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ABSTRACT 
We present the results of some representative A-body simulations of encounters between a red giant star 

and a compact object. We have performed a preliminary survey of a large number of such encounters, varying 
all relevant parameters over wide ranges. We give an overview of all the different possible outcomes that can 
be produced by the encounters. Our combined analytic and numerical treatment is very general, but we pay 
particular attention to those encounters which lead to the formation of a binary system. In particular, we 
discuss how the numerical data on individual encounters can be used to calculate the binary formation rate in 
globular clusters, and we argue that the usual simple estimates based on the tidal approximation can some- 
times give incorrect results. We also discuss the calculation of probability distributions for the semimajor axes 
and eccentricities of the binaries that are formed, as a function of globular cluster parameters. We show that 
encounters with stars on the subgiant branch might very well lead to the formation of close binaries (a ~ 1 
Rq) with large eccentricity, such as those recently reported in 47 Tue and Ml5. In addition, the binaries 
resulting from encounters with stars on the red giant branch could be an important source of heating during 
the late stages of evolution of a globular cluster. 
Subject headings: clusters: globular — stars: binaries — stars: late-type — stars: neutron — 

stars: stellar dynamics 

I. INTRODUCTION 

The variety of physical processes which may take place 
during an encounter between a compact object and an ordi- 
nary red giant star poses a very challenging problem for inves- 
tigation. From a physical point of view, the problem involves 
three-dimensional hydrodynamics with self-gravity, possibly 
coupled to nuclear burning and radiative transfer. Even a 
qualitative overview of the process demands a broad survey of 
many physical regimes and parameters in order to identify all 
the possible outcomes of an encounter (here we use the term 
“encounter” to describe both distant tidal encounters and 
direct physical collisions between the red giant and compact 
star). Nonetheless, these encounters are widely believed to take 
place and to be of great importance in several different astro- 
physical contexts. At least two have received considerable 
attention recently : one is the formation of close binary systems 
in the cores of globular clusters (see, e.g., Verbunt 1988h for a 
review and references) and the other is the production of high- 
velocity gas clouds in the central regions of galaxies (see Livne 
and Tuchman 1988 for a discussion). 

That stellar encounters between a compact stellar remnant 
and an ordinary, main-sequence or giant star may be 
responsible for producing X-ray binaries in globular clusters 
was originally proposed by Fabian, Pringle, and Rees (1975), 
and Sutantyo (1975). In the Fabian, Pringle, and Rees scenario, 
a tidally dissipative, two-body encounter between a compact 
object and an ordinary main-sequence star leads to the capture 
of the compact object into a binary. Sutantyo, on the other 
hand, proposed that the X-ray binaries could be the results of 
direct collisions between compact stars and giants. Many calcu- 
lations of the Fabian, Pringle, and Rees mechanism have been 
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performed (Press and Teukolsky 1977; Lee and Ostriker 1986; 
Giersz 1986, McMillan, McDermott, and Taam 1987). These 
calculations are all based on perturbation expansions in terms 
of the normal modes of oscillation of the stars, modeled by a 
polytrope. However, very few calculations of direct physical 
collisions between a normal star and a compact object have 
been attempted, and all of them have been very approximate. 
This fact results from the highly nonlinear nature of the inter- 
action and the absence of sufficiently powerful computers and 
reliable numerical techniques for handling serious three- 
dimensional hydrodynamics. 

Recently, the idea of invoking encounters between a red 
giant and a compact object has been revitalized in the context 
of formation scenerios for ultra-short period binaries, believed 
to consist of a white dwarf and a neutron star. The so-called 
low-mass X-ray binaries, as well as binary millisecond pulsars, 
belong to this category. Bailyn (1988), for example, modified 
the Fabian, Pringle, and Rees argument for the case of tidal 
capture of a neutron star by a red giant. He showed that for red 
giants, direct collisions are likely to be more important for 
capture than distant tidal encounters, because of the larger 
physical cross section. Similarly, Verbunt (1987,1988b; see also 
Verbunt and Meylan 1989) used globular cluster data to esti- 
mate relative rates for different binary mechanisms and con- 
cludes that collisions between neutron stars and red giant or 
horizontal branch stars are the most efficient mechanism for 
the formation in globular clusters of binaries containing a 
neutron star and a white dwarf. 

The two recently reported new detections of rather peculiar 
binary millisecond pulsars in globular clusters will, if con- 
firmed, raise a number of further questions concerning the 
possible formation scenarios of such objects. The first of them, 
PSR 0021 — 72A in 47 Tue (Abies et al 1988), appears to have 
an extremely small orbit, with a projected semimajor axis 
a1 sin i = 585 km, while at the same time it has retained a 
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large eccentricity, e « 0.33. The second one, PSR 2127 + 11C in 
Ml5 (Anderson et al 1989), has a more reasonable separation, 
with an orbital period of 8.2 hr, but it also appears to have 
retained a very large eccentricity (Wolszczan 1989). However, 
it is generally thought that when a binary is formed by a two- 
body encounter, dissipation must circularise the orbit. On the 
basis of this, Wijers (1989) rules out red giant/neutron star 
collisions as a possible formation mechanism for the binary in 
47 Tue and argues instead in favor of a more complicated 
three-body capture process. 

