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ABSTRACT 
Recent developments, both observational and theoretical, require a réévaluation of the effects of clustered 

supernovae on the two-dimensional porosity parameter Q2D and the rates of mass injection into the halo M of 
both cold and hot gas. Theoretically, the effects of the high-| z |, low-density extension of the neutral gas layer 
have been calculated. Observationally, the distribution of Ha luminosities of extragalactic H n regions has 
been determined, which allows us to estimate the birthrate of star clusters having N supernovae as a function 
of N. For the Galaxy, we obtain a Galaxy-wide average Q2D » 0.30, which corresponds to an area filling 
factor of 0.23, probably close to the true situation. 

There are two types of bubble. Most clusters produce breakthrough bubbles, which do no more than break 
through the dense gas disk. But clusters with large N produce enough energy to make blowout bubbles, which 
blow gas up into the halo. We calculate area filling factors and mass injection rates into the halo for different 
types of galaxy. We relate our calculations to two observables, the area covered by H i “holes” and the area 
covered by giant H n regions. We also discuss the effects of clusters that are too small to produce break- 
through bubbles, and we reiterate the difficulty of producing the very largest supershells by clustered super- 
novae. 
Subject headings: galaxies: The Galaxy — galaxies: structure — interstellar: matter — 

nebulae : supernovae remnants — stars : supernovae 

I. INTRODUCTION 

In a spiral galaxy the gas and new stars are concentrated 
into a relatively thin disk. The stars are formed in clusters. The 
massive stars become supernovae, and these explosions are 
correlated in space and time. These correlated supernovae 
produce one large bubble instead of many small ones. If the 
bubble is large enough, it becomes larger than the thickness of 
the disk and “ breaks through.” 

Mac Low and McCray (1988, hereafter MM) and Mac Low, 
McCray, and Norman (1989, hereafter MMN) have made 
detailed calculations of this process and made a very important 
point: just because a bubble breaks through the “classical” 
dense gas disk does not mean that it “ blows out ” into the halo. 
This is because of the extensive, low-density | z | extensions of 
disk gas, the neutral “Lockman” (1984) component and the 
ionized “Reynolds” (1989) component. Communication with 
the halo requires that the shell break through these com- 
ponents and open out into the halo, which requires much more 
energy. 

Here we define breakthrough bubbles as those that break out 
of the dense, relatively low scale-height part of the disk; and 
blowout bubbles as those that actually break through all disk 
gas and communicate with the halo. There are two ways for 
blowout to occur. One is to have enough energy to blow out of 
the extended components. Alternatively, the extended com- 
ponents are not perfectly uniform, so that in regions where 
they are thinner than usual, blowout may occur almost as 
easily as breakthrough. 

Breakthrough bubbles can be observed in the 21 cm line as 
large H i shells and supershells in our own Galaxy and as H i 
“holes” in external galaxies. But only blowout bubbles will 
inject mass into the halo. The mass is injected in two forms, 
cold clouds and hot gas. 

Calculations of breakthrough and blowout rates been done 

using crude theory (Heiles 1987, Paper I) and refined theory 
(Norman and Ikeuchi 1989; review by Tenorio-Tagle and 
Bodenheimer 1988). Previous calculations have neglected the 
extended components, and thereby overestimated the mass 
injection rate into the halo. The extent to which the com- 
ponents are pervasive and smoothly distributed determines the 
degree to which they affect the shell dynamics. Here we concen- 
trate on the Lockman component, because numerical simula- 
tions have been oriented toward this case and because the 
Reynolds component is highly clumped with a volume filling 
factor of about 0.11 at |z| = 0 (Kulkarni and Heiles 1988). 
However, the filling factor of the Reynolds component 
increases at large | z |, and this component may greatly reduce 
the injection rates of mass into the halo below those calculated 
explicitly for the Lockman component, as mentioned briefly 
below. 

Below in § III we discuss the interstellar medium (ISM) 
parameters for the Galaxy. Uncertainties in these parameters, 
plus, of course, incompleteness of the theory, generates some 
uncertainty in the results. Additional uncertainty is caused by 
our ignorance of the formation rate of clusters large enough to 
produce breakthrough or blowout. Earlier calculations have 
assumed that all clusters are identical and derived the number 
of supernova per cluster N empirically, for example, by divid- 
ing the overall supernova rate by the overall rate of cluster 
formation. Estimates of N differ by nearly an order of magni- 
tude. 

Not only is the value of N highly uncertain, but even more 
seriously the very concept that all clusters have identical values 
of N is surely wrong. The fact that clusters have different values 
of N is extremely important, because it means that some clus- 
ters are too small to produce breakthough, while the largest 
ones can produce not only breakthrough but also blowout. 
Recently, we have been blessed with a remarkable paper that 
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allows us to calculate the fraction of clusters of each type. 
Kennicutt, Edgar, and Hodge (1989; KEH) have derived the 
frequency and spatial distribution of Ha luminosities L(obs) of 
bright H ii regions in external galaxies, as functions of galactic 
type. These bright H n regions are produced by precisely those 
clusters that produce superbubbles. We can use KEH to obtain 
the formation rates per unit area on the disk of clusters as a 
function of V. We discuss these details below in § II. 

In § IV we apply these results to breakthrough bubbles. 
Consideration of KEH’s paper highlights another important 
fact : a certain fraction of the disk area is occupied by the H n 
regions themselves. Twenty-one cm line observers will see these 
H ii regions as “ holes ” in the H i disks. Such holes are usually 
interpreted as resulting from supernovae. We estimate the frac- 
tion of holes produced by H n regions in § V ; it turns out to be 
small, but nevertheless the number of giant H ii regions may be 
a useful observational diagnostic. 

Blowout bubbles are another matter, because they require 
more energy. In § VI we use KEH’s work to estimate the 
fraction of bubbles that become blowout bubbles, and then 
estimate the rate of mass injection into the halo from such 
bubbles. 

Supernovae in clusters that are too small to produce break- 
through bubbles affect the ISM in roughly the same way as 
individual uncorrelated supernovae. These small clusters are 
discussed in § VII. The largest supershells cannot easily be 
made by correlated supernovae, because once blowout occurs 
most additional energy is vented into the halo. Section VIII 
discusses the probable origin of the largest supershells. Finally, 
we summarize and discuss our results in § IX. 

II. FORMATION RATES OF CLUSTERED SUPERNOVAE 

a) The Relation between L (obs) and N 
In order to use KEH’s observations of L(obs) to calculate 

the influence of supernovae on the interstellar medium, we 
require one crucial piece of data: the relation between L(obs) 
and the number of supernovae N. This is not a simple matter 
and requires a detailed discussion. 

We follow conventional wisdom and assume that all stars 
more massive than 8 M0 become supernovae. Since the initial 
mass function (IMF) favors less massive stars, most of the 
supernovae come from stars with masses just above this value. 
However, most of the ionizing photons that produce the H n 
regions come from the very massive stars. Thus, both the slope 
and upper mass cutoff of the assumed IMF affect the desired 
relation. 

