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ABSTRACT 
It has recently been claimed that a submillisecond pulsar has been observed in the remnant of SN 1987A. If 

the pulsations are due to rotation of a neutron star at this frequency, the equation of state (EOS) must be 
severely limited. In general, soft equations of state allow rapid enough rotational frequencies, but the softness 
is limited by the observed neutron star mass of 1.44 M0 in the binary pulsar PSR 1913 + 16. In order to 
simultaneously satisfy these two constraints, we show that in the vicinity of ordinary nuclear density, the pres- 
sure must vary relatively slowly with density, but at higher densities, the EOS must become relatively stiff and 
approach the causality limit. Specifically, in the absence of phase transitions above nuclear density and for 
cases in which the nuclear symmetry energy is an increasing function of density, the compression modulus of 
symmetric nuclear matter at the saturation density 0.16 fin-3 must be less than about 160 MeV. If either of 
these situations occurs, higher values for the compression modulus may be possible, but in any case the EOS 
must still stiffen to the causal limit at high density. Examples of phase transitions that might permit rapid 
enough rotation are those due to pion or kaon condensates or to parity-doublet matter occurring around a 
few times the nuclear matter density. On the other hand, phase transitions to ordinary or strange quark 
matter well above nuclear densities soften the EOS to well below the causal limit and make rapid rotation 
much more difficult. Self-bound stars composed entirely of perturbative strange quark matter are not quite 
able to satisfy the requirements of rapid enough rotation and sufficient mass even in the optimum case where 
strange quarks are assumed to be massless. Other schematic self-bound stars can satisfy these constraints, but 
physical motivations for such equations of state are presently lacking. 
Subject headings: equation of state — pulsars — stars: individual (SN 1987A) — stars: neutron 

I. INTRODUCTION 

The recent supernova in the Large Magellanic Cloud, SN 
1987A, has allowed for the first time observational data on the 
birth of a neutron star. The neutrinos detected by Kamioka 
(Hirata et al. 1987) and IMB (Bionta et al. 1987) basically 
confirmed the standard theoretical model (Burrows and Latti- 
mer 1986) for neutron star formation. The binding energy of 
the neutron star, 99% of which is converted to neutrino 
emission, can thus be estimated. However, because of statistics, 
it is uncertain by about 50% (Lattimer and Yahil 1989). Never- 
theless, the rest mass of the neutron star formed may be esti- 
mated from the neutrino observations to lie in the range 
1.3-1.8 Mq (Burrows 1988; Lattimer and Yahil 1989). More- 
over, an independent estimate of the neutron star’s mass from 
the observed nucleosynthesis has been made by Thielemann, 
Hashimoto, and Nomoto (1989), who find a rest mass of 
1.60 ± 0.05 Mq . If the rotational energy of the neutron star is 
ignored, these estimates imply that a gravitational mass of 
approximately 1.4 M0 has been formed in SN 1987A. Despite 
this information, the equation of state (EOS) for matter above 
nuclear density cannot be severely constrained by these mass 
estimates alone (Prakash, Ainsworth, and Lattimer 1988). 

The more recent observation of a submillisecond pulsar 
(Kristian et al. 1989) in the remnant of SN 1987A with period 
p = 0.508 ms is very exciting because the possibility exists of 
pinning down the EOS at supra-nuclear density, if the pulsa- 
tions are due to rotation. The maximum rotation rate of a star 
must be less than or equal to the Keplerian rate, at which the 
equatorial surface velocity equals the orbital velocity of a par- 
ticle at the equator. Friedman, Ipser, and Parker (1989) have 
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shown that only a few of the many published equations of state 
they tested can simultaneously satisfy the constraints of 
Keplerian rotation with periods less than or equal to 0.5 ms 
and nonrotating masses greater than or equal to the more 
massive (gravitational mass, 1.44 M0) of the neutron stars in 
the binary pulsar PSR 1913 + 16 (Weisberg and Taylor 1984, 
1989). However, more recent calculations of the EOS, which 
contain improvements both from technical and physical stand- 
points, are available today. In addition, some of the equations 
of state tested by Friedman, Ipser, and Parker do not include 
beta equilibrium, which we show to be an important omission. 
Finally, some violate causality at densities found in neutron 
stars, although we will show that this does not greatly affect the 
rotational properties of these equations of state. 

It is the purpose of this paper to identify those properties of 
the EOS that will give rise to rapid enough rotation while at 
the same time sustain sufficient mass. Our viewpoint, that both 
rotation and mass constraints must apply to the EOS, rep- 
resents the simplest hypothesis. Alternative scenarios, in which 
the object in SN 1987A is not a normal neutron star that is 
rapidly rotating, are possible, but they involve a greater 
number of assumptions, and, in addition, they may be inconsis- 
tent with other observations (e.g., the mass estimates referred 
to earlier). To achieve our objective, we will explore equations 
of state calculated using nucleonic degrees of freedom as well 
as those in which phase transitions to other types of matter, 
e.g., pions, kaons, quarks, etc., are considered. Where possible, 
our calculations will include effects due to beta equilibrium. 
The presence of leptons softens the EOS of neutron star 
matter, and, in general, imposing beta equilibrium decreases 
both the maximum mass and the maximum Keplerian rotation 
rate. We will also require that the EOS satisfies the causality 
condition, i.e., sound speed is less than or equal to the speed of 
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light. As shown by Bludman and Ruderman (1970), this condi- 
tion is rigorously satisfied in bulk matter in its ground state. In 
many cases, some of the parameters entering the calculations 
of the EOS are constrained by experiments on laboratory 
nuclei. We will therefore include a brief discussion about the 
plausibility for the validity of each EOS considered where such 
constraints do apply. 

We will examine especially the “successful” equations of 
state employed by Friedman, Ipser, and Parker (1989), because 
one could argue that the functional form, i.e., the energy-density 
relation, of the successful equations of state might eventually 
be reproduced by more modern calculations. Indeed, a number 
of authors (Sato and Suzuki 1989; Friedman, Ipser, and Parker 
1989; Haensel and Zdunik 1989; Shapiro, Teukolsky, and 
Wasserman 1989) have argued that satisfying both the above 
constraints implies that the EOS of matter above nuclear 
density (2.7 x 1014gcm-3 or 0.16 fm-3) is relatively soft. 
However, we will show that this softening of the EOS is effec- 
tive only if it occurs in the vicinity of nuclear densities. Further- 
more, the EOS is required to become extremely stiff, i.e., nearly 
causal, at higher densities (beyond about 6 times nuclear 
density). 

We have established general limits on potentially observable 
parameters of the EOS, if both the binary pulsar mass and the 
0.5 ms rotation period are valid for neutron stars. In particu- 
lar, we demonstrate that in the absence of extreme softening of 
the equation of state just above nuclear densities, such as that 
accompanying pion or kaon condensation (but not a phase 
transition to quark matter), the compressibility parameter of 
symmetric nuclear matter must be less than about 160 MeV if 
the EOS at higher densities maintains causality. This limit is 
somewhat model dependent, being sensitive to the form of the 
nuclear symmetry energy and to the possible existence of phase 
transitions above nuclear density. In addition, we show that 
stars containing quark cores as a result of transitions to quark 
matter, either normal or strange, rotate less rapidly than stars 
without such cores. Furthermore, stars made up entirely of 
perturbative quark matter with strangeness to baryon ratio of 
the order of unity are unable, barely, to satisfy the criteria of 
rapid rotation and sufficient mass, even if the strange quarks 
are assumed to be massless. 

This paper is organized as follows. In § II, we discuss general 
limits to the rotation of neutron stars and give a prescription 
for establishing the rotational properties for a given equation 
of state. This prescription is based upon fully general rela- 
tivistic, axisymmetric structural calculations, but it may be 
effectively stated in terms of the properties of the maximum 
mass, nonrotating star. Section III summarizes current theo- 
ries of the equation of state of baryonic matter and the rota- 
tional properties of a representative sample. Section IV 
establishes, via semianalytic arguments, the required properties 
of an equation of state needed to satisfy both the mass and 
rotation constraints. The possibilities of phase transitions 
above nuclear density and self-bound equations of state are 
explored in § V. Our general relativistic structure calculations 
are summarized in § VI. 

II. ROTATIONAL PROPERTIES OF NEUTRON STARS 

An absolute upper limit to the rotation rate of a neutron star 
can be found when the equatorial surface velocity equals the 
Keplerian velocity, the orbital velocity of a particle at the 
equator. In reality, the rotation may be more severely limited 
by a gravitational instability to nonaxisymmetric pertur- 

bations. Although gravitational radiation makes all rotating 
perfect fluids unstable, the instability is damped out by viscous 
effects, except in sufficiently rapidly rotating objects (Lindblom 
and Detweiler 1977). Until recently, the best estimates were 
based on gravitational-radiation instability calculations for 
Newtonian polytropes (Imamura, Durisen, and Friedman 
1985; Managan 1985). These calculations express the onset of 
instability in terms of the ratio t of the rotational kinetic energy 
to the gravitational potential energy. The critical t for the onset 
of instability decreases with increasing softness of the EOS and 
also decreases with increasing mode number. On the other 
hand, viscous effects become more stabilizing as the mode 
number increases. Friedman, Ipser, and Parker (1986) con- 
cluded that, due to this competition, the instability point is 
around t ~ 0.08 for uniformly rotating stars. (Differential rota- 
tion is not expected due to the high viscosity of neutron star 
matter.) For a given EOS, this still translates into a maximum 
rotation rate that is at least 90% of the Keplerian rate, since 
the dependence of rotation rate on t is rather weak in this 
regime. 

