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ABSTRACT 
We study solutions of the Grad-Shafranov equation which describe ideal magnetohydrodynamic (MHD) 

flows around a magnetized, rotating neutron star, where the rotation and magnetic axes are identical. The 
“force-free” limit of this equation is identical to the so-called pulsar equation. We derive the pulsar equa- 
tion from a variational principle that minimizes the electromagnetic field energy subject to the constraints of 
fixed total angular momentum and total magnetic helicity. This procedure allows one to apply a result from 
fusion plasma theory, which suggests a specific form of the magnetic helicity for the configuration. This 
removes an indeterminancy from the pulsar equation which was not resolved in earlier attempts to find a 
unique equation for the electromagnetic fields. The pulsar equation is found to be a piecewise linear partial 
differential equation with a class of solutions that include self-collimated electromagnetic jets along the rota- 
tion axis of the star. These jets are confined by magnetic pinching and carry energy, angular momentum, and 
electric current far away from the star. 

We calculate numerically the global field structure for pulsar magnetospheres that contain electromagnetic 
jets. A principal result is that all of the poloidal magnetic field is confined within the light cylinder of the star, 
either as closed field loops connected to the surface of the star or as part of the jets. This yields a unique 
magnetospheric field topology with specific jet characteristics. We discuss the applicability of this model to 
compact synchrotron nebulae that have been observed in supernova remnants. 
Subject headings: hydromagnetics — pulsars — stars: neutron 

I. INTRODUCTION 

A new class of objects has emerged in the past few years that 
may indirectly indicate the presence of a pulsar within a super- 
nova remnant—compact synchrotron nebulae (CSNs; Kafatos 
and Henry 1985). The characteristic appearance of these 
objects is a diffuse cloud of emission with a brightness distribu- 
tion that is centrally peaked. Approximately 20 of these objects 
have been detected so far, in wavebands from radio waves to 
X-rays. A few of these have been observed in more than one 
region of the spectrum (Weiler 1985). Their flat radio flux spec- 
trum (iS[v] ~ v~a, with a ^ 0 for 0.4 GHz < v < 5.0 GHz), the 
hard, featureless spectrum in the X-rays, and their strong linear 
polarization (fractional polarizations of 5%-25%) indicate that 
the synchrotron emission illuminates the nebulae. CSNs have 
been detected alone, at the centers of supernova remnants, and 
with known radio pulsars. All the known pulsars within super- 
nova remnants are also located within a CSN (however, one 
pulsar within a remnant is also part of a compact binary 
system, and its emission overwhelms any observable CSN). 
The most famous CSN is the Crab Nebula, where synchrotron 
emission is observed in the radio, optical, and X-ray regions of 
the spectrum and is so intense that it dominates the emission 
from a classical supernova shell. 

It is clear that the power source for the Crab Nebula is the 
pulsar 0531-1-21 located within it. The estimated total lumi- 
nosity of the nebula is 1038 ergs s-1, which is comparable to 
the measured spin-down energy loss rate È ~ 5 x 1038 ergs 
s-1 of the pulsar. The short lifetime of the high-energy 
synchrotron-emitting particles requires either replenishment 
from the pulsar or reacceleration within the nebula. Because 

the smaller X-ray nebula is located near the pulsar, it is likely 
that the pulsar provides the high-energy charged particles, 
which then diffuse outward to form the bulk of the optical and 
radio nebula. Finally, the relatively strong magnetic field in the 
nebula (10~3 to 10~4 G) suggests that the pulsar’s magnetic 
field is wound up within the nebula by its rotation. 

Models for CSNs have been developed by Rees and Gunn 
(1974), and more recently by Kennel and Coroniti (1984). The 
basic mechanism in both of these models is a strong relativistic 
MHD wind that emerges from the light cylinder surface of the 
pulsar, carrying power in both bulk particle flow and magnetic 
field. Because the expansion velocity of the outer boundary of 
the nebula is subsonic, the wind undergoes a shock at a dis- 
tance Rs ^ 0.1Rneb from the pulsar, where Rneb is the radius of 
the nebula. Beyond Rs, the flow is randomized, and it is there 
that the bulk of the synchrotron radiation is emitted. This 
structure would explain the observed underluminous zone 
around the pulsar (Schmidt, Angel, and Beaver 1979). The rela- 
tively large synchrotron surface brightness of the Crab Nebula 
compared to other CSNs may be explained by the large 
amount of power that the pulsar supplies and by the relatively 
small size of the nebula (caused by the anomalously small 
expansion velocity of the supernova shell). 

These models concentrate upon deriving the parameters 
which describe the wind, namely, the ratio of the Poynting flux 
to the kinetic energy flux upstream of the shock and the 
Lorentz factor of the flow upstream of the shock. They assume 
spherical symmetry and do not attempt to solve for self- 
consistent fields in the vicinity of the pulsar (i.e., within the 
light-cylinder). 
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Many of the synchrotron nebulae, including the Crab 
Nebula, show considerable elongation. This elongation may be 
caused by inhomogeneities in the confining interstellar plasma 
or by inhibited expansion of the supernova remnant transverse 
to a large-scale interstellar magnetic field. However, it is also 
possible that the pulsar’s magnetosphere injects momentum and 
energy along a preferred axis in the form ofjets. ” 

Beaming from galactic sources exists in compact binary 
systems. The X-ray binary SS 433 exhibits spectacular beaming 
with oppositely directed relativistic jets (Margon 1984). Elec- 
trodynamic dynamo models involving an accretion disk may 
power jets often seen in extragalactic radio sources (Lovelace 
1976; Blandford 1976; Lovelace, Wang, and Sulkanen 1987, 
hereafter referred to as LWS). The jets we discuss which may 
produce the beaming in CSNs require neither a binary system 
nor an accretion disk; rather, they are part of the structure of 
the (isolated) pulsar magnetosphere. Benford (1984) considered 
the behavior of the magnetic field lines near the magnetic poles 
of a pulsar where the magnetic and rotation axes were nearly 
aligned. He argued that the plasma flow from the pulsar would 
be turbulent except near the rotation axis, where the toroidal 
field is wrapped to produce a current-carrying plasma beam 
with a radius equal to the “ light cylinder radius ” of the pulsar; 
rlc = c/Q*, where Q* is the angular rotation velocity of the star. 
This discussion did not attempt self-consistent calculation. 
Michel (1985) considered the motion of charged test particles 
in a simple model for the electromagnetic field of a pulsar’s 
wind. He found that in the case where the rotation axis and the 
magnetic axis were aligned, the particle trajectories were 
directed toward the rotation axis of the star. This calculation 
did not consider the back effect of the charged particles’ 
motion on the electromagnetic fields. 

