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ABSTRACT 
Formation of low-mass objects is inevitable in a cold dark matter (CDM) cosmogony. Objects that exist in 

near-mean background density environments are most likely to survive destruction. Such objects will also not 
exhibit strong clustering. Models have been proposed seeking to identify these isolated low-mass condensates 
as Lya cloud candidates. However, the accompanying estimates of quantities such as the epoch of formation, 
the number density of candidate objects, etc., are not based on characteristics of isolated density peaks. Iso- 
lated density peaks result primarily from power in a narrow band at the mass scale of the structures. In this 
paper, we introduce a filter designed to study isolated density fluctuations. We use the filter to identify Lya 
cloud candidates in a biased CDM model. We find that the number density of cloud candidates at z = 2.5 is 
too small to account for the observed number of lines. If Lya clouds have their origins in primordial density 
fluctuations, the CDM power spectrum does not have sufficient power on subgalactic scales to account for the 
observed structures. 
Subject headings: cosmology — dark matter — galaxies: intergalactic medium — quasars 

I. INTRODUCTION 

There is a general agreement that the forest of lines, seen in 
absorption in the quasar spectra blueward of the Lya emission, 
represents highly ionized intergalactic absorbing clouds 
(Sargent et al 1980). High-resolution spectral observations 
show directly that these lines are distinct entities, “clouds,” 
with the filling factor along any given line of sight of/c < 10~2 

(Ostriker 1987). The Lya clouds are thought to be photoion- 
ized by the intergalactic flux from quasars and galaxies, with 
the resulting gas temperature of T ~ 3 x 104 K for a mean 
intensity of ionizing flux at Lyman limit of Jv ~ 10-21 ergs 
cm-2 s"1 Hz-1 (Ikeuchi and Ostriker 1986). Equilibrium 
between ionization and recombination rates based on the 
above model suggests that the neutral fraction in the clouds is 
nH i/hhh ^ 10_4. Foltz et al (1984) inferred the cloud sizes to 
be ~5-25 kpc from the detection of some but not all of the 
lines in the two images of the gravitationally lensed quasar 
2345-1-007. With the cloud size known, the neutral hydrogen 
density and, therefore, the total gas density in the clouds can be 
estimated from the measured H i column density. The com- 
bination of the total gas density and the cloud sizes allows the 
baryonic mass of the clouds to be determined. The mass range 
for Lya clouds is 107-109 M0. 

A study by Steidel and Sargent (1987) of the Lya forest and 
the Gunn-Peterson (GP) effect (Gunn and Peterson 1965) sug- 
gests that the Lya clouds are high contrast entities with respect 
to the intercloud medium. The high-resolution statistical study 
of the Lya forest revealed that the neutral hydrogen in the 
intercloud medium contributes <10% to the integrated 
Lya absorption optical depth, as compared to the smoothed 
out neutral hydrogen density in the clouds. The latter can be 
expressed to fc x nc

Hl where nc
Hl is the neutral hydrogen 

number density in clouds; therefore, 

^103 

"hi 
(1) 

The clouds must have been produced by a process which com- 
pressed preexisting gas by a significant amount. 

Lya clouds have been observed in the redshift interval 
1.5 < z < 4.1. The observed distribution in redshift of the Lya 
lines along a given line of sight, with H i column densities 1014 

cm-2 < NHl < 1016 cm-2 and the rest-frame equivalent width 
greater than Wc = 0.36 Â (Bajtlik, Duncan, and Ostriker 1988 
and references therein) is 

^ * 3(i + Z)2'4 ; (2) 

there are approximately 60 observed lines per unit redshift at 
z ä 2.5. The average comoving distance between adjacent Lya 
clouds along a line of sight in an Q = 1 universe is 

dz 7.5/10 
1 + z 

3.5 
Mpc, (3) 

where h0 is the current value of the Hubble’s constant in units 
of 100 km s"1 Mpc-1. Since the characteristic comoving scale 
for the local large-scale structure is lO/io 1 Mpc < R < 30/io 1 

Mpc (Huchra et al 1987; Ostriker and Strassler 1989), the Lya 
clouds at z > 2.5 can be used to probe the arrangement of 
matter on these scales. Using the Lya forest in this manner was 
first suggested by Oort (1981). 

