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ABSTRACT 
We compute the two-point correlation function, (^GG, in redshift space for the groups of galaxies identified 

by Ramella, Geller, and Huchra from the extension of the Center for Astrophysics (CfA) redshift survey. The 
group catalog includes galaxies with mB(0) < 15.5 and covers the right ascension range 8h < a < 17h and the 
declination range 26?5 < <5 < 38?5. The amplitude and slope of ÇGG agree with the values for the galaxy corre- 
lation function computed for the same region. These results also hold for a larger sample which covers the 
same right ascension range and the declination range 26?5 < <5 < 44?5. The amplitude of <^GG is consistent 
with an extrapolation of the amplitude-richness relation for rich clusters (see Bahcall) and with the density 
scaling of the cluster correlation function suggested by Szalay and Schramm. 

We examine the contribution of members of groups to the galaxy correlation function. We show that on 
scales less than ~3.5h~1 Mpc intragroup pairs dominate the correlation function (the Hubble constant H0 = 
100h km s-1 Mpc-1). On larger scales intergroup pairs are the largest contributors. Regardless of the density 
contrast for group selection, the “ field ” remains weakly correlated. 
Subject headings: galaxies: clustering — galaxies: redshifts 

I. INTRODUCTION 

Individual galaxies and clusters of galaxies are not equiva- 
lent tracers of the large-scale matter distribution in the uni- 
verse (Peebles 1980; Kaiser 1984; Szalay and Schramm 1985, 
hereafter SS85). The large amplitude of the two-point corre- 
lation function for clusters (Bahcall and Soneira 1983 
[hereafter BS83]; Klypin and Kopylov 1983; Batuski and 
Burns 1985; Shectman 1985; Postman et al. 1986; Shvartsman 
1988) relative to that for individual galaxies (Davis and Peebles 
1983; de Lapparent, Geller, and Huchra 1988, hereafter dGH) 
is an observational constraint which many models cannot 
easily meet (see, for example, Kaiser 1984; White et al 1987; 
Weinberg, Ostriker, and Dekel 1989; Davis and Efstathiou 
1988). 

Because clusters are identified as density enhancements on 
the sky (Abell 1958; Zwicky et al. 1961-1968) it is difficult to 
reproduce the selection procedure in an AT-body model (Frenk 
et al. 1989). However, group catalogs (Maia da Costa, and 
Latham 1989; Ramella, Geller, and Huchra 1989) large enough 
for calculation of a correlation function can now be extracted 
from complete redshift surveys. Exactly the same objective 
group-finding algorithms can be applied to simulations (see, 
e.g., Nolthenius and White 1987). Thus the statistics of the 
distribution of groups could be used to evaluate the adequacy 
of the models. 

Jing and Zhang (1988) and Maia and da Costa (1989) calcu- 
late the group correlation function for the original CfA survey 
(Huchra et al. 1983) and for the Southern survey (da Costa et 
al. 1988), respectively. They find, rather surprisingly, that the 
amplitude of the group correlation function is significantly 
lower than that of the galaxy correlation function. These 
results disagree with the predictions of models like the one 
proposed by Kashlinsky (1987): the correlation function 
amplitude for systems must be at least as large as for individual 
galaxies. 
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Here we examine the large-scale distribution of groups of 
galaxies selected from complete slices of the CfA redshift 
survey extension. We describe the data in § II. In § III we use 
the redshift survey to reexamine the contribution of group 
members to the galaxy correlation function. This issue was 
considered by Turner and Gott (1975) before the availability of 
complete large-scale redshift surveys. Section IV describes the 
calculation of the group correlation function. Section V is a 
discussion of the relationship between the correlation function 
for groups and those calculated for rich clusters. We examine 
the results for groups as an extension of the relation between 
correlation function amplitude and richness. Our conclusions 
are in § VI. 

II. THE REDSHIFT SURVEY AND THE GROUP CATALOG 

Ramella, Geller, and Huchra (1989, hereafter RGH) identi- 
fied groups of galaxies in the first two complete strips of the 
CfA redshift survey extension (Huchra et al. 1990). The region 
of the sky covered by the two strips is 8h < a < 17h, 26? 5 < 
3 < 38?5, corresponding to a solid angle of 0.42 sr. Here we 
limit our analysis to the 1672 galaxies in the two strips with 
cz < 12,000 km s -1 and with mB(0) < 15.5. 