In this paper, we describe self-consistent solutions to the 
near-field region of an aligned rotating and magnetized 
neutron star. The solutions include electromagnetic jets which 
can extend to large distances (several light cylinder radii) along 
the rotation axis of the star. The jets arise from solutions of the 
“pulsar equation” (Scharlemann and Wagoner 1973), which 
governs the electromagnetic field structure near the star. The 
pulsar equation was first described by Scharlemann and 
Wagoner (1973), Michel (1973a), and Cohen, Coppi, and 
Treves (1973). The radii of the jets is less than rlc, and the jets 
carry energy, angular momentum, and electric current away 
from the star. In § II, we derive the “ pulsar equation ” using a 
variational principle for the steady state structure of the mag- 
netosphere. We postulate that the magnetospheric plasma 
relaxes to an equilibrium subject to fixed angular momentum and 
magnetic “helicity. ” Consequently, we have a strong constraint 
on the form of the magnetic helicity for the configuration. This 
removes an indeterminancy from the pulsar equation which 
has frustrated earlier attempts to find a unique solution for the 
electromagnetic fields. The pulsar equation is found to be a 
piecewise linear partial differential equation. In § III, we 
discuss the jet solutions at large axial distances from the star. 
In § IV, we describe the numerical methods used to determine 
the global field structure of the magnetosphere, and in § V we 
describe the results of numerical calculations for a variety of jet 
and stellar parameters. We summarize our results and discuss 
briefly the effect of magnetospheric jets upon models for CSNs 
in § VI. 

II. THE PULSAR EQUATION FROM A VARIATIONAL PRINCIPLE 

We review briefly the equations which describe MHD equi- 
librium around a rotating magnetized neutron star, where its 

magnetic axis and rotation axis are identical. The derivation 
here is similar to that given by Scharlemann and Wagoner 
(1973) for the “pulsar equation,” and by Lovelace et al (1986) 
for the relativistic Grad-Shafranov equation. We assume (i) a 
steady state, axisymmetric, z-reflection symmetric system, (ii) 
that the effects of pressure, gravity, and collisions are negligi- 
ble, and (iii) that the star is uniformly rotating, perfectly con- 
ducting, and threaded by all of the magnetic field lines in the 
configuration (Fig. 1). 

The basic equations for the plasma are the mass conserva- 
tion equation, 

V • (pv) = 0 , (1) 

where p and v are the plasma mass density and flow velocity; 
the Euler equation 

^ Jx B ^ 
peE + = 0, (2) 

where pe is the electric charge density and J is the current 
density, and where we have ignored the contributions from the 
plasma inertia; Ampere’s law, 

^ « 47T V x B = — J, 
c 

with V • / = 0; Coulomb’s law 

\ • E = 4npe ; 

Faraday’s law 

V x £ = 0; 

Ohm’s law 

v x B J 
<7 

E + - 

(3) 

(4) 

(5) 

(6) 

where <r is the plasma conductivity, here taken to be extremely 
large so that the right-hand side of equation (6) is arbitrarily 
small. 

r 
Fig. 1.—Schematic picture of the magnetosphere of an “aligned rotator” 

pulsar (adapted from Mestel, Phillips, and Wang 1979). Here x and y are the 
poloidal coordinates scaled by the light cylinder radius. Also shown is the 
region of the magnetosphere included in the variational volume, defined by a 
cylindrical can of radius x = 1 and y = Y P i. The volume excludes a small 
layer of thickness e along the equator and the surface of the star. 
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In this axisymmetric system, it is most convenient to 
describe the poloidal magnetic field in terms of the flux func- 
tion 'I/(r, z): 

Br(r, z) = 
1 
r dz (7) 

where T = rA#, with A# the toroidal component of the vector 
potential. Surfaces of constant *¥ are formed by rotating the 
poloidal projection of a magnetic field line around the z-axis. 

By axisymmetry and equation (5), it follows that E# = 0. The 
poloidal component of the plasma velocity given by equations 
(5) and (6) is parallel to the poloidal magnetic field; vp = 
fc(r, z)Bp. The mass conservation equation (1) then implies that 
Bp * V(PK) = 0. We therefore have that 

F(x¥) 
p(r, z)K(r, z) s —— , (8) 

4tü 

where F is an arbitrary function of 'F. It then follows that 
v x B = r-1^ — With this result, we can use 
Faraday’s law and the condition of perfect conductivity to find 
that 

(IéJIJîM = 0(4/, ; (9) 
r 

and 

= (F[y — l]c2 — ÇïH)BJA%. We can then see that the condi- 
tion for the “ force-free ” assumption is 

F{y - i)c2 

\QH\ 
< 1 . (16) 

The left-hand side of equation (16) is only a function of x¥. 
Thus, if this inequality is satisfied anywhere on a surface of ¥, 
then it holds everywhere on this surface. 

The pulsar equation is the “force-free” limit of a Grad- 
Shafranov equation which describes general axisymmetric 
ideal MHD equilibria (Lovelace et al 1986). One result of this 
formalism is to identify several presumably arbitrary functions 
of the poloidal magnetic flux ^(r, z) which specify a particular 
solution of the Grad-Shafranov equation. In the force-free limit 
considered here, only two of these functions are important. 
One is identified from Faraday’s law and the assumption of 
perfect conductivity, 

(17) 

where ¿XT') is identified as the angular velocity of the poloidal 
field lines. In the pulsar magnetosphere where all the field lines 
thread the star, Q('F) is fixed to be the angular velocity of the 
star, Q*. The other important flux function is derived from the 
toroidal component of the Euler equation, which implies 
angular momentum conservation on each flux surface, 

E = V'F , (10) 

where Q is another arbitrary function of The plasma veloc- 
ity can then be written as 

pm B +r_5W_ 
47rp(r, z) p |_47cp(r, z) 

+ ram (11) 

The toroidal component of the Euler equation (2) along with 
the condition that = 0 gives 

Bp • VtfOF) = 0 , (12) 

where HOP) = rB# is a third arbitrary function of'P. If we write 
the magnetic field as 2? = V'F x V</> + H0F)V</>, where V</> = 
r ~ ^ then the current density can be written as 

(13) 

where H'= dH/cW and = d2/dr2 — r'1d/drd2/dz2. 
Using this result, along with equations (9) and (10), the com- 
ponent of the Euler equation along Bp is identically zero, while 
the component parallel to V^P gives the “ pulsar equation ” : 

[ 
- 

_1_ 
2r2 V V'P + HH' = 0 . (14) 

Because v • E =0 and J • E = 0, the bulk Lorentz factor 
of the plasma is a constant along the field lines; y = (1 — 
v • t>/c2)-1/2 = y('P). The energy conservation equation implied 
by the ideal MHD equations (l)-(6) is 

V • Sp = 0 , (15) 

where 5P is the Poynting flux of the electromagnetic field. The 
poloidal component of 5P is — QHBp/4n. Including the plasma 
bulk kinetic energy in the poloidal energy flux density gives 

HOF) = rBf . (18) 

From this equation and Ampere’s law, we can see that a physi- 
cal interpretation for H is that 2H(xF)/c is the poloidal current 
which flows within the flux surface defined by *F = constant. 