Most of the empirical studies of the Lya cloud distribution 
have involved determining the two-point correlation function 
of absorption lines along lines of sight. Sargent et al (1980) 
have shown the Lya clouds exhibit no significant clustering on 
scales from ~300 to 30,000 km s-1. Recent evidence, though, 
suggests that the clouds cluster very weakly on scales ~ 400 km 
s-1 and smaller (Webb 1987; Ostriker, Bajtlik, and Duncan 
1988). Regardless, the distribution of Lya clouds at z > 2.5 is 
much more uniform than the present-day distribution of gal- 
axies. 

A possible explanation for the formation of the Lya clouds 
can be found within the context of a biased cold dark matter 
(CDM) model. According to this hypothesis, galaxies and clus- 
ters are assembled through hierarchical clustering of lower 
mass condensates and correspond to large density peaks. An 
inevitable feature of such a model is the formation of low-mass 
objects M ~ 107-1010 M0. 
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Rees (1986) proposed that the Lya forest may be evidence for 
photoionized gas stably confined by the gravitational field of 
the dark matter minihalos. If the density within the minihalos 
is almost constant, the stability requirement is Cs < < 
Qb1,3Cs9 where Cs is the sound speed in the gas and Vg is the 
virial velocity of the gas in the paraboloidal potential well. For 
an isothermal gas cloud at T æ 3 x 104 K, the above condi- 
tion implies that 16 km s -1 < 1^ < 34 km s~ \ assuming Qb ä 
0.1. 

Studying the confinement of ~104 K gas in subgalactic 
density peaks in greater detail led Bond, Szalay, and Silk (1988, 
hereafter BSS) to propose a dynamical model for the Lya 
clouds; BSS investigated the baryon motions in collapsing 
density peaks subsequent to heating by photoionization at 
z « 4. They noted that depending on the height of the peak 
and its mass scale, the gas trapped in a collapsing CDM fluc- 
tuation either expands after photoionization or continues to 
collapse unaffected. The gas in density peaks of mass scales 
appropriate for Lya cloud candidates generally undergoes 
expansion. 

In a biased CDM scenario, the clustering of small-scale 
peaks arises due to statistical and dynamical effects (Bardeen et 
al. 1986, hereafter BBKS). Statistical clustering refers to the 
enhancement of the local number density of collapsing low- 
mass objects over the mean number density in regions where 
the local background mass density is higher than the mean. In 
the case of ~ 109 M0 condensates, the statistical enhancement 
alone suggests that these objects ought to exhibit significant 
clustering tendencies; in regions destined to become bright 
galaxies, the number density of the subgalactic density peaks 
ought to exceed the mean number density by a factor of ~ 20 
(BSS). To avoid strong statistical clustering, both Rees (1986) 
and BSS have stressed that the low-mass condensates in high- 
density environments would be destroyed by mergers accom- 
panying the collapse of larger mass objects; furthermore, the 
formation of larger objects may generate environmental condi- 
tions that lead to expulsion of gas from the low-mass conden- 
sates. The surviving condensates are most likely to be in 
environments where the background mass density is not sig- 
nificantly different from the mean. These isolated low-mass 
density peaks would appear more uniformly distributed than 
the larger mass, high-density peaks that are identified as gal- 
axies. Even “isolated” low-mass objects are subject to gravita- 
tional interactions, giving rise to dynamical clustering. 
Depending on the magnitude of this effect, it may serve to 
explain the very weak clustering observed in the Lya cloud 
distribution. 

In studying the formation of low-mass objects in a near- 
mean background environment, we are interested in identify- 
ing their epoch formation and we would like to calculate their 
number density. In the standard analysis of the CDM cos- 
mogony, the epoch at which the bulk of structure of mass scale 
M enters the nonlinear collapse phase is estimated on the basis 
of threshold criterion, (t0(M) ~ 1 ; ct0(M) is the rms fluctuation 
of the density field smoothed on mass scale M. The popular 
choices for the smoothing function are the Gaussian and the 
“top-hat” functions. These smoothing functions act essentially 
as low pass filters, removing small-scale power; the resulting 
cr0(M) receives contributions from power on all scales >M. 
The candidates for Lya clouds reside in near-mean back- 
ground environments; therefore, these density peaks receive 
dominant contribution from power at their mass scale. Under 
the application of the Gaussian or a “top-hat” filter with a 

filtering scale of 106 M0, a smoothed 109 MG perturbation 
would register as being composed of a large number of 106 M0 
condensates, even if the 109 M0 object has no structure on 
smaller scales. In considering only peaks resulting from power 
predominantly at their own mass scale (hereafter referred to as 
M-peaks), it is useful to define a mathematical filter designed to 
register on the M-peaks. Such a window function must filter 
the power on mass scales both larger and smaller than M, the 
mass of M-peaks under consideration. In § II, we introduce 
and discuss some of the properties of this finite band pass filter, 
and in § III, we use the filter to explore the formation of Lya 
cloud candidates in the biased CDM model. 