Fortunately, careful calculations have been done by Lequeux 
et al (1981), Melnick, Terlevich, and Eggleton (1985), and 
McKee (1989). All used theoretical evolutionary tracks for 
stellar masses ranging up to about 100 M0, included the effects 
of mass loss, and considered various slopes of the IMF. They 
all agree within less than ~ ± 40%, and here we adopt 
McKee’s (1989) result both because it uses more modern stellar 
evolution calculations and because it lies between the other 
two values. For the IMF slope, we adopt the value derived for 
high-mass stars in clusters by Scalo (1986), —1.5, which is 
somewhat steeper than Salpeter’s (1955) classic value of —1.35. 

The most direct way to express the result is in terms of the 
number of Lyman continuum photons emitted per supernova, 
where both quantities are summed over the whole cluster : the 
result is 4.8 x 1062. 

McKee (1989) has evaluated the reliability of this relation by 

comparing the overall Galactic Type II supernova rate it pre- 
dicts with the rate estimated from other considerations. (In this 
paper, “ Type II ” means all supernovae whose progenitors are 
young, massive stars, and “supernovae” means “Type II” 
supernovae.) Güsten and Mezger (1982) used measurements of 
Galactic thermal radio emission to derive the total Lyman 
continuum photon production rate in the Galaxy to be 
L(uv) = 2.0 x 1053 photons s-1 (after multiplying their 
number by 0.852 to account for the currently adopted value of 
the Sun’s Galactocentric radius, 8.5 kpc). The majority of this 
emission is from “ extended low-density ” diffuse gas, not indi- 
vidual H ii regions. This L(uv) corresponds to a Type II SN 
rate of one per 76 yr (0.013 yr~ ^ which is close to independent 
estimates for the rate expected in our Galaxy. Tammann (1982) 
estimates 0.023 yr-1, while van den Bergh (1988) and Ratna- 
tunga and van den Bergh (1989) estimate 0.019 yr-1 for both 
Type lb and II supernovae. Pulsar birthrate statistics in the 
Galaxy by Lyne, Manchester, and Taylor (1985) suggest a rate 
between 0.008 and 0.033 yr-1, while Narayan (1987) suggests 
0.013 yr-1 (after adjustment to the Sun’s Galactocentric radius 
of 8.5 kpc). Thus the relation should be quite reliable, although 
perhaps it predicts a supernova rate that is a bit too low. 

Now consider the applicability of this relation to KEH’s 
observations. L(uv) is directly related to L(obs) because it takes 
about two Lyman continuum photons to produce an Ha 
photon; thus we should obtain one supernova for every 
7.2 x lO50 ergs of Ha radiation. KEH present L(obs), mea- 
sured photometrically over the entire galaxy in earlier work by 
Kennicutt and Kent (1983), for a number of galaxies. These 
integrated measurements of L(obs) include not only discrete H 
ii regions but also the weaker, extended emission, and thus 
should be good measures of the total luminosity of ionizing 
photons in the gaaxies, although of course they do not account 
for absorption by dust in the external galaxy. 

The Sb galaxies observed by Kennicutt and Kent (1983) 
have an average total L(obs) æ 4 x 1040 ergs s-1. This corre- 
sponds to a supernova rate of one per 571 yr, or 0.0018 s_1. 
This is about 7 times lower than the Galactic rate. As our 
Galaxy is also an Sb, this is a major discrepancy. We do not 
know the origin of this discrepancy. The more straightforward 
possibilities include errors in the measurements and internal 
absorption by dust. 

In any case, we will severely underestimate the overall Type 
II supernova rate in these galaxies unless we adjust the relation 
between L(obs) and N empirically to bring the predicted and 
expected supernova rates into agreement. We use the adjusted 
relation, which gives a higher supernova rate, in our calcu- 
lations, and we predict clustered supernovae to have too large 
an effect on galaxies, relative to observations. In contrast, if we 
were to use the unadjusted relation, we would predict too small 
an effect. 

For a cluster, L(obs) is equal to the total Ha energy emitted 
divided by the lifetime of the cluster’s H n region th „. With 
thh,7 being thii in units of 107 yr and L(obs)38 the Ha lumin- 
osity in units of 1038 ergs s-1, this gives for the unadjusted 
relation 

N = 43.8 L(obs)38 th n 7 . (la) 

We adopt an adjusted relation by applying a factor of 5, which 
provides an Sb supernova rate of one per 110 yr (0.009 yr “ 

N — 222 L(obs)38 th n 7 . (lb) 

This is on the low side of the values derived from supernova 
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and pulsar statistics and represents a compromise between 
those values and the unadjusted relation. 

We must now specify an appropriate value for th „. Lequeux 
et al (1981) and Melnick et al. found that the Lyman contin- 
uum luminosity of the clusters persists for about 4 Myr. 
However, this is not the proper value of th „ for our application 
because not all stars in a cluster are formed simultaneously. 
There exists ample observational evidence for star formation 
occurring over a substantial time interval. In our Galaxy, indi- 
vidual clusters such as Orion and Scorpius/Ophiuchus have 
undergone sequential star formation over intervals of some 15 
Myr (Blaauw 1964). Thus the ionizing photons are emitted 
over a total time interval of some 20 Myr, and we adopt 
th h,7 = 2 in equation (lb). 

b) Summary of Results from KEH 
KEH’s Figure 6 gives the surface density of the observed H n 

regions on the disks. However, the surface density is not inde- 
pendent of radius; it increases toward the center, approx- 
imately exponentially, as does the overall starlight from a 
galaxy (Kennicutt 1989), into the central portions where in 
many galaxies there is no interstellar matter. With this radial 
dependence, the peak surface density is higher than the 
average, by a factor of perhaps 2 or so. 

The stars in the clusters emit ionizing radiation for time th„. 
The H ii regions remain visible for this length of time, and the 
cluster birthrate per unit surface area is equal to the observed 
H ii region density divided by THn. As discussed in § lia, we 
take th ii = 20 Myr. Note, specifically, that we assume that th „ 
is independent of the cluster luminosity. 

