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ABSTRACT 
We have analyzed 14 years of timing residual data from the Vela pulsar in order to determine if a chaotic 

dynamical process is the origin of timing noise. Using the correlation sum technique, we obtain a dimension 
of ~ 1.5. This low dimension indicates underlying structure in the phase residuals which may be evidence for a 
chaotic attractor. It is therefore possible that nonlinear dynamics intrinsic to the spin-down may be the cause 
of the timing noise in the Vela pulsar. However, we have found that the stimulated random walks in fre- 
quency and frequency derivative often used to model pulsar timing noise also have low fractal dimension, 
using the same analysis technique. Recent work suggesting that random processes with steep power spectra 
can mimic strange attractors seems to be confirmed in the case of these random walks. It appears that the 
correlation sum estimator for dimension is unable to distinguish between chaotic and random processes. 
Subject heading: pulsars 

I. INTRODUCTION 

The Vela pulsar, one of the brightest pulsating radio sources, 
has been closely studied for two decades and is known to 
exhibit a wide variety of interesting phenomena. The spin- 
down behavior was monitored almost continuously between 
1968 November and 1983 March as part of a pulse timing 
program carried out at the Jet Propulsion Laboratory (Downs 
and Reichley 1983; Downs and Krause-Polstorff 1986). Mea- 
surement of the phase of pulse arrival times over different 
epochs reveals abrupt increases in spin frequency or “glitches,” 
occurring at the rate of one every few years (Cordes, Downs, 
and Krause-Polstorff 1988, and references therein). The rela- 
tive change in rotation frequency v during a glitch is Av/v ~ 
10-6. In addition to these large changes in spin frequency, the 
pulsar period also shows much smaller fluctuations, known as 
timing noise. Timing noise was first recognized in the Crab 
pulsar by Boynton et al (1972), where a significant phase 
residual was found to remain after removal of the low-order 
polynomial describing the pulsar spin-down. Many other 
pulsars were since discovered to have excess phase residuals 
(Cordes and Helfand 1980), which appear to be nonstationary, 
random phase fluctuations on top of the systematic increase in 
phase of pulse arrival times from spin-down torques. Boynton 
et al. (1972) and Groth (1975) first suggested that the timing 
noise in the Crab pulsar could be modeled or described as a 
random walk in v. Cordes and Downs (1985) analyzed timing 
data on 24 pulsars collected over 13 yr at JPL and concluded 
that in most cases idealized random walks composed of steps 
only in the phase or one of its derivatives are not consistent 
with the data. It appears that the observed phase fluctuations 
are due to a mixture of steps in phase, frequency, and/or fre- 
quency derivative. 

Physical mechanisms proposed to explain pulsar timing 
noise include torques internal to the neutron star, magneto- 

spheric torque variations (which produce apparent fluctua- 
tions in the rotation rate), and angular momentum changes 
from external sources, such as accretion from the interstellar 
medium (see Cordes and Greenstein 1981 for a review). Super- 
fluid vortex pinning models (Alpar et al. 1984), which fall into 
the first category, have been successful in accounting for the 
glitches observed in several pulsars, but do not produce 
changes of both sign in the period derivative which are charac- 
teristic of timing noise. However, Cheng et al. (1988) have for- 
mulated a hybrid model in which the microglitches induced by 
vortex creep couple to the neutron star magnetic field to 
produce fluctuating magnetospheric torques of both sign. 

In this paper, a different approach is taken in the analysis of 
pulsar timing data. Instead of attempting to characterize the 
statistical properties of timing noise as a random process, we 
look for evidence of structure or nonrandomness in the data 
which could indicate that nonlinear dynamics intrinsic to the 
spin-down is the cause. The study of nonlinear dynamical 
systems that exhibit chaotic behavior is a recently developed 
and currently evolving field which is finding a rapidly increas- 
ing number of applications. These systems are governed by 
simple equations, and thus are deterministic, but can show 
very complicated and seemingly random behavior. This com- 
plexity occurs when the trajectory of the dynamical system in 
phase space has a fractional dimension, so that simple orbits 
cannot close on themselves but instead become distorted into 
never repeating loops. One very important property of such 
systems, known as “strange attractors,” is the extreme sensi- 
tivity of the dynamical trajectories to initial conditions. Since 
the initial conditions are known only to some limiting accu- 
racy in any real situation, it is impossible to predict the state of 
the system beyond some future time. This has profound impli- 
cations for our ability to model accurately such systems as the 
Earth’s climate and weather patterns, turbulent fluids, and 
population trends. On the other hand, these ideas hold 
promise for uncovering simple causes behind seemingly 
random or very complicated phenomena. 