II. WINDOWS FOR M-PEAKS 

Consider a window function W(r; R) with some character- 
istic length scale R. A homogeneous, isotropic, Gaussian 
random field, ô(r), convolved with such a function yields a new 
Gaussian random field: 

A(r; «) = Jô(r')W(\r-r'\; R)dr’, (4) 

which can be expressed more conveniently (Peebles 1980) as 

A(r-,R) = -^^eikrôkW(k-,R)dk, (5) 

where W(k; R) and ôk are the Fourier transforms of W(r ; R) 
and <5(r), respectively. 

The correlation function for A(r; R) is defined as 

£a(I r — rf\) = <A(r; R)A(r'; R)> 

= (¿3 J(r~r'>p(k)w2(k; R)dk , (6) 

where <<5fc(5fc'> = P(k) • ô3(k — k'). Therefore, given the power 
spectrum P(k) for the Gaussian field <5(r), the power spectrum 
for the filtered field is 

PA(fc; R) = P(/c)^2(/c; R). (7) 

The various moments of the filtered power spectrum are given 
by 

<8) 

The mean square fluctuation of the filtered density field Gq is 
equivalent to ^A(0). 

For a Gaussian window function, 

w('-R)-&<kc‘e"w'- (9» 

the power spectrum of the filtered density field is 

PA(k; R) = e-{kR)2P(k) . (10) 

The mass scale associated with the window is M = 
(2n)3/2pcR

3. In Figure la, we plot da0/<i log (k)( = PA(k) x k3) 
for the biased CDM power spectrum (BBKS): 

Px(k) oc [ln(l + 2.343/?/c)]2/ 

[/c(l + 3.91ßk + 262.1ß2k2 + 164.7ß3k3 + 2O1704fc4)1/2] , 
(H) 

where ß = (Q/io) 1 = 4 (corresponding to h0 = 0.5, Q = 1), 
and k is the comoving wavenumber in units of Mpc “1, normal- 
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log(k) log(k) 
Fig. la Fig. lb 

Fig. 1.—(a) Plot oí doJá log {k)( = PA(/c) x k3) for the biased CDM power spectrum and for the Gaussian-filtered power spectrums corresponding to filtering 
scales 109,1015, and 1018 M0. The parameter y quantifies the extent of the mass range that contributes significantly to o0(M). For a sharp maximum, y æ 1 and for a 
very broad maximum, y < l. For large filtering scales, o0(M) receives predominant contribution from power in a small mass scale range about the scale of interest; at 
small filtering scales, o0(M) receives significant contribution from power over a broad range of mass scales, (b) Same as (a) using the finite bandpass filter instead of a 
Gaussian. In contrast to the Gaussian smoothing scheme, this filter samples the power over a very limited range of mass scales at the mass scale of the “lumps” under 
investigation; y « 0.83 for all filtering scales. 

ized to the present. We also plot da0/d log (k) for the Gaussian 
filtered power spectrum corresponding to filtering scales 109, 
1015, and 1018 M0, and for the unfiltered power spectrum. The 
Gaussian filter is a low pass filter. Since P(k) oc /c at large scales, 
<t0(M) results predominantly from contributions near the peak 
of filtered curves, which occurs at the scale of interest. For 
small scales, however, the Gaussian filtered curves no longer 
have a sharp maximum and <t0(M) receives significant contri- 
bution from power over a range of mass scales. The quantity 
(t0(M) cannot be identified with a structure of a well-defined 
mass scale. The parameter y = o\lo2 ö’o quantifies the extent of 
the mass range that contributes significantly to (J0{M). If PA(k) 
is a delta function, y = 1 and if da0/d log (k) has a very broad 
peak, y 1 (BBKS). In Figure la, we show that value of the y 
parameter corresponding to the different filtering scales; y 
decreases as M decreases and the associated curve develops an 
increasingly broader maximum. 