In contrast with Q('P), the pulsar equation does not directly 
imply a particular functional form for #(¥). Michel (1982) 
observed that HOF) is completely arbitrary except that 
H(0) = 0, to avoid a singular current along the z-axis, and that 
H = 0 on the equatorial plane (z = 0) because of the even field 
symmetry [^(r, z) = +¥(?•, — z)] (where H cannot be simply a 
function of *F). Beyond these restrictions, it has been assumed 
previously that there are no other physical constraints on the 
form of H. 

Solutions to the pulsar equation have been obtained 
assuming that H was a simple analytic function of x¥. The case 
in which H ccW leads to a linear equation for 'P which can 
then be solved numerically. Michel (1973a) considered solu- 
tions for *F within the light cylinder for H('P) = 0 everywhere. 
Physically, these solutions correspond to a rigidly corotating 
magnetosphere. Solutions with H = constant are identical to 
these, with the superposition of singular toroidal magnetic field 
from a line current along the z-axis. Michel (1973h) also con- 
sidered the case where H is a second-order polynomial in 'P, 
which admits solutions where no net axial current flows in the 
poloidal half-plane (eq. [2]). This choice leads to an analytic 
solution for 'P, yielding an monopolar magnetic field. Pellizari 
(1974) considered H as higher order polynomials of 'P of the 
form HOF) = -(1 - ['F/'Fc]

n), with 'P, = NP(r = Rlc, z = 0) 
and n an arbitrary integer. Once again, this choice yields closed 
poloidal current loops in each half-plane of the magnetosphere. 
Numerical calculations of the resulting z) were then deter- 
mined both inside and outside the light-cylinder (separately) 
for various values of n > 0. Pellizari found that, in general, Bz 
was discontinuous at the light cylinder surface, requiring a 
toroidal current sheet there. This discontinuity could be mini- 
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mized for the choice of H as a linear function of = H0 
— X'F, but the sheet current could not be removed entirely. 

Scharlemann and Wagoner (1973) similarly considered a 
piecewise linear form for H, with H0 and K as defined above 
identically zero in a closed corotating magnetosphere, and 
H0 = 0, X # 0 in the open field line region. For this selection 
of H, the pulsar equation is everywhere a (piecewise) linear 
partial differential equation in XF. They solved for the eigen- 
functions for the open field line region, assuming that they 
decreased exponentially with z and that the functions were well 
behaved through the light cylinder surface. However, they did 
not attempt to construct a complete solution from these eigen- 
functions that would join the open field line regions and the 
closed magnetosphere consistently. 

In summary, the global solutions to date of the aligned 
rotator magnetosphere are unphysical, and H(T/) has been 
specified without physical basis. A physical basis for H can, 
however, be found by formulating the equilibrium problem as 
a constrained variational principle (Taylor 1974). As a simple 
example, consider the equilibria of a force-free plasma with 
negligible gas pressure (Freidberg 1982): 

\ x B — ÀB , (19a) 

where 2 is a function such that 

2? • = 0 , (19b) 

so that 2 = ¿OF). The corresponding Grad-Shafranov equation 
can be written as 

+ HH' = 0 , (20) 

with H defined as in equation (2), so that 2 = H' = dH/d^. The 
arbitrariness of H results from the fact that field-aligned cur- 
rents given in equation (19a) can have any value. However, 
current conservation implies that the constant of proportion- 
ality 2 does not vary on a flux surface. 

The equilibrium described in equation (19a) can be deter- 
mined by minimizing the energy 

W = -^- \ B-Bd3x , (21) 
8n Jv 

where V is the volume of the plasma. A perfectly conducting 
plasma will evolve toward equilibrium in such a manner that 
the total helicity, 

= J • Bd3x , (22a) 

remains fixed. This can be generalized to include any arbitrary 
function of'F within the integrand; i.e., 

= J • Bd3x , (22b) 

will also be a fixed quantity. This is true because helicity is 
strictly conserved on each flux surface z). Therefore, the 
appropriate variational quantity or action for the equilibrium 
is 

J = \ B • Bd3x + j nWA • Bd3x . (23a) 
JV JV 

Writing the magnetic field in terms of derivatives of ¥ and the 
poloidal vector potential Ap, the action becomes 

J =±i 
87t Jy 

(V'F) • (VTO 
+ (V x Ap) • (V x Ap) 

+ Stt/xW'FV^ -(V x A p) 

+ 87r/zOF)V(/> • (A px W) \rdrd(¡)dz (23b) 

The Lagrangian L is the integrand in the brackets of equation 
(23b). The Euler-Lagrange equations for variations in 'F, Ar, 
and Az, 

and 

lead to 

-^=0. 
IdÇVAi)] ÔA, 

A*'!' - 47^2^) + T ^ j = 0 

(24a) 

(24b) 

(25a) 

and 

WirB^) + 4nV('¥2ju) = 0 . (25b) 

Recalling that rB^ = H('F), then substituting the result of equa- 
tion (25b) into equation (25a) recovers the Grad-Shafranov 
equation (20), where H('F) can be written as 

H(y) = - 47tJ^y/i(y) + . (26) 

From the analysis above, we see that the function HOF), which 
appears in the pulsar equation, is related to yet another arbi- 
trary flux function /¿OF), which specifies the helicity on any flux 
surface 'F in a perfectly conducting plasma. 

Under more realistic conditions, the magnetospheric plasma 
will be (slightly) resistive, so that both helicity and energy will 
decay toward the equilibrium state. However, the rates at 
which these quantities decay will usually be very different. 
“ Selective ” decay, whereby the plasma in its approach to equi- 
librium dissipates a small fraction of its total helicity while 
losing a substantial amount of energy, has been predicted in 
the relaxation of a plasma by turbulence-driven cascades 
(Montgomery, Turner, and Vahala 1978; Montgomery and 
Turner 1982). Qualitatively, this occurs because the plasma 
energy cascades from large to small spatial scale fluctuations, 
where it can be dissipated rapidly, while helicity coalesces (by 
reconnection) from smaller to larger spatial scales where it 
dissipates slowly. Numerical simulations (Riyopoulos, Bond- 
eson, and Montgomery 1982) have demonstrated a large 
monotonie decay of the ratio of total plasma energy to helicity 
during the relaxation to an equilibrium (minimum energy) 
state. 