The ejection of a giant star’s envelope due to the penetration 
of a compact object has also been studied in the somewhat 
different context of the “ common envelope phase ” of binary 
evolution (see, e.g., Taam, Bodenheimer, and Ostriker 1978; 
Bodenheimer and Taam 1984; Livio and Soker 1988). This 
phase in the evolution of some binary systems, where a giant 
star and its low-mass companion coalesce, is believed to be 
responsible for the formation of some cataclysmic variables, 
double white dwarf systems (progenitors of Type I 
supernovae), as well as some low-mass X-ray binaries. Calcu- 
lations of this process usually assume that the mass of the 
penetrating star (which may be a main-sequence star as well as 
a compact star) is small compared to the mass of the giant, and 
that the orbit is initially circular. In such cases, energy is dissi- 
pated very slowly, and the penetrating body may spiral in on a 
time scale much longer than the crossing time. For example, 
Taam, Bodenheimer, and Ostriker (1978) have studied the pen- 
etration of an orbiting 1 M0 neutron star into a 16 M0 super- 
giant companion. Using a spherically symmetric stellar 
evolution code, they followed the slow restructuring of the 
envelope due to the local deposition of energy and angular 
momentum along the neutron star’s orbit. In the presumably 
much more common case where an encounter takes place 
between two stars of comparable masses, the evolution is 
expected to be dominated by global gravitational interactions 
which take place on a much shorter time scale (of the order of 
the crossing time), so that circularization may not occur. In 
this case, the interaction is clearly three-dimensional and 
cannot be studied with a restricted method. 

Finally, the disruption of a red giant’s envelope due to its 
penetration by a compact object has been proposed as a 
mechanism for producing the high-velocity gas clouds 
observed in the very central parts (r < 1 pc) of galaxies (Lacy, 
Townes, and Hollenbach 1982). A simplified description of the 
typical encounter there is as follows: First, the giant’s degener- 
ate core interacts gravitationally with a high-velocity compact 
object, thereby receiving a velocity increment large enough for 
it to escape from the potential well of the envelope. The 
material in the envelope is left unbound. In response, a shock 
front, generated near the center, propagates radially outward 
and disrupts the envelope. Livne and Tuchman (1988; see also 
Tuchman 1985) estimate an envelope mass ejection rate of 
about 10“3 M0 yr“1 with typical velocities of 30-100 km s-1. 
These values appear to fit the observed features of the clouds 
(as described by Lacy et al 1980 and Lacy, Townes, and Hol- 
lenbach 1982) very well. 

This paper is organized as follows. In § II, we introduce the 
general theoretical framework for our long-term computa- 
tional study of encounters between compact objects and red 
giants. In § III, we present the results of some preliminary 
numerical calculations based on N-body simulations. Finally, 
in § IV, we discuss these preliminary results and motivate the 
need for more accurate hydrodynamical simulations, which 

will be presented in a forthcoming publication (Rasio and 
Shapiro 1990). 

II. THEORETICAL FRAMEWORK 

a) Possible Outcomes of a Compact Object/Red 
Giant Encounter 

We first delineate the possible outcomes of an encounter. 
Our discussion is based partly on isolated examples that have 
been reported in the literature, and partly on our own numeri- 
cal simulations, presented below in § III. 

Three basic nondimensional ratios determine the dynamics 
of the encounter. These are the compact star/red giant mass 
ratio mc/mG, the ratio b/RG of the impact parameter to the 
giant’s radius, and the ratio vr/v of the relative velocity at infin- 
ity to the characteristic internal velocity of the problem, v = 
(GmG/RG)1/2 (ä sound speed in the red giant’s envelope). 
Depending on the values taken by these three ratios, a wide 
variety of qualitatively different outcomes is possible. Only 
once these outcomes are assessed can one evaluate the various 
formation rates and the probability distributions for observa- 
ble quantities such as binary separation and eccentricity or 
mass ejection velocities. This second phase of the analysis 
requires information of the physical environment in which the 
encounters take place: the distribution of relative velocities vr 
and the physical parameters and total number densities of the 
participating stars. 

A fundamental distinction can be made between those 
encounters which leave the compact star unbound and those 
which do not. A further distinction can be made according to 
whether or not the red giant’s structure is significantly altered. 
Specifically, we can distinguish six kinds of outcomes, listed 
here roughly in order of decreasing impact parameter b, 
decreasing relative velocity vr, or decreasing mc/mG : 

1. The core receives only a small impulse and subsequently 
undergoes heavily damped oscillations inside the envelope. A 
small fraction of the envelope’s mass is ejected. (This is the 
typical behavior when b/RG < 1 and vr/v ^>1.) 