In order to study M-peaks of a given mass scale M ^ 1015 

M0, we need to define a filter that minimizes the effects of 
larger background density perturbations. The required 
window function must ignore the mean and the gradients in a 
density field that it is convolved with 

J (A + Ä • x)W(r - x)dx = 0 (12) 

for all finite A, B; it should only notice “lumps” of some mass 
scale related to the scale of the window. An appropriately nor- 
malized second derivative of a Gaussian has the desired 
properties 

W(r ; R) = 
3 

4tlR3 (13) 

This window has a positive central peak (0 <r < ^/3R) of unit 
volume and a negative lobe of equal volume for r >JlR. 
The window, therefore, selectively picks out “lumps” of mass 

scales corresponding to the scale of the positive central region, 

„ 4* d^
3V/2 

M = — pc R1 (14) 

The power spectrum of the filtered density field is 

PA(k; R) = ^ (j)V)4 e~(kR)2P(k) . (15) 

The window function, as shown in Figure lb, is a finite 
bandpass filter. In contrast to the Gaussian smoothing scheme, 
this filter samples the power over a very limited range of wave- 
numbers corresponding to the mass scale of the “lumps” under 
investigation; the breadth of the maximum is only weakly 
dependent of the filtering mass scale. The value of the y param- 
eter is essentially constant: y æ 0.83. This is just the kind of 
filter we need to study the M-peaks. After all, the M-peaks are 
“lumps” of a given mass scale. By removing the large-scale 
power, the filter yields the height of an M-peak relative to the 
local background density, i.e., pA is essentially the density 
enhancement in the M-peak relative to the local background; 
p is the global mean density. For an M-peak in a near-mean 
environment, the filter yields the actual density fluctuation of 
the peak. We shall henceforth refer to the new window function 
as a “matched filter.” 

In Figures 2a and 2b, we show the matched window (solid 
curve) and the Gaussian window (dashed curve) in r-space. For 
a given filtering mass scale, the ratio of the Gaussian filtering 
scale to that for the matched filter is Rg/Rm ~ 0.68. In Figure 
2c, we show the two filters in Fourier space. The Gaussian 
window is a low bandpass filter; it squelches power on mass 
scales smaller than the filtering scale. The matched filter, on the 
other hand, is a finite bandpass filter with a FWHM extending 
from ~ to — 3M where M is the filtering mass scale. 

In order to illustrate the function of the matched filter, we 
simulated a two-dimensional Gaussian random field on a 
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0 12 3 4 5 
r/Rg 

Fig. 2a 

Fig. 2c 
Fig. 2.—(a) The matched window {solid curve) and the Gaussian window 

{dashed curve) in r-space. The matched window has a positive central peak 
(0 < r < y/3 Rm) of unit volume and a negative lobe of equal volume for r > 
fe Rm. It therefore selectively picks out “lumps” of mass scales corresponding 
to the scale of the positive central region. For a given filtering mass scale, the 
ratio of the Gaussian filtering scale to that for the march filter is Rg/Rm « 0.68. 
{b) Same as in {a) except the window functions are weighted by r2 term appear- 
ing in the volume integrals. The plot graphically shows the positive and the 
negative equal volume lobes of the matched filter, (c) The matched filter and 
the Gaussian filter in Fourier space. The Gaussian window is a low bandpass 
filter and as a result, only squelches power on mass scales smaller than the 
filtering scale. The matched filter, on the other hand, is a finite bandpass filter 
with a FWHM extending from to ~3M where M is the filtering mass 
scale. 

0 1 2 3 4 5 
r/Rg 

Fig. 2b 

periodic square of area 100 Mpc2, with a power spectrum 
having the same form as that for CDM with adiabatic initial 
fluctuations (cf. eq. [11]). We filtered the Gaussian random 
field with the Gaussian filter and with the matched filter : 

