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ABSTRACT 
We have reinterpreted spectroscopic data on the motions of stars near the centers of M31 and M32. The 

mass distribution near the centers of each of these galaxies must be more concentrated than the light. We 
have constructed models containing black holes in the mass range 4-5 x 107 M0 for M31 and 0.7-3 x 106 

M0 for M32. Extended models of the unseen mass must have core radii less than 0'.'4 and must contain ~ 108 

M0 for M31 and ~107 for M32. 
There are two astrophysical constraints on extended models. First, the objects that comprise them must not 

collide frequently. Second, the two-body relaxation time must be long enough that the nuclei have not already 
collapsed. These constraints are not particularly interesting at present but are likely to become so if Space 
Telescope observations reduce the maximum core radii of the mass distributions in the two galaxies. 
Subject headings: black holes — galaxies: individual (M31, M32) — galaxies: nuclei 

I. INTRODUCTION 

The nearby galaxies M31 and M32 have been shown to have 
concentrations of mass near their centers which have higher 
mass-to-light ratios than the stars that appear to dominate the 
mass distribution of the galaxies on scales of tens to hundreds 
of parsecs. In each case two independent sets of investigators 
have argued on different grounds for the presence of this mass 
and tentatively identified it as a black hole. In the case of M31, 
Dressier and Richstone (1988, hereafter DR) have argued that 
the light distribution, dispersion profile, and central rotation 
curve mandate a mass of about 5 x 107 M0, while Kormendy 
(1988) has argued for an object about a factor of 2 less massive. 
In M32, DR obtained a point mass of about 5 x 106 M0, 
while Tonry (1987) has suggested a similar mass. The DR study 
was unique in its ability to role out the possibility of account- 
ing for the observations with a constant M/L spherical but 
very anisotropic distribution function. This was accomplished 
through the use of a maximum entropy modeling technique 
(Richstone and Tremaine 1988, hereafter RT). 

It is, however, well known to all investigators in this area 
that the observational data do not point unambiguously to a 
central point mass. Rather, some additional mass is required on 
a rather small spatial scale near the center of the galaxy. In this 
paper, we use the same observational data presented in DR to 
constrain that mass distribution. In particular, a two- 
component model is constructed in which the galaxy mass 
distribution consists of the light distribution times an unspeci- 
fied M/L plus a mass distribution of specific radial profile but 
unspecified scale size and mass (and hence, central density). In 
M31, we find that the central dark mass distribution must 
contain 108 M0 within 3.4 pc of the center. In M32, the dis- 
tribution must contain about 107 M© within 3.4 pc of the 
center. 

The method we used is described in § II. In § III, we explore 
point mass models with differing central masses to find the 
range of central point masses consistent with the data. In § IV, 

we report on dark mass distributions consistent with the obser- 
vations. 

II. METHOD 
Most key elements of the method employed here have been 

described in DR and RT. The observational data consist of a 
light distribution J(R), a projected dispersion profile crp(R), and 
a projected major axis rotation curve vp(R) along the major 
axis, all as a function of central distance projected on the sky 
(R). The method we use consists of five steps. 

1. Convert I(R) into the spatial luminosity density e(r) (in 
L0 pc"3) by assuming spherical symmetry. 

2. Assume a mass distribution of the form 

p(r) = ae(r) + n(r), (1) 

where a is the unknown M/L, and p is the specified density 
distribution of the dark mass. For M32, we took the model for 
e(r) specified by Tonry (1987, eq. [2]). For M31, we fitted a 
two-component analytic King model to the profile derived by 
Light, Danielson, and Schwarzschild (1974). Each component 
has a luminosity density distribution of the form 

e(ri = e0[l+(r/«)2]-3/2, r < rmax 

€(»•) = 0, r > rmax 
U 

where rmax was set at 100". We refer to a as the core radius of 
the distribution. The nuclear component had e0 = 6.5 x 104 

Lq pc-3 (based on B magnitudes) and a = 0"A. The bulge 
component had €0 = 35 L0 pc-3 and a = 30". 