This behavior supports the hypothesis first proposed by 
Taylor (1974,1975) that small departures from perfect conduc- 
tivity in the plasma act to destroy helicity conservation on 
individual flux surfaces, while the total helicity, the integral of 
A • B over the total plasma volume, remains approximately 
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constant. Therefore introduced in equation (22b), is a 
constant. This implies that //OF) is a linear function of'F: 

/*(¥)= -gTi/i'F, (27) 

which leads to a linear force-free equation (19a). 
We can apply this result to the pulsar magnetosphere by 

deriving the pulsar equation from a variational principle. Here 
we seek an action functional for the pulsar equation which is 
physically motivated. A mathematical variational quantity for 
the pulsar equation was discussed briefly by Scharlemann and 
Wagoner (1973), but its physical basis was not recognized, nor 
was an attempt made to constrain the form of HÇ¥). 

Neglecting inertial terms, the total plasma energy ^ is 

^ B - B + E- Ed3x , (28) 
OTt Jy 

where the fields are measured in the stationary observer’s 
frame. The inertial terms can be ignored in the energy provided 
that the (y — l)pc2 B2/Sn, or that 

r ^11 -/l 1v (29) 

where coc+ is the nonrelativistic cyclotron frequency for the 
positively charged plasma species (ions or positrons) and / is 
the relative density of electrons,/ = njn+. The values for the 
ratio coc+/Q* are in excess of 104 for ions and 107 for positrons, 
assuming a pulsar period of 1 s and a field strength of a « 10 G 
(the stellar field near the light cylinder surface). This ratio 
scales with Q* approximately as Q2, so that ignoring inertial 
terms in the total plasma energy is valid for pulsars with short 
periods (P < 1 s). 

We take the volume for the variational principle to be a 
cylindrical can in the upper half volume z > 0. The can is 
centered upon the pulsar and extends to the light cylinder 
surface. The bottom surface of the can avoids the equator and 
the surface of the star by a small distance e. The axial extent of 
the cylinder is Lz > rlc (Fig. 1). 

Goldreich and Julian (1969) estimated the electric field com- 
ponent parallel to the magnetic field for a neutron star in a 
vacuum. This £|| is typically so large that the magnetosphere 
will fill with charge drawn off the neutron star. The magneto- 
sphere could also be filled with plasma from magnetospheric 
pair production (Ruderman and Sutherland 1975) and grain 
evaporation (Cheng 1985). Violations of the force-free condi- 
tion (2) are restricted to regions such as a polar “gap” 
(Ruderman and Sutherland 1975), technically outside of the 
region of our calculation. We assume also that the conductivity 
is sufficiently large so that the global helicity constraint of 
equation (22b) is valid. Thus, /i('F) is taken to be a constant. 

The helicity is a well-defined (i.e., gauge-invariant) quantity 
when the plasma volume is bounded by magnetic surfaces 
where Ä • ¿5 = 0, with dS a surface element of the plasma. The 
surface of the variational volume of Figure 1 does not have this 
property; however, we can relax this requirement if the steady 
state condition on the helicity comes from a balance of 
helicity injection and losses on the boundaries. The helicity flux 
density can be written as 

Q = 2<l>eB — V x {<i>eA), (30) 

where (¡>e is the electrostatic potential (Jensen and Chu 1984). 
We consider the surface integral at the star for a cap centered 
upon the rotation axis. The outer edge of the cap is defined by 

the value of XF. The surface integral of Q on this cap then gives 
the rate of helicity injection from the star: 

= Q ' dS = — |47r 

(31) 

Since the potential (¡)e is a function only of x¥, then a similar 
surface integral for the same field lines that intersect the outer 
boundaries gives dJ^out/dt = —d^^Jdt. In principle, helicity 
transport can occur on all field lines. We will require later that 
only the field lines that exit from the end caps of the volume in 
Figure 1 carry helicity. 

We consider now any additional constraints that should be 
imposed upon the equilibrium. The outflow of angular 
momentum from the rotating star equals that carried by the 
electromagnetic field through the outer boundary of the can. 
For an aligned rotator, the constraint of fixed total angular 
momentum Lz is written as 

= i { ñ(,P)2 ' O x * Â)]à3jc, (32) 

where ñ('F) is a flux function with units of angular velocity. As 
before, the inertial terms are neglected. The boundary condi- 
tion at the neutron star surface requires that &(¥) = Q*, the 
angular velocity of the star. Using equation (6), the final form 
for the pulsar action, including the constraints of fixed angular 
momentum and magnetic helicity, is 

yy • vy rt (vxap)-(vxap) 
Snr2 L c2 y Sn 

+ nW2?# • [V x OF - ^p)] jr dr dz d<j>, (33) 

which leads to the pulsar equation 

T1 - (—) ]a*¥ - — — ^ + tftf' = 0 , (34a) 
L VJ J ru rlc dr 

where 

//(¥) = rBf = -87T//, (34b) 

with /i a constant. 

III. JET SOLUTIONS FOR THE PULSAR MAGNETOSPHERE 

We consider now the solutions to the pulsar equation (34a). If 
we define a dimensionless parameter k = 4tü¿¿cQ ~1 > 0, as well 
as x = r/rlc and y = z/rlc, the pulsar equation can be written as 

with 

-2Kn*c'1'F, z > 0; 

tf('F) = <;2Kn<tc-1'i', z < 0; 

10, z = 0. 

(36) 

Previous studies (§ II; Michel 1973a,b; Scharlemann and 
Wagoner 1973) to solve equation (35) have all assumed that the 
flux function vanishes for large z. We dispense with this 
assumption and show that field-aligned currents near the 
z-axis give a solution to equation (34a) which is finite and well 
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behaved for large z. This requires current flow into the two 
endcaps located at large ±z in Figure 1. This charge is reple- 
nished by a radial current sheet at the equator, similar to the 
“pulsar disk” previously discussed by Michel and Dessler 
(1981). Thus, our solution for the magnetosphere is character- 
ized by large unidirectional poloidal currents in the region 
where the pulsar equation is valid. 

For z > rlc, we can ignore the z variation in equation (35), so 
that the pulsar equation becomes 

„ d2^ 1 + x2 d'F ^ 2it, „ 
(1 - x2) —T   — + 4k2x¥ = 0 . 

dx x dx 
(37) 

Solutions to equation (37) have been discussed for similar 
force-free jets proposed to exist in the coronal plasma sur- 
rounding the accretion disk of a Schwarzschild black hole 
(LWS). Briefly, solutions to equation (37) are found to be the 
hypergeometric series 

n = CnX>[ 
«0 2 cc(a+ l)ß(ß + 1) 4 , 

1 + <ÏX2)* + (2X2 x 3) * + (38) 

where cn is a normalization constant, a = 1 + k, and 
ß = 1 — K. For x <0, all solutions behave like « x2. From 
this series, we would like to construct a solution to the pulsar 
equation that is valid for 0 < x < where X > 1. There are, 
however, physical restrictions on the solutions of equation (37). 
The field is simply connected to the star, so 'F must be mono- 
tonie in x and must be finite. The series described in equation 
(38) is finite at x = 1 only for tc = 1 -h n, n = 1, 2, 3, ... . The 
series terminates after a finite number of terms and then 
diverges as the highest power of x2 for large x. The term is 
also an oscillatory function for x < 1 for all fc > 1 (Fig. 2). 
Clearly the series (38) cannot represent 'F for all x values at 
large y. 