Recently, Ipser and Lindblom (1989) have carried out a 
general relativistic instability analysis. They considered only 
the stabilizing effects of the shear viscosity, which has a tem- 
perature dependence of T~2, and they conclude that maximum 
rotation rate is greater than 90% of the Keplerian rate only for 
neutron star temperatures less than 1 MeV. At higher tem- 
peratures, they suggest the instability may be triggered earlier. 
When, however, effects due to the bulk viscosity are included, 
this caveat may disappear. Sawyer (1989) has estimated that 
bulk viscosity varies as T8 and that it exceeds the shear vis- 
cosity above 1 MeV. Hotter neutron stars would then be sta- 
bilized by the bulk viscosity. In addition, Sawyer (1989) 
emphasizes that if there exist physical mechanisms for increas- 
ing the neutrino fluxes in young neutron star matter, such as 
quark matter or meson condensates, the viscosity may, in fact, 
be much larger, perhaps by a factor of 10. This would mean 
that the maximum rotation rate would be very nearly the 
Keplerian rate. To summarize, the Keplerian rate is a reason- 
able estimate of the maximum rotation rate of a neutron star, 
but one should be aware that a slightly more conservative limit 
may yet exist. 

In general, the Keplerian rotation rate, at which mass is 
“ shed ” from the equator, is larger for more compact neutron 
stars with higher central densities. Thus, the maximum rota- 
tion rate is an increasing function of the “ softness ” of the EOS. 
If the observed pulsation rate of 0.508 ms is due to rotation, a 
severe limit to the EOS may be established. On the other hand, 
the masses (1.44 and 1.38 M0) of the components of the binary 
pulsar PSR 1913 + 16, which have been determined to great 
accuracy (Weisberg and Taylor 1984, 1989), set a minimum 
limit to the maximum mass for a neutron star. The maximum 
mass is a decreasing function of the “ softness ” of the EOS and 
therefore establishes a second constraint. These two con- 
straints will restrict the EOS to lie in a narrow region. 

The calculations of the maximum rotation rate and the 
maximum mass permitted by a given EOS has to be done with 
full general relativity, since the relativity parameter GM/R is 
maximized for these situations. Heretofore the only published 
calculations of the Keplerian rotation rate for general equa- 
tions of state are those of Friedman, Ipser, and Parker (1986, 
1989), who considered the case of uniform rotation. It is worth- 
while to point out the existence of an approximate empirical 
formula for the Keplerian angular frequency QK in terms of 
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properties of the maximum mass nonrotating star for a given 
EOS, discovered by Haensel and Zdunik (1989): 

/M V/2/ R V3/2 

Qk = 7.7 x 103( J s“1. (1) K \MqJ \10 kmj 

Here the subscripts “max” denote the maximum mass non- 
rotating star of a given equation of state, and Mmax is the 
gravitational mass. We have determined that this approx- 
imation has an error of less than about 4% for all the equations 
of state discussed by Friedman, Ipser, and Parker (1986, 1989) 
and for the equations of state described below, whose 
Keplerian rates were calculated by us using a code (Masak, 
Lattimer, and Yahil 1989) similar to the one of Friedman, 
Ipser, and Parker. We summarize these results in § VI below 
and in Figure 5. If we restrict our attention to those equations 
of state that support the largest rotation rates, say greater than 
104 s“1, then this formula has an even smaller error. We there- 
fore believe that it has a very broad application for any causal 
EOS. We note, however, that a completely incompressible fluid 
also obeys equation (1), but with the coefficient 7.7 replaced by 
9.6 (Butterworth and Ipser 1976). Since the calculation of the 
Keplerian rate for a given EOS is extremely time-consuming, 
this approximation is particularly useful. 

Some motivation for this simple relationship comes from the 
so-called Roche model (Shapiro and Teukolsky 1983) in New- 
tonian gravity. This model assumes that the distribution of the 
bulk of the mass is unchanged by rotation, which, for highly 
centrally condensed stars, the ones with the largest Keplerian 
rates, is a good approximation. In this model the Keplerian 
rate for a star of mass M and nonrotating radius R is 

¡mr- 
6.3 x 103 M 1/2 R 

10 km 

-3/2 

(2) 

The small difference between the numerical factors of equa- 
tions (1) and (2) can be attributed to the facts that, in general 
relativity (GR), the maximally rotating configuration has 
10%-20% larger (Friedman, Ipser, and Parker 1986) mass 
than Mmax, and gravity is stronger. Thus, we see that Mmax and 
Rmax represent two parameters for the assumed EOS, and that 
the Keplerian rate is well described by the combination of the 
two parameters suggested by Newtonian mechanics. 

Shapiro, Teukolsky, and Wasserman (1989) claim that a 
relation identical to equation (2) can be established in general 
relativity, but they restricted their attention to sequences of 
models with constant rest mass. In fact, rotation stabilizes the 
star so that the most massive rotating star has more mass than 
the maximum mass nonrotating star. The amount of this mass 
increase cannot be easily established without performing the 
full GR structure with rotation. Therefore, equation (2) cannot 
establish the maximum Keplerian rate, QK, for a given equa- 
tion of state. It is, however, a good approximation for the 
Keplerian rate of a star with a fixed number of baryons M/m, 
where m is the baryon mass, whose nonrotating radius is R. 
The fact that the rest mass is about 10% larger than the gravi- 
tational mass fortuitously pushed equation (2) even closer to 
equation (1). 

It is important not to confuse Rmax and Mmax in equation (1) 
with the actual radius and gravitational mass of the star rotat- 
ing with Qk. At the surface of a rotating star, the spacetime 
geometry cannot be simply written in terms of this radius and 
mass, but the exterior Kerr geometry is a close approximation. 

The orbital frequency at the equator in this geometry is 

G1/2M 
n° " (MR3)1'2 + Gll2J/c2 ’ (3) 

where J, R, and M are the angular momentum, the actual 
radius, and the mass of the rotating star. This formula is accu- 
rate to about 1% for all equations of state that we have 
checked. However, J, R, and M are only obtainable if the full 
calculation for the structure of the rotating star has been done. 
The beauty of equation (1) is that only properties of the non- 
rotating star enter. 

The challenge for the EOS is therefore to compress at least 
1.44 M0 within a radius limited by QK = 2n/P > 1.237 x 104 

s ~1 : Employing equation (1), this implies that 

/ m \1/3 

^8-23(l^) km- 

We will see that this constrains the EOS to be relatively soft 
around nuclear densities but quite stiff at higher densities. The 
stiffness at high densities is necessary to ensure that the binary 
pulsar constraint of Mmax > 1.44 M0 is satisfied. The softness 
at nuclear density is required to raise the central density, if the 
limit Qk > 1.237 x 104 s_ 1 is imposed. 

III. ROTATIONAL PROPERTIES WITH NUCLEONIC EQUATIONS 
OF STATE 

Matter in neutron stars is in beta equilibrium, that is, the 
energy is optimized with respect to the proton/baryon ratio. In 
the density range below nuclear density (ns ^0.16 fm“3), the 
EOS is dominated by both leptons and nuclei, the description 
of which is very well understood (Baym, Pethick, and Suther- 
land 1971; Negele and Vautherin 1974). For the low-density 
(n < 0.001 fm-3) EOS we use the results of Baym, Pethick, and 
Sutherland, and for the mid-density regime (0.001 <n < 0.08 
fm-3) we use the results of Negele and Vautherin. (A change of 
about —0.2 km occurs in Rmax if the EOS of Baym, Pethick, 
and Sutherland is used throughout.) 

Above f nuclear density, the nuclei merge to form a sea of 
baryons. It is often useful to express the ground-state energy of 
nucleons using the energy of symmetric nuclear matter, 
E(n, x = j), as a reference since properties of symmetric matter 
near ns are, in principle, obtainable from experiment. Expand- 
ing in terms of the proton fraction x, a reasonable approx- 
imation for the EOS is : 

e = n[E(n, x = ¿) + S(n)(l - 2x)2 + • • • + £z] . (5) 

Here e is the mass-energy density and S(n) is the density- 
dependent symmetry energy. We have found that higher order 
terms in the parameter 1 — 2x than that shown in equation (5) 
are very small in practically all equations of state. Et = Ee + E^ 
represents the lepton contributions, where Ee and Eß are the 
energies of the free electron and muon gases, respectively. In 
beta equilibrium, the optimal proton fraction is determined by 
the relation d(€/n)/dx = 0. Near ns, the energy of symmetric 
nuclear matter can be expanded as 

£(„,x = i) = m-16 + ^(l-£)V--, (6) 

where m is the baryon mass (939.5 MeV); we use units of MeV 
and fm throughout. The binding energy of normal nuclear 
matter is —16 MeV, and the compression modulus of sym- 
metric nuclear matter is K = 9(dP/dri)x=1/2, where P is the 
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pressure. The nucleon kinetic energies are implicitly included 
in equations (5) and (6). 