We adopt the galaxy luminosity function from dGH. The 
values of the parameters are consistent with the more detailed 
analysis by de Lapparent, Geller, and Huchra (1989; see their 
Table 1). Magnitudes are on the Zwicky-B(O) system, and we 
make no absorption correction. We parameterize the lumin- 
osity function (¡)(M) according to the Schechter (1976) form 
with amplitude 0* = 0.025 galaxies mag-1 Mpc-3; character- 
istic magnitude MJ(0) =—19.15; and faint end slope 
a = —1.2. The corresponding luminosity density is 2.05 x 108 

Lq Mpc-3. 
RGH contains a full account of the group identification pro- 

cedure and of its limitations. Here we summarize a few particu- 
larly relevant points. We produced the group catalog by 
applying an objective algorithm which searches for “ friends of 
friends” in redshift space (Huchra and Geller 1982). Galaxies 
in a group are separated by line-of-sight velocity V <VL = 
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Fig. 1.—Cone diagrams for the declination range 26?5 < ô < 44?5. The plots contain (a) 2355 galaxies with mB(0) < 15.5 and cz < 12,000 km s 1, (b) 173 groups 
with Nmem > 3, and (c) 614 galaxies not assigned to a group or binary (the “ field ”). 
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V0 R and projected separation D < DL = D0R. Both DL and VL 
are scaled with redshift to account for the magnitude limited 
sampling; R is the scaling factor. The choice of D0 fixes the 
minimum number density enhancement öp/p of a group rela- 
tive to the global mean. For the RGH catalog D0 = 0.27/i_1 

Mpc corresponding to a number density threshold of ôp/ 
p = 80. We take F0 = 350 km s-1. As explained in RGH these 
choices minimize problems with interlopers. 

The catalog contains 128 groups with at least three members 
and 56 with at least five members; there are 774 group 
members with cz < 12,000 km s-1. The algorithm also iden- 
tifies 140 binary systems. Our statistical confidence in the 
reality of the binary systems in low; in fact, we estimate that 
33% of the triples are probably accidental superpositions. 
Section IV contains the statistical analysis of this group 
catalog. 

A third complete slice of the CfA redshift survey covers the 
ranges 38?5 <0< 44?5 and 8h < a < 17h (Geller 1987). In all 
three slices there are 2355 galaxies with cz < 12,000 km s-1. 
This third slice has not yet been as carefully analyzed as the 
other two. Assuming the same global luminosity function, we 
identified groups as in RGH. In the three slices together we 
find 73 groups (71 with at least five members), 206 binaries, and 
835 “field” galaxies. Figures la, lb, and 1c show galaxies, 
groups and “ field ” galaxies in these three slices. Similar plots 
for the first two slices are in RGH (their Figs. 1,4a, and 4b). We 
use the larger group sample to demonstrate the robustness of 
the results for the first two slices. 

III. CALCULATION OF CORRELATION FUNCTIONS 
We compute the two-point correlation function £(s) as a 

function of the separation in redshift space : 

(Vj +vj- 2ViVj cos 

H0 
(1) 

where kj and Vj are the velocities of two galaxies (groups) 
separated by an angle on the sky and H0 is the Hubble 
constant. As in Davis and Peebles (1983) and dGH88, we use 

N dd(s) 
Ndr(s) 

- 1 (2) 

as the estimator of <^(s). Here VDD(s) is the number of pairs with 
separation (s, s + ds) in the data. ATDR is the number of pairs at 
separation (s, s + ds) with one point in the data (D) and the 
other in a random “control sample” (R). The “control 
sample” contains randomly distributed points in the volume 
filled by the data. The geometry for the random sample and the 
selection function 

P[ V} 4>(M)dM (3) 

are the same as for the data. Here M(v) is the absolute magni- 
tude of the faintest galaxy included in the sample at velocity v 
and is the absolute magnitude of the faintest galaxy 
included at a fiducial minimum velocity of 300 km s-1. The 
“control sample” accounts for edge effects caused by the 
“ slice-like ” geometry of the survey. 

We calculate correlation functions for (1) all galaxies (^gg), (2) 
“members” (£mm), (3) “field” galaxies (<j;ff), and (4) groups 
(£gg). Here “members” are all galaxies in the systems of gal- 
axies identified in RGH; for this study we include galaxies in 
“ binaries ” among “ members.” The “ field ” galaxies are those 
not assigned to groups or binaries. We use the same form of the 
selection function for all of these samples. We vary only the 
normalization to account for the different sample sizes. Figure 
2 shows that this approach is reasonable. The redshift distribu- 
tions for all of these samples are indistinguishable. 