KEH give the distribution in L(obs) of extragalactic H n 
regions in the form of a power law. In our calculations, we shall 
require weighted averages over the ensemble of clusters of the 
form <L(obs)y>, and it is convenient to develop simple alge- 
braic approximation for these quantities. Let oL be the forma- 
tion rate per kpc2 on the galactic disk of clusters having L(obs) 
between L and L + dL, and take oL = kL0. Our definition of a 
is similar in spirit to that of KEH, and is in fact identical if the 
cluster lifetime is independent of L(obs); as stated above, we 
assume that this is the case. Since a & —2, with this power-law 
approximation we have, for the ensemble of clusters having 
Lmin < Uobs) < Lmax: 

for E, the formation rate per kpc2 on the disk of clusters having 
L(obs) in the range Lmin to Lmax ; and 

<L(obsr> = 
l>"LV, dL J ^min   

X LU 
' a+ 1 \ 
ß + 1 + y) 

[t 
(L ma JLmJ 

+ 1 + y" 

(^max/^min)a 
U —(a + ^— (3) ^min / , i , \ v~v (a + 1 + y) 

for the weighted average <L(obs)3’> of those clusters. 
For our application, Lmin is the luminosity of the smallest 

cluster of interest, for example, the smallest whose supernovae 
will produce a breakthrough bubble; we find below that 
Anin,38 ^0.12, where L38 has units of 1038 ergs s - L Lmax is the 
upper L(obs) cutoff in KEH’s observed power-law distribu- 

tions, which depends on galactic type. For Sb galaxies, 
^obs)maXj38 « 20. 

KEH quote a’s of about —2.3, —2.0, and —1.7 for three 
representative Sb, Sc, and Irr galaxies, respectively. However, 
KEH’s curves are not strict power laws, and in the region of 
interest [L(obs)38 ~ 1], an eyeball fit to their Figure 8 for Sb 
galaxies yields a & — 2.14. We adopt 

>T>L(obs)] = 1.85 L(obs)3“8
114 , (4) 

where eyF[>L(obs)] is the number of clusters per 1010 L0 of 
galactic luminosity having the observed Ha luminosity 
>L(obs)38. From KEH’s Figure 6, the surface density of H n 
regions in Sb galaxies having L(obs)38 > 0.5 is about 0.15 
kpc-2. Combining all this, and neglecting factors involving 
(Lmax/Lmin) in equations (2) and (3), we obtain k = 7.8 

X 10 II, 7 

7.8 x 10-3 

<L(obs)%8)S » U4_y 

th h, 7 y) kpc 2 Myr 1. (5) 
Note that L(obs)max 38 « 20 for the Sb galaxies, which from 

equation (lb) corresponds to a cluster that contains about 
4440th,i 7 = 8880 supernovae. The steepness of the L(obs) dis- 
tribution guarantees that the clusters with fewer supernovae, 
which are much more numerous, dominate the interaction 
with the interstellar medium. In fact, most clusters are not even 
large enough to produce breakout (§ YVb). However, the exis- 
tence of some very large clusters guarantees that blowout does 
occasionally occur. 

We must stress a caveat with the whole approach of this 
subsection. We have assumed that the IMF is the same from 
cluster to cluster, so that variations in L(obs) can be related 
directly to variations in N. This is certainly not true in an exact 
sense. The alternative extreme would be to assume that N is 
the same for all clusters and that variations in L(obs) result 
from wide swings in the IMF for large masses. This also is 
certainly not true. KEH have discussed these matters in some 
detail and we will not elaborate here. We have also assumed 
that THn is the same for all clusters, which also cannot be 
exactly true. Our approach here is valid so long as, in an 
ensemble average of clusters, L(obs) is a good measure of N. 
Similarly, in mentioning differences in L(obs) among different 
types of galaxy we have implicitly assumed that these factors 
do not vary systematically from one galaxy type to another. As 
discussed by KEH, this may not be the case, but they argue 
that at least some of the increased values of L(obs) in late-type 
galaxies really does arise from larger clusters instead of only 
variations in the IMF. 

III. ISM PARAMETERS 

In Paper I we used numerical parameters for the ISM that 
seemed appropriate. Numerical values adopted for the impor- 
tant ISM parameters were as follows: the “intercloud” gas 
density n0 = 0.24 cm-3; the “scale height” h100 = 1.85 (see 
below for definition), where the subscript indicates units of 
100pc; the pressure P04 — 0.40, where the subscript indicates 
units of nT = 104 cm-3 K; and the rms velocity vrms = 9.9 km 
s-1. 

Two new developments force us to reconsider n0 and h. 
First, Paper I used “ intercloud ” values, i.e., values appropriate 
to the warm neutral medium (WNM), and excluded the cloud 
component (CNM). We did this because clouds fill a small 
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fraction of space, while the propagation of shocks should be 
determined by the medium having the largest filling factor. A 
shock should overrun a cloud, leaving it intact (albeit grossly 
perturbed). 

However, the supernovae explosions are preceded by ion- 
izing photons, which produce the large H n regions observed 
by KEH. In the case of the clusters considered here, these H n 
regions are very large. Clouds within an H n region should be 
photoevaporated quickly, leading to a homogeneous medium 
within a radius jRh n, the Strömgren radius calculated using the 
mean density that would exist if the ISM were homogenized 
(McKee, van Buren, and Lazareff 1984). A supershell expands 
to a radius larger than RH n, so the ambient ISM is not homog- 
enized throughout the whole volume. Nevertheless, we proceed 
assuming that the entire ISM into which the shock propagates 
has been homogenized. 

Second, the |z| structure of the ISM is not the classical, 
simple thin disk. Instead, there are two extended components, 
the Lockman and Reynolds components. Here we consider 
only the Lockman component, because the Reynolds com- 
ponent is clumpy at I z I =0. We follow Lockman, Hobbs, and 
Shull (1986; LHS) and approximate the | z | distribution as 

n(\z\) = nc exp (-1z|2/zc
2) + nL exp (-1z|/zL). (6) 

This equation lumps the “ classical ” CNM and WNM, which 
have different scale heights, together into the first term; the 
new “Lockman” component is represented by the second 
term. LHS find that the total column density above | z | = 0 is 
about 3 x 1020 cm"2, that the column densities in the two 
terms are about equal, that zc æ 190 pc, and that zL » 500 pc. 
Thus we adopt nc = 0.316 cm"2 and nL = 0.107 cm"2, ^he 
quantity n0, which we use in various equations below, is the 
total density at | z | = 0, equal to 0.422 cm"2. This is 1.76 times 
larger than the value used in Paper I. 

Below we use an artificial scale height h. In our approximate 
theory we assume that n(\ z |) = const, for | z | < h and n(| z |) = 0 
for I z I > /i. We relate h to zc or zL by requiring that the column 
densities to | z | = oo be correct. Thus, if we are discussing the 
classical component, we take h100 = [(tu)1/2/2]zc = hc i00 » 
1.7; if we are discussing the Lockman component, we take 
^ioo = zl,ioo = 5.0. 

IV. BREAKTHROUGH! Q2D FROM SUPERNOVAE 

a) Rederivation of Q2i> 
The two-dimensional porosity parameter, roughly equal to 

the fraction of the disk area occupied by breakthrough 
bubbles, is denoted by Q2d- Qid is equal to the integral of the 
bubble area over time, divided by the time interval for bubble 
formation, or 

Qid — X nR(t)2 dt + nR(t)2 dt . 
expansion Jcontraction J 

(7) 

It was pointed out to me by B. C. Koo (1989) that Paper I 
considered only the contraction portion, and then incorrectly 
because it assumed that the bubble remains its largest size Rf 
during the entire time that it is being repenetrated. These two 
errors partially cancel. We note that our expression for Q3D in 
Paper I differs somewhat from that given by McKee and 
Ostriker (1977) and was derived properly using the three- 
dimensional analog of equation (7). 