From nuclear mass systematics, it is known that S(ns) ^ 30 
MeV, but the functional form of S(n) remains a mystery. 
Roughly one-half the symmetry energy arises from the nucleon 
kinetic energies, and their contribution to the symmetry energy 
varies as w2/3. However, the density dependence of the poten- 
tial contribution to the symmetry energy is unknown. Unfor- 
tunately, it is not possible to employ nuclear mass systematics 
to reliably determine the compression modulus. Some esti- 
mates, derived from experimental determinations of the giant 
monopole resonance, for the compression modulus of sym- 
metric matter K exist and suggest that it lies in the range 
200-250 MeV (Blaizot 1980). Theoretical analyses of heavy ion 
experiments below 2 GeV per nucleon laboratory energy are 
currently being used (Bertsch and Das Gupta 1988; Gale et al 
1989) to extract the behavior of the nuclear mean field for 
densities up to 4ns. Accounting for the momentum dependence 
crucial in such analyses, a mean field that gives rise to an EOS 
with K = 200-250 MeV is found to be consistent with the 
heavy ion data. However, both these experimental determi- 
nations must be regarded with caution at present (Brown 
1988). 

In equation (6), K is the compression modulus of symmetric 
nuclear matter. It is related to a similar modulus for neutron- 
only matter, Kn = 9 dP/dn L=0 by (Prakash and Bedell 1985) 

Kn = K + 9[n2S"(n) + 2nS'(n)] , (7) 

using equation (5). Primes denote derivatives with respect to 
density. Thus, at nuclear density, Kn is generally much larger 
than K and may be dominated by the symmetry term. Since 
neutron star matter is in beta equilibrium, and the proton 
fraction at nuclear density is small, approximately 0.03-0.05, 
the compressibility of neutron star matter is closer to that of 
neutron matter than to that of symmetric matter. However, it 
is the compression modulus for symmetric matter that is 
experimentally accessible. No direct measurements of the com- 
pressibility of pure neutron matter exist. Thus, the density 
dependence of the symmetry energy is a potentially important 
variable for the structure of neutron stars (Prakash, Ainsworth, 
and Lattimer 1988). 

The many attempts to determine the EOS for dense nucleon 
matter can be conveniently grouped into three categories: 
(1) nonrelativistic potential models, (2) field theoretical 
models, and (3) the relativistic Dirac-Brueckner approach. In 
our work we will use only the most recent calculations from 
each group, since these represent both technical and physical 
improvements over the older models. 

a) Nonrelativistic Potential Models 
In this approach, one starts from a Hamiltonian with a two- 

nucleon potential that fits nucleon-nucleon (NN) scattering 
data and the properties of deuteron. The quantum many-body 
problem is traditionally handled either by a selective summa- 
tion of diagrams in perturbation theory (the Brueckner-Bethe- 
Goldstone approach) or using a variational method with 
correlation operators (Pandhaharipande 1971a, b). Nuclear 
matter with two-body forces alone consistently saturated near 
2ns rather than ns (Day and Wiringa 1985). This result holds for 
all phase shift-equivalent potentials and for the different 
methods (Brueckner-Bethe-Goldstone or variational) used to 
calculate the energy. 

To achieve saturation at the empirical density, Friedman 
and Pandharipande (1981) added a density-dependent three- 
nucleon interaction, which effectively incorporates the sup- 
pression of nonnucleonic degrees of freedom, e.g., A isobar 
resonances, in the construction of a two-body potential. The 
work of Wiringa, Fiks, and Fabrocine (1988) is a recent update 
of such variational calculations with explicit forms for three- 
nucleon interactions. This work also includes several technical 
improvements in the calculations of energy expectation values 
and a more thorough search for the best variational wave 
functions. The work of Friedman and Pandharipande (1981, 
hereafter FP) and Wiringa, Fiks, and Fabrocine (1988, here- 
after WFF) represent definite improvements over earlier calcu- 
lations (e.g., Pandharipande 1971a, b) because they are able to 
come closer to the empirical properties of nuclear matter. 
However, an important shortcoming of many potential 
models, including these calculations, is that the speed of sound 
exceeds the speed of light at densities relevant for maximum 
mass neutron stars. For example, the EOS of Friedman and 
Pandharipande becomes acausal at about 6ns, and some of 
Wiringa, Fiks, and Fabrocine do so in the range 6-9ns. 

In Table 1 we show properties of maximum mass neutron 
stars for the equations of state described above. These calcu- 
lations are for neutron star matter with beta equilibrium 
including muons. The Keplerian rate as calculated from equa- 
tion (1) is also displayed. In some cases, full general relativistic 
structural calculations were performed by Friedman, Ipser, 
and Parker (1989) or by us (Masak, Lattimer, and Yahil 1989). 
In every one of these cases, equation (1) proved to be valid to 
better than 4%. 

It is seen that two of the entries in this table have, simulta- 
neously, Qk>Q1987A and Mmax > M1913 + 16 = 1.44 M0. 
However, given the accuracy with which the EOS can be deter- 
mined from the published tables and figures, and the accuracy 
of the determination of the rotational properties, these suc- 

TABLE 1 
Maximum Mass Neutron Stars from Potential Models 

ns K RmatX nK EOS Reference (fm“3) (MeV) MmJMQ (km) nc/0.16 fm“3 (K^s“1) 

FPyi4 + TNI   0160 240 195 907 8-79 125 

WFFAV14+UVII  0.194 209 2.13 9.34 7.96 1.24(1.24) 
WFF^^u™  0.175 202 2.19 9.76 7.35 1.18 
WFF +TNI   0.163 269 1.84 9.45 8.71 1.14 

Notes.—ns and K are the nuclear matter saturation density and compression modulus; Mmax, Rmax, 
and nc are the mass, radius, and the central density of the nonrotating configuration. is the Keplerian 
frequency according to eq. (1). The number in parentheses is the maximum rotational frequency from a 
general relativistic calculation assuming uniform rotation. 
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cesses are only marginal. If nonaxisymmetric instabilities set in 
within few percent of QK, then these equations of state must be 
viewed as failures. As an example, Friedman, Ipser, and Parker 
(1989) found QK = 1.23 x 104 s-1 < QSN1987A for the FP 
EOS, although their result is within 1 % of our own. 

The FP EOS has an additional problem. The UV14 + TNI 
interaction used in the FP EOS leads to a symmetry energy 
that decreases beyond about 3 times the saturation density 
and approaches zero at 5 times ns. Thus, the softening of the 
EOS from leptons occurs only near nuclear matter density and 
not also at higher densities, as is the case for most other equa- 
tions of state. It is important to note that for the same inter- 
action, Wiringa, Fiks, and Fabrocine (1988) have recalulated 
the EOS with improved techniques, and, as seen in Table 1, QK 
decreases by more than 10%, to values below Osn iqsva • 

As our analysis below will make clear, model AV14 + UVII 
succeeds because it is relatively soft close to nuclear densities 
and relatively stiff at high densities. In fact, it exceeds the cau- 
sality limit above 1 fm-3, which is about | of the central 
density of the maximum mass stars. Although the maximum 
mass and radii did not appreciably change when we forced 
causality (as in eq. [9] below) at high densities with this EOS, 
the effective compressibility at normal saturation densities 
(0.16 fm-3) is quite small. This EOS saturates at a density 20% 
larger than this and has a compression modulus of 209 MeV 
there. Since one expects the modulus to increase rapidly with 
density, perhaps as n2-n3, the compression modulus evaluated 
at the fiducial density of 0.16 fm-3 is only about 100-150 MeV. 
In addition, this equation of state has a further bit of softening 
in the range 0.2-0.3 fm-3, which is attributed to neutral pion 
condensation. As we discuss in § V, this is an important ingre- 
dient in obtaining rapid rotation. 

The nonrelativistic potential models that are included in the 
often-quoted compendium of Arnett and Bowers (1977) 
include those of Pandharipande (1971a, hereafter A, pure 
neutrons) and Pandharipande (1971h, hereafter B, hyperons in 
beta equilibrium). These calculations were superceded by the 
calculations of Friedman and Pandharipande (1981) and were 
improved once again by the work of Wiringa, Fiks, and Fabro- 
cine (1988). Another such model is the EOS of Arponen (1972, 
hereafter F). Above 2 x 1015 g cm-3, it is matched onto EOS 
B. Friedman, Ipser, and Parker (1989) showed that this set of 
equations of state (A, B, F) does lead to neutron stars that 
rotate at rates nearly equal to or greater than Di987a> 80 one 

could argue that their functional forms are of interest in decid- 
ing what kinds of equations of state have this property. Results 
for these equations of state are: F (QK = 12,400 s-1), A (QK = 
12,800 s“1) and B (QK = 15,700 s“1). However, EOS B has a 
maximum mass of 1.414 M0 and therefore is ruled out by the 
binary pulsar PSR 1913 + 16. Equation of state A is for neu- 
trons only. When beta equilibrium with muons is included, its 
Qk falls below QSN 1987A. Beyond 3.9 x 1015 g cm-3, equations 
of state F, A, and B become superluminal. This density is below 
the central densities of the maximum mass neutron stars for B 
and F. 

Although Pandharipande (1971h) does not give either S(n) or 
K for equations of state A and B, their values may be inferred 
from his published results: we find K ~ 60 MeV and S(ns) ^ 
35 MeV, but the density dependence of S is such that the 
compressibility of neutron-rich matter is not much different 
from K. The F equation of state (Arponen 1972) has K ^ 200 
MeV and S(ns) ~ 30 MeV. Clearly, the constraints described 
above are satisfied : the effective compression modulus of sym- 

Fig. 1.—Comparison of energy and pressure as a function of baryon 
density for potential model equations of state enabling rotation nearly equal to 
or greater than that of the pulsar in SN 1987A. Solid lines show results of 
Wiringa, Fiks and Fabrocine (1988, model AV14 + UVII) for neutron star 
matter in beta equilibrium. Long dashed lines are from Pandharipande (1971a, 
b) and are referred to as models A (pure neutron matter, upper dashed curve) 
and B (matter in beta equilibrium with hyperons, lower dashed curve). Short 
dashed lines are from Arponen (1972, model F) for beta equilibrium matter. 
For clarity, the low- and high-density parts are shown separately. 

metric matter is relatively low, and these equations of state are 
all soft near nuclear matter density but become very stiff at 
higher densities. 