In order to obtain physical solutions, we reconsider the role 
of the helicity constraint (i.e., k) in determining the pulsar equa- 
tion of § II. We assume that 'F is given by equation (37) out to 

Fig. 2.—Behavior of i{/3 as given by equation (37) with c3 = 1. Note that all 
oc x2 for x 1. Dashed line indicates the truncation of beyond xjet(K: = 

3) = 0.3935. 

the first maximum of il/n, designated 'Fjetfc) at x = xjet(K:) (Fig. 
2). Beyond xjet(K;), we take ¥ = which in this region is a 
solution to equation (37) with H'('F) = 0(k = 0). The physical 
interpretation of this procedure is that only the plasma 
bounded by the surface ^(r, z) = 'FjetM contributes to the hel- 
icity in equation (22b). Therefore, /i is piecewise constant : 

(-KClJ^nc), 4* < Vjet(K) ; 
^ {0 , y > 'Fje.to , 1 ^ 

and HOF) is a constant for 'F > given by - 
in the upper half-plane. As before, HOF) is discontinuous at the 
equator. The form for the pulsar equation is then 

d2xF 1 + x2 d^F 
(1 -x2)^-2 + 4K2'P®[4'jet(K) — 4'] = 0 , 

(40) 

where 0 is the Heaviside step function (with 0[x] = 1 for 
x > 0 and 0[x] = 0 for x < 0). 

Our solution of equation (37) constructed for z oo is a 
cylindrical jet confined within the light cylinder. The jet is 
characterized by a magnetic field pitch angle which increases 
monotonically with x, from 0 at x = 0 to tt/2 at x = xjet, as 
shown in Figure 3. The profiles of ¥, Bz, B#, Er, Jz9 J0, and pe 
for an illustrative case is shown in Figures 4a and 4b. 

Following the results of LWS, we find that the jet carries a 
poloidal magnetic flux of Op = 2nx¥ict(K). The jet in the upper 
half-plane carries a net axial current /jet = — kQ+'Vjet(K). The 

! 

Fig. 3.—Helical structure of the asymptotic pulsar jet for k = 1.244 
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x — 
Fig. 4.—Profiles of (a) the fields and (b) the sources for the pulsar jet with 

K = 1.244. Vertical scale is arbitrary. 

just the intrinsic field of the star. Because the pulsar equation 
(40) is linear in XF, the neutron star’s field sets the scale for 'F 
and xFjet. We define a parameter £ such that lFjet = where 

is the maximum flux of the neutron star. (For a dipole 
stellar field, the maximum flux occurs at the equator and is 
given by 'F* = ¿t* r~ ^ where ¡i* is the magnetic moment of the 
neutron star.) Thus £ measures the fraction of flux emanating 
from the star that goes into the jet, so 0 < £ < 1. The jet’s 
outputs in terms of 'F^ are /jet = /c£Q3|t'FJ|c and Ljet = 
fc£2(2c)_1(Q*T/

J|t)
2. For a pulsar, the scales of these quantities 

are 2 x lO15/^ r^o P^1 A and 7 x 103V*3o r*i2o pr2 ergs 

s_1, respectively, where ju*30 is the magnetic moment of the 
neutron star in units of IO30 G cm3, and r*10 is the stellar 
radius in units of 10 km. 

The value of xjet is a monotonically decreasing function of tc, 
scaling approximately as k;~ 1 for large k (LWS). 

We consider now the global structure of the magnetosphere. 
In addition to the jet region, two other topologically distinct 
regions can exist: (i) that where field lines close within the light 
cylinder, and (ii) that where the field lines penetrate the light- 
cylinder surface, which we designate as the closed and wind 
regions, respectively (Fig. 1). In both the wind region and the 
closed field line region, if('F) = rB# is a constant, given by 
equation (36), with 'F = For finite currents and charge 
densities in the magnetosphere, the term (1 — x2)A*'F in the 
pulsar equation vanishes. With i/' = 0 in these regions, the 
pulsar equation at x = 1 implies that Bz(r = rlc) = 0. That is, if 
field lines penetrate the light cylinder surface, then they do so 
with their poloidal components normal to the surface. 

Because the poloidal current depends upon H', there are no 
poloidal currents in the wind region. The toroidal current 
density at x = 1 reduces to = cpe. The wind region also has 
a Poynting flux that radiates energy across the light cylinder 
surface. The power from the wind region is given by 

current flow in both jets is directed either toward or way from 
the star. The toroidal current density is given by dl^/dz = 
(47c)_1cBz(r = 0). There exists also an electric potential drop 
between the jet radius rjet and the z-axis of A^et = c-1QJ){'Fjet. 
The Poynting flux (§ II) gives the total power output from a jet 
as 

T _ _ Q2 q*2 

“ 2c Yjet (41) 

and an angular momentum loss rate of /jet = Finally, 
the jet’s effective impedance is given by Zjet = 1/(ck;), so that 
^jet ^ 30fi. IV». 

The electromagnetic sources in the jet are given by 

d'V'' 
Pe= ~ 

ill 1 d 
4nc3 x dx\ dx 

J,= 

j _ _ 
* Ane2 x dx \x dx 

C H'Bz = _ ^ k-^-; ¥ < ¥ 2nc2 x dx An jet 

(42a) 

(42b) 

(42c) 

The jet is charge neutral overall (Er = 0 on its surface), but 
# 0 inside the jet. We note that the poloidal field-aligned 

currents exist only in the region 'F < which is near the 
polar caps of the neutron star. 

The -h z jet connects to the northern hemisphere of the star, 
where plasma effects are assumed to be small and the field is 

i.w.nd = 'C|ßJC-1'Pjet('Pe-'I'j.,) (43) 

(LWS), where x¥e is the flux along the equator at the light 
cylinder radius. This value of flux labels the last field line in the 
wind region. Similarly, the angular momentum flow in the 
wind is 7jet = Q" 1Lwind. In the closed region, a Poynting flux 
exists along the poloidal field, directed toward the equator in 
both hemispheres. The total power into the equatorial disk is 

^eq 
= 2k;c~1Q2'Fjet('FJjc — 'FJ , (44) 

where is the value of the flux at the stellar surface along the 
equator. The angular momentum flux into the disk is /*q = 
Q^Lçq. Angular momentum is transferred from the neutron 
star into the disk plasma. 