2. The core receives a velocity increment large enough for it 
to escape from the envelope’s potential well. The envelope, 
released from the gravitational binding to the core, is subse- 
quently disrupted. (b/RG <4 1 and vr/v >1.) 

3. In some cases, an exchange between the compact object 
and the giant’s core takes place, and the giant’s envelope is 
only weakly perturbed (this was first noticed by Livne and 
Tuchman 1988). 

4. The envelope is tidally disrupted by its interaction with 
the compact object. Enough energy is dissipated so that the 
compact object becomes bound and gets captured by the core, 
forming a binary. Some fraction of the envelope’s mass may be 
accreted by one or both components of the binary. (b/RG ~ 1 
and vr/v ~ 1.) 

5. The compact star penetrates the envelope without per- 
turbing it significantly and slowly spirals in toward the core. 
The energy released by friction is redistributed, and part or all 
of the envelope’s mass is lost. (This seems to happen only when 
mc/mG ^ 1, as in the case of the interaction between a 16 M0 
supergiant and a 1 M0 neutron star studied by Taam, Boden- 
heimer and Ostriker 1978.) 

6. The compact star spirals in even more slowly toward the 
core. The energy deposited locally along the compact star’s 
orbit is efficiently transported outward in the envelope and 
gets radiated away, so that little or no mass ejection takes place 
(Taam, Bodenheimer, and Ostriker 1978). 
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b) Simple Analytical Estimates 
It is useful to perform a few analytical estimates for some 

simple cases to develop some intuition of the physical pro- 
cesses and the approximate scaling behavior of the results. 
These estimates can, in addition, provide useful checks on 
numerical simulations. 

i) Tidal Capture in the Impulsive Approximation 
For distant encounters with sufficiently large impact param- 

eter and relative velocity, the impulsive approximation can be 
used to estimate the maximum impact parameter bmax(vr) for a 
passing compact object with relative velocity vr to be tidally 
captured. This was the basis of the Fabian, Pringle, and Rees 
mechanism mentioned in § I above. However, no actual calcu- 
lation of this mechanism for red giant stars has ever been done. 
This is because of the breakdown in the standard method of 
analysis (Press and Teukolsky 1977) when the stellar oscil- 
lation modes become strongly damped, as is the case in core- 
halo structures (see McMillan, McDermott, and Taam 1987). 

In the absence of an exact calculation, one may use the 
following crude derivation, based on an analogy with the case 
of tidal interactions of stellar systems (see, e.g., Binney and 
Tremaine 1987). Let us represent the red giant by a central 
point mass mcore surrounded by an envelope of mass menv and 
density profile 

PenvM = 
(3 - tt)menv 

4tlRg
3 (1) 

For typical red giant models, n æ 1 (Tuchman, Sack, and 
Barkat 1978). 

The energy dissipated into thermal heat during the encoun- 
ter is calculated in the tidal approximation as (eq. 7-55 of 
Binney and Tremaine 1987) 

critical periastron distance for capture agree to within a factor 
of 2) when the relative velocity at infinity is largest (see Table 
6.2 of Spitzer 1987). For small vr, the impulsive approximation 
largely overestimates the critical periastron distance. The 
agreement also appears to get better as the polytropic index n 
increases, i.e., for more centrally condensed density profiles. 
However, we still expect equation (4) to provide only an upper 
limit on the actual value of hmax. 

ii) The “ Head-on ” Case 
For small impact parameter encounters, when b RG, even 

rather large relative velocities can lead to significant damage to 
the giant and/or capture of the giant’s core into a binary with 
the compact object. For such encounters, it may be justified 
again to use the impulsive approximation to derive some 
approximate analytical results. 

In the impulsive approximation, each fluid element in the 
envelope receives a velocity increment of magnitude 

\ôvtJx)\=~^(x2 + y2)-112 , (5) 

perpendicular to the compact object’s trajectory along the 
z-axis. The energy dissipated during the encounter is then 
approximately given by 

A£env - J J I ÔVW I Venv(*M3* 

(3 - n)G2mc
2mem f bmin\ 

= w '"TO’ (6) 

where the density profile of equation (1) has been used. Here 
bmin < b RG is a. cutoff value for the impact parameter, and 
we have defined 

AE = 
4G2mc

2menv<r2>G 
(2) 

where rp is the periastron distance, and <r2)G = 
menv 1 Í (*2 + y2)Penv Capture occurs if AE>pvr