In Figure 1 we compare the energy and pressure of models 
A, B, F, and WFF (AV14 + UVII), all of which enable rotation 
nearly equal to or greater than that of the pulsar in SN 1987A. 
At low density (0.2 < n < 0.4 fm-3), the EOS of Wiringa, Fiks, 
and Fabrocine is the softest, while for high densities it is the 
stiffest. Wiringa, Fiks, and Fabrocine attribute the softening at 
low densities to neutral pion condensation (we will return to 
charged pion condensation later). This additional softening 
allows for rapid enough rotation, while the stiffening at high 
densities (in this case to the causal limit) provides for a 
maximum mass significantly above 1.44 M0. Note that, in 
comparison, models A, B, and F all have maximum masses 
very close to 1.44 M0. This result implies that the condition 
Qk > Osn1987A may be met by stars with rest masses of order 
2 M0 in contrast to the upper limit of 1.7 M0 quoted by 
Friedman, Ipser, and Parker (1989). 
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b) Field-Theoretical Models 
Here one starts from local, renormalizable Lagrangian den- 

sities with baryon and meson degrees of freedom (Serot and 
Walecka 1986). The models rigorously satisfy causality but 
sacrifice the connection to NN scattering data, since the coup- 
ling constants and masses are chosen to fit only the nuclear 
matter saturation properties. The traditional approach is to 
start with a mean-field approximation and then to include 
effects of vacuum fluctuations and correlations. At the mean- 
field level, calculations with and without scalar self- 
interactions have been reported (Serot 1979; Boguta 1981; 
Glendenning 1986). Inclusion of nucleon and meson vacuum 
fluctuation terms at the one-loop level generally improves fits 
to nuclear matter saturation properties (Chin 1977; Jackson, 
Rho, and Krotschek 1985; Prakash and Ainsworth 1987; 
Glendenning 1989a). 

Recently full two-loop corrections for nuclear matter in the 
Walecka model including contributions from vector meson 
exchanges have been calculated (Furnstahl, Perry, and Serot 
1989). The size and nature of the corrections indicate that the 
loop expansion is not convergent at two-loop order in either 
the strong or weak sense. The result is that good fits to satura- 
tion properties are no longer possible with acceptable values of 
coupling constants and masses, pointing to a need for alterna- 
tive approximation schemes. From a phenomenological point 
of view, results of mean-field theory and one-loop corrections 
to it are nevertheless useful in that they have been successful in 
describing many nuclear systems and phenomena. For this 
reason, our calculations of star structure will include results up 
to only one-loop corrections. All such models have potential 
contributions to the symmetry energies that are roughly pro- 
portional to density. 

The properties of nonrotating maximum mass neutron stars 
resulting from these equations of state are shown in Table 2. 
The EOS of Serot (1979) is calculated in the mean-field approx- 
imation to the Walecka model including o-co and p mesons 
and that of Chin (1977) with one-loop corrections to the o-co 
model, using coupling constants and masses quoted by these 
authors. Our calculations, however, include the effects of beta 
equilibrium, which these authors did not originally consider. 
Both these equations of state are rather stiff close to and above 
nuclear densities and therefore can support sufficiently massive 
stars. However, the corresponding radii are also large, with the 
result that they cannot sustain rotation with rates greater than 
104 s-1. It is possible to improve somewhat the saturation 
properties of the Chin EOS (Prakash and Ainsworth 1987) by 
a suitable choice of coupling constants. This model is referred 
to in Table 2 as Chin(PA). The lowering of the saturation 

density without a corresponding decrease in the compression 
modulus has effectively led to an overall stiffening of the EOS, 
with the result that both the maximum mass and the radius 
increase. This lowers DK for this case. 

The EOS of Prakash and Ainsworth (1987, hereafter PA) 
was calculated using the linear sigma model with one-loop 
corrections. The recent work of Glendenning (1989a, hereafter 
Gle) also includes one-loop corrections to a model with scalar 
self-interactions (up to quartic order) whose magnitudes are 
adjusted to reproduce empirical saturation properties. This 
work includes the effect of the hyperons in beta equilibrium in 
addition to electrons and muons, which further softens the 
EOS above 3 times nuclear density, and as far as rapid rotation 
is concerned, is counterproductive. It is clear that none of these 
models can rotate rapidly enough. This is because all field 
theoretic models, even those with reasonable values for the 
compressibility parameter, approach causality at high densities 
very slowly, in constrast to nonrelativistic potential models. 

c) The Relativistic Dirac-Brueckner Approach 
This approach (Brockman and Machleidt 1984; ter Haar 

and Malfliet 1986; Horowitz and Serot 1987) is based on the 
idea that the self-energy of a nucleon in medium is made up 
from a large attractive scalar potential and a repulsive vector 
potential of comparable magnitude. The magnitude of these 
large self-energy terms indicates that relativistic effects are 
important even at low energies. The nucleon spinors that are 
solutions of the Dirac equation are characterized by an effec- 
tive mass equal to the sum of the free mass and the scalar 
potential. In a self-consistent calculation, these spinors are 
used to evaluate the matrix element of the NN potential, e.g., 
the one-boson-exchange potential, in the nuclear medium. Fol- 
lowing the lines of Brueckner theory, the Bethe-Goldstone 
equation is solved to account for the effects of NN correlations. 
The nucleon self-energy is evaluated in the Brueckner Hartree 
Fock approximation. There are two sets of calculations 
(Horowitz and Serot 1987, hereafter HS; Muether, Prakash, 
and Ainsworth 1987, hereafter MPA) which have been carried 
out to high enough densities for neutron star structures to be 
calculated; results are shown in Table 3. Once again, the 
potential contributions to the symmetry energy are roughly 
linear in density. 

These equations of state also fail to give rapid enough rota- 
tion. However, they do approach the causality limit somewhat 
more rapidly than the field theoretic models, which results in 
higher Keplerian rotation rates. 

To summarize this section, we find that the only functional 
forms for the energy-density relation that approach the rate of 

TABLE 2 
Maximum Mass Neutron Stars from Field Theoretical Approaches 

ns K Rmax ClK 
EOS Reference (fm"3) (MeV) MmJMG (km) nc/0.16fm-3 (K^s“1) 

Serot   0.193 540 2.54 12.28 4.92 0.90 
Chin   0.193 471 2.10 10.87 6.54 0.96 
Chin(PA)  0.160 462 2.30 12.10 5.36 0.88 
PA  0.160 225 1.45 9.89 7.94 0.94 
Gle   0.153 300 1.79 11.18 6.88 0.87(0.84) 

Notes.—ns and K are the nuclear matter saturation density and compression modulus; Mmax, 
Rmax and nc are the mass, radius, and the central density of the nonrotating configuration. QK is the 
Keplerian frequency according to eq. (1). The number in parentheses is the maximum rotational 
frequency from a general relativistic calculation assuming uniform rotation. 
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TABLE 3 
Maximum Mass Neutron Stars from Dirac-Brueckner Approaches 

ns K Kmax i2K 
EOS Reference (fm“3) (MeV) MmJMQ (km) nc/0.16 fm"3 (104s-1) 

HS  0.193 275 1.93 10.23 7.57 1.04(1.04) 
MPA   0.157 200 2.44 11.25 5.68 1.01 

Notes.—ns and K are the nuclear matter saturation density and compression modulus; Mmax, 
Rmax, and nc are the mass, radius, and the central density of the nonrotating configuration. ClK is the 
Keplerian frequency according to eq. (1). The number in parentheses is the maximum rotational 
frequency from a general relativistic calculation assuming uniform rotation. 

^sn 1987a are those of the nonrelativistic potential model 
variety, which achieve maximum stiffness (dP/de = 1) by about 
6 times nuclear density. In addition, in successful models the 
effective compressibility at saturation density is relatively low 
(in the range 100-150 MeV), and the presence of additional 
softening above nuclear density (in the range of 2-3ns) is 
helpful. 

IV. RECIPE FOR RAPID ROTATION 

From the previous discussion, both the compressibility at 
the saturation density and the stiffness at high density are 
important parameters for neutron star structure. In this section 
we explore the dependence of the mass and radius of the 
maximum mass stars to these features of the equation of state. 
In most models of the EOS, the sound speed [(dP/d€)1/2] 
approaches a limiting value by 5-8 times nuclear density (this 
value is sometimes greater than c!). If equation (5) were valid 
up to these densities, the sound speed would equal the speed of 
light when dP/de = 1, or when 

n „ /l00MeVY/2 

— - 7.44   
"s \ K J 

(8) 

This estimate is insensitive to the function chosen for S(n) and 
whether or not the matter is in beta equilibrium. Equation (8) 
shows that the extrapolation of equations of state to moderate 
to high densities must be done carefully if the causality limit is 
to be obeyed. 