In the last few years, a “correlation sum” technique has been 
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developed to reveal the presence of a strange attractor through 
analysis of time-series data (Grassberger and Procaccia 1983d). 
A single variable of the system is measured at evenly spaced 
time intervals, and by use of time delays the trajectories of the 
system in phase space can be reconstructed. The dimension of 
the system can then be computed, and a low fractional value of 
the dimension is good evidence for chaos. 

We present an analysis of radio pulse time-of-arrival data 
from the Vela pulsar using the correlation sum technique. This 
technique has recently been used by several other groups to 
analyze time-series data from astrophysical sources. Voges, 
Atmanspacher, and Scheingraber (1987) analyzed timing data 
from the pulsating X-ray binary Her X-l and determined a 
dimension of 2.3 for the system. Lochner, Swank, and Szymko- 
wiak (1988) searched for a low dimension in the highly variable 
light curve of the black hole candidate Cyg X-l, but found no 
evidence of a dimension smaller than 10. Measurement of a 
low dimension in a system indicates that the dynamics can be 
described by a smaller number of parameters, at least equal to 
the dimension. A system with a fractional dimension, a strange 
attractor, exhibits chaotic behavior in the variables describing 
the dynamics. 

In § II, we discuss our data and error analysis techniques, 
and the method of applying them to the Vela timing data. We 
also discuss measurement of the dimension of data generated 
by random walk models for pulsar timing noise using the same 
techniques. Results of the analysis and the measurement of the 
dimension of the Vela data and random walks in phase, fre- 
quency, and frequency derivative are presented in § III. In § IV, 
we consider the interpretation of the results, the limitations of 
our analysis, and possible directions to explore in searching for 
a nonlinear dynamical model for pulsar timing noise. 

II. METHOD OF ANALYSIS 

a) Summary of Correlation Sum Technique 

A number of methods have been developed to measure the 
properties of chaotic attractors (Froehling et al. 1981). Many of 
these methods require data sets much larger than those avail- 
able from pulsar timing programs and are therefore not applic- 
able to this analysis. We use the correlation sum technique to 
analyze the Vela pulsar timing data because it does not require 
large data sets for an accurate measure of the dimension of an 
attractor. In this technique, the phase space trajectory of the 
dynamical process is reconstructed from the time series of a 
single variable through the method of time delays (Packard 
et al 1980; Takens 1980). Given a measured time series, 
{x^i), x(t2),..., x(tN)}, each point on the trajectory in a phase 
space of n dimensions can be represented using the vectors 

V¡ = {x(í¡), x(t¡ + t), x(t¡ + 2t), ..., x[í¡ + (n - 1)t]} , (1) 

where n is the “embedding dimension” and t is a fixed interval 
between observed points in the time series. The M = 
N — (n — 1) “delay vectors” are thus constructed from each 
point in the time series and values of the series delayed at 
regular intervals. To measure the dimension of the recon- 
structed trajectory, one calculates the correlation sum C(r), 
defined as (Grassberger and Procaccia 1983a, d) 

C(r) = —t  n X 0(r-|Fr M(M - 1) i = uj>i VjD (2) 

where 0(x) is the Heaviside function, M = N — (n — 1), and 

I A"! is a norm of the vector, X. We use the norm defined as 
¡Vi - Vj\ = max {lx(ti) - x(tj)], [x(í¿ + t) - x(tj + t)], ...}. 

The correlation sum is evaluated for various choices of 
embedding dimension and delay (expressed in sample 
intervals). The task is made practical by the fact that both of 
these parameters can be kept small, generally less than 5 or 10. 
The delay time is chosen empirically beforehand so that a 
scatter plot (a “delay plot”) of x(if) versus x(it- + t) shows struc- 
ture. Ideally, the delay time should be comparable to the time 
scale of the dynamical process. If the delay chosen is too small, 
the phase space trajectory is collapsed onto the 45° line in the 
delay plot because the points and their delays are approx- 
imately equal. If the delay is too large, then successive points in 
the delay plot are not well correlated, and the trajectory is 
distorted. As long as the delay time lies within these extremes, 
the measured dimension should not depend on the exact value 
of the delay chosen (Froehling et al 1981). 