W(kRg) = e-
ikR°)212 , A = 2nRg ; 

wmj = 0(fcRj2 ¿ = 7 Ká ; (16) 

where A is the area corresponding to the filtering scale. We 
chose A = n/50 Mpc2 as we are particularly interested in 
small-scale structure. The contour map of the Gaussian-filtered 
realization is shown in Figure 3a. The distance between the 
adjacent tick marks delineates the filtering length scale. The 
solid contours correspond to na levels n = 0.5, 1.0, ..., 3.0, 
where cr = 69.8, the rms fluctuation for the Gaussian filtered 
field; the dotted contours are the corresponding negative 
sigma level. Since the Gaussian filter only removes power on 
scales smaller than the filtering length, the positive density 
regions in the map are in general much larger than the filtering 
scale. In Figure 3h, we show the contour map of the same 
density field realization but filtered by a matched filter. The 
contour levels have the same values as in Figure 3a. The 
matched filter performs as expected. It selects out structures 
comparable in scale to the filtering area (M-peaks in two- 
dimensions) while fluctuations larger than the filtering scale are 
removed. A comparison of the two contour plots reveals that 
the matched filter, however, does not discriminate between the 
different embedding environments of the small-scale structure; 
not all of the peaks in Figure 3b are isolated “lumps.” We shall 
address this issue later in the paper. 

The epoch of formation of structures with mass M is gener- 
ally taken to be the epoch at which the mass scale enters non- 
linear growth phase: <t0(M) ~ 1. In order to estimate the epoch 
of formation of isolated small-scale M-peaks in the biased 
CDM model, the appropriate <t0(M) is that calculated using 
the matched filter. We consider the biased standard CDM 
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Fig. 3.—(a) A contour map of the Gaussian-filtered realization of a two-dimensional Gaussian random field with the power spectrum having the same form as 
that for CDM with adiabatic initial fluctuations. The area corresponding to the filtering scale is A = n/50 Mpc2 and the distance between adjacent tick marks 
delineates the filtering length. The solid contours correspond to na levels n = 0.5, 1.0,..., 3.0, where a = 69.8, the rms fluctuation for the Gaussian-filtered field; the 
dotted contours are the corresponding negative sigma level regions. Since the Gaussian filter only removes power on scales smaller than the filtering length, the 
positive density regions in the map are in general much larger than the area of filtering, {b) A contour map of the same realization shown in {a) acted upon by the 
matched filter. The contour levels have the same values as in (a). The matched filter selects out structures comparable in scale to the filtering area (equivalent of 
M-peaks) while fluctuations larger than the filtering scale are removed. 

model with Q = 1, = 0.1, h0 = 0.5. The power spectrum (cf. 
eq. [11]) is normalized such that the rms density fluctuation 
evaluated using a “top-hat” filter corresponds to cr0 = 1/2.6 at 
R = 8/i-1 Mpc at present (Davis et al 1985). In Figure 4, we 
plot the height of a 1 cr density fluctuation at redshift z = 2.5 
calculated using the matched filter (solid curve) and the Gauss- 
ian filter (dashed curve). On large scales, due to the form of the 
CDM power spectrum, cr0(M) results predominantly from fluc- 
tuations on scale M. Therefore, both the Gaussian and the 
matched filters perform alike. The slight difference is due to the 
Gaussian window’s mild filtering of power on the scale of inter- 
est. On the small scales, the removal of background fluctua- 
tions leads to a significant difference between the rms density 
fluctuations calculated using the two filtering schemes. In par- 
ticular, at redshift z = 2.5, the Gaussian window suggests that 
the bulk of the density peaks of scale M ~ 1010 M0 are enter- 
ing nonlinear growth phase while the matched filter shows that 
this is certainly not true of the 1010 M0 M-peaks in near-mean 
background; typical isolated objects of this mass scale cannot 
be considered to have been formed by z = 2.5 

In order to further verify that the matched filter performs as 
described, we consider the following exercise: Given a Gauss- 
ian smoothed density Ag(x, M) [hereafter, A0(x)], we wish to 
calculate the 1 o peak heights of density fluctuations of mass 
scale M. We expect that for such peaks, the angle-averaged 
density fluctuation on the surface of a sphere of mass scale 
~M centered on the peak is small. We denote the angle- 

Fig. 4.—1 a level of density fluctuations at redshift z = 2.5, calculated using 
the matched filter (solid curve) and the Gaussian filter (dashed curve). At small 
mass scales, the removal of background fluctuations by the matched filter leads 
to a significant difference between the rms density fluctuations calculated using 
the two filtering schemes. For further comparison, we also plot the 1 o height 
of “isolated” density fluctuations in the Gaussian-filtered scheme (filled dots). 
The loci of these points agree surprisingly well with the 1 o level determined 
using the matched filter. 
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averaged density fluctuation on the surface of a sphere of mass 
scale M located at x, as 

\(x; 4 = 1 Ag(x') ■ 4*J—- dx', (17) 

where r is the radius of the sphere. Note that A^(jr) = A^(jc; 0). 
Both A0(a:) and A^x; r) are Gaussian random variables. 