Practically nothing is known experimentally about the EOS 
above a few times nuclear matter density. It is generally 
thought, however, that the causality limit must hold. This sug- 
gests that a suitable parameterization for the high-density 
region, above some transition density nt, could be written 
using the relation s = dP/de = constant in this region. Denot- 
ing by Pt and er the respective values of P and e at n,, we have : 

€ = €, + (P - Pt)/S 

n> nt. 
(9a) 

(9b) 

Below nt, we will employ the recent parameterization of the 
EOS proposed by Prakash, Ainsworth, and Lattimer (1988, 
hereafter PAL). It is constrained to reproduce known nuclear 
properties (binding energy, saturation density, effective mass, 
single particle potential, symmetry energy) and to be causal at 
all densities. This EOS is able to mimic, with suitable choices of 
its parameters (compressibility, finite range interaction lengths, 
and the functional form of the symmetry energy), a wide 
variety of potential, mean-field, and hybrid models of the equa- 
tion of state. As far as the maximum mass stars are concerned, 

its single most important parameter is K. When coupled with 
the high-density EOS, equation (9), the additional parameters 
nt and s are introduced and are important. 

With these equations of state, we have calculated the masses 
and radii of maximum mass neutron stars in beta equilibrium, 
including muons. The case s = 1 may be compared to the cal- 
culations performed by Rhoades and Ruffini (1974), who 
coupled an s = 1 EOS onto the low-density EOS of Baym, 
Pethick, and Sutherland (1971). For the case s = 1, for nt/ns < 
6, and for relatively low values for K (i.e., K < 150 MeV), we 
find the following approximate relations for the maximum 
mass stars : 

km . (10) 

The first of these, in fact, is almost exactly the result found in 
Rhoades and Ruffini (1974). We have found that these relations 
are remarkably insensitive to all reasonable choices for the 
other EOS parameters such as the symmetry energy. For the 
condition nt/ns < 6 and X 150 MeV, we may approximate 
nt/ns ~ €t/€s and Pt ~ 0. The equation of state has then the 
form P = e — €t. Haensel and Czerny (1989) have shown that 
such an EOS gives the relations 

The difference between these relations and equation (10) is due 
to our inclusion of a low-density “tail” on the EOS, which 
does not affect the total mass, but changes the radius. Substi- 
tuting equation (10) into equation (1), we find 

inV2 

Qk = 6.2 - x 103 s-1; (12) 
Vs/ 

that is, in order to achieve a rotational frequency as fast as 
^i987A would require nt/ns > 4.0. Furthermore, the non- 
rotating maximum mass would have to exceed 1.98 M0, 
according to equation (10). It is worth pointing out that in the 
limit Pt = 0, equation (11) implies that the coefficient in equa- 
tion (12) becomes 6.9 x 103. With the additional constraint 
that Mmax > 1.44 M0 ,ornt< 1.2 fm-3 from equation (11), we 
find a maximum QK of 1.98 x 104 s_1, which is the ultimate 
rotational speed limit for any causal equation of state that has 
vanishing pressure and energy density at low baryon densities. 

However, for values of X > 150 MeV, the relationships of 
equation (10) break down. Specifically, the radii of maximum 
mass neutron stars deviate substantially from this formula, and 
for large enough X, they even increase with increasing nt. 
Figure 2 displays the Keplerian frequencies, as deduced from 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

35
5.

 .
24

IL
 

LATTIMER, PRAKASH, MASAK, AND YAHIL Vol. 355 248 

Fig. 2.—Solid lines show contours of Keplerian frequencies according to 
eq. (1) as a function of the compression modulus of nuclear matter and the 
transition density beyond which the speed of sound is set to the speed of light. 
Dashed lines are contours of fixed maximum mass. 

Fig. 3.—Solid lines show contours of Í2K = Dsn 1987a » an^ dashed lines are 
contours of Mmax = 1.44 M0 as a function of the compression modulus of 
nuclear matter and the transition density. The different curves are for different 
values of the square of the sound speed, s = dP/de. 

equation (1), as a function of the parameters K and nt, for the 
case s = 1 and assuming the potential contributions to the 
symmetry energy vary linearly with density. It is clear from 
Figure 2 that a maximum value of the compressibility is per- 
mitted, if DK>QSN 1987A is taken as a limit; this value is 
approximately 155 MeV. This value is relatively insensitive to 
the choices S(ns) and its density dependence so long as the total 
symmetry energy increases with density: for example, in the 
case with S(ns) = 25 MeV and density-independent potential 
contributions, the limit increases slightly to 165 MeV. Only in 
cases for which the total symmetry (kinetic plus potential) 
energy vanishes beyond a few times nuclear density can this 
limit be substantially increased. An example is the force 
UV14 + TNI, which is the underlying potential in the FP and 
WFF(UV14-fTNI) equations of state. As previously noted in 
Table 1, both these equations of state result in relatively rapid 
rotation even though their compression moduli are consider- 
ably larger than 160 MeV. 

In Figure 2, the dashed lines are contours of fixed Mmax. The 
dashed line in the far right represents the contour Mmax = 1.44 
Mq : the region below and to the right of this curve is not an 
allowed region because of the binary pulsar constraint. It is of 
interest to note that the model with the largest permissible 
value of K has a mass of about 1.8 M0, in rough agreement 
with the estimate of about 2 M0 inferred earlier. Also note that 
the contour lines become vertical in the low nt, low K region, 
for which equation (10) applies. 

The sensitivity of these results to s was also examined. In 
Figure 3 contours of QK = DSni987a and Afmax = 1.44 M0 are 
shown for s values of j, j, f, 1, and 2. Note that the constraint 
on the compressibility parameter becomes progressively more 
severe as s is lowered. Also, the region to be excluded because 
of the mass constraint becomes larger as s is lowered. In partic- 
ular, note that there are no acceptable solutions for s < ^; the 
entire region with QK > Osn1987A is then excluded. This is an 

important result : the case s = j is of great interest because this 
is the limiting EOS of a quark gas having the property of 
asymptotic freedom, as in the MIT bag quark model. Thus, 
such equations of state will have extreme difficulty if the pulsa- 
tions observed in SN 1987A represent rotation (this point is 
addressed in more detail in the next section). We have also 
included in Figure 2 a contour for the unphysical case s = 2, 
because this represents the behavior of the equations of state A, 
B, F, and FP at extremely high densities. The upper limit for K 
is increased in this case to about 220 MeV. This value is, 
interestingly enough, very close to the compression moduli of 
EOS F and EOS FP, which are among the few “successful” 
equations of state. 

We stress that these results do not depend in detail on the 
effective mass or finite range interaction lengths of the PAL 
EOS, as long as the nuclear symmetry energy was taken to be a 
monotonically increasing function of density. We have also 
made computations using the simpler, parabolic EOS equation 
(5) below nt, and we have obtained nearly identical results. 
Thus, our conclusions appear to be quite general. The Fried- 
man, Ipser, and Parker (1986,1989) computations of QK can be 
understood in terms of the effective parameters K and s of the 
respective underlying equations of state. It must be concluded 
that only equations of state that are (a) soft (low compress- 
ibility parameter) near nuclear density and (b) very stiff, i.e., 
causal or supercausal, above 5-8 times nuclear density can 
simultaneously have QK > DSni987a and Afmax > 1.44 M0. In 
the next section we explore some possible alterations of the 
standard EOS that may ameliorate the constraint on the com- 
pressibility. 

V. PHASE TRANSITIONS AND NEUTRON STAR STRUCTURE 

We have observed that in order to obtain the rapid rotation 
implied by the observation of a 0.5 ms pulsar in SN 1987A, it is 
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necessary for the EOS to remain soft in the vicinity of nuclear 
density and to stiffen at higher densities to near the causal 
limit. Phase transitions can soften the equation of state. Many 
different physical mechanisms have received attention that can 
lead to phase transitions in neutron star matter above nuclear 
density: (à) pion condensation, (b) kaon condensation, (c) 
parity doubling of the nucleon, and (d) quark matter, either the 
two- or three-flavored variety. 

a) Pion Condensation 
Considerable work has been carried out, both theoretically 

and experimentally, to find pion condensates (Migdal 1978; 
Rho and Wilkinson 1979; Gyulassy and Greiner 1977). Early 
applications of pion condensation to neutron star structure 
were considered by Hartle, Sawyer, and Scalpino (1975), Weise 
and Brown (1975), and Maxwell and Weise (1975). In the latter 
works, n~ condensation was discussed using chiral-invariant 
tzN Lagrangians (i.e., the o model) which lead to a considerable 
softening of the EOS due to the attractive pion-nucleon p-wave 
interaction. In such models, the critical density at which the 
transition occurs is given by the relation 

0.32 
nt^ 

9a(9a - 1) 
1/2 fm (13) 

The effective p-wave coupling strength is gß2 ^ (1 — g') 
(1 + S)g¿, where gA = 1.36 is the free axial-vector coupling 
constant. The term g' summarizes local field corrections due to 
short-range correlations between nucleons from p- and 
comeson exchanges, and S accounts for interactions with 
isobars. Originally, values of g' = 0.4-0.5 and S = 0.8-0.9 were 
considered to be appropriate, leading to values of g* = 1.3-1.5 
for which the critical density nt = 1.9-1.2 times the nuclear 
saturation density ns = 0.16 fm-3. 