We assume that the bubble dynamics are those outlined in 
Paper I, namely we assume that the energetic winds and 

sequential explosive impulses of the N supernovae in the 
cluster act as a “superwind” and produce bubble dynamics 
equal to that of a continuous stellar wind in the manner 
described by Weaver et al (1977). The bubble expands to 
radius Rf, which is the radius at which the bubble expansion 
velocity slows to vrms. At this point, we assume that the bubble 
immediately begins contracting with velocity vrms. 

For the contraction phase, the second integral in equation 
(7) is equal to (nRf)/(3vrms), just j the value taken for the full 
value of ß2D in Paper I. The expansion phase consists of two 
parts. The first has R < h and is characterized by the standard 
stellar-wind behavior, R oc i3/5. The second has R> h, and 
because the hot gas pressure escapes into the halo is character- 
ized by the two-dimensional “snowplow” behavior with 
R oc i1/3. We assume that the latter characterizes the whole 
expansion, which overestimates Q2D but only by a small factor 
for large breakthrough bubbles. With this approximation, the 
contribution of the expansion is equal to | that of the contrac- 
tion phase. Adding these together gives 

Q2D = 277<L(wind)^8
2>Ei;rm

5
s
/2 h2

00 ^ . (8) 

In Paper I, the factor 277 was instead 520, and was thus too 
large by a factor of 1.9. 

The mechanical luminosity of the superwind, L(wind), is 
equal to the total energy released divided by the time interval 
in which it is released, tsn. As in Paper I, the total energy is 
derived from supernovae, at 1051 ergs apiece, and winds from 
O stars (which constitute a small fraction of the supernova 
progenitors), at 1051 ergs each; combining all these, we obtain 
a grand average of 1.18 x 1051 ergs per supernova. Paper I 
assumed that the energy superwind blows for 30 Myr. 
However, McCray and Kafatos (1987) use a better value, 50 
Myr, and in this paper we will increase this to 60 Myr to 
account for the fact that not all the stars in a cluster are formed 
simultaneously. Keeping tsn as a free parmeter, this gives 

L(wind)38 = 3.72 x 10"2 ts"n^7 N . (9) 

Using equation (lb), this is equivalent to 

L(wind)38 = 8.3 L(obs)38 . (10) 
tsn 

After the present paper had been submitted, Palous (1989) 
pointed out that the stretching of supershells by differential 
galactic rotation reduces the total area that they occupy 
(Tenorio-Tagle and Palous (1987, hereafter TTP); Palous, 
Franco, and Tenorio-Tagle (1989, hereafter PFTT). These 
effects begin to become important after ~0.5iref, where ¿ref ~ 
100 Myr for the Galaxy. This is comparable to the total time 
that a large bubble exists. Thus, our value of Q2D given by 
equation (8) is an overestimate. 

b) Breakthrough Dynamics 
Paper I argued that at least 12 SN are required for break- 

through. This corresponds to L(wind)38 > 0.45x5^7, or 0.15 for 
Tsn, ? = 3 as assumed in Paper I. MM’s more recent detailed 
calculations show that breakthrough occurs when their param- 
eter D (their eq. [29]), 

D x 940 L(wind)38 h^0 P;J¡2 nl
0<
2 , (11) 

exceeds a value somewhat smaller than 100. For our adopted 
ISM parameters (§ III), this occurs when L(wind)38 >0.12, or 
L(obs)38 > 0.0415tsn/thii. The near equality of this more rig- 
orous limit with Paper Fs limit is purely fortuitous. 
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c) Evaluation of Q2D 

Combining equations (9), (10), and (5), together with 
^(obs)min>38 = 0.0145tsn/th,i, we obtain <L(wind)38>1/22: = 
0.53th íifv tsn^7

14. Inserting this into equation (8), and using the 
interstellar parameters of § III, we find g2D = 
2 n4? tsnV714 = 0.30. This corresponds to an area filling 
factor for the hot bubbles of Q/(l + ß) = 0.23. Our value 
Ö2D = 0.30 is nearly two orders of magnitude smaller than the 
values derived in Paper I. This is fortunate, because the 
extremely large values of Paper I are not supported by obser- 
vational data. 

In comparing this prediction with observations of the solar 
neighborhood, we recall that our derived area filling factor is a 
Galaxy-wide average because we used the Galaxy-wide 
average value of S, denoted below as <£>. However, the super- 
nova rate is a function of Galactocentric radius. We will 
express E0, the solar-neighborhood value, as a fraction of 
<£>, and then derive ß2D for the solar neighborhood. 

The radial dependence of o was given in Figure 1 of Paper I. 
Paper I defined <r to be the supernova birthrate per kpc2, while 
our £ is the cluster birthrate per kpc2 ; the two are proportion- 
al, because Paper I assumed a constant number of supernovae 
per cluster. <¿> was obtained from KEH’s Figure 6; KEH 
averaged over the radius of “the star-forming disk.” From 
Figure 1 of Paper I, it appears that this is just the same as the 
Sun’s Galactocentric radius. We define <<r> as the average 
supernova rate per kpc, equal to the total supernova rate 
divided by the area of the star-forming disk (and thus com- 
mensurate with <£». For the parameters of Paper I, <<7> = 73 
kpc-2 supernovae kpc-2 Myr-1 and o© » 25 supernovae 
kpc-2 Myr“1 = <<t>/3. Thus Z0 = <Z)/3. 

In passing, we adjust Figure 1 for changes in two param- 
eters, the total Type II supernova rate and the radius of the 
solar circle. In Paper I, we assumed the total Type II super- 
nova rate to be 0.023 yr-1, while in the present paper we 
assume 0.39 of this value, 0.009 yr_1. In Paper I, we assumed 
the radius of the solar circle to be 10 kpc, while here we assume 
8.5 kpc. Thus, for commensurability with the present paper, the 
vertical scale of Figure 1 must be scaled by (0.39/0.852) = 0.54. 
Thus, for the parameters of the present paper, <<j> = 39 kpc-2 

supernovae kpc-2 Myr-1 and (T© Ä ^ supernovae kpc-2 

Myr-1. 
The above relation, £© = <£>/3, yields ß2D = 0.10 for the 

solar neighborhood. Following Paper I, we apply the factor s, 
equal to (2.1, 0.7) for (inside, outside) spiral arms; this gives 
ß2D = (0.21,0.07), corresponding to area filling factors of (0.17, 
0.07). The former value is in excellent agreement with the 
volume filling factor of large H i holes in the solar neighbor- 
hood (Heiles 1980). For M31, another Sb galaxy, the observed 
area filling factor can be derived from Figures 21 and 22 of 
Brinks and Bajaja (1986). It peaks at ~0.09, corresponding to 
ß2D = 0.10, for galactocentric radius ~ 10 kpc; presumably the 
M31-wide average ß2D « 0.05. Our calculated value should 
also apply roughly to M31, and it is too large. M33 is an Sc 
galaxy and has an observed area filling factor less than 0.4 
(Deul and den Hartog 1989), corresponding to ß2D < 0.67. 
KEH’s data cause us to predict that Sc galaxies have 3 to 5 
times higher values of ß2D than do Sb’s, and this again suggests 
that our predicted value is too high. We conclude that our 
predicted values of ß2D are roughly correct, probably too 
large, but emphasize that there seems to be considerable varia- 
tion from one galaxy to another. 