To model a central point mass, p(r) = C ô(r). For the 
extended mass models we chose a density distribution of the 
form given by equation (2) and varied the central density and 
core radius with rmax = 10". 

3. Construct a complete set of spherically symmetrized 
orbits in the mass distribution defined by equation (1). 

4. Using that set of orbits, use a constrained maximum 
entropy technique (RT) to construct a dynamical model by 
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superimposing as many of the orbits as needed to match the 
light distribution e(r) and to reproduce the observed g(R) 
profile [in fact, we match a fake (t(R) profile constructed by 
trial and error, so that after step 5, the observed <t(R) profile is 
well matched]. The orbits are assumed to be populated always 
in the prograde direction so that the galaxy is the maximally 
rotating version of the model. The maximum rotation speed of 
the model and the quality of the fit to the (t(R) profile can be 
increased or decreased by varying the multipliers and ß2 in 
the modified entropy that is being maximized : 

S^S-ß^ + ßiJ2, (3) 

where S is the usual thermodynamic entropy j / In / d3x d3v, 
X2 measures the goodness of fit of the model to the dispersion 
observations, and J2 is the sum of the squared specific angular 
momentum of the orbits which pass near the center of the 
galaxy, weighted by their contribution to the light in that 
region. 

5. The model so constructed is compared to the observa- 
tions by projecting the contributions to the first two velocity 
moments from each orbit onto lines of sight and integrating 
the luminosity-weighted moments along those lines of sight 
through the galaxy at all R (see Richstone and Tremaine 1984). 
These moments are then convolved with a seeing profile 
(assumed Gaussian1) to mimic the effect of Earth’s atmosphere 
on the observations. The resulting rotation and dispersion pro- 
files are compared to the observations. The dispersion profiles 
of the model must fit the observations at an acceptable x2 while 
the rotation curves must equal or exceed the observed rotation 
curves everywhere (the model’s rotation curve can always be 
lowered at a given radius by reversing some fraction of the 
orbits with pericenters near that radius). A failure to match the 
dispersion profile to an acceptable x2 and to meet or exceed the 
observed rotation rate implies that the model is unacceptable. 

III. POINT MASS MODELS 

Point mass models are constructed for each galaxy by 
assuming that /¿(r) = fh <5(r) in equation (1). Although the mass 
of the black hole cannot be specified in advance, the velocity 
dispersion data from a few to nearly 100" from the center of 
both galaxies constrains the mass-to-light ratio of the stellar 
population quite well under the assumption of equation (1). 

For a range of point masses, models were constructed with a 
value of the weighting factors and ß2 chosen in advance. 
The dispersion profiles and rotation curves of these models 
were computed by projecting their rotation velocities and 
velocity dispersions onto the line of sight and convolving them 
with seeing as described above. This yielded a range of masses 
with acceptable fits to both the dispersion and rotation curves. 
At the edges of the acceptable range, each of the weighting 
factors was adjusted to see if the range could be extended. 
Usually the acceptable range could not be enlarged in this way. 
The results of this procedure can be seen in Figure 1 for M31 
and Figure 2 for M32. For M31 the point mass must lie in the 
range 4 x 107 < M < 5 x 107 M0. For M32 the point mass 
must lie in the range 7 x 105 < M < 3 x 106 M0. Note that 
the requirement that the model rotation curve match or exceed 
the observed curve sets the lower limit of the point mass, while 

1 The use of a Gaussian point-spread function is not ideal. Various authors 
have shown that the sum of two Gaussians or a Gaussian plus a skirt is much 
more appropriate. Our idealization is conservative; the use of a more appro- 
priate function would shrink the range of acceptable models further. 

the requirement that the model velocity dispersion profile 
match the observations tends to set the upper limit of the 
range. 

Some understanding of this phenomenon can be gained by 
considering circular orbits near the galaxy center. A shell 
model consists entirely of circular orbits at each radius. Hence 
(jr = 0, vf = GMr/2r = 2 v2 (the factor of 2 arises because the 
orbits must form a spherical shell and vf is the one- 
dimensional dispersion) and urot>max = (2/n)(vf)1/2. Thus, the 
squared circular velocity must exceed the maximum internal 
rotation rate by nearly a factor of 5, 

V2
C > Tt2v2J2 . (4) 

So an observed rotation rate tends to set a lower limit on the 
mass distribution near the center of the galaxy. 