Using the neutron-only matter EOS A of Pandharipande 
(1971a), substantial softening due to pion condensation was 
found for g% of 1.3 and 1.5, with the result that the radii of 
maximum mass stars were reduced to about 7.5 and 6.7 km, 
respectively, from 8.6 km for the case without pion conden- 
sation. The corresponding maximum masses were 1.51 and 
1.46 M0 to be compared with 1.66 M0 for the case without 
phase transition. Using equation (1), Keplerian frequencies 
larger than 1.237 x 104 s-1 are found with these masses and 
radii, in agreement with the full calculations of Friedman, 
Ipser, and Parker (1989) (their model n). However, effects due 
to beta equilibrium were not included in these earlier calcu- 
lations. Imposing beta equilibrium, we find the maximum mass 
to be lower than 1.44 M0, so that for this EOS, the two 
constraints are not simultaneously satisfied. It may, however, 
be possible to satisfy both these constraints using more 
modern nuclear equations of state. 

The above results must, however, be viewed with caution in 
light of the findings of recent experiments that have determined 
the crucial ingredient g' of these models. Pion condensation 
leads to an effective softening of the EOS only if the attractive 
p-wave interaction predominates over the repulsive s-wave 
interaction. This requires — 1 > 0. The condensation 
mechanism considered here deals chiefly with spin-isospin 
sound, involving mainly valence nucleons. The Fermi liquid 
parameter g' refers to the nucleon particle-hole spin-isospin 
branch and is now experimentally measured (Carey et al 1984; 
Moss 1985) to be >0.9. The calculations of Brown, Osnes, and 
Rho (1985) also suggest similar values. The upshot is that the 

above mechanism invoked for n ~ condensation is ruled out from 
experiments. Thus the energy-density relationships given by 
these models are only suggestive of effects due to pion conden- 
sation, provided alternative mechanisms can reconstitute pion 
condensation. Recent investigations (Brown 1989) do find a 
softening of pionic modes due to the admixture of isobar-hole 
components, which may indicate the onset of pion conden- 
sation, but only at several times the nuclear density. 

b) Kaon Condensation 
The possibility of kaon condensation due to chiral symmetry 

breaking for densities above 3-4 times the nuclear density has 
recently been proposed (Kaplan and Nelson 1986; Brown et al, 
1988). Kaon condensation is expected to be only weakly 
affected by nuclear dynamics, unlike the case for pion conden- 
sation. The condensation is brought about chiefly due to 
attractive s-wave kaon-baryon interactions. Possible attractive 
p-wave interactions in certain channels are thought to help in 
driving the condensation, since there appears to be no strong 
repulsion in kaon-baryon interactions that counterbalances 
the attraction gained due to symmetry breaking. 

The threshold for K~ condensation is estimated to be 
(Brown, Kubodera, and Rho 1987) 

/IK - p2) : 2.1m (14) 

where fK is the kaon decay constant, mK is the kaon mass, and p 
is the chemical potential associated with charge conservation. 
The above numerical estimate was obtained using a value of 
570 MeV for the symmetry breaking term, Its value is 
rather uncertain; lower values would push the threshold to 
higher density. 

As of now only schematic models exist for estimating the 
amount of energy gained by kaon condensation (Brown et al. 
1988). Our calculations using these estimates show that the 
softening provided by kaon condensation has much the same 
effect on maximum mass configurations of neutron stars as 
that from n~ condensation considered earlier, provided the 
condensation occurs around 3-5 times the nuclear density. For 
higher threshold densities (recall that is poorly known), 
the softening due to condensation increases the radius of the 
star with an attendant decrease in the maximum mass from 
values obtained without condensation. This results in values of 
Qk substantially smaller than DSn i987a • A more realistic calcu- 
lation of the energy-density relationship for neutron star 
matter in beta equilibrium is therefore a promising direction 
for further study. 

c) Chiral Parity Doubling Transitions 
Recent lattice calculations (DeTar and Kogut 1987) at finite 

temperature have suggested that there exist parity-doublet 
baryons with finite mass above the critical temperature for 
chiral transition. Hatsuda and Prakash (1989) have shown that 
such a phenomena occurs also at finite baryon densities 
leading to a first order chiral phase transition. They start from 
the generalized a model of DeTar and Kunihiro (1987) in 
which two kinds of nucleons with opposite parity iV+(939) and 
AT_(1535) are introduced without contradicting chiral sym- 
metry. To make the calculation realistic, they also take into 
account p and co mesons in addition to n and a mesons. They 
find a first-order chiral transition for both nuclear and neutron 
matter around 3-5 times the nuclear density within the mean 
field approximation. Once the phase transition occurs, the 
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Fig. 4.—Energy and pressure as a function of baryon density for the parity- 
doublet model of Hatsuda and Prakash (1989). The lower (upper) curve in both 
panels corresponds to the case with (without) a first-order phase transition. 

system prefers a chirally symmetric phase, and symmetry resto- 
ration occurs. As a consequence, the chirally symmetric matter 
composed of nucleons with a mass of ~300 MeV leads to a 
soft equation of state. 

Figure 4 shows the energy and pressure as a function of 
density, in this model, for neutron star matter in beta equi- 
librium. Values of the parameters used for these calculations 
are only slightly different from the published work (Hatsuda 
and Prakash 1989). The nuclear matter saturation density and 
compression modulus were chosen to be 0.16 fm-3 and 150 
MeV, respectively. The minimum and maximum densities 
across the phase transition are 2.15ns and 5ns, respectively. 
Although there is some ambiguity about the contribution of 
the vacuum fluctuations to the effective potential, this model 
leads to an energy-density relation that leads to stars with 
sufficient mass and small enough radii so that Keplerian rota- 
tion frequencies larger than SN 1987A are possible. This is due 
to the fact that the phase transition to parity doublet matter 
softens the EOS near nuclear densities but retains the causal 
behavior of the underlying equation of state at high densities. 
Results from this model are given in Table 4. 

TABLE 4 
Maximum Mass Neutron Stars for 

the Parity-Doubling Model 

^max 
MmJMQ (km) nc/0.16fm-3 (K^s'1) 

1.58  8.63 11.41 1.21 
1.47  7.74 13.10 1.37 

Note.—The top (bottom) row corresponds to matter in 
beta equilibrium without (with) a first-order phase tran- 
sition. Mmax, .Rmax, and nc are the mass, radius, and the 
central density of the nonrotating configuration. QK is the 
Keplerian frequency according to eq. (1). 

d) Quark Matter 
We turn now to the possibility of neutron stars containing 

quark cores and stable collapsed stars containing quark-only 
matter. We discuss these two categories separately in what 
follows. 

i) Quark Cores 
Phase transitions to quark matter composed of u and d 

quarks as well as w, d, and s (strange) quarks have received a 
great deal of attention in the last decade. At present the energy- 
density relationship of the quark phase is calculable only using 
perturbative QCD. Starting with massless u and d quarks, the 
interactions between quarks are generally included via a con- 
stant positive energy per unit volume in the vacuum, B (bag 
constant), and by gluon exchange corrections to second order 
in the QCD coupling, gc. For constant (density independent) 
values of gc, the quark matter EOS then reads 

P = (e- 4B)/3 . (15) 

The bag constant B is constrained so that the stable configu- 
ration of normal nuclear matter is the hadronic phase. 

The transition density nt above which the quark phase has a 
lower energy than the hadronic phase depends sensitively on B 
and also on whether the hadronic EOS is soft or stiff at the 
relevant densities. For stiff hadronic equations of state, nt is 
usually very much larger than ns and often even larger than the 
central densities nc of neutron stars constructed from such a 
two-phase EOS. This has led many authors (Chapline and 
Nauenberg 1976; Baym and Chin 1976; Bowers, Gleeson, and 
Pedigo 1977; Serot and Uechi 1987) to conclude that stable 
stars cannot contain any quark cores. 

It is, however, possible to arrange nt to be a few times the 
nuclear density by an appropriate choice of B and the use of a 
soft hadronic EOS, and still have stars with nc> nt. In con- 
trast to pion and kaon condensation considered earlier, a 
phase transition to quark matter has the effect that the 
EOS continues to be soft, with sound speed >/(l/3), beyond the 
transition region. Table 5 shows a few examples of maximum 
mass stars with quark cores for which the quark matter equa- 
tions of state were calculated using B ~ 65 MeV fm ~3 and 
gc = 0. In general, such stars have smaller masses and larger 
radii than those of neutron star models based on conventional 
hadronic-matter equations of state. Consequently, the 
Keplerian frequencies of stars containing quark cores are less 
than that of the hadronic EOS alone. These conclusions are 
not affected by choosing gc ^ 0 in the calculation of the quark 
matter EOS. 