V. ß2D FOR H II REGIONS 

The basic theory of the Strömgren sphere (see Spitzer 1978), 
together with the approximate ratio of L(obs) to L(uv), allows 
us to write 

^hh <0.12 L(obs)38
3n0 

2^3 kpc . (12) 
The inequality results from clumping, which should be 
minimal (McKee et al). ß2o is equal to EH nnR^ n th or 

ß^1 < 0.45<L(obs)2/8
3>ZHIIn0-4/3THii,7 , (13) 

where EH11 is the formation rate per Myr per unit area of disk 
of clusters that produce the H n regions of interest. 

We assume that the only H n regions to produce observable 
holes are those that attain breakthrough, i.e., RH „ > h. For the 
ISM parameters values of § III, and assuming equality in equa- 
tion (12), this requires L(obs)38 > 0.51. Applying equation (5) 
yields ß^1 = 0.032, about 9 times smaller than ß2D. The main 
reason is that the H n region produced by a cluster’s massive 
stars is smaller than the bubble produced by its supernovae. 

The partial correlation of observed H i holes with OB 
associations and H n regions in M31 found by Brinks and 
Bajaja (1986) and in M33 by Deul and den Hartog (1989) may 
be consistent with our results. The H n regions are not easily 
visible on broad-band optical photographs because the emis- 
sion measures are small. The emission measure of an H n 
region that breaks through is 2hnl, or 68 cm-6 pc for the ISM 
parameters of § III. 

vi. blowout: ß2D and M 

Blowout requires a more stringent condition on D in equa- 
tion (11), because we must use the scale height of the high-| z | 
component (and, according to MM, the total density at z = 0). 
There are two extended components, the Lockman and the 
Reynolds. Here we concentrate on the Lockman component, 
because the numerical calculations have been performed for 
this case. The scale height of the Reynolds component is 3 
times that of the Lockman component (Reynolds 1989), and 
the Reynolds component is clumped, at least near | z | = 0 
(Kulkarni and Heiles 1988); it would be useful to have numeri- 
cal simulations of this case. 

With hl00 ■— zL 100 = 5, D > 100 requires L(wind)38 > 
1.036. This corresponds to 167 supernovae, or L(obs)38 > 
0.125tsn/thii = 0.375. We assume that equation (8) applies for 
these bubbles, but use h100 = hc 100 = 1.7 instead of h100 = 
zl,ioo = 5 because the dynamics of the classical dense disk gas 
should not be affected much by the evolution of the bubble 
after breakthrough. 

We obtain ß2D = 0.53TH,1if7 ts^'7
14 = 0.076. Thus, about ^ of 

the H i hole area is occupied by blowout bubbles. Associated 
with these blowout shells are two forms of mass injected into 
the halo, cold shell fragments and hot gas. 

These numbers are all considerably smaller if the same 
theory applies to the Reynolds component, which has h100 = 
15. Blowout requires L(wind) > 9.32. This gives ß2D = 0.0186, 
only about 8% of the total hole area. 

a) Mcold : Cold Shell Fragments 
The supernovae drive a radiative shock into the ambient 

ISM. The matter in this cold radiative shell moves up in | z | 
through the negative density gradient, accelerating and under- 
going Rayleigh-Taylor instability, which makes it break up 
into fragments of cold neutral gas (McCray and Kafatos 1987). 
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If the supernovae are infrequent and do not approximate a 
continuous wind, there may perhaps be further instabilities 
(Tenorio-Tagle, Bodenheimer, and Rózyczka 1987). 

These fragments are “missiles,” launched into the halo in 
ballistic trajectories with |z|-velocities ~100 km s_1 from 
heights equal to several scale heights of the gas (MMN), and 
have been discussed by Cioffi (1986) and Charlton and Salpeter 
(1989). Whether a cloud can actually be regarded as pursuing 
ballistic trajectories depends on whether the cloud remains a 
self-contained unit and, if so, whether friction with and mass 
accretion from the ambient halo gas are significant forces. We 
argue below in § Vlb that the pressure of diffuse halo gas is 
likely to be sufficient to contain the clouds. A ballistic trajec- 
tory beginning at | z | = 4zL æ 2 kpc with a | z |-velocity of 100 
km s'1 would rise to |z| ä 3.7 kpc and fall back to |z| = 0 
after about 80 Myr. 

For the particular models treated numerically by MMN, 
about 0.075 of the total mass of ambient ISM in the cylinder of 
height h and radius Rf was injected into the halo as cold 
clouds. If this applies generally, then the rate of injected mass 
of cold cloud fragments is 

MCOId = 5.0 x 105<L(wind)y8
3> 

x E/i^oM0 kpc-2 Myr-1 . (14) 

For the Galactic parameters in § III, this is 10300THI
1if7T^'74 

M0 kpc-2 Myr-1. If this occurs uniformly over a disk of 
radius 8.5 kpc, it becomes Mcoid = 0.33 M0 yr-1. This is split 
equally between the “northern” and “southern” halo hemi- 
spheres. For the Reynolds-component parameters, Mcold is 
only about 0.06 M0 yr - L 

The state of matter in these clouds depends on the ambient 
halo pressure, the photon heating rate (Bregman and Harring- 
ton 1986), and the degree to which the cloud remains an inde- 
pendent entity in the halo environment. If clouds remain 
well-defined and follow ballistic trajectories, the amount of gas 
resident in the halo in the form of these clouds is Mcoid multi- 
plied by the residence time for a ballistic trajectory, or about 
2.6 x 107 M0 (0.5 x 107 M0 for Reynolds-component 
parameters). 