Given a choice of delay time, evaluation of the correlation 
sum for several embedding dimensions yields a family of curves 
of log C(r) versus log r. These curves may exhibit a linear 
region where 

C(r) oc r* , (3) 

whose slope <7 æ n at embedding dimensions n less than the 
dimension, D, of the attractor, but o approaches an asymptote 
as n is increased beyond the attractor dimension. This asymp- 
tote is a good estimate of the dimension of the attractor, even 
for relatively small numbers of data (Abraham ei al 1986). A 
plot of log C(r) versus log r for a random noise signal would be 
expected to have C(r) oc rn ; the slope of the curves should 
always equal the embedding dimension (for an infinite number 
of data points). A finite number of data points causes the slope 
<7 to lie below n for sufficiently large n because there will always 
be a phase space of dimension too large to be adequately 
sampled by a finite number of points (Grassberger 1986). This 
sets a practical limitation on the dimension which can be reli- 
ably measured using the correlation sum technique. According 
to various estimates (Wolf et al 1985), the number of data 
points required to measure a dimension D is 10D-30I), and 
Abraham et al (1986) suggest that the dimension can be mea- 
sured using data sets with 500 points or fewer in some cases. 

For this analysis, uncertainties for each correlation sum are 
estimated by considering the sum to be an average of contribu- 
tions from all of the phase space points defined by delay 
vectors. To calculate the errors, the contribution 

= Í Z ©(r-|F,- ^|) (4) M j=1 

from every fifth point is sampled, and the standard deviation of 
the contributions, C^r), to C(r) from each sample point i is 
computed and expressed as a fraction of the mean. This frac- 
tion is multiplied by the value of the total correlation sum to 
produce the expected uncertainty. The percent errors com- 
puted in this way increase with decreasing value of the corre- 
lation sum, becoming very large (several hundred percent) in 
cases where only a few points are included in C(r). As discussed 
below, we do not include the correlation sum points having 
errors greater than 100% in our estimate. The error in the 
slope is then computed from a weighted least-squares fit. 

b) Application to Vela Pulsar Timing Noise 
Data from the Vela pulsar take the form of pulse arrival 

times obtained at roughly weekly intervals over more than 14 
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yr. The precision of arrival times is ~25 fxs compared to the 
overall pulse period of 89 ms. The errors in the arrival times 
are white noise in character and result from additive radio- 
meter noise and from the finite number of pulses used to esti- 
mate each arrival time. Arrival times reflect the number of 
rotations that the rotating neutron star makes per unit time 
and therefore measure both the spin of the pulsar, its deceler- 
ation (spin-down), and irregularities in the spin. In 14 yr, the 
pulsar would make, without spin-down, ~3 x 109 rotations, 
while spin-down reduces the number of rotations by ~2 x 106 

cycles. The irregular perturbations amount to only a few cycles 
of phase but are several thousand times larger than measure- 
ment errors. 

In order to study the irregular component, in which we are 
most interested, the spin-down component must be removed 
from the data. This is done as follows (details may be found in 
Cordes and Downs 1985 and Cords, Downs, and Krause- 
Polstorff 1988). First, an initial model for pulse phase, 

<j>(t) = 00 + v0 Î + V0 i2/2 + V013/6 , (5) 

is used to estimate the phase <fi(tj) at each arrival time tp where 
v0, v0, and v0 are initial guesses for the parameters. The 
residual phase, ôÿitj), is taken as the fractional part of </>. The 
parameters v, v, and v can then be reestimated by minimizing in 
a least-squares sense the residuals from a second polynomial 
fit. To obtain the phase residuals for the correlation sum 
analysis in this paper, we used a third-order polynomial fit to 
estimate phase from pulse arrival times but removed only a 
second-order polynomial in the second fit. For a smoothly 
spinning down pulsar, equation (5) should be more than ade- 
quate to produce zero phase residuals. 