Our sample of groups is small and thus the uncertainty in 
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Fig. 2.—Redshift distribution for (a) galaxies {dashed line), (b) groups {solid 
line), and (c) field galaxies {dotted line) in the declination range 26? 5 < ô < 
38?5. The distributions are normalized to the total number of objects in each 
sample. 

the selection function is large. For this reason we have chosen 
not to weight the calculation of the correlation function 
inversely with selection function, p(v). Because of the large- 
scale coherent structures in the survey, the choice of weighting 
of the points in the calculation of a correlation function has a 
significant effect on its amplitude (see LGH 88). Here, we are 
primarily interested in the relative amplitudes of correlation 
functions for the four sets of points described above. Because 
all of the samples trace the same large-scale structures, the 
relative amplitudes are unaffected by the weighting. 

Each of the correlation functions we calculate is an average 
of correlation functions computed for 40 different realizations 
of the control sample. Forty realizations are sufficient to 
produce a stable mean. The dispersion of the correlation func- 
tions around the mean, ^(s), yields our estimate of the Poisson 
errors. This estimate is a lower limit to the uncertainty because 
points at different separation s are not independent (see Kaiser 
1986). There may also be systematic errors in the determi- 
nation of the correlation function. These include the difficulty 
of determining the appropriate mean density. In fits to power- 
law approximations, variations in the range of the fit and in the 
point weighting scheme may introduce additional significant 
variations in the derived parameters. 

III. GALAXIES, “MEMBERS,” AND THE “FIELD” 

Here we calculate the correlation function for “members.” 
We then examine the contribution for inter- and intrasystem (a 
system is a group or binary) pairs to this correlation function. 
We show that on scales less than ~3h~1 Mpc intrasystem 
pairs dominate the correlation function and on scales from 
3-10/1-1 Mpc intersystem pairs make the largest contribution. 
The “ field ” is more weakly correlated by construction of the 
group catalog; however, its distribution is not random. 

Figure 3 shows the galaxy correlation function and the 
correlation function <i;mm for group members. A fit of imm to a 
power-law form 

«S).(¿)’ (4) 

over the range 3-10/î“ 1 Mpc gives s0 = 8.0/i_ 1 Mpc, y = —1.3. 

The uncertainties are ~20% in s0 and ~ 10% in y. This ampli- 
tude is slightly larger than the s0 = 5.2/i_1 for ^gg. For £gg, 
y = —1.3. Again the uncertainties are ~20% in s0 and 10% in 

y- 
Figure 3 also shows the correlation function for “field” gal- 

axies, £ff, which has a significantly lower amplitude than £mm. 
For ¿;ff, s0 = 23h-1 Mpc and y = —1.5. The cross-correlation 
function ^mf has a similarly low amplitude. Both groups and 
the field trace the large-scale pattern in the distribution of 
galaxies (see Figs. \h and 1c). The scale of ¿ff is comparable 
with the thickness of the structures. For groups selected at 
lower density contrast, the “field” is less correlated but not 
randomly distributed (Turner 1975). 

One subtlety in the calculation of ¿ff is that there are 
“holes” in the distribution where group members have been 
extracted. Failure to correct for these in the random control 
samples can lead to a spurious anticorrelation in ^ff on the 
scale of individual groups. To eliminate this problem, we intro- 
duce “ holes ” in the random control samples at the positions of 
groups in redshift space. The size of a “ hole ” is twice the mean 
pairwise separation and 4 times the velocity dispersion of the 
group located at that position. With this choice, making these 
“ holes ” in the actual data extracts all but five group members. 

Figure 3 shows that, as we would expect, “members ” are the 
dominant contributors to the galaxy correlation function. We 
can decompose £mm to examine the relative contribution of 
intrasystem and intersystem pairs to the correlation function. 
Figure 4 shows ^intra + 1 and £inter + 1 along with + 1 = 
£i„.ra + ¿inter + 2. The slope of £intra is roughly equal to -2 
because on small scales the correlation function samples pri- 
marily the velocity dispersion of the groups. Groups are essen- 
tially one-dimensional structures “stretched” out along the 
redshift direction by peculiar velocities. This component domi- 
nates ^mm (and ^gg) on scales <3/i-1 Mpc, roughly the scale of 
a typical group. The slope of ^inter is shallower and is mainly 
determined by the relative positions of groups in the survey 

Fig. 3.—Two-point correlation functions for {a) members, £mm, {open tri- 
angles, thin line), {b) field, £ff, {open squares, thin line), and (c) all galaxies, £gg, 
{squares, thick line) in the declination range 26?5 <S< 38?5. In this plot the 
1 o Poisson error bars would be slightly larger than the symbol size. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

35
3.