Clouds of relatively highly ionized gas are routinely detected 
in uv absorption lines observed against stars located at high | z | 
(Savage and Massa 1987; Danly 1989). These may arise from 
the environmentally modified cold gas clouds discussed here. 
The simplest estimate for the column density of the injected 
clouds is obtained by assuming that all of the injected cold gas 
is uniformly spread over the area of the cylinder having area 
nRf. This estimate neglects the Rayleigh-Taylor induced 
clumping, which raises the column density, and probable 
expansion of the cloud during its voyage through the halo, 
which lowers the density. This estimate gives an H i column 
density of about 2 x 1019 cm-2, which is larger than typical 
values found by the uv observers. This may imply that the 
clouds expand substantially in the halo. 

b) Mhoi: Hot, Diffuse Gas 
Hot gas is produced by evaporation of gas from clouds and 

the inside of the cold shell. This gas is important for the halo, 
because it is injected at high temperature, can travel to high 
I z I, and can spread out into a large volume. Using equations 
(9) and (11) from Paper I and equation (10) above, we obtain 

Mhot = 9.9 x 103<L(wind)f/8
21>Zn¿/3/i4¿/

0
21 + 1.65 x 104 

x <L(wind)i/8
7>2:/if0

7
0TSNi7 M0 kpc-2 Myr-1 . (15) 

Here the first term corresponds to the gas evaporated before 
breakthrough and the latter term to afterward. For /z we use 
K,ioo — because after the bubble breaks through the thin 
dense disk the interior hot gas expands very rapidly, so evapo- 
ration becomes nearly as ineffective as it would be if the bubble 
had blown out (see Fig. 8 of Mac Low and McCray 1988). 

With our adopted parameters, we obtain Mhot = 3650 M0 

kpc-2 Myr - L If this occurs uniformly over a disk of radius 8.5 
kpc, it becomes Mhot = 0.83 M0 yr-1. Again, this is split 
equally between the “northern” and “southern” halo hemi- 
spheres, and the value would be much smaller for the 
Reynolds-component parameters. 

Our estimate of Mhot neglects the supernova ejecta itself 
(Tenorio-Tagle 1989). This is justified because the ejecta mass 
is much smaller than the mass of evaporated gas. The relative 
proportion of supernova ejecta is larger for the clusters having 
fewer supernovae. For the smallest cluster capable of produc- 
ing a blowout bubble, L(wind)38 = 1.036, and this produces a 
total mass of evaporated gas of 1.4 x 105 M0. Even if each of 
the 167 supernovae add 50 M© to this evaporated gas, the 
ejecta adds only 6%. Although this is negligible in terms of 
added mass, it may be important because this added gas 
should be enriched with heavy elements. This may increase the 
cooling rate of the diffuse halo gas by a significant factor, with 
the possible result of affecting the gas dynamics of the halo gas 
in a qualitative way. In particular, the increased cooling may 
prevent the hot gas from leaving as a galactic wind. 

Most clustered supernovae are not members of clusters that 
are large enough to produce blowout bubbles. Thus, most of 
the supernova-produced heavy elements are not injected into 
the halo. Rather, they are injected into a hot bubble that is 
confined within the gaseous disk, and they cannot easily 
migrate over long distances in the galaxy. 

What is the fate of the diffuse hot gas that is injected into the 
halo? It is injected at a high temperature and is heated further 
by the Type I supernovae. In Paper I we took the scale height 
of Type I supernovae, hSNl, to be 325 pc, larger than the scale 
height of the gas, h. Thus the Type I supernovae were very 
effective in heating the diffuse halo gas. However, Lockman’s 
disk component has hL = 500 pc, which is larger than /zSNI ; 
Reynolds’s component is 3 times thicker. If all of the Type I 
supernova energy is absorbed by these components, then the 
Type I supernovae will not be an effective agent for the diffuse 
halo gas. 

The question is very important. Paper I showed that, for 
negligible radiative cooling and Mhot < 2.1 M© yr-1, the 
energy input from the Type I supernovae would heat the gas so 
much that it would exit as a wind. With hSNl smaller than the 
I z|-extended components, a smaller fraction of the Type I 
supernova energy will heat the halo gas, and the gas might 
survive without leaving as a wind. We cannot go further here, 
for several reasons. Our theory is only a crude approximation, 
particularly with regard to the Reynolds component; radiative 
cooling and other heating processes may be important; and the 
extended components are probably clumpy, which would 
allow a larger fraction of the Type I supernova energy to reach 
the halo gas. 

We conclude that a significant fraction of Mhot might exit the 
Galaxy as a wind, depending on these details. If the gas exits as 
a wind it should do so with a velocity of order 200 km s-1, 
which would make its residence time of order 50 Myr. If the 
gas does not exit as a wind, it will fall to the Galactic plane 
after it cools. The cooling time should be smaller than this 
value. Thus the amount of hot gas in the halo, which is equal to 
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Mhot multiplied by the residence time, should be less than 
4 x 107 M0 (much less for Reynolds-component parameters). 

If the mass of diffuse halo gas is equal to 4 x 107 M0 and 
the gas is spread uniformly over a volume of radius 8.5 kpc, the 
volume density is 4 x 10~4 cm-3. If T = 107 K, then the gas 
pressure is 4000 cm - 3 K. This is close to the gas pressure in the 
disk and would be enough to confine the cold fragments dis- 
cussed above in § I Yu. If instead the diffuse halo gas returns to 
the disk in a shorter time, the temperature would be lower and 
the total volume smaller; the pressure is likely to remain rea- 
sonably high, and the cold clouds could still be contained by 
the diffuse gas. However, for the Reynolds-component param- 
eters, the halo pressure would be much smaller and the cold 
clouds could not be so contained. 

VII. ß3D FOR SMALL CLUSTERS 

Only some clusters (“large” clusters) are large enough to 
produce breakthrough bubbles. We estimate the fraction of 
supernovae in small clusters by subtracting the supernova 
birthrate in all large clusters in a galaxy from the galactic-wide 
supernova birthrate. The galactic-wide supernova birthrate in 
large clusters can, in turn, be obtained from the galactic-wide 
production rate of Ha luminosity associated with large clus- 
ters. 

From § IVh breakthrough requires L(obs)38 > 
0.0145tsn/thii. The Galactic formation rate of Ha luminosity 
associated with large clusters can be obtained by setting y = 1 
and L(obs)min 38 = 0.0435 in equation (5). The formation rate 
of Ha luminosity is related to the supernova rate by equation 
(lb). For the Galaxy, this calculation gives the rate of super- 
nova in large clusters to be 19kpc-2 Myr-1. For the param- 
eters of the present paper, <<7> = 39 kpc-2 Myr-1 (recall that 
<<7> is the average rate of all Type II supernova per kpc2; see 
§ IVc). Thus, about half of all Type II supernovae reside in 
large clusters that produce breakthrough. 

The remaining Type II supernovae are located in small clus- 
ters. Supernovae in a small cluster act more as individual 
supernovae with an energy equal to the combined energy of all 
N supernovae in the cluster. This was discussed in Paper I : for 
clusters containing N supernovae, Q3D is equal to the value it 
would have if the supernovae were independent, multiplied by 
V0-028. Since Af < 11 for small clusters, this factor is less than 
2. Thus, the effect of small clusters on the porosity of the ISM is 
roughly the same as if the associated supernovae were uncor- 
related. These Type II supernovae add to the effect of uncor- 
related Type I supernovae, whose effects were discussed in 
Paper I. 