We begin our analysis of 564 Vela phase residuals by 
examining a delay plot constructed by plotting each phase 
residual <5</>(ii) versus a delayed residual, ôÿiti + t). The 
method of constructing delay plots, x(ti) versus x(ti+1), from a 
time series has been described by Packard et al (1980) and 
depends for its justification on the delay between adjacent data 
points being fixed. We mentioned earlier, however, that the 
time between successive measurements is only roughly 1 days. 
In fact, it varies from 1 to more than 20 days. The variation 
from the mean, moreover, exhibits local trends which are 
clearly undesirable. To remove the influence of the uneven time 
intervals between measurements as much as possible, we use 
the following procedure. First, we choose a time delay which is 
large compared with the mean interval and provides clear evi- 
dence of the structure of the trajectory in phase space. We are 
fortunate in that structure in the Vela data is evident in the 
two-dimensional delay plot. A 50 day delay was chosen for our 
analysis. Then, rather than fixing the number of data points 
between delayed residuals, we allow the number of data points 
to vary in such a way that the time interval is as close to our 
chosen delay (50 days, here) as possible. Thus we opt to make 
the actual time delay between measurements as close to con- 
stant as possible rather than using the arbitrary time scale that 
a delay of a fixed number of data points would produce. We 
call this procedure “evening” of the data. An analysis of the 
quantitative effects of data evening on evaluation of the corre- 
lation dimension will appear in a separate paper. After per- 
forming this evening of the Vela data, the rms variation about 
the mean delay was reduced by a factor of 5 and the spurious 
trends were eliminated. More importantly, the delay plot for 
the evened data, shown in Figure 1, appears to be smoother 
and more regular than the unevened plot. The evened data are 

m*) 
Fig. 1.—Delay plot of 564 evened Vela timing residuals, <5</>(í¿) vs. à(\){ti + t), 

with t = 50 days. 

then used to compute the delay vectors used in the correlation 
sum calculation. 

A final technical note must be included at this point. The 
Vela pulsar exhibits macrojumps or glitches during which the 
rotation period changes substantially (Cordes, Downs, and 
Krause-Polstorff 1988). It would not be appropriate to include 
timing residuals near the glitches, so such data were removed 
before analysis. Glitches were present in the data under con- 
sideration, and as a result we have analyzed four separate 
interglitch windows in the data. This does not interfere with 
our analysis, however, because correlation sums do not require 
contiguous data sets (Auvergne and Baglin 1986). Our pro- 
cedure for dealing with the gaps in the data was to even the 
data and to compute delay vectors at successive embedding 
dimensions for each of the four contiguous data windows 
separately. The correlation sum for all of the data together is 
the average of the correlation sums computed for each separate 
window. 

c) Simulated Random Walks 
We also analyzed pseudo-timing data by constructing 

“random” walk processes that bear at least qualitative resem- 
blence to actual timing data (Boynton et al 1972; Groth 1975; 
Cordes 1980; Cordes and Downs 1985; Cordes, Downs, and 
Krause-Polstorff 1988). Again using the phase as the measured 
quantity, random walks in the kth derivative of the phase were 
generated according to 

dk0(i) 
dtk = £ a, - t¡), 

i 
(6) 

where is a random amplitude (with appropriate units) with 
zero mean. Steps in the walk occur at times according to a 
rate R and such that the number of steps per unit time interval 
is a Poisson random variable. We constructed walks for k = 0, 
1, 2 using a rate R = 1 day- \ sampled them at the same times 
as the actual pulsar data, and removed a second-order poly- 
nomial to form pseudo-phase residuals analogous to those of 
the real data. The rate was chosen so that the mean time 
between random walk steps was much less than the mean 
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sample interval. We refer to the three kinds of random walks as 
random walks in v, and v, respectively. 

