncated model is 

nMl> Vo) — ' 
1 
71 

= 0 

™ y) 

»in nAo - y 
dy Vo ^ v

mai(Aj), 

V0 > v^^Aj), 

(B13a) 

(B13b) 

where ymin = v^^)]. Because of the sharp truncation, the orbital distribution of the truncated model is divergent at 
v = vmax M) for ^ > c2ml. However the cumulative distribution N(<v0; which is the important quantity from the point of view 
of generating initial coordinates and velocities, remains well behaved (see eq. [B9b]). 
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