2/2, 
where p is the reduced mass. This gives the critical periastron 
distance rpc for capture, in nondimensional form, as 

r r8mcm ( , <r2>G11/4 f v\ 
„ = - (1 + mJmG) -, x — . (3) 
Rg [3 mG mG 

cl g; R2 J \vrJ 

For the density profile of equation (1), we have <r2)G = 
(2/3)(3 — n)/(5 — n)RG

2, so that when mc/mG « 1 and n æ 1 the 
coefficient of v¡vr in equation (3) is very close to unity. Taking 
into account gravitational focusing, we obtain the maximum 
impact parameter for capture as 

1 + 2(1 -h mc/mG) 
rpc V2] 

L (4) 

A similar analysis is presented by Spitzer (1987) for the case 
of tidal capture by polytropic stars. In this case, a comparison 
can be made between the results obtained in the impulsive 
approximation and those obtained by the more exact method 
of Press and Teukolsky (1977).3 For n = 3 polytropes, the 
agreement is found to be best (i.e., the values found for the 

3 Note that the original calculation of Press and Teukolsky (1977) con- 
tained a numerical error which was corrected in later papers (see Lee and 
Ostriker 1986; Giersz 1986; McMillan, McDermott, and Taam 1987). 

r + i jvr^2 dx 

In(XmJ = J_ 1 4x2 + Z2f2 ■ (7) 

This quantity diverges only logarithmically for xmin->0. For 
example, one easily finds that Ii(*min) ^ On:x:min)2 

— 21n21nxmin, so that ^ < 100 for a wide range of 10“4 < 
^min< KT1. 

Similarly, the red giant’s core receives a velocity increment 

I ÔVcoJx) I = 
2Gmc 

vrb 

corresponding to a change in energy 

AE core 
2G2>Wc

3ore 
v2b2 

(8) 

(9) 

Depending on whether or not A£core is larger than the binding 
energy of the red giant’s core to its envelope, the core may or 
may not escape (cases 1 and 2 of § lia). This was the basis of the 
analysis presented by Tuchman (1985). 

When vr becomes smaller than a certain critical value 
[v?li/v ~ (mcor JmG)112 x (Rg/6)1/2], it is no longer justified to 
treat the motion of the core in the impulsive approximation. 
However, the energy dissipated in the envelope, which reacts 
on a somewhat longer time scale than the core, can still be 
approximated by equation (6). In this case, the core may get 
captured by the passing compact star, so that they emerge 
together as a binary. 

The maximum relative velocity r™ax for binary formation at 
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small impact parameters can be approximately evaluated by 
setting A£env = jLi(v™ax)2/29 where ß is the reduced mass. This 
gives 

Alternatively, if we take the relative velocity at infinity vr = 0, 
we may use equation (6), with vr replaced by the periastron 
velocity vp, to estimate how tightly a binary can be bound by a 
head-on collision. To do this, we make the assumption that all 
the energy tidally dissipated in the envelope is converted into 
binding energy for the emerging binary. Specifically, we can 
evaluate the minimum semimajor axis amin of the binary by 
setting A£env = Gmcore mc/2amin. This gives 

^min 
Ra 

WcoreV mçV 1 
,menJ\mJ\2(3 - n)In, (11) 

Given the typical values of it is easy to see that, for mc/mG ~ 
1, this can give at best amiJRG ~ 10“2. 

c) Estimating Capture Cross Sections and Formation Rates 
In general, the capture cross section Tih2 ax(i;r) of a compact 

star by a red giant must be determined numerically by simulat- 
ing a large number of encounters with varying relative velo- 
cities and impact parameters. Once this has been done, specific 
formation rates may be evaluated by integrating over the rele- 
vant parameters defining the environment in which the 
encounters are taking place. In particular, for a single mass 
ratio (otherwise the rates computed for each mass bin would 
simply be added together), the formation rate per unit volume 
can be calculated as 

r = nc nG J lnb2
mJvr)-]vrf(vr)d\ , (12) 

where nc and nG are the number densities of, respectively, 
neutron stars and red giants, and/is the distribution of relative 
velocities. If both neutron stars and red giants can be described 

by Maxwellian velocity distributions with velocity dispersion 
(T, then 

f(Vr)d3Vr=ijz?exp (“ ^)v'2dVr ■ (13) 

In this case, we can compute the rate, from equations (12) and 
(13), as 

r,n,naRlm- 

X Rp \2( L_ 
102 RqJ \10 km s 

-^£2 x 10 -9 yr 1 
pc"3. (14) 

Here we have defined a new quantity Q, representing the non- 
dimensional overlap integral between the flux vrf(vr) and the 
cross section Trh2 ax(rr), according to equations (12) and (14). 