Delay plots of the phase of these random processes are 
shown in Figure 2. The delays were evened in the same way as 
the delays between phase residuals in the Vela data. It is imme- 
diately obvious from these plots that the Vela phase residuals 
are unlike either random noise or a random walk in </>. The 
much higher correlation between successive Vela phase 
residuals produces a delay plot having a structure closer to 
that seen in the higher order random walks. 

in. RESULTS 

a) Vela Timing Residuals 
Correlation sums, log C(r) versus log r, are plotted in Figure 

3 for the Vela timing residuals. The linear scaling region occurs 
only in the range of radius from 0.01 to 1.0. Correlation sums 
at radii lower than 0.01 have substantial random error, due to 
the limited number of points in the analysis. At radii larger 

than 1, all of the points are already included in the sum and the 
correlation sum saturates. Figure 3 reveals that the slopes of 
the linear regions do not get progressively larger with increas- 
ing embedding dimension, as one would expect in the case of 
random noise. Rather the slope saturates around embedding 
dimension 3 or 4, indicating that the Vela timing noise has a 
low dimension. Figure 4 shows the slope of the correlation sum 
curves from Figure 3 as a function of radius, computed from 
three-point unweighted least-squares fits. At each embedding 
dimension, the slope is roughly constant with radius in the 
linear scaling region (r æ 0.01-1.0). Above r æ 1.0 the slopes 
decrease to 0 as saturation occurs. The large fluctuation in the 
slope at r < 0.005 is due to stochastic noise in C(r) and indi- 
cates the smallest r at which the slopes of the correlation sum 
can be reliably calculated. 

We can quantify the results by computing the slope from a 
weighted least-squares fit to the points on the log C(r) versus 
log r curves at each embedding dimension. The weights are 
determined from the errors in C(r), as discussed above. To 

+ 

-e- co 

8<Kt) 

0<1) (t) 8<t>it) 
Fig. 2.—Delay plots of evened phase residuals for random processes : (a) random noise; {b) random walk in phase; (c) random walk in frequency; (d) random walk 

in frequency derivative. 
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Radius 
Fig. 3.—Correlation sums for 564 Vela timing residuals 

minimize subjective influences, we choose the following objec- 
tive standard for the points to include in each fit. The lower 
bound is taken to be the point at the smallest r value for which 
the error in C(r) lies below 100%. This occurs at C(r) ~ 0.01, 
corresponding to r ~ 0.005 at the higher embedding dimen- 
sions. This choice seems to agree well with visual estimates of 
where random deviations from linear scaling begin and with 
the onset of random fluctuations in the slope as shown in 
Figure 4. The upper bound is taken to be where the rate of 
change of reduced %2 (with respect to degrees of freedom) first 
exceeds 0.03. This upper bound criterion, chosen to mark the 
point where the correlation sum saturates, again coincides with 
visual estimates of the turnover in the curves and is the point 
beyond which the reduced %2 values rapidly increase. The fits 
to correlation sums for the data sets containing random walks 
are done in the same way. 

The computed slopes versus embedding dimension are 
shown in Figure 5. The error bars in the figure are the errors 
from the weighted least-squares fit to log C(r) versus log r at 

each embedding dimension. Systematic and measurement 
errors are negligible in comparison and are not included here. 
It is apparent that the values of the slope are converging to a 
constant by embedding dimension 3. Thus we can estimate the 
correlation dimension of the Vela residuals to be ~ 1.5. Figure 
5 also shows the slope of the correlation sum of random noise 
(see Fig. 6a) generated at the same times as the pulsar data. It 
does not exactly follow the 45° line expected for noise due to 
the limited number of data points. Nevertheless, the slope of 
log C(r) versus log r for the Vela data clearly reaches an asymp- 
tote well below the measured noise slope. 

For completeness, we have also evaluated the dimension of 
the data excluding macrojump (“glitch”) pre- and postcursors. 
This estimate suggests that the pre- and postcursor data do not 
substantially affect the determination of dimension. Phase 
residual data which included removal of a third-order poly- 
nomial fit were analyzed in the same way and yielded the same 
dimension estimate (within the errors). However, the errors in 
this case were significantly larger. 
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Fig. 5.—Correlation sum slopes vs. embedding dimension for Vela timing 
residuals and four random processes 

b) Comparison with Random Walks 
Although our estimation of the dimension of the Vela data 

stands on its own, it is desirable to follow up this estimation by 
an investigation of known processes which might mimic our 
results. In particular, recent work (Osborne et al 1986) has 
suggested that data with steep power spectra can produce 
small, fractional correlation dimensions “even when no under- 
lying attractor is present.” Moreover, it has been shown 
(Greenstein 1979; Cordes and Downs 1985) that the Vela 
timing residuals share structural features compatible with the 
second integral of a random walk (i.e., random walk in v)— 
which has a steep power spectrum. Indeed, the delay plot of a 
random walk in v (Fig. 2d) shows an orbital structure not 
unlike the Vela data. 