Next we consider the contribution to the projected second 
moment of the orbits in the shell model. It is easily shown to be 
(vf}. Intuition suggests that the addition of nearly radial 
orbits can only increase the observed velocity dispersion at 
small radii for a fixed mass distribution since they must travel 
faster than vc when they are near their pericenters. So, at fixed 
mass, the shell model seems to have the lowest possible disper- 
sion near the center with a2 ~ vf/2. Thus, the dispersion sets 
an upper limit on the mass distribution 

vf < 2o2 . (5) 

This argument is confirmed by the models constructed in Rich- 
stone and Tremaine (1984) in which the lowest central disper- 
sions at fixed mass appear in the models which are dominated 
by nearly circular orbits. 

IV. DISTRIBUTED MASS MODELS 

Distributed mass models are investigated by the following 
procedure. First, using equations (1) and (2), a variety of mass 
distributions are constructed by varying the core radius a of 
the dark matter distribution and, at each value of a, varying 
the central density ^0. The mass inside any radius is defined by 
a, fi0, and by the M/L of the stellar material, determined by the 
modeling process. The central density is varied until the upper 
and lower limits which produce acceptable fits to the disper- 
sion profile and rotaton curve are found. At any fixed core 
radius, this procedure is the same as the one used to define 
acceptable point mass ranges in § III. The results obtained 
from this procedure are displayed in Tables 1 and 2 and 
Figures 3 and 4. They are most simply described in terms of the 
mass enclosed inside 1". 

For M31 and M32, solutions are found only for a < 0"4 (or 
1.3 pc). For M31, all solutions enclose about 108 M0 inside 
r = 1". The mass-to-light ratio inside this radius is about 100. 
For M32, all solutions contain 107 M0 within 1", and the M/L 
inside this radius is about 30. 

These distributed mass models must be collections of 

TABLE 1 
M31 Model Ranges 

M(l") p(0'.'l) p(0"4) 
a (M0) {M0 pc 3) (M0pc 3) 

0"2  9.5 x 107 1.2 x 107 3.5 x 106 

1.2 x 108 1.7 x 107 4.8 x 106 

0.4  1.1 x 108 4.8 x 106 2.6 x 106 

1.3 x 108 5.6 x 106 3.1 x 106 
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TABLE 2 
M32 Model Ranges 

M(l") p(O'.T) p(0"A) 
a (Mg) (MoPc-3) (MoPc-3) 

0':2  1.4 X 107 1.4 x 106 4.4 x 105 

0.4  1.3 x 107 1.0 x 106 3.7 x 105 

1.4 x 107 1.0 x 106 3.7 x 105 

objects, so at least two astrophysical constraints may be 
applicable. If the average star physically collides with another 
in a sufficiently short time, stellar mergers may lead to the 
build-up of a very massive object in a time scale less than the 
age of the galaxy. Second, if the two-body relaxation time is 
sufficiently short, the nucleus may core collapse. 

Both of these processes have been studied in connection with 
globular clusters and in the context of M31 and M32 by 
Goodman and Lee (1989). First, we consider M31. 

The stellar collision rate for each star may be written as 

l/tcol = 16w1/2mot^(1 + <D) (6) 

(Binney and Tremaine 1987), where O is the Safronov number 
defined by O = GmJ(2(j2rJ), n is the number density of stars, 
r* and m* are the stellar radii and masses, and a is the velocity 
dispersion (taken as isotropic for this estimate). If this collision 
time is less than a Hubble time, it seems likely that a runaway 
merger process will occur, leading to a supermassive star or a 
black hole. The lower limit on the average density inside 0" 1 
from Table 1 is ~5 x 106 M0 pc-3, and we adopt a value of 
(j = 250 km s- ^ For these parameters, the collision time scale 
for main-sequence stars near 1 M0 in M31 is 

tcol = 2.2 x 1010 yr(j^ 1 (7) 