Given a set of Gaussian random variables y = ()?!, y2, •••, yn), 
the joint probability distribution is 

P(y)dy = exp (-2 Eg;,; ViX;) 
[(2^)" det 

dy, (18) 

where the covariance matrix = <yt- y¡) ; we have assumed 
that <}>;> = 0. Therefore, the joint probability distribution for 
the density fluctuation at a given point Ag(x) and Ag(x; r), the 
angle-averaged density fluctuation at a distance r about the 
same point, is 

P(v, vr)dv dvr = 
1 1 
in ^ _ jî 

x exp + 
(vr - tjrvf 

<p-r. 
(19a) 

where 

<M)M2> and 0 = <Ä>. 
V <A2

g> 
V <A9

2> 
(19b) 

We have expressed the density fluctuations in terms of the rms 
fluctuation of the Gaussian smoothed field: v = ^g(x)la0g and 
vr = Aff(x; r)lG0r Designating a density fluctuation A^(x) as 
“isolated” if —0.5 < vr < 0.5, we evaluated the mean and the 
variance of such fluctuations. For all practical purposes, the 
mean is negligible with respect to the rms. In Figure 4, we plot 
the corresponding 1 a height of “isolated” density fluctuations 
(filled dots). The loci of these points agree surprisingly well 
with the 1 cr level determined using the matched filter. 

Apart from calculating the rms density fluctuations associ- 
ated with isolated M-peaks, we are also interested in determin- 
ing the number density (comoving) of such structures. The 
“matched filtered” field is a three-dimensional Gaussian 
random field; therefore, the differential number density of 
M-peaks is well approximated by 

^Mpk(v) = {2n)2Ri G(y’ V7)e V2/2 ’ (20) 

where a fitting formula for G(y, vy) is given in equation (4.4) of 
BBKS. As defined earlier, the parameter v measures the height 
of the density peak: v = A/cr0 and y = Gl/a2G0 while R* = 
y/3 a Jg2 ; Gj are the various moments of the power spectrum. 

In Figure 5, we plot the comoving number density of 
M-peaks (solid line) whose peak heights are at or above some 
threshold level with respect to the local background. For com- 
parison, we also show the comoving number density of peaks 
for Gaussian filtered field (dashed line). In the Gaussian filtered 
scheme, the global mean density is the zero-point for the peaks 
heights and the corresponding threshold levels. For a proper 
comparison, we are required to choose some specific threshold 
level for the peak heights ; we cannot simply set a threshold for 
v because v measures the peaks heights relative to the rms 
fluctuation of the density field and the values of the rms fluc- 
tuation differ for the filtering schemes. We plot results for four 
different threshold levels (we have expressed the peak threshold 

heights in terms of the rms fluctuation for the Gaussian filtered 
field). 

For low threshold levels, the number density of peaks for the 
two filtering schemes are identical. In the Gaussian scheme, the 
number density of peaks includes all peaks of mass scale 
greater than the filtering scale. For the matched filtered field, 
only peaks of mass scale comparable to the filtering scale are 
counted. It would appear that there ought to be more peaks 
in the Gaussian filtered density field. However, peaks 
(particularly M-peaks), which are depressed below the thresh- 
old level due to modulations by larger fluctuations in the 
Gaussian scheme, are brought to the fore by the matched filter 
and thereby counted. The matched filter removes power on 
scales larger as well as smaller than the filtering scale. 

For high threshold levels and low mass scales, the number 
density of peaks whose height above the local background 
(intrinsic height) exceeds the threshold level is smaller than the 
number density of peaks with total height greater than the 
threshold. This is expected. The CDM power spectrum 
exhibits decreasing power on small scales, which in turn leads 
to intrinsically small peak heights. However, the background 
power plays an important role of lifting the small scale peaks, 
resulting in large total heights. 

At this point, we distinguish between M-peaks in general 
and isolated M-peaks. Isolated peaks are those which reside in 
near-mean environments. A “lump” of mass M atop some 
larger positive density fluctuation would not be classified as 
being isolated; it would, however, be classified as an M-peak 
and would be found by the matched filter. The matched filter 
removes the large-scale power and hence, the resulting 
M-peaks essentially retain their intrinsic height (height relative 
to the local background density level). For the purposes of 
calculating the rms density fluctuation for peaks of a given 
mass scale in near-mean background, it does not matter 
whether we particularly focus on actual isolated M-peaks or 
whether we use the matched filter to remove the large back- 
ground fluctuations and treat all the M-peaks as “isolated.” 
We are simply interested in determining the rms intrinsic 
height which, for isolated M-peaks, is the actual rms density 
fluctuation. 