TABLE 1 
Properties of Random Processes 

Phase 
D™ D™ Spectral 

Process Slope3 Slope Slope Index15 Dimension0 

White noise in 0   0 0 0 0 4.2 ± 0.7d 

Random walk in 0   1 1 1 — 2 3.0 ± 0.7d 

Random walk in v   2 3 3 —4 1.9 ± 0.3 
Random walk in v   2 4 5 —6 1.7 ± 0.2 

a Logarithmic slope of the structure function near the origin. 
b Slope x of the phase power spectrum oc fx. 
c Dimension of the process estimated from slope of the correlation sum at 

embedding dimension 6 (see Fig. 5). 
d A lower limit to the true dimension, since the slope of log C{r) vs. log r has 

not reached an asymptote. 

We have evaluated correlation integrals for simulated 
random walks in 0, v and v, as well as for white noise. Corre- 
lation sums for these processes are plotted in Figure 6, and the 
resulting slopes of the linear scaling regions of log C(r) versus 
log r are shown in Figure 5. The correlation dimensions of 
random walks in v and v are both ~ 1.7, not very different from 
the Vela data. The slopes of log C(r) versus log r for the 
random walk in </> are not clearly convergent (at least for an 
embedding dimension less than 10), but indicate a correlation 
dimension well above 2, significantly larger than the higher 
order random walks. Thus the dimension is inversely depen- 
dent on the order of the random walk. Since random walks of 
increasing order have increasingly steep power spectra (see 
Table 1), the correlation dimension seems to decrease with 
increasing index of the power spectrum. This finding agrees 
with that of Osborne and Provenzale (1989), who performed a 
correlation sum analysis of random noise with steep power 
spectra and obtained a low fractal dimension inversely depen- 
dent on the slope of the power spectrum. 

It is useful to compare the properties of white noise and the 
random walk processes with the dimension estimates. In par- 
ticular, we consider the slope of the power spectrum and the 

Radius 
Fig. 6a 

Fig. 6. Correlation sums for random processes: {a) random noise; (b) random walk in phase; (c) random walk in frequency; (d) random walk in frequency 
derivative. 
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Radius 
Fig. 6c 

Radius 
Fig. 6d 
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slope of structure functions of the various processes. Strictly 
speaking, the power spectrum for nonstationary processes is 
not defined (Papoulis 1965). However, the expectation of a 
suitable spectral estimator (such as the discrete Fourier trans- 
form of a finite realization) may be considered and used to 
describe the random walk processes. Indeed, Groth (1975) 
bifurcates the random walks into stationary and nonstationary 
parts, with the stationary parts having well-defined spectra. 
For the three processes we have considered, the power spectra 
have regions in frequency space that scale as/ ~ 2,/ ~4, and/ “ 6, 
respectively, compared to f° for white noise. 

Structure functions are commonly used to describe the non- 
stationary fluctuations of clocks and frequency standards (e.g., 
Rutman 1978) and have also been used to characterize the 
phase fluctuations of pulsars (Cordes and Downs 1985; 
Cordes, Downs, and Krause-Polstorff 1988). Following 
Rutman (1978) and Cordes and Downs (1985) we define the 
mth-order structure function of the phase as the exception 

DpXt, t) = <[A<2">(t, t)]2> , (7) 

where the mth increment A^'V, t) is defined as 

t) 1)(7)^ + (m- Ot] • (8) 

The order of structure function (m) determines which order of 
polynomial (m — 1) is removed from the phase. 

The random walks we have defined are all nonstationary. 
However, various increments of the different random walks are 
stationary in the sense that they depend only on the lag t 
rather than the absolute time t in equation (8). For example, 
the random walk in phase (k = 0) has stationary first-order 
(and higher order) increments, while the other random walks 
we have considered have nonstationary first increments. The 
increment order must be at least 2 to become stationary for the 
random walk in frequency and must be at least 3 for the 
random walk in v. 

We summarize the properties of white noise and random 
walks in Table 1, where we give the slopes of structure func- 
tions and power spectra, along with the dimension estimates 
that have been determined numerically. We speculate that the 
apparent “saturation” of the slope of the (first-order) structure 
function at a value of two (the so-called “square law” structure 
function) may be related to the apparent convergence of the 
dimension toward a value ~ 1.7. 