We consider now the behavior of *F for large distances away 
from the star and beyond the light cylinder surface. Field lines 
of the wind region exit the light cylinder but then cannot cross 
the equator to reconnect to the star. We assume that the field 
lines become radial for large radial distances, (x2 -b y2)1/2 > 1, 
and that the pulsar equation is valid out to some large outer 
boundary. Beyond this outer boundary, the field lines bend so 
as to return to the star. Also in this outer region, the current of 
the jets returns to the equatorial plane, so as to provide a 
closed current loop for the system. We expand *F in the wind 
region as a power series in r = (x2 + y2)1/2, 

T(r, P)= Í ÏJdiV , (45) 
n — O 
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where /x = y/r. The pulsar equation then becomes a set of 
coupled ordinary differential equations in fi: 

(1 - n2W¿ - 2/#'o = o , (46a) 

(1 - ß2)\l/'[ - 2/xiA; = 0 , (46b) 

(1 - n2Wj - + j(j - 1)^ = iAJ-2 

+ C/ - 1)0 - 2) 
(1 - n2) 

il/j-2', ) ^ 2 , (46c) 

where the prime denotes differentiation with respect to ju. The 
differential equation for both i^0 and is the Legendre equa- 
tion of order zero and degree zero. The solution, therefore, 
to iMaO is a linear combination of P0(fi) = 1 and Q0(li) = 
¿ln([l+/Ml-/<]); 

'I'oin) = •Aoo In + ^oi » (47) 

where i^00 and i^01 are constants. Since the flux is a decreasing 
function of /i, the value of ^00 is less than zero. This solution 
has been discussed previously (e.g., Ingraham 1973). The value 
of \l/01 is given by the value of the flux on the equatorial plane, 
so that i/^oi = Determining the value of ^00 is not straight- 
forward. The first term of equation (47) diverges as 1, and 
we require that i^00 < 0 for 'F to decrease with /¿. However, for 
any finite value of ¿i, i^0 will be equal to 'Fjet for values of r > 1. 
One possible approach is to make i//0 = for values of n 
larger than some critical value ¿¿c. This confines the wind field 
to a fan-shaped region along the equator, with a “ dead zone ” 
at higher latitudes. This solution is unattractive for two 
reasons. First, the value for \l/00 is dependent upon the choice 
of fic9 which is arbitrary. Second, because T* is rapidly varying 
near /xc, this will introduce a current sheet on the boundary of 
the dead zone and the fan. However, physically acceptable 
solutions exist if we require ¥ to be a constant beyond the light 
cylinder. This corresponds to solutions to the inner zone which 
have no variation of 'F along the light cylinder surface. These 
solutions satisfy the pulsar equation (40) trivially for r > rlc. 

IV. NUMERICAL SOLUTIONS FOR THE MAGNETOSPHERE 

The pulsar equation (34a) is an elliptic partial differential 
equation with one peculiar feature: along the line r = rlc, the 
term containing the second derivatives vanishes, and equation 
(34a) becomes a first-order partial differential equation in r. 
Michel (1973a) and Ingraham (1973) have pointed out that the 
line r = rlc separates the space into two regions which can be 
solved independently for *F. Pellazari (1974) used this to solve 
for *F numerically for #(¥) oc (1 — ['F/'FJ"), with = ^(r^, 
0). The pulsar equation (34a) at r = rlc was used as an effective 
boundary condition for the solution of the region within the 
light cylinder. A nonsingular approximation to the pulsar 
equation (40) for x = 1 — A is an expansion in powers of A, 
which yields two conditions from the terms in A0 and A1 : 

and 

dV 
— ocH('F)H'(xF) = 0, 
ox 

(48a) 

¿ay ¿>2^ 
2 dx2 + dy2~0. (48b) 

condition (48a) using a centered-difference approximation of 
the derivatives at x = 1, then equation (48b) depends solely on 
values of 'F within the light cylinder. Thus, it is possible to first 
solve for 'F within the light-cylinder. The values of *¥ deter- 
mined along the light cylinder surface can then be used as a 
boundary condition for the solution outside of the light- 
cylinder. 

We solve the pulsar equation within the light cylinder as 
follows: the field symmetry T^x, y) = T^x, —y) implies that we 
need only solve for y > 0. The boundary condition at y = 0 is 
d^P/dy = 0. We also require that d^/dy = 0aty=Y>l. The 
boundary condition in x, in addition to condition (48a), is that 
^(x = 0, y) = 0. Rather than solving for 'F, we solve for the 
flux due to the magnetospheric plasma 

'Fp = *F — ^F* > (49) 

where T^x, y) is the vacuum flux function of the magnetic field 
of the nonrotating star, which we specify. Thus A*x¥s = 0. The 
maximum axial distance Y is taken to be sufficiently large that 
^ is negligible compared with its value at the stellar surface. 
Terms in equation (40) which involve are brought to the 
right-hand side of the pulsar equation and treated as sources, 
except for the step-function term that is proportional to 'Fp, 
which is retained as part of the operator on T'p. Thus, the 
equation which we solve for T'p is 

d2y¥ 1 + x2 á'F 
(1 ~X2)~dx^~ T“ + 

d}¥ 
= 2x ^ - 4/c2'Fs©['Fjet(/c) - ^Fp - 'FJ . (50) 

For the following calculations, we have taken the stellar flux to 
be dipolar: 

y  ï!  (51) 
s r,c (x2 + y2)312 ’ P j 

where p* is the stellar magnetic moment. The flux at the star’s 
surface along the equator is pjr*. Because the ratio r^/r* is 
typically large (except for pulsars with millisecond periods), it 
is convenient in the numerical calculations to scale the total 
flux by the quantity pjrlc and to treat the star as a point dipole 
located at the origin. The plasma flux is given by 

Vpi*, y) = rj 
/*♦ 'PÀx’ .y) 
ric «M«) ’ 

(52) 

where il/p(x, Y) is the jet solution from equation (38) with the 
normalization constant c„ = 1. Similarly, lAjetM is the dimen- 
sionless jet flux with this same normalization. Therefore the 
physical jet flux is defined to be ^jet = rjpjrlc. The relation 
between rj and Ç, defined in § III, is then £ = (rjrlc)ti. The value 
of dimensionless magnetic field for i// near the y-axis is 2, so 
that the physical magnetic field for the jet there is Bz = 
2ripjrfc. For als period pulsar, the jet axial magnetic field is 
approximately rj G. 

The solution for the magnetosphere is specified by the two 
parameters k and rj. The total dimensionless flux is given by 

<p(x, y) = ipp(x, y) + 
r\ (x2 + y2)312 ' 

(53) 

respectively. Equation (48a) follows from the arguments made If we fix the value of r] and vary the value of k, we are fixing the 
for the jet solutions in the previous section. If we express the fraction of the total stellar flux which the jet contains while 
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varying the poloidal current that the jet carries. In practice, it is 
easier to fix k and to vary the strength of the stellar field by 
varying rj. 