Alternatively, we can compare equation (14) to the rate of 
binary formation by tidal capture of neutron stars by main- 
sequence stars, written in a similar way as = 
nc ttmsMhmax)2]0^ where h™ax is the maximum impact param- 
eter for tidal capture of a neutron star by a main-sequence star 
and nms is the number density of main-sequence stars. From 
equation (14), we see that 

r _ /yno\ 
rms ~ WW «a*)2 ' 

(15) 

The quantity Q, in equations (14) and (15), depends only on 
the nondimensional ratio a/v of the velocity dispersion in the 
system to the characteristic internal velocity of an encounter. 
This ratio, together with nc and nG, completely characterizes 
the environment from the point of view of calculating rates. 
Figure 1 illustrates qualitatively two extreme combinations of 
relative velocity distribution and capture cross section. When 
the velocity dispersion in the cluster is much smaller than the 
characteristic velocity v (Fig. la), the binary formation rate is 
dominated by distant encounters, and Q 1. It is in this case 
only that the capture cross section can be approximately evalu- 

Fig. 1.—Competing contributions to the rate integral (eq. [12]). The figure illustrates qualitatively the fundamental importance of the ratio v/o of the 
characteristic velocity of an encounter, v envelope sound speed), to the velocity dispersion a in the system. The solid line represents a typical cross section for 
binary formation, whereas the dashed line shows the distribution of relative velocities (eq. [13]). In (a), v/a > 1 and binary formation is dominated by distant, tidal 
encounters between stars with relative velocities vr æ a. In (b), v/o 1, and binary formation occurs only through direct collisions between stars with very low 
relative velocities. 
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ated using the tidal approximation. In the opposite case (Fig. 
lb), when the velocity dispersion in the cluster is significantly 
larger than v, the formation rate is determined primarily by 
penetrating encounters taking place between stars in the low 
relative velocity valley of the distribution, and Q <0. 

For encounters with red giants (radii RG> 100 R0) in 
globular clusters, we will see in § III that an intermediate con- 
figuration is encountered, where the velocity dispersion a &v, 
and Q< 1. For encounters with stars on the subgiant branch 
(Rg ~ 10 Rq), the situation is close to that of Figure la. In the 
Galactic center, the velocity dispersion is about an order of 
magnitude larger, and the situation is very close to that of 
Figure lb. 

d) Probability Distributions for Other Observable Quantities 
We now give the procedure we use to calculate the probabil- 

ity distributions for quantities such as the eccentricity or the 
semimajor axis of the binaries. These are easily computed once 
a sufficiently detailed exploration of the parameter space has 
been accomplished. Here again we assume a given mass ratio 
mJmG for simplicity. The results are trivially generalized by 
superposing the distributions obtained for each mass bin. 

For definiteness, let us consider the semimajor axes. The 
probability of forming a binary with a semimajor axis smaller 
than a given value a is computed as 

P(<a)={f p(vr, b)dvrdb , (16) 
J J0<« 

where p(vr, b) is the probability of an encounter occurring with 
relative velocity at infinity vr and impact parameter b. Up to a 
normalization factor, this quantity is simply the product of the 
relative velocity distribution, equation (13), with 

PVr(b) = 
2b/b2

crh 

= 0, 

for b < bCTii; 
otherwise. 

(17) 

where bcrit > RG is a constant. The domain of integration, @<a, 
is the region of the (vr, b) plane where the semimajor axes of 
the binaries are found to be less than the prescribed value. In 
order to determine the location of this region with any reason- 
able accuracy, a large number of representative points in this 
plane must be calculated. 

The procedure is identical to obtain other distributions, such 
as that of the binary eccentricities or the envelope ejection 
velocities. 

m. SOME PRELIMINARY NUMERICAL SIMULATIONS 

We now describe a set of numerical simulations which we 
performed to provide preliminary answers to an otherwise very 
complicated problem. These simulations provide only very 
crude results for some aspects of the problem. However, they 
have the advantage of being fully three-dimensional, and they 
model the mass distributions, global gravitational dynamics, 
and internal energetics self-consistently and in a qualitatively 
reasonable fashion. 

a) Red Giant Model and Numerical Techniques 
In this section, all masses are expressed in units of the giant’s 

mass mG and all distances are in units of the giant’s radius RG. 
The natural unit of velocity for the problem is then 

v = = 44 km (18) 

For all the simulations presented here, we adopt a generic red 
giant model consisting of a point mass core, with mass mcore = 
0.6, surrounded by an extended envelope of mass menv = 0.4. 
The density profile in the envelope is similar to that of the 
models presented by Tuchman, Sack, and Barkat (1978); i.e., 
we use the density profile of equation (1) with n = 1. For the 
mass of the compact object, also taken to be a point mass, we 
use mc = 1 in most cases and mc = 0.2 in a few special other 
examples as noted. 