 . 
.5

IR
 

No. 1, 1990 GROUP CORRELATION FUNCTION 55 

log s 
Fig. 4.—Decomposition of the two-point correlation function for members 

(thick line): (a) contribution of members within groups (squares) and (b) contri- 
bution of members assigned to different groups (triangles). The dotted line 
shows the two-point correlation function for groups. We plot (1 + £) for all 
samples. 

(and by the number of members in each group) or, equivalently 
by the large-scale structure in the region. 

IV. GROUP-GROUP CORRELATION FUNCTION 

Figure 5 shows the group-group correlation function, <^gg(s)» 
for the 128 groups in the catalog with three or more members. 
The error band shows the 1 cr limits. On scales < Mpc 
groups are, by definition, anticorrelated. A /2 fit of the group- 
group correlation function to a power law (eq. [4]) gives s0 = 

6.0/t_1 Mpc and y = — 1, over the range 3-10h-1 Mpc. At 
larger scales ^Gg(5) falls below the noise level. We weight the fit 
inversely with The uncertainty in the correlation length is a 
factor of 2.5; the uncertainty in the exponent is ~50%. These 
results are unaffected by (1) a change in the density threshold 
for groups to dp/p = 20 and (2) inclusion of binaries in the 
dp/p = 80 sample. 

For comparison, Figure 5 also shows <l;gg. Remarkably, the 
correlation functions for groups and for galaxies are equal to 
within the 1 a errors. For both <^gg and ^GG the systematic 
errors are larger than the Poisson errors. For example, the 
slope of <^gg is y = —1.5 (as compared with y = —1.3) if the 
range of the fit extends to 14/i_ 1 Mpc and even steeper if the fit 
is unweighted (y = —1.7; see dGH 88). Figure 4 shows the 
coincidence of <^GG with ¿inter for s > 5/i“1 Mpc. 

Because the sample of groups is small, we use the larger 
three-slice catalog (173 groups) to test the robustness of our 
results. Figure 6 shows the correlation functions ^gg and <^GG 
for this sample along with the corresponding correlation func- 
tions for the two-slice sample. The results for £GG agree to 
within the 1 a errors. Fits to power laws for the three-slice 
correlation functions yield somewhat steeper slopes than those 
obtained for two slices. Because the true errors in the determi- 
nation of these correlatin functions are large, we do not regard 
these differences as significant. 

Although groups and the field appear to trace the same 
large-scale features of the galaxy distribution, their correlation 
functions differ on scales <10/i-1 Mpc. Groups are not a 
random sampling of positions occupied by “ field ” galaxies but 
are more clustered. Samples of 128 galaxies drawn from the 
“field” are less ordered along sheets than groups are. The 
mean correlation function for samples drawn from the “ field ” 
is £ff. One might worry that the “field” has holes at the group 
positions. At the local density of the “ field ” we would expect, 
on average, ~60 additional “field” galaxies at group and/or 
binary positions. Even if we place an additional “ field ” galaxy 

log s 
Fig. 5.—Two-point correlation function, £GG, for 128 groups (Ar

mcin > 3) in 
the declination range 26?5 < Ö < 38?5 (thick line). The dotted lines mark the 
± 1 <7 band of £GG. The thin line represents £gg. 

Fig. 6.—Two-point correlation functions for the samples in the 18° slice 
(dashed lines) and in the 12° slice (solid lines) : (a) all galaxies (triangles) and (b) 
groups (squares). Error bars are omitted for clarity. 
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at each group and binary position, a random sampling still 
produces {ff. 

V. RELATIONSHIP BETWEEN CORRELATION FUNCTIONS 
FOR GROUPS AND CLUSTERS 

Over the last few years, the high amplitude for the corre- 
lation function of rich clusters has been widely discussed. With 
the power-law form in equation (4), the correlation function for 
rich clusters has s0 = 14-25h~1 Mpc with y= —1.8. The 
amplitude is a function of the richness of the clusters. In this 
section we first discuss the relationship between our groups 
and the clusters identified by Abell and/or Zwicky. We then 
ask whether the amplitude of the group correlation function is 
consistent with an extrapolation of the relationship between 
cluster richness and the amplitude of the cluster correlation 
function. 