We solve for \l/p within the light cylinder by a finite-difference 
approximation to equation (50) on a poloidal grid, where the 
grid points for x are evenly spaced for x g [0, 1]. We anticipate 
that the behavior of the solutions in y will vary only slowly 
beyond y = 1. Therefore, we transform to a compressed axial 
variable A, defined by 

A = 1 — e-ylyo , (54) 

where y0 is an adjustable scale factor. The maximum value of A 
is then A = 1 — e~Ylyo < 1. Finally, we have smoothed the step 
function in equation (39) so as to improve convergence of the 
solutions. H' is taken to vary smoothly between 0 and — 2rlc k 
with a width ö-^jet(K:), with <r 1. 

V. DISCUSSION OF NUMERICAL SOLUTIONS 

Figure 5a illustrates a typical numerical solution of the mag- 
netosphere within the light-cylinder. Notice (i) that there is a 

Fig. 5.—Poloidal field line projections, within the light cylinder, for a 
numerical solution to the pulsar equation (50), with k = 3 and >/ = 1. The plot 
here is the compressed (jc, A) coordinate system, with Y = 4.5. Contours are of 
total dimensionless flux, with ^(1, Y) = 0.076. {b) Contribution to ^ in (a) 
given by the dipole flux of the star. 

0 .5 I 
X 

Fig. 6.—Profile of the flux for the jet 7) of Fig. 5. The effect of the 
smooth rolloff to approximate the step-function in the pulsar equation (50) is 
to extend the jet to x = 1, but with very little variation from the original jet 
radius xící{k = 3) = 0.3935. 

well-defined jet field along the rotation axis, (ii) that in the wind 
zone, field lines cross the light cylinder surface normally, and 
(iii) that there is a region of closed field lines. The closed field 
line region and wind region are separated by a “y-point” cusp 
at x = 1, y = 0. Figure 5b shows the contribution of the dipole 
flux of the star to this solution. The rotation of the star causes 
less poloidal flux to be enclosed within the light cylinder of the 
star. In the example of Figures 5a and 5b the ratio of the total 
flux to the dipole flux at x = 1, y = 0 is 1.785. Figure 6 shows 
the z rlc behavior of and Figures la and lb show the fields 
and sources for the asymptotic jet. 

In the magnetosphere solutions we consider, all the jet field 
lines must originate from the star. The region of (k, rj) param- 
eter space in which there are physical solutions is explored by 
fixing k and varying rj. That is, we fix the values of the physical 
jet flux and its current, and we determine the values of the 
stellar parameter jijrlc which gives physical solutions. Figure 
8 shows the variation of the solution with rj for k = 3. The 
width of the rolloff <r = 0.001. We can clearly see that smaller 
stellar fields (larger r¡) do not give jet solutions. 

One limit in which there are no jet solutions is that where 
the jet flux is larger than the stellar flux at the equator. We 
would then see the jet disconnect near the origin. However, the 
jet disconnects in a region well out into the magnetosphere. 
Evidently the lack of a jet solution occurs first when there are 
insufficient magnetospheric currents near the light cylinder 
surface to support the jet. 

Figure 9 shows the region in the (fc, rj) parameter space 
which support jets. The numerically determined maximum 
allowed values of rj for a given k are also dependent upon the 
width of the rolloff cr. We have attempted to minimize this 
dependence by maximizing the grid resolution and choosing 
the smallest value of g for which we can find convergent solu- 
tions. We identify the value of rj where the contour i^(x, y) 
= \¡/iet first fails to return to the star as the maximum allowed 
value of rj = rjmax. The numerical uncertainty of rjmax is approx- 
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Fig. 7.—Numerical values for the fields {upper panel) and sources (lower 
panel) of the asymptotic jet of Fig. 5. 

imately ±0.25. The lower endpoint of Figure 9 is at /c = 1, 
below which jets are not possible. The upper k endpoint is 
uncertain. We have found that for an (x, y) mesh of 80 x 77 
with <t = 5 x 10-4 that convergent jet solutions are no longer 
possible for k > 10, but this may be caused by resolution limits 
of the grid. It may be that the (k, rj) boundary extends to f/ -► 0 
as /c —► oo. 

Figure 10 shows the variation of i¡/ with À along the light 
cylinder surface. The wind zone field lines which traverse the 
light cylinder surface are confined to a relatively small region 
above the equator. For all values of rj such that the stellar flux 
is still an insignificant contribution to the asymptotic jet, the 
total flux along the light cylinder surface becomes constant 
within z ^ rlc of the equator. Such “pinching” of the poloidal 
field has also been seen by Michel (1973a) for the case where 
HOF) is constant within the light cylinder. 

Figure 11 shows a typical result for the wind zone field lines 
in the (x, y) plane. Near the equatorial plane, the field shows a 
slight divergence with increasing x, consistent with a radial 

field. However, at higher latitudes the poloidal field becomes 
nearly parallel to the light cylinder surface; near the surface, 
the field becomes tightly bunched, suggesting a toroidal 
current sheet there. The cause of this behavior is the pinching 
of the field within the light cylinder toward the equatorial 
plane. All solutions to the inner zone in which poloidal field 
lines penetrate the light cylinder surface produce such singular 
solutions in the wind zone. 

One solution to the wind zone fields exists which does not 
exhibit singular behavior, namely that ^ is a constant in the 
wind zone, so that xFjet is identical to 'Fc. Here all of the poloi- 
dal field is confined within the light cylinder, either as part of 
the jet or of the closed magnetosphere. Because the jets carry 
current, there is a toroidal field beyond the light cylinder 
surface, given by = —2KrifiJ(rrfc) in the upper half-space, 
and = 2KrjfiJ(rrfc) in the lower half-space. A radial 
current flow in the equatorial plane is, of course, required 
(§ HI)- 