To model the dynamics of the encounter, we use a pseudo- 
particle method. The envelope of the giant is represented by a 
large number N of point particles, all of equal masses, with an 
initial distribution matching the density profile of our model. 
The particles evolve in time under the influence of their own 
self-gravity as well as the gravitational attraction to the core 
and to the compact star. “ Pressure ” is represented by giving 
the particles an isotropic velocity dispersion. At i = 0, initial 
positions and velocities for all particles are determined by sam- 
pling a continuous phase space distribution function. This dis- 
tribution function is obtained self-consistently from the density 
profile and the assumption of isotropy by an inversion pro- 
cedure borrowed from stellar dynamics (see, e.g., Binney and 
Tremaine 1987, p. 236 for a description). 

The subsequent dynamical evolution of the system was com- 
puted numerically with a standard Aarseth N-body code 
(Aarseth 1985). Accordingly, we evolved a fluid system as if it 
were a collisionless gas. While this is not correct in detail, it 
does provide a reasonable, qualitative picture of the bulk mass 
motions and gravitational dynamics. All simulations were 
done with N = 512 particles representing the envelope, except 
for a few runs which were repeated with N — 1024 and 
N = 2048, in order to check that the results were reasonably 
insensitive to discrete particle efiects. 

b) Exploring the Parameter Space 
The direct N-body code we used for these simulations does 

not allow us to use very large numbers of particles. For this 
reason, it has not been possible to reliably study cases in which 
the mass ratio mc/mG was much smaller than unity. This is 
because discrete particle effects become dominant in these 
cases, the gravitational encounters between the point mass per- 
turber and individual particles in the envelope becoming more 
and more important as the mass mc is decreased. On the other 
hand, in cases where the mass ratio is very small, say mc/mG < 
0.1, the giant star’s structure is only very weakly perturbed by 
the presence of the compact object. Other physical processes, 
occurring on a time scale much longer than the dynamical time 
scale, become important. These processes, such as secular 
angular momentum and heat transport in the envelope or 
turbulent viscosity (see Taam, Bodenheimer, and Ostriker 
1978), are not properly treated by our simulations, and our 
results would therefore be meaningless for such cases. 

Based on these considerations, we have chosen to set the 
mass ratio mc/mG = 1 in almost all cases. However, the entire 
ranges of possible values for the other two parameters were 
systematically covered. Specifically, the impact parameter h/RG 
and the relative velocity vjv were both varied from zero to 
large values greatly exceeding unity. In addition, we have 
studied just a few cases with mc/mG = 0.2, in order to deter- 
mine, at least qualitatively, the influence of a reduced mass 
ratio. 

Figures 2-5 show the results of simulations which illustrate 
most of the typical cases listed in § lia. All the figures have 
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been obtained with 512 particles and show a projection of the 
system onto the orbital plane. Coordinates along both axes are 
in units of the stellar radius RG. The time is in units of the 
typical orbital time (« envelope sound travel time) t0 = 
1982; Bieging 1984; Harvey, Lester, and Joy 1987; Mezger et 
red giant is at rest at the origin, whereas the compact star is at 
the point x = 5, y = b, moving in the — x direction with veloc- 
ity vx= —vr. The mass ratio is equal to unity everywhere 
except in Figure 5, which specifically illustrates a case with 
mc/mG < 1. 

Core ejection, followed by envelope disruption (case 2 of 
§ lia), is shown in Figure 2, which corresponds to b/RG = 0.05 
and vjv = 15.0. Note the strong hierarchy of time scales. The 
compact star moves across the envelope in the shortest time 
scale, followed by the slower escape of the core from the 
envelope. Finally, on the longest time scale, the envelope 
explodes. The explosion is slightly anisotropic, with principal 
axes clearly aligned along the trajectories of the core and 
compact object. 

Figure 3 demonstrates the possibility of having an exchange 
interaction (case 3 of § lia), where the compact star takes the 
place of the red giant’s core. This case was obtained with 
b/RG = 0.1 and vjv = 3.0. Following the primary interaction, 
the core escapes, accreting a small amount of mass, but the 
compact star subsequently remains trapped inside the poten- 
tial well of the (slightly perturbed) envelope. 

A typical case of binary formation, corresponding to case 5 
of § lia, is illustrated in Figure 4, obtained with h/RG =1.0 and 
vjv = 0.8. Note how the envelope is immediately disrupted in 
just a few crossing times. Clearly, the energy is very quickly 
dissipated here, and there is nothing like a “slow spiral-in.” 
The binary later moves along with the remnant low-density 
cloud, accreting some of the gas. At the end of the integration, 
the binary has stabilized into an orbit with semimajor axis 
n = 0.21 and eccentricity e = 0.29. 