Within the range of the survey there are seven Abell clusters, 
four with Abell richness class R = 0, two with R = 1, and one 
with R = 2 (Coma classified according to Abell). These clusters 
are all groups in our catalog: the R = 0 clusters have five to six 
members, the R = 1 clusters have eight and 13 members, and 
Coma has 139 members. If we ask how many groups have at 
least the same number of members as the poorest clusters 
(Nmem > 4), at least the same line-of-sight velocity dispersion 
(av > 200 km s-1) and a mean redshift cz > 6000 km s-1 

(Abell estimates that he can identify clusters at redshifts greater 
than this limit), we find 20 such “ cluster-like ” groups (in addi- 
tion to the Abell clusters). Six of these are similar to R = 1 
Abell clusters. Eighty percent of our R = 0 and R = 1 “ cluster- 
like ” groups are also nearby Zwicky clusters. Zwicky classified 
about half of them as “ open ” and half as “ medium compact.” 
These classifications are similar to those Zwicky applies to the 

clusters also identified by Abell. These comparisons indicate 
that Abell may have missed some nearby systems. Figure 7 
shows that, in addition, Abell clusters (marked with arrows) 
seem to be a biased sample of the cluster-like groups. The 
wedge diagram shows the distribution of R = 0 and R = 1 
cluster-like groups including the seven found in the third slice 
(four of these are R = 1, two are R = 2; one of the groups in 
the third slice corresponds to two Abell clusters: A2197 and 
A2199 which are so close together that the algorithm cannot 
separate them). The complete identification of nearby R = 1 
clusters is particularly important because poorer systems, 
being more numerous, dominate the determination of the 
cluster correlation function. 

The 56 groups with at least five members produce an unrea- 
sonably noisy correlation function. However we can determine 
whether the Abell clusters are a random sample of these 
systems. We repeatedly extract random samples of seven 
groups from the sample of 56 rich groups and compute the 
distribution of distances among each set of seven groups. A KS 
test indicates that the distribution of these distances differs at 
the 95% confidence level from the distribution of the distances 
between pairs of Abell clusters. 

Our group-group correlation function cannot be compared 
directly with typical determinations of the cluster-cluster corre- 
lation functions, ¿cc, because the range of scales over which 
they are determined do not overlap. A scale of ~ 10/i-1 Mpc is 
generally the smallest scale point for £cc and the largest reli- 
able scale for £GG. However, Postman, Geller, and Huchra 
(1986) show that the amplitude of the correlation function for 
Zwicky clusters is consistent with a random sampling of the 
galaxy distribution; in other words the amplitude is the same 
as for ^gg. Our correlation function for groups selected in red- 

rigtit ascension 

Fig. 7.—Cone diagram (18° slice) for “cluster-like” groups: (a) R = 0 {crosses) (b)R> l (circles). Arrows mark Abell clusters; the numbers near the arrows are 
Abell’s richness classification for each cluster. 
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shift space appears to support the reliability of Zwicky’s cluster 
catalog for nearby systems. Furthermore the Postman et al. 
(1986) correlation length for Zwicky clusters which are spread 
over a larger area of the sky strengthens our finding that 
groups have a correlation function consistent with ^gg. 

BS83 discuss the decrease of the cluster correlation function 
amplitude, ^cc (1 Mpc) with richness. They also classify indi- 
vidual galaxies as iV = 1 systems (where N is Abell’s (1958) 
criterion for richness classification) and suggest that galaxies 
have a correlation function amplitude which falls on the rich- 
ness relation for clusters. From a physical perspective, it is 
probably misleading to treat individual galaxies this way. The 
processes which govern galaxy formation differ from those 
important for systems. 

The clustering of groups does appear to be consistent with 
the scale-invariant clustering of richer systems (Bahcall and 
Burgett 1986). We find that the group correlation function £GG 
has the same correlation length as Çgg. It is not possible to 
translate the number of members of our groups into a specific 
N. However, because many of the richest groups are nearby 
Zwicky clusters, N for all groups must be less than or equal to 
that for nearby Zwicky clusters. For any AT < 10 the richness 
dependence of the correlation amplitude applies to all galaxy 
systems but not to individual galaxies. 