The solutions for the magnetosphere with jets but no poloi- 
dal wind field occur for only one value of k for a given rj. This 
relation is shown by the curve in Figure 9. These solutions are 
simpler than those which include a wind zone. The parameter 
k, which was previously arbitrary, is now fixed by the fraction 
of stellar flux carried by the jet. Furthermore, the properties of 
the jet are uniquely specified. From Figure 9, we see that the 
maximum value of ^ 4 with k ~ 3, and that /c ~ \2rj~1 for 
rj >4. Using r*10 = 1 and = 1, we have C ^ 2.1 
x lO-4^?!-1, so that only a small fraction of the star’s flux is 

typically contained in the jet. However, for very short period 
pulsars (e.g., PSR 1987A), the requirement that C ^ 1 may 
determine the maximum allowed value of rj in terms of r*, pi*, 
and P. The last “ open ” field line at the polar cap, that is, the 
last field line that is part of the jet, is within an angle sin 0C = 
(rjrJrlc)1/2 of the rotation axis. It then follows that Iz

jci ^ 5.3 
x 1012P72 A and Ljet 3.5 x lO32^]-4 ergs s-1. Because for 

small rj, Kccrj-1, all the possible jets carry the same current, 
but the maximum jet luminosities occur for the largest values 
of rj. These are jets which carry the maximum fraction of stellar 
flux. From the numerically determined maximum of fy ^ 4, the 
jets contain approximately 1.7 x 10_3P^1 of the stellar flux, 
have a radius of 0.4rlc, and carry a total power of £jets = 2.8 
x 1033/i23()Pj"4 ergs s-1. The dependences of È here are the 
same as that for the simple magnetic dipole radiation slow- 
down for the pulsar (Pacini 1967). Finally, we note that the jet 
fields are well established within a distance « 2rlc along the 
axis from the pulsar. We therefore suggest that small misalign- 
ments (0 30°) of the magnetic and rotation axes will not 
substantially alter the structure of the asymptotic jet fields, but 
will only add small-amplitude modulating fields to the DC 
magnetospheric fields determined here. 

VI. CONCLUSIONS 

The pulsar equation, as derived from the ideal MHD equa- 
tions, is indeterminate. We rederive the pulsar equation from a 
variational principle in order to emphasize the relation of the 
flux function //(¥) = rB# to the magnetic helicity of the system. 
Small departures from perfect conductivity suggest (Taylor 
1974, 1975) that magnetic helicity is not invariant on an indi- 
vidual flux surface, and that H('F) is specified as a linear func- 
tion of ¥ (or a constant). This specifies the pulsar equation 
uniquely as a linear partial differential equation. 

Analysis of the pulsar equation for large axial distances from 
the star reveals solutions which correspond to cylindrical jets. 
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X 
Fig 8.—Variation with t] of the solution described in Fig. 5. The jet disconnects when the stellar field is weak. 

Fig. 10.—Variation of if/ with the compressed dimensionless axial coordi- 
nate À for various values of r¡. Note that A = 0.5 corresponds to z = 1.04r,c. 
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Fig. 11.—Poloidal field lines in the wind zone for k = 4 and rj = 0.75. 
Contour lines are equally spaced between i/^jet and \j/e. Tightly bunched lines 
along the light cylinder surface for higher values of y imply a toroidal current 
sheet. 

The jets are collimated within the light cylinder of the star by 
magnetic pinching and carry energy, angular momentum, and 
electric current away from the star. Consistent jet solutions are 
found for the case where the flux function HOF) is proportional 
to 'F within the jet and constant outside of the jet. Our inter- 
pretation of this is that poloidal (field-aligned) currents are 
emitted from the star on a fraction of the stellar surface near 
the rotation axis (the polar caps of the pulsar). The boundary 
of this region is where ¥*0*, z) = where is the flux at 
the surface of the star. 

Numerical solutions to the pulsar equation within the light 
cylinder indicate that the jets require a minimum stellar mag- 
netic moment to provide the magnetospheric currents to 
support the jet. That is, jet solutions for a given k are not 
possible when rj rises above a particular value (Fig. 9). Smaller 
values of rj give solutions which have magnetic field traversing 
the light cylinder surface, while values of (k, rj) along the curve 
in Figure 9 give solutions in which the poloidal field vanishes 
along the light cylinder surface. 

The magnetosphere beyond the light-cylinder surface, the 
wind zone, has been obtained numerically by using the values 
of the flux function along the light cylinder surface (determined 
from the interior solution). The solutions which have magnetic 
field lines penetrating the light cylinder surface are not well 
behaved in the wind region. We conclude that solutions to the 
magnetosphere which contain jets have 'F = constant beyond 
the light cylinder surface. In these solutions, magnetic field 
lines from the star are either part of a jet or part of the closed 
magnetosphere within the light cylinder. Thus, the electromag- 
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netic Poynting flux from the star is carried in oppositely 
directed beams beamed along the rotation axis. 

Finally, we discuss the role of pulsar jets in the formation 
and structure of compact synchrotron nebulae. Although the 
jets are charge neutral overall, their local charge density is 
nonzero. However, on distance scales L > rlc, we expect the jet 
to relax to a configuration in which Zs = 0 everywhere in the 
jet. The time scale for current neutralization, however, is 
expected to be much larger than that for charge neutralization 
(Miller 1982). Such a relaxation will conserve the total mass, 
energy, linear momentum, angular momentum, magnetic flux, 
and current that is transported by the jet. For the neutralized 
jet, a large fraction of the spin-down power may be in the form 
of bulk kinetic energy. The description of the charge-neutral jet 
equilibrium would require the relativistic Grad-Shafranov 
equation, which includes the effects of plasma inertia (Lovelace 
et al. 1986). The theory of non-force-free, ideal MHD jets have 
been developed, but only in the nonrelativistic limit (Blandford 
and Payne 1982; Mobarry 1988; Koupelis 1988; Lovelace, 
Mobarry, and Contopolous 1989). 

Many of the CSNs exhibit significant elongation; for 
example, 3C 58, CTB 87, G5.3-1.0, and the Crab Nebula 
(Kafatos and Henry 1985). The morphology of the sources 
CTB 80 and G5.3-1.0 suggests large-scale (parsec) jets may be 
involved. Models of Crab-like remnants (Kennel and Coroniti 
1984; Rees and Gunn 1974) have assumed a spherically sym- 
metric MHD wind beyond the light cylinder radius of the 
pulsar that flows toward the nebula. The validity of this 
assumption depends upon the structure of the self-consistent 
fields determined within the light cylinder of the pulsar (the 
source region of the Kennel-Coroniti MHD wind), of which a 
complete description includes a electron-positron plasma 
formed by pair production near the stellar surface. Equation 
(29) suggests that for even a “ massive ” electron-positron mag- 
netosphere (i.e., a quasi-neutral electron-positron plasma with 
a net charge density equal to that consistent with the corota- 
tion electric field) the “ force-free ” condition can still be valid 
within the magnetosphere. Thus, the jet solutions for the mag- 
netospheric fields described in this paper may be a more realis- 
tic description of the conditions near the inner boundary of the 
MHD wind region in the models of Crab-like remnants. As 
described above, the jets may become charge neutralized, so 
that the wind is dominated by plasma rather than the original 
emergent jet electromagnetic fields. Nevertheless, the magneto- 
spheric jets can provide a source for the MHD wind which 
injects energy, angular momentum, and plasma preferentially 
along the pulsar rotation axis. The may lead to solutions for 
the structure of the MHD wind region in CSN models which 
slow a substantial elongation along the rotation axis. 
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