VIII. THE LARGEST SHELLS 

Detailed properties of Galactic shells were given by Heiles 
(1979). There were errors for two shells in Table 2 of that paper. 
For GS 123 + 07-127 and GS 139-03-69, the values of log 
Rsh should be 3.0 and 1.9, smaller by factors of 1.6 and 2.5 than 
the values given; listed values for log n0, log M, and log Ek are 
also erroneous. 

Shell radii in the Galaxy range up to 1300 pc, if we include 
only those shells with maximum confidence. Can such large 
shells be produced by the largest clusters? As originally 
emphasized by Tenorio-Tagle (1979), it is difficult for clustered 
supernova to produce a shell radius very much larger than h, 
and in addition there are other observational reasons for 
suspecting a different mechanism might operate (Mirabel 
1982). 

The ratio of the largest radius attained by a shell to the disk 
height can be calculated from the formulae given in Paper I, 
and is given by 

^ = 5.5h^L(mnd, 38)1/6nö ^VmV2 • (16) 

The dependence of Rf/h on the ISM parameters is very weak. 
Enormous values of L(wind) and nö1 are required to produce 
large values of Rf. A small vrms would help, but anywhere 
supernovae significantly stir the ISM we expect vrms ä 10 km 
s-1. This leaves h as the only parameter able to significantly 
affect Rf. 

For the Galaxy, L(obs)max>38 « 20. Inserting this together 
with the other parameters in § III yields Rf = 333/if/0

3
0 pc. To 

obtain Rf = 1300 pc, we require h æ 800 pc. Such large values 
of h are attained only at the very outermost reaches of the 
Galaxy. Not all of the observed large supershells are located at 
such extreme Galactocentric distances. 

We must appeal to other possibilities. One is that the radii of 
large supershells is increased in the tangential direction by 
galactic differential rotation (TTP, PFTT), and this larger 
radius might mistakenly be used to estimate the energy 
required to create the supershell (Palous 1989). Another is that 
there are fluctuations in /i; a large cluster, located in a region 
where h happens to be large (perhaps because of a previous 
cluster’s supernovae), will be “lucky” and make a bigger 
splash than usual. We might have “clusters of clusters”: the 
effects of multiple large clusters, located nearby in space and 
time, can be additive, not only in terms of L(wind) but also, 
probably more importantly, in terms of the earlier clusters 
modifying the ambient ISM for later ones, for example, by 
increasing the local value of h. Occasionally, several strategi- 
cally located clusters might create neighboring holes that look 
like one large hole. 

Apart from such effects, the most likely mechanism is com- 
pletely different. Tenorio-Tagle (1979) and Tenorio-Tagle et al. 
(1987) have suggested that infalling high-velocity clouds can 
impart large energies to the disk ISM and cause the very 
largest supershells. They, and MMN, have suggested ways by 
which this process can be observationally distinguished from 
clustered supernovae. One important difference is that shells 
produced by colliding clouds should not contain diffuse X-ray 
emitting hot gas. Another is direct observational evidence, in 
the form of 21 cm line maps, for collisional interaction this in 
the Galaxy (see review by Mirabel 1989) and in external gal- 
axies (Brinks 1989). In our Galaxy, some large shells are mor- 
phologically associated with high-velocity gas. The only 
external galaxies that exhibit very large holes have been 
observed are those with high-velocity gas. These include our 
Galaxy (Heiles 1984) and M101 (van der Hulst and Sancisi 
1988). M31 contains no very large holes, and high-velocity gas 
at the level seen in our Galaxy is absent in M31 (Brinks 1989). 

IV. SUMMARY, DISCUSSION, AND CAVEATS 

a) Reconciliation with Paper I 
ß2D, as calculated in the present paper, is much smaller than 

that calculated in Paper I. For the solar neighborhood, Paper I 
obtained Q2d = (13, 4.4) and we now obtain (0.21, 0.07) for 
(inside, outside) spiral arms. The present values are in reason- 
ably close agreement with observations. The reduction, by 
nearly two orders of magnitude, comes from three factors. 
First, the present expression for ß2D is 8/15 of that in Paper I. 
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Second, the present ISM parameters provide another 
reduction by 0.64. 

Third, the introduction of a realistic distribution for the 
number of supernovae per cluster makes a huge difference. A 
small portion of this difference comes from the factor 
<L(wind)1/2>. In Paper I we assumed 40 supernovae per 
cluster, so that {Z^wind)^2) = 0.70. Here, the power-law dis- 
tribution tends to raise <L(wind)1/2>, but this is compensated 
for by our twice-larger assumed value of tsn ; the net effect is 
that (Z^wind)^2) = 0.62, almost as large as the value in Paper 
I. 

The lion’s share of the difference comes from the value of X. 
In Paper I, the present parameter £ was replaced by the com- 
bination equal to the total supernova rate divided by 
the number of supernovae per cluster. As discussed above in 
§ IVc, <<7> = 73 kpc-2 Myr-1 in Paper I, yielding <£> = 1.88 
clusters kpc“2 Myr-1. In the present paper, <£> = 0.122 clus- 
ters kpc-2 Myr-1, 0.065 the value in Paper I. This is a direct 
result of the steep power law for the cluster formation rate: 
only a fraction of all clusters are large enough to achieve 
breakthrough. 

b) Summary and Discussion 
We have calculated the rate at which clustered Type II 

supernovae (i.e., supernovae whose progenitors are massive 
stars) produce breakthrough bubbles, which are bubbles that 
break through the dense, thin layer of disk gas. Owing to the 
fact that there is also a thicker, less dense component of disk 
gas, only clusters with large numbers of supernovae can 
produce “ blowout bubbles,” which break through all the disk 
gas and inject mass into the gaseous halo. We derived the 
distribution of AT, the number of supernovae per cluster, from 
observational data on extragalactic H n regions and an empiri- 
cally adjusted, theoretically derived relation between H n 
region brightness and number of supernovae per cluster. Con- 
sidering only the neutral Lockman extended-|z| component, 
about ^ of the breakthrough bubbles also achieve blowout; the 
fraction may be very much smaller if the ionized Reynolds 
extended-|z| component governs blowout. Both cold clouds 
and hot diffuse gas are injected into the halo, in roughly equal 
amounts. For the Lockman-component parameters, diffuse 
hot gas in the halo probably provides enough pressure to 
contain the cold gas clouds until they fall back to the disk. 

The dependence of supernova rates on galactocentric radius 
was discussed in detail in Paper I, and updated in § IVc. To a 
first approximation, rates of clustered supernovae follow the 
distribution of starlight and star formation. Thus, within an 
individual galaxy, the fraction of the disk area occupied by the 
“ holes ” produced by breakthrough bubbles should vary con- 
siderably. 

Comparison of our predictions with observational data yield 
discrepancies, although they are not unreasonable given the 
uncertainties and approximations in the approach and in the 
data. Different types of galaxy have different rates of clustered 
supernovae: rates increase in later type galaxies, so that Sb, Sc, 
and Irregular galaxies have progressively higher rates. 