Consistent with this argument, SS85 pointed out that 
galaxy-clustering might be intrinsically different from cluster- 
clustering. They discuss a possible “universal” correlation 
function for clusters characterized by a slope —1.8 and by a 
dimensionless amplitude ß. This amplitude is obtained by 
scaling £(1 Mpc) with the mean separation between systems, 
L = n~1/3. SS85 derive ß ^ 0.35 for Shectman’s (1985) clusters 
and for Abell R > 1 and R > 2 clusters. For galaxies they 
obtain ß = 1.1. This value is significantly higher than for clus- 
ters and, within this picture, would mean that galaxies are 
relatively more strongly correlated than clusters. 

Now we investigate whether groups obey the scaling sug- 
gested by SS85. The best fit slope for <^GG is —1, but —1.8 
cannot be ruled out. To derive the value of ß for our sample of 
groups we need the space density, nG. To estimate nG, we use 
the density of clusters scaled by the ratio of the number of 
groups to that of Abell clusters in our survey. There are five 
Abell clusters with R = 1, 2 and 173 groups: for a density of 
clusters nc = 6 x 10-6 Mpc-3 (R > 1; BS83) we obtain 
ß = 0.2. This value is in reasonable agreement with /? = 0.35, 
given the uncertainties in both the density and the correlation 
function. We find even better agreement with SS85 if we use 
Schectman’s (1985) density, nc = 3.6 x 10~5 Mpc-3, and scale 
it according to the number of R > 1 “ cluster-like ” groups in 
our survey. We derive ß = 0.3. It is interesting that Shectman’s 
(1985) density predicts 12 clusters in the volume of our survey, 
i.e. the number of “cluster-like” groups. For nc = 6 x 10-6 

Mpc-3 (BS83), we expect only two clusters with R > 1. In 
summary, the amplitude of the group correlation function is 
consistent with an extrapolation of the amplitude-richness 
relation and with the density scaling found for richer systems. 

57 

V. DISCUSSION 

The group correlation function <^GG indicates that, to within 
the errors, groups and individual galaxies are equivalent 
tracers of the large-scale matter distribution. Because £GG and 
(^gg are indistinguishable, the distribution of group centers is 
equivalent to random sampling of the galaxy distribution. 
Inspection of the cone diagrams in Figures \b and \c should 
convince even the skeptic that groups trace the large-scale 
structure marked by individual galaxies. 

We do not understand the source of the discrepancy between 
our results and those of ling and Zhang (1988) or Maia and da 
Costa (1989). We suspect that the V0 = 600 km s-1 used for 
their group catalogs may be part of the problem. As empha- 
sized by Nolthenius and White (1987) in evaluating Geller and 
Huchra (1983), this velocity cut admits too many interlopers. 

There is no direct observational evidence that richer clusters 
are reliable tracers of large-scale structure. Such evidence could 
only be derived by comparing the distribution of rich clusters 
and galaxies within the same survey. Redshift surveys are not 
yet large enough to permit such a comparison. 

Although our statistical confidence in the identification of a 
particular poor group may be low, the group catalog is 
extracted from the redshift survey by a completely objective, 
well-defined procedure. Exactly the same procedure could be 
applied to an N-body simulation (see, e.g., Nolthenius and 
White 1987). To test the models against the data one could 
compare not only the group correlation function £GG but also 
the behavior of the correlation functions for “ members ” and 
the “field.” 

The amplitude of the correlation function for groups is con- 
sistent with an extrapolation of the amplitude-richness relation 
for clusters (Bahcall 1988). The amplitude scaled by the mean 
intersystem separation is also consistent with results for richer 
clusters. We suggest that these two results are flip sides of the 
same coin : they reflect the scale free nature of cluster clustering 
(Szalay and Schramm 1985). We also suggest that the clus- 
tering of individual galaxies is an exception to both the 
amplitude-richness relation and the density scaling. 

One of the difficulties in comparing results for groups and 
clusters is the fundamental difference in the way the catalogs 
are constructed. Redshift surveys are not yet large enough by 
themselves to extract samples of rich systems. Furthermore, the 
richness parameter is not ideal for describing the systems selec- 
ted from complete surveys. Velocity dispersion, central density, 
or mass (see Kashlinsky 1989) are parameters more closely tied 
to the physics of the systems. Eventually redshift surveys will 
be large enough to investigate the amplitude-richness relation 
(or its equivalent) in an internally consistent way. 

This research was supported in part by NASA grant 
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