Finally, Figure 5 shows another case of binary formation, 
similar to that of Figure 4, but where the mass ratio mc/mG = 
0.2. The other two parameters have the same values as in 
Figure 4. Here the ejection of the envelope is completed only 
after a much larger number of orbital times (as in case 5 of § lia 
above). By the end of the integration, the binary has a semi- 
major axis a = 0.08 and eccentricity e = 0.11. 

c) Binary Formation 
Figure 6 shows the maximum impact parameter bmax for 

binary formation, as a function of the relative velocity at infin- 
ity yr, for mc/mG = 1. Each point of the curve must come from a 
series of runs aimed at determining the critical impact param- 
eter bmax beyond which no bound system is formed. The large 
impact parameter behavior appears to be rather well described 
by the approximate analytic expression of equation (4). This 
should not be too surprising here, since equation (4) is expected 
to apply best to the stellar dynamical case. The maximum 
impact parameter goes to zero at a critical velocity vjv = 1.6. 
This is in reasonable agreement with the analytical estimate of 
equation (10), which predicts v™x « 2-4 for n = 1 and ^ æ 
10-100. 

Most importantly, we find that a relative velocity vr&v 
separates binary-forming penetrating encounters (bmaJRG < 1) 
from distant encounters (bmaJRG > 1). Typical velocity disper- 
sions in the cores of globular clusters are comparable to the 
value of ft for stars on the red giant branch (see eq. [18] above). 
Accordingly, for these stars the situation is somewhat interme- 

Fig. 6.—Maximum impact parameter for binary formation, as determined 
by our numerical simulations (for the case mc/mG = 1) and comparison to the 
impulsive approximation. Here hmax is in units of the red giant’s radius RG and 
the relative velocity at infinity, vr, is in units of ft (eq. [18]). 

diate between those illustrated in Figure la and Figure Ih, and 
rate calculations should take into account both penetrating 
and distant encounters. A numerical estimate of Q in equation 
(14), based on the cross section from Figure 6 (eq. [4] was used 
to extrapolate for vr 0) and the relative velocity distribution 
of equation (13) with <r = ft, gives Q æ 0.2. 

For stars on the subgiant branch, the ratio ft/a > 1, and we 
are in the situation of Figure la, where we expect that the tidal 
approximation should apply. Repeating the same calculation 
as above for ft/a = 10, we find that Q, « 500 in this case. For 
the ratio of number densities we take nG/nms& 10~2 (see 
Verbunt 1988a, Table 5),4 whereas the results of calculations 
for the tidal capture by main-sequence stars indicate 
(Rg/V&x)

2 ~ 10“3 for Rg ~ 10 Rö (see, e.g., Lee and Ostriker 
1986, in particular their eq. [2.10]). By equation (15), we then 
obtain a relative rate of binary formation r/Fms » 0.05. This is 
indeed in good agreement with the results of Verbunt (1988h), 
based on the tidal approximation. 

The semimajor axes and eccentricities of the resulting 
binaries, as a function of the encounter parameters, are shown 
in Figures 7 and 8. Along any sequence with fixed impact 
parameter b, the semimajor axis (Fig. 7) first remains very close 
to its minimum value at vr = 0, and then rather suddenly 
increases to infinity as vr approaches the critical value v^Tit(b) 
beyond which no bound system is formed. Along the same 
sequence, the eccentricity (Fig. 8) has a local minimum for 
some intermediate value 0 <vr< vc

r
ri\b% and, as expected, goes 

to unity at both ends of the sequence. The absolute minimum 
appears to be realized along the sequence corresponding to 
grazing incidence (h « 1). 

It is clear from Figures 7 and 8 that most of the binaries that 
are formed have rather large eccentricities (e > 0.2) and semi- 
major axes a ~ 0.1 RG. The procedure of § lid for calculating 
the probability distributions of a and e is only marginally 
applicable here, given the crudeness of the numerical method 

4 This number ignores mass segregation in the cluster, which may signifi- 
cantly increase the importance of captures by giants; see Verbunt and Meylan 
(1989). 
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Vr 
Fig. 7.—Semimajor axes a of the binaries formed along two constant 

impact parameter sequences. Units are as in Fig. 6. The semimajor axes along 
each sequence first remain very close to the minimum value at vr = 0, and then 
rather suddenly increase to infinity as the relative velocity approaches a critical 
value beyond which no binary is formed. 

and the relatively coarse coverage of the (vr, b) plane. We use a 
two-dimensional trapezoidal rule to carry out the integration 
in equation (16) for each value of a. We first fix the impact 
parameter b, and integrate with respect to vr, from zero to 
some value vr2(b) beyond which a becomes larger than the 
prescribed value [see Fig. 7 ; we determine vr2(b) by linear inter- 
polation between the two nearest known points along the 
sequence]. The integration with respect to b is carried out last, 
with b varying from zero to a large constant value, here b = 
5Rg (using the analytic expression from eqs. [3]-[4], one can 
verify that the contribution from even larger impact param- 
eters is negligible). The procedure for the eccentricity is identi- 
cal, except that now two boundary points vri(b) and vr2(b) have 
to be determined by interpolation, such that the eccentricity 
along the sequence is less than e when vri(b) <vr< vr2(b) (see 
Fig. 8). When carried out in this fashion, the procedure indi- 
cates the most probable values a « 0.15RG and e ^ 0.6 when 
a = v. These values are only slightly reduced by decreasing the 
mass ratio to mc/mG = 0.2. When a/v < 1, the most probable 
value of a remains virtually unchanged, while that of the eccen- 
tricity increases slightly. 