For our Galaxy, which is an Sb, we obtained a Galaxy-wide 
average Q2D = 0.30, which corresponds to an area filling factor 
for breakthrough bubbles of 0.23, which is probably in agree- 
ment with the situation. In M31, the observed Q2l> peaks at 
about 0.10, implying a “galaxy-wide average ” of perhaps 0.05, 
which is about 7 times smaller than the predicted value if M31 
is described by the same parameters as the Galaxy. Values for 

Sc and Irregular galaxies should be higher by factors of 3-5 in 
typical cases. However, the Sc galaxy M33 has an observed 
average g2D < 0.67, about twice the value predicted for the 
Galaxy. 

All of this indicates that our predicted values of Q2d are at 

least sometimes too large by a factor of 2 or so. As discussed in 
§ INa, stretching of the supershells by galactic differential rota- 
tion was not included in our calculation of ß2D and would 
reduce our derived values somewhat. Our results are affected 
by the factor used to adjust equation (la) to obtain equation 
(lb); we could have obtained better agreement by using a 
smaller adjustment factor, but the need to use a factor at least 
as large as that actually used seems compelling. Also, our 
results are directly affected by the value of Lmin, which may be 
somewhat uncertain. 

There is observational evidence in support of our fundamen- 
tal approach. The evidence is the H i supershells observed in 
our Galaxy (Heiles 1984) and H i holes observed in M31 
(Brinks and Bajaja 1986) and M33 (Deul and den Hartog 
1989). Further, in external galaxies the beautiful Ha photogra- 
phs of M33 by Courtès et al. (1987) and of the LMC by 
Meaburn (1980) exhibit many large ringlike H n regions. The 
large rings can hardly be anything else but evolved shells pro- 
duced by the superwinds of the central clusters. It takes about 
5 Myr for shells to expand to the typical size of these rings, and 
because stars in a cluster form over a longer period of time a 
fraction of the shells should be ionized. 

In the classification scheme of Norman and Ikeuchi (1989), 
we predict our Galaxy to be in the chimney phase, while we 
predict the later type galaxies to have Q2D > 1 (but only 
marginally) and thus be in the three phase domain. Because the 
supernova rate varies systematically with galactocentric 
radius, there frequently may be portions of a galaxy that lie 
either well within or far from the three-phase domain. An 
exception to this is “ starburst ” galaxies, which have extremely 
high supernova rates over large portions of their disk areas. 

Central to our ideas is the fact that an observationally 
derived quantity, g2D, and a desired but observationally 
elusive quantity, M (the mass injection rate into the halo), are 
inextricably related, although the quantitative details depend 
on the ISM parameters, and in particular the thickness of the 
extended-l z | gas component. To evaluate M/Q2U we use equa- 
tion (14) for cold clouds and the dominant term in equation 
(15) for diffuse hot gas, and we use equation (9) for g2D. In 
performing the calculations it is important to include the 
dependence on the ISM parameters of the minimum L(wind)’s 
required for blowout and for breakout, using equation (11), 
and to adopt a value of a (see eq. [2] and its discussion). Here 
we use the value appropriate for the Galaxy, a = —2.14; other 
values of a change the quantitative relationship but not the 
overall conclusion. Setting Pccn0v?ms in equation (11), we 
obtain 

and 

M, 
°C"0 ^rms (17a) 

A^hot 
Qid 

oc h — 1.3„0.7.,3.1 (17b) 

There is some room for variation, particularly for Mhot/Q2D, 
with the ISM parameters. 

The important point is that mass cannot be injected into the 
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halo unless there is a corresponding ß2D* 620 can t>e observa- 
tionally derived, either relatively directly by observing the H 1 
holes, or much less directly (and with more uncertainty) by 
observing the large H 11 regions and applying equations (9) and 
(13). 

The inner portions of spiral galaxies have higher supernova 
rates and higher rates of mass injection into the halo M. 
However, most of the supernova-produced heavy elements are 
not directly injected into the halo without first mixing with the 
ambient ISM, because most supernovae are located in clusters 
that are too small to produce blowout. Direct mass injection 
into the halo should be stronger in Sc and Irregular galaxies, 
which have higher supernova rates, and thus higher values of 
M than Sb galaxies. 

c) Caveats 
Our approach has many weaknesses, both theoretical and 

observational. Theoretically, we use a crude theory for bubble 
dynamics in the stratified disk of a galaxy and a crude two- 
component model for the stratified disk. We have assumed the 
gas layer to be uniform. We have neglected the Reynolds com- 
ponent because it is highly clumped at | z | = 0, but its clump- 
ing probably decreases at high | z |. 

Observationally, we adopt a relation between the Ha lumin- 
osity of the H ii regions associated with a young cluster and the 
number of supernovae that will explode in the cluster. This 
relation can be derived theoretically under at least three 
assumptions, all of which must apply at least to an ensemble 
average of clusters. One is that the IMF for all clusters should 
be the same, which is equivalent to assuming that the number 
of supernovae in a cluster is directly proportional to the total 
number of ionizing photons emitted by stars in the cluster. 
Another is that the time over which stars form in clusters 
should be the same, which is equivalent to assuming that all 
clusters have the same relation between the Ha luminosity and 

the total number of ionizing photons emitted. The third is that 
the cluster lifetime is independent of the cluster luminosity. 
These, and other unstated, assumptions may not apply within 
an individual galaxy, and they also may not apply when com- 
paring different types of galaxy. KEH have elaborated on these 
and other assumptions. 

One disturbing point was our necessity to adjust the theo- 
etically derived relation between the total number of ionizing 
photons and the number of supernovae in a cluster. An adjust- 
ment was required only for external galaxies, not the Galaxy. 
The basic reason for the required adjustment is that the inte- 
grated Ha luminosities of external galaxies are lower than the 
equivalent observationally derived quantity for the Galaxy. 
We do not understand the origin of this discrepancy. 

Finally, our approach neglects the possibility self- 
propagating star formation in the supershell shock, discussed 
explicitly by McCray and Kafatos (1987), TTP, and PFTT. 
This seems to be occurring in the large supershells in the LMC 
and other Magellanic-type irregulars, and possibly in NGC 
4449. Perhaps this is the cause of the extremely large Ha lumin- 
osities for some of the giant H 11 regions in these types of 
galaxy. This process is similar to a detonation front and can 
produce star clusters that are themselves correlated in space 
and time; it could lead to extremely large-scale phenomena, 
including injection of the entire disk mass into the halo. 

It is a pleasure to acknowledge discussions with Elias 
Brinks, Robert Kennicutt, Bon-Chul Koo, Richard McCray, 
Jan Palous, Guellermo Tenorio-Tagle, and Rene Walterbos. 
Chris McKee provided many helpful, significant suggestions 
and criticisms, and Mordecai-Mark Mac Low contributed 
both helpful discussions and, while refereeing the paper, caught 
a significant error. This material is based upon work supported 
by the National Science Foundation under award No. AST- 
8818544. 
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