IV. DISCUSSION 
The correlation dimension of 1.5 ± 0.2 determined from 

analysis of the Vela timing residuals indicates that at least (but 
possibly as few as) two variables can be expected to control the 
physical process responsible for the observed timing noise. The 
correlation results for the random walks in v and v suggest that 
such random walks are candidates for the process. In fact, 
random walk models for pulsar timing noise can require only a 
few variables (e.g., the microglitch model of Cheng 1987). 
Apparently the correlation sum technique cannot be relied 
upon alone to confirm or refute the existence of a deterministic 
attractor. Since the technique merely evaluates the scaling 
properties of data, that should not be surprising. The corre- 
lation sum then only tells us the dimension of a deterministic 
attractor, given its existence. We can, nonetheless, use the 
correlation dimensions in conjunction with other analyses to 
constrain our modeling options. 

Other techniques for analyzing time series data that might 
differentiate between random and chaotic processes require 
larger data sets or are not independent of the correlation sum. 
For example, Lyapunov exponents (Wolf et al 1985) can reveal 
sensitivity to initial conditions by measuring how rapidly two 
adjacent orbits of an attractor diverge. A negative exponent 
indicates a chaotic rather than a random process. However, at 
least 10 dynamical time scales are usually required to compute 
a Lyaponov exponent accurately, and the Vela data seems to 
have at most five. The Kolmogorov entropy is another 
measure of chaotic processes, but since its lower bound can be 
calculated from the correlation sum (Grassberger and Pro- 
caccia 1983h), it is related to the correlation dimension and is 
not an independent measure. Therefore, it also would not be 
able to distinguish between the Vela data and the higher order 
random walks. 

In principle, one could distinguish between a random walk 
and a truly chaotic process by analyzing derivatives of the 
phase. By taking successive derivatives, a nonstationary 
random walk can be reduced to stationary white noise. Thus a 
delay plot constructed from a time series in the third derivative 
of 0 and the slopes from a correlation sum analysis should 
both be indistinguishable from random noise if the process is a 
random walk in v. If the process is chaotic, then there should 
be some residual structure. In practice, however, the numerical 
error in taking successive derivatives is large and may mask 
any structure in delay plots of the third derivative. 

Scargle (1989) has recently proposed an additional technique 
which may be able to separate the random noise component 
from the chaotic component of a time series. Furthermore, for 
simple cases it is able to separate a time series generated by a 
random or chaotic process from a constant filter with which it 
is convolved. Since a random walk is a moving average—i.e., 
the convolution of a fixed filter with random noise—this tech- 
nique could possibly determine whether the Vela phase 
residuals are random or chaotic. That is, if the Vela phase 
residuals are a random walk, then the delay plot of the 
defiltered time series should look like random noise. 

The possibility remains, however, that the timing noise in 
the Vela pulsar is due to a chaotic dynamical process. Non- 
linear effects in the spin-down might be capable of producing 
chaotic torque variations, and there are a number of simple 
models which could be investigated. For example, the Euler 
equations for a rotating object with magnetic dipole moment 
not aligned with either the rotation axis or moment of inertia 
principal axes exhibit chaotic spin-down behavior in some 
parameter regimes. A periodically kicked rotator is a well- 
studied example of chaotic dynamics with a fractal dimension 
between 1 and 2 (Schuster 1984). The measured low dimension 
of the Vela data indicates that only a few variables would be 
needed to describe the system. If this is the case, then high- 
order random walks are just very good phenomenological 
models for chaotic dynamical processes. Indeed, more detailed 
scrutiny of the Vela data shows that a simple random walk in v 
or v alone cannot underlie the Vela timing irregularities 
(Cordes et al. 1988). 

Our analysis has also raised other questions which should be 
investigated in order to strengthen our result and which could 
be of more general application. First, since the data were not 
taken at evenly spaced intervals, we have introduced a tech- 
nique for evening the time delays prior to performing the corre- 
lation sum. We plan to test this technique on attractors of 
known dimension to evaluate the limits of its applicability and 
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to make the technique available to others. Second, since our 
data consists of only ~500 points, we intend to evaluate the 
errors involved in using the correlation sum analysis with 
small data sets, again using known attractors. 
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