Fig. 8.—Eccentricities e of the binaries formed along several constant 
impact parameter sequences. Units are as in Fig. 6. The eccentricity goes to 
unity at both ends of each sequence, as expected, and present a local minimum 
somewhere in between. The absolute minimum appears to be realized along 
the sequence corresponding to grazing incidence {b/RG « 1). 

IV. DISCUSSION 

Only very few binary sources in globular clusters have been 
directly observed (Table 1). The large disparity in the values of 
their orbital elements makes it very difficult to define what we 
expect to be the properties of a typical binary. However, from 
the results of § III, it appears quite possible that at least the 
binaries with small separation but large eccentricity, such as 
those recently reported in 47 Tue and Ml5, may directly result 
from a recent encounter of a neutron star with a subgiant 
branch star. Indeed, contrary to widespread belief, such an 
encounter typically does not lead to a “ slow spiral-in ” and cir- 
cularization of the orbit. Instead, the energy dissipation occurs 
rapidly, in just a few orbital times, and the binary retains a 
large eccentricity. 

Naturally the ages of the binaries listed in Table 1 are not 
known, and one could imagine that they were born through a 
red giant/neutron star encounter but later evolved into what 
we observe today. In particular, for the ultracompact X-ray 
binary 4U 1820 — 30, one possible evolutionary scenario has 
been constructed which would imply an age greater than 109 yr 

TABLE 1 
Known Binaries in Globular Clusters 

Source Type Poli a (Raf e 
X 2127+119 (M15)b   LMBX 8.5 hr 2 ■> 
4U 1820-303 (NGC 6624)b   LMBX 11 minutes 0.15 ? 
PSR 1620—26 (M4)c  Binary pulsar 195 days 140 0.025 

(P = 11 ms) 
PSR 0021-72 A (47 Tuc)d   Binary pulsar 33 minutes 0.3 0.3 

(P = 4.5 ms) 
PSR 2127+11 C (M15)e  Binary pulsar 8.2 hr 2 ? (large) 

(P = 30 ms) 
a From Porb and Kepler’s law with Mtot = 1 M0. 
b See, e.g., Parmar and White 1988. 
c Lyne et al 1988; McKenna and Lyne 1988. 
d Abies et al. 1988. 
e Anderson et al 1989; Wolszczan 1989. 
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(Rappaport et al. 1987). This would also imply that the binary 
might have formed at an early epoch in the history of NGC 
6624, when the masses of the red giants could still have been 
> 1 M0. While they may be essential in explaining the cur- 
rently observed properties of the binaries, such evolutionary 
scenarios are, however, beyond the scope of this paper. 

Some of the binaries formed by red giant/neutron star 
encounters may also contribute very significantly to the 
heating of a globular cluster during its late stages of evolution 
(see McMillan, McDermott, and Taam 1987). Let us define the 
hardness / of a binary as the ratio of its binding energy to the 
mean kinetic energy of a typical star with mass m, 

X = 
(Gn± mcore/2a 

jma2 301 102 
m 

1 AWVIO km s 

(19) 

In the final expression, we have set mc = mcore = m for simpli- 
city. Clearly, the binaries formed by red giant/compact star 
encounters are hard binaries, i.e., they have x > 1* Therefore, 
they will not be disrupted by subsequent interactions with 
other stars in the cluster. However, their hardness may also be 
small enough that their probability of being ejected from the 
cluster by interacting with a third star is very low (only when 
X ^ 25 would this cease to be true). This will be the case at least 
for the binaries resulting from encounters with stars near the 
tip of the red giant branch (which give a > 100 R©). In fact, for 
these binaries, the hardness may very well be in the range 

5 < x < 10, where they will contribute most strongly to cluster 
heating (Giannone and Molteni 1985). 

From a more fundamental point of view, the very approx- 
imate calculations presented in this paper have not allowed us 
to present a very accurate description of an individual encoun- 
ter. In particular, the hydrodynamics of the envelope has not 
been correctly modeled. To do so requires three-dimensional 
hydrodynamical calculations, which until very recently have 
been beyond the capabilities of computers. In a forthcoming 
publication, however, we will repeat our calculations using the 
SPH technique (“ smooth particle hydrodynamics ”). This tech- 
nique has been successfully used recently to study several other 
types of three-dimensional stellar interactions (Benz and Hills 
1987; Evans and Kochanek 1989) and should prove useful 
here. 
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