If macroscopic quark matter does exist, then equilibrium 
with respect to weak interactions implies that at sufficiently 
high densities, quark matter must contain massive s (strange) 
quarks in addition to the massless u and d quarks. Above the 
threshold density for the appearance of strange quarks, strange 
quark (u, d, and s) matter, with strangeness per baryon of the 
order of unity, is energetically preferred to nonstrange quark (u 
and d) matter. The three-flavor quark matter EOS, again using 
perturbative QCD, is given by (Baym and Chin 1976; Freed- 
man and McLerran 1978) 

P = i(£ - 4B) - K(6 - B), (16) 

where the function ec represents small corrections due to the 
mass of the s quark. The phenomenological parameters B, gc 
and ms thus delineate the quark EOS. In this context, two 
classes of models have been considered in the literature. The 
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TABLE 5 
Maximum Mass Neutron Stars with Quark (u) and (d) Cores 

AmaX -T A -1 
EOS Reference n^OTó fm-3 n2/0.16fm"3 MmJMQ (km) nc/0.16 fm (10 s ) 

WFF(AV 14 + UVII)  5.74 7.91 1.97 10.07 7.51 1.07(1.06) 
WFF(UV14 + UVII)   4.88 6.07 1.92 10.71 6.63 0.96 
WFF(UV 14 + TNI)  8.1 10.23 1.83 9.60 9.38 1.11 

Notes.—and n2 are the minimum and maximum densities across the phase transition. Mmax, Rmax, and nc are the mass, 
radius, and the central density of the nonrotating configuration. QK is the Keplerian frequency according to eq. (1). The 
number in parentheses is the maximum rotational frequency from a general relativistic calculation assuming uniform 
rotation. 

first class corresponds to the case of slightly unbound strange 
quark matter, in which matter at nuclear density is in the 
hadronic phase and a phase transition occurs above nuclear 
density. The second possibility is the existence of self-bound 
strange quark matter, to which we will return later. 

The addition of mass to one of the flavors (the s quarks) 
causes very little deviation of the quark matter EOS from the 
massless case. The qualitative aspects of the EOS for neutron 
star matter are similar to the case of two-flavor matter as are 
the mass-radius relationships for the star. Fechner and Joss 
(1978) and Haensel, Zdunik, and Schaeffer (1986) have calcu- 
lated properties of the maximum mass stars using nuclear 
equations of state from the Arnett and Bowers (1977) com- 
pendium. Their results and the use of equation (1) show that 
the resulting Keplerian frequencies are well below that 
required by the pulsar in SN 1987A. We have verified that use 
of more modern nuclear equations state such as that of 
Wiringa, Fiks, and Fabrocine does not affect this conclusion. 

ii) Self-Bound Strange Quark Stars 
The possibility that strange quark matter may be an absolute 

ground state of matter, i.e., EQ < 939 MeV or more stringently, 
Eq < M(56Fe)c2/56 = 930.4 MeV, has received considerable 
attention recently (Witten 1984; Fahri and Jaffe 1984; Haensel, 
Zdunik, and Schaeffer 1986; Alcock, Fabri, and Olinto 1986; 
Alcock and Olinto 1988). Employing the EOS in equation (16) 
given by perturbative QCD and for suitable choices of B, gc, 
and ms, self-bound strange star models have been calculated by 
Haensel, Zdunik, and Schaeffer (1986) and by Alcock, Fahri, 
and Olinto (1986). Rotational properties of strange quark stars 
have been recently discussed by Haensel and Zdunik (1989) 
and by Friedman and Olinto (1989). For completeness, we 
summarize results of their work here. Since models with ms = 0 
represent the best possible case for the most rapid rotation, we 
discuss their mass-radius relationships first. 

The configurations with the maximum mass scale with the 
bag constant B as (Witten 1984; Haensel, Zdunik, and Schaef- 
fer 1986) 

^ = 2.O330^1/2 ; Kmax = 11O90^)1/2 km , (17) 

where B0 = 56 MeV fm " 3 is a fiducial value for the bag con- 
stant. The value of B, however, is bounded from above, if self- 
bound strange matter is to be energetically preferred over 
the normal nucleonic matter. If the energy corresponding to 
56Fe crystal (930.4 MeV) is used as the ground state of cold 
matter, then B< 1.634B0. A slightly larger upper bound, 
B < 1.695 B0, is obtained using 939 MeV as the ground-state 
energy. Use of the maximum allowed bag constant ensures the 
smallest radius and hence gives rise to the maximum Keplerian 

frequency. Using equation (1) to estimate the Keplerian fre- 
quency, we find that = 0.94(B/Bo)i/2 ^ 1.20 x 104 s_1 < 
QSni987a • We also performed a general relativistic calculation 
of the maximum rotation rate for this case, with the result that 
Q= 1.20 x 104 s-1, in good agreement with the approx- 
imation provided by equation (1). 

For the case when ms # 0, the numerical coefficients multi- 
plying (B0/B)1/2 decrease from their values when ms = 0 in 
both the mass and the radius. In addition, from energetic con- 
siderations the maximum allowed B decreases with increasing 
ms. As a consequence, the Keplerian frequencies are systemati- 
cally lower than for the ms = 0 case. It must be mentioned that 
fits (Gasser and Leutwyler 1982) to data such as the mass of the 
kaon require ms to be ~ 175 MeV. It may be concluded that 
the perturbative quark matter EOS cannot simultaneously 
satisfy M > 1.44 M0 andQK > 1.237 x 104s-1. 

The quark matter equations of state equations (15) and (16) 
are results of perturbative QCD. The use of perturbation 
theory in the strong coupling limit has been criticized by Bethe, 
Brown, and Cooperstein (1987), who advocate that quark 
matter with strangeness per baryon of order unity is well 
approximated by a close packed gas of A-particles at nuclear 
densities. Choosing the QCD coupling gc to decrease with the 
Fermi momentum kF of matter, they find that a phase tran- 
sition occurs only at densities well beyond the central densities 
to be found in neutron stars with maximum masses in excess of 
1.44 M0 • In view of these cautionary remarks regarding the 
use of perturbation theory, further investigations of the strong 
coupling regime are useful. 

iii) Self-Bound Stars with Schematic Equations of State 
The relation 

P = s(e- €0), (18) 

where e0 is a constant energy density, represents an EOS with a 
constant speed of sound (s)1/2 for all densities. The bag model 
result equation (15), which applies for massless quarks of both 
two and three flavors, corresponds to s = ^ and e0 = 4B. The 
linear dependence of pressure on the energy density in equa- 
tion (18) has the interesting consequence that nonrotating con- 
figurations with maximum mass scale with e0 according to 
(Witten 1984) 

Mmax(ey = (lyV^o) ; R(e'0) = (^‘Vo) • (19) 

Haensel and Zdunik (1989) have recently studied the rota- 
tional properties of a star for the case of s = 1 which corre- 
sponds to an EOS that is at the causal limit for all densities. 
We have calculated the properties of the maximum mass con- 
figurations for a few other typical values of s. In Table 6 we 
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TABLE 6 
Maximum Mass Self-Bound Stars for the EOS P = s(e — €0) 

s 
XkA 

Pmax (km) £Îk(104 s-1) 

1/3  2.033 11.09 0.940 
2/3  2.880 12.98 0.884 
4/5  3.095 13.48 0.866 
1   3.347 13.97 0.853 

Notes.—Results are for e0 = 4 x 56 MeV fin-3; values for other 
values of e0 are obtained using the scaling law, eq. (19). The term s is 
the square of the speed of sound of matter; Mmax and Rmax are the 
mass and radius of the non-rotating configuration. QK is the 
Keplerian frequency according to eq. (1). 

summarize these results for a fiducial value of e0 = 4B = 4 
x 56 MeV fm-3. Results for other values of €0 are obtained 
using equation (19). From the results in Table 6, we find the 
approximate additional scaling relations 

(20) Mmal(S') ; 

1/2 
Mmax(s) and R(s') 

identifiable physics. It should also be remembered that unless 
these self-bound equations of state apply at all densities, the 
addition of a low-density baryonic equation of state will sub- 
stantially increase the radii of these stars. Thus equation (18) 
must apply at all densities in order for both mass and rotation 
constraints to be satisfied. 

Summarizing this section, we observe that if the EOS 
around 3-5 times the nuclear density is softened by a phase 
transition, such as pion or kaon condensation or the 
occurrence of parity doublet matter, and a nearly causal behav- 
ior is attained at high densities, then a maximum mass greater 
than 1.44 M0 and rapid enough rotation to match that of the 
purported pulsar in SN 1987A is possible. A phase transition 
to perturbative quark matter at high densities softens the EOS, 
and stars with quark cores can only rotate less rapidly than 
those without quark cores. If stars are made up entirely of 
perturbative quark matter with strangeness to baryon ratio of 
the order of unity, compact stars with enough mass can almost, 
but not quite, spin as fast as the pulsar reported in SN 1987A. 
The dual constraints of mass and rotation are met with sche- 
matic equations of state that are characterized by the square of 
speed of sound >0.30; however, these models lack a physical 
basis at present. 

which imply 

is\1/s 

ÍW) ^ [j,J ^k(s) . (21) 

The success or failure of these models depends crucially on 
the value of €0. In the bag model, as mentioned earlier, €0 is 
bounded from above: (€0)max < 1.634/(4J30). Lacking a detailed 
knowledge of the underlying physics, similar upper bounds are 
not calculable for the s > ^ models at present. For the s = 1 
EOS, Haensel and Czerny (1989) advocate the value 
1.24 x 1015 g cm-3 (4 x 173.9 MeV fm-3) for e0, for which 
ßK = 1.5 x 104 s-1 > OsN1987A and Mmax = 1.9 M0 > 1.44 
Mq are obtained. Such a high value of €0 would imply that the 
density at which pressure vanishes is at several times the 
nuclear density. Somewhat lower densities can, however, be 
obtained by choosing a smaller value for 5. 