(the m~1 dependence appears because we have approximated 
the mass radius relation near the Sun as m ~ r). So, if the mass 
in the nucleus is carried by main-sequence stars, they must be 
less massive than 1 M0 to avoid merging with each other. A 
more severe constraint is derived from the central M/L of 

LO 
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Fig. 3.—Locus of acceptable models as a function of mass inside 1" (M) and 

core radius (a) in arcseconds for M31. For core radii larger than 0, all accept- 
able models had roughly 1 x 108 M0 within 1" of the galaxy center. No 
models had core radii larger than 0'.'4. 
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O 
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Fig. 4.—Same as Fig. 3 for M32. No satisfactory models were found with 

core radii larger than 0'.'4. All distributed mass models had ~ 1 x 107 M0 
inside a 1" radius. 

around 100, which suggests that if the mass is main-sequence 
stars, they must be less massive than 0.25 M0. 

The central relaxation time may be written as 

tr 
0.34 

G2mln In (A) (8) 

(see Binney and Tremaine 1989). For the parameters given 
above and In (A) =10, the central relaxation time in M31 is 

'-=5'ixio,yrfe)'• <9) 

(the m“1 dependence arises because the central mass density 
p = m*n is constrained by the observational data much better 
than n). 

Although the evolution of dense stellar systems is more 
properly parameterized in terms of the half-mass relaxation 
time, Cohn’s (1985) simulations core-collapse after a few 
hundred central relaxation times (the “ few ” approaches one 
for reasonable mass spectra). So, since M31 has a resolved 
core, it seems most unlikely that the objects which dominate 
the mass are heavier than 50 M0, regardless of their size. 

In the case M32, we adopt p(0'T) = 1 x 106 M0 pc-3 and 
cr = 100 km s-1. The corresponding limit for physical colli- 
sions is 

rcol = 6.0 x 1010 yr(^) ‘ , (10) 

so stars more massive than the Sun have a very good chance 
for survival in M32. As in M31, the central M/L provides a 
more severe constraint on the possibility of carrying the mass 
in the form of main-sequence stars. The central relaxation time 
in M32 is given by 

tr = 1.8 x 109(^£) 1 yr , (11) 

yielding a limit ~10 M© due to two-body relaxation of 
putative degenerate or point mass objects. 

Although these astrophysical arguments are unimpressive 
given our present upper limits for the core radii of aggregate 
models, it is of great interest to consider the impact of Space 
Telescope data with much greater angular resolution. Current 
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o 

log(a) 
Fig. 5.—Relationship between central density in M0 pc-3 and core radius 

a in parsecs for the mass model given in eq. (2) and our analysis of the M31 and 
M32 data. For M31 (solid line), we assumed the mass within 1" (3.4 pc) was 
fixed at 108 M0. For M32 (dashed line), we assumed that the mass inside 1" 
was 107 Mq. 

spectroscopy obtained in seeing with a FWHM of 0'.'5 yields an 
upper limit to the core radii of the mass distribution in both 
galaxies of about 0"4 (~ 1.5 pc). If the mass is in fact a single 
black hole, then Space Telescope data with a spatial resolution 
of ~0'.'05 will reduce the upper limit core radii by a factor of 

10. Examination of Figure 5 shows that the central density of 
our straw man model will go up by a factor of >100 for each 
galaxy. For M31, the physical collision time is reduced to 

-13 * “’fer ^ • 

and main-sequence stars cannot carry the bulk of the mass 
unless they are brown dwarfs. Also, in M31, the central relax- 
ation time would drop to 

-5-8 " io,fe) 
Even degenerate objects would have to be less massive than 0.5 
M0 in order for the core to have not evolved through core 
collapse. The limit for collisions in M32 would restrict main- 
sequence stars to m* <0.1 M0. Even better, the limit based on 
the relaxation time is also 0.1 M0, regardless of the size of the 
objects. Thus it appears that Space Telescope will be able to 
significantly strengthen the case for a massive black hole in 
M31 by restricting the alternative models to rather incredible 
parameters. 

We are grateful to Jeremy Goodman and John Tonry for 
helpful discussions. This research was supported by NSF 87- 
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