Subject to the constraint that Mmax > 1.44 M0 and aban- 
doning the notion that e0 has any physical bounds, the largest 
possible value of QK may be obtained for a given s. These 
values are DK,max/104 s-1 = 1.33,1.77,1.85, and 1.98, fors = j, 
I, f, and 1, respectively, all of which are larger than QSN1981A. 
In the bag model (s = j), strange quark matter would have the 
baryon density nb = (4B/3n2l3hc)314' at the surface where the 
pressure vanishes. In order to obtain the above largest possible 
ÛK, the bag pressure must be B = 111.6 MeV fm-3, for which 
nb ^ 2.85 times the nuclear saturation density. However, for 
this case, the energy per particle e/nb ^ 977.8 MeV, which is 
substantially greater than the nucleon mass of 939 MeV, in 
contrast to the scenario proposed by Witten in which the 
energy per particle of strange quark matter would be less than 
the nucleon mass. Such a star, if it exists, would therefore be 
metastable. Similar considerations might apply for other self- 
bound equations of state as well, so that the maximum possible 
values of ilK may be more limited than those given above. 

We must also bear in mind that in contrast to the bag model, 
models with s > i suffer from the drawback that the constitu- 
ents and the laws of interactions are unspecified. Therefore the 
success of the s > ^ models can at best be viewed as an inter- 
esting possibility for which there is as yet no connection to 

VI. GENERAL RELATIVISTIC CALCULATIONS 

In this section, we summarize results from general relativistic 
calculations assuming uniform rotation using several equa- 
tions of state considered in the earlier sections. These calcu- 
lations were done following the approach developed by 
Butterworth and Ipser (1976). Table 7 and Figure 5 contain 
our results. In all cases considered, the calculated maximum 
angular velocity is very close to the approximation provided 
by equation (1). Figure 5 shows a comparison of the calculated 
maximum angular velocity (open circles) with the approx- 
imation (solid line) for the maximum Keplerian frequency in 
equation (1). As mentioned earlier, a similarly good fit is also 
obtained for the equations of state examined by Friedman, 
Ipser, and Parker (1986, 1989). These additional points are 
shown as solid dots in Figure 5. The largest deviation is of the 
order of ~4%. This goodness of fit highlights the utility of 
equation (1). 

It is of interest to note from Table 7 that the largest percent- 
age increase (~30%) of the gravitational mass over the 
maximum mass of the corresponding spherical model occurs 
for the star made entirely of perturbative strange quark matter. 
This increase is substantially larger than for the other cases 
considered here and may be understood as due to the sharp 
surface of the strange quark star. For the same reason, the 
strange quark star has the largest ratio of rotational energy to 

TABLE 7 
Maximum Mass and Rotation for Select Equations of State 

EOS Reference 
Q M Mb Re 

(10*s-M (M0) {Mq) (km) ß 

WFFJ 
Gle 
HS 

AV14 + UVII 

P = (e - 4B)/3 

1.24 2.54 2.75 11.3 0.11 0.60 0.37 
0.84 1.98 2.21 13.7 0.09 0.61 0.51 
1.04 2.06 2.38 13.3 0.11 0.66 0.40 
1.06 2.28 2.57 11.7 0.14 0.58 0.38 
1.20 2.02 2.40 11.2 0.18 0.72 0.34 

Notes.—Properties listed are Q, the angular velocity; M, the gravitational 
mass; Mb, the baryon mass; RE, equatorial radius; t, the ratio of rotational 
energy to gravitational energy ; e, eccentricity, and ß, injection energy. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

35
5.

 .
24

IL
 

RAPIDLY ROTATING PULSARS 253 No. 1, 1990 

«<„«/«,,) 1/2 (R/10 km)'372 

Fig. 5.—Comparison of angular velocities (points) from general relativistic 
calculations assuming uniform rotation and the approximation (solid line) for 
the maximum Keplerian frequencies from eq. (1). Open circles are results of 
this work for select equations of state shown in Table 7. Solid dots are results 
for the equations of state examined by Friedman, Ipser, and Parker (1989). The 
angular velocity of the purported pulsar in SN 1987A is shown by the horizon- 
tal dashed line. 

gravitational energy, t. The value of t for the Keplerian fre- 
quency is so large, in fact, that triaxial deformation may have 
already set in, limiting the rotation rate to lower values. In 
Newtonian calculations, this instability is triggered when 
t > 0.08. Fully general relativistic calculations of this insta- 
bility have not yet been performed. 

VII. CONCLUSIONS 

The recent report of a half-millisecond pulsar from super- 
nova SN 1987A highlights the promise of pinning down the 
equation of state of dense matter if the pulsations are due to 
rotation of a neutron star at this frequency. Given the signifi- 
cance of this opportunity, the need for more detailed observa- 
tions confirming the period of rotation cannot be 
overemphasized. 

Our objective in this paper was to explore the energy-density 
relationships that could satisfy the rotation constraint imposed 
by the purported pulsar in SN 1987A together with the mass 
constraint imposed by the neutron star in the binary pulsar 
PSR 1913 + 16. To this end, a detailed study of rotational 
properties was made using recent equations of state with 
nucleonic degrees of freedom and also those in which phase 
transitions to other types of matter, such as pions, kaons, 
parity doublets, and quarks were considered. The subnuclear 
(e.g., 0.001 < n < 0.08 fm-3) EOS has very little effect on the 
maximum mass of a star, but we found differences of up to 
0.2 km in the radius between subnuclear equations of state. 
Such differences may be sufficient to make some borderline 

cases “successful,” and they represent part of the l%-2% 
uncertainty in calculated values of QK. 

We found that the requirements of rapid rotation and suffi- 
cient mass were fulfilled by only those nucleonic equations of 
state that are soft around 1-4 times the nuclear density but 
attain a stiffness approaching the causal limit by about 6 times 
nuclear density. We have found that the inclusion of beta equi- 
librium is very important and eliminates some otherwise 
“ successful ” equations of state. We determine that, in absence 
of phase transitions, these requirements imply the existence of 
an upper bound on the compression modulus of nuclear 
matter, K < 160 MeV. This limit applies to equations of state 
in which the nuclear symmetry energy does not vanish beyond 
a few times nuclear density. Even including phase transitions, 
our calculations suggest that the upper limit to K might not be 
much greater. 

With the types of phase transitions considered in this work, 
both mass and rotation constraints are met only with equa- 
tions of state that regained a nearly causal stiffness at higher 
densities. The phase transition to perturbative quark matter at 
high density leads to matter that is less stiff and therefore 
results in a decrease of both the maximum mass and the 
maximum rotational frequency of a star with a quark core. 
Self-bound stars whose masses are at least 1.44 M0 and made 
up entirely of perturbative quark matter with strangeness to 
baryon ratio of the order unity can only approach, but not 
exceed, the rotation rate of the SN 1987A pulsar. The optimum 
case is when the strange quarks are assumed massless. Other 
schematic, self-bound equations of state may be possible, but 
only if they apply at all densities, including those below nuclear 
density. This may not be physically reasonable in all cases. 

The microscopic physics underlying phase transitions in 
dense matter is at best suggestive. This is highlighted by experi- 
ences with pion condensation for which experiments have 
ruled out the original condensation mechanism. Theoretical 
work to reconstitute pion condensation must therefore seek 
alternative mechanisms. Similar cautionary remarks apply to 
other types of phase transitions as well, especially in view of the 
simplistic manner in which they are treated at present. Not- 
withstanding these caveats, our findings here should impel 
investigations of these matters in greater detail. 

Given the possible existence of nonaxisymmetric instabilities 
in young, rapidly rotating neutron stars, Friedman, Ipser, and 
Parker (1989) conclude the only equation of state they tested 
that simultaneously satisfied Mmax >1.44 M0 and rapid 
enough rotation was the Pandharipande (1971b) EOS with 
pion condensation. We, however, have ruled out even this 
possibility, by imposing the condition of beta equilibrium. 
Also, experiments now indicate that the mechanism of pion 
condensation used in this EOS was invalid. In fact, all the 
published equations of state without phase transitions we 
tested had rotational frequencies less than ÜSN 1987a> to within 
the errors of the calculation. Even when phase transitions were 
included, we did not find a case in which QK was more than 
about 10% greater than DSni987a> although our search was 
not exhaustive. Again, considering that nonaxisymmetric per- 
turbations are likely, we can rule out all equations of state 
except those that become causal beyond about 6 times nuclear 
density and either have compression moduli below 160 MeV 
or an extensive first-order phase transition around a few times 
nuclear density. 

At this time, it is not possible to rule out these possibilities 
through nuclear experiments and/or theory. Therefore, the 
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interpretation that a rapidly rotating neutron star is the source 
of the pulsations observed by Kristian et al (1989) cannot be 
excluded. Alternative suggestions to explain the pulsations are 
that they are due to radial vibrations (Wang et al 1989) or that 
the compact star in SN 1987A is not a normal neutron star and 
hence not subject to the binary pulsar mass constraint 
(Glendenning 1989h). Each of these models is not without 
serious attendant problems. Should further observations verify 
the rotating neutron star interpretation, the implications for 
nuclear physics, and nuclear astrophysics, will be very exciting. 
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Note added in proof.—It now appears that the report of Kristian et al (1989) of the 0.5 ms pulsar in SN 1987A is erroneous (C. 
Pennypacker et al 1990, Nature, submitted). Although this report provided a strong motivation to set limits on the maximum 
rotation rates of neutron stars, the theoretical analysis in our paper is valid even without reference to the existence of the 0.5 ms 
pulsar. For nonexotic equations of state, with compression moduli greater than or equal to 200 MeV, the limiting rotational 
frequency appears to be about 1 x 104 s_ 1. The establishment of a limiting frequency through future observations should provide a 
powerful constraint on the high-density equation of state. 
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