On the other hand, in order to determine the number density 
of true isolated M-peaks, we need to consider the background 
density fluctuations so that the peaks in near-mean back- 
ground can be distinguished from the peaks that are part of 
some larger structure but simply appear as isolated upon the 
application of the matched filter. We shall address this issue in 
the next section, in the specific context of isolated ~ 109 M0 
objects, the candidates for Lya clouds. 

in. Lya cloud candidates 

In § I, we noted that in a CDM cosmogony the Lya cloud 
candidates are most likely low-mass (~ 109 M0) density peaks 
in near-mean environments, or in terms of the terminology 
introduced in this paper, Lya cloud candidates are most likely 
isolated M-peaks. To determine whether an M-peak is isolated 
or not, we need to probe its background density field. We 
measure the background density by smoothing the unfiltered 
density field with a Gaussian of filtering scale larger than the 
mass scale of the M-peaks. We shall denote the background 
field by vb(r) = Ab(r)/o0h where o0b = o0g(Mb), and the density 
field of M-peaks by vm(r) = Am(r)lo0m. 

We classify a given M-peak density fluctuation vm(r) as 
“isolated” if the background density fluctuation at the same 
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Fig. 5.—The comoving number density of M-peaks {solid line) whose peak heights are some threshold level above the local background. For comparison, we also 
show the comoving number density of peaks for Gaussian-filtered field {dashed line). In the Gaussian-filtered scheme, the global mean density is the zero point for the 
peaks heights and the threshold levels. We plot results for four different threshold levels (the peak threshold heights are expressed in terms of the rms fluctuation for 
the Gaussian-filtered field). 

location is small: —0.5 < v^r) < 0.5. The resulting differential 
number density of isolated M-peaks is 

^¡pk(vJ = ^Mpk(vm) i P(Vb I vJdVj . (21) 
J — 0.5 

The conditional probability is given by 

-PlVi, v ) 
p{Vb IV Jdvb = dvb , (22) 

where P(vb, vm)dvb dvm is the joint probability condition (cf. eq. 
[18]). Therefore, 

and 

p(v„ I vj 
1 

- x2) 
exp 1 (v* - XvJ2} 

2 1-X2 J 
(23a) 

2 _ <Ab(0)Am(0)>2 

<A6
2><A^> ‘ 

(23b) 

In the specific case of Lya cloud candidates, we are inter- 

ested in M-peaks of scale M ~ 109 M0 and we choose to 
smooth the background at Mb ~ 1011 M0, a galactic mass 
scale. In essence, we shall ignore M-peaks superposed on fluc- 
tuations of mass scale M > 1011 M0. The corresponding 
cross-correlation between the two density field is quite small: 
X ^ 0.1; increasing the background smoothing scale results in 
even smaller values for The number density of candidate 
peaks for Lya clouds is 

^Lya J t^ripk(ym * (^4) 
Jvt 

For threshold level vt ranging from 0 to 4, the isolation condi- 
tion “ —0.5 < vb < 0.5” only reduces the number of peaks by a 
factor of 3-4. The peak threshold density for the cloud candi- 
dates is determined by requiring the neutral hydrogen column 
density to be NHl> 1014 cm-2 at the epoch of observation, 
which we shall take as z = 2.5. 

Within the framework of Rees’s (1986) model for the Lya 
clouds, in order to gravitationally confine isothermal gas of 
T ~ 3 x 104 K within structures of radii Rcl ~ 10 kpc, the 
total mass of the structure must be M ~ 109 5 M0 from the 
virial theorem. The CDM collapse, assuming a spherical col- 
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lapse model (Peebles 1980) with virialization at half the turn- 
around radius, ensues according to 

Rr 
10 kpc 

r 2.82 2/3 / M \1/3 1 - cos 6) 
1 + z 0 \109 Mq/ A(M, z) 

J if 0 < 0 < 2ti ; 

2-82 2/3f M y/3 1 
1 + z 0 VlO9 Mj A(M, z) ’ 

L after virialization. 

(25) 

In the above equation, A(M, z) is the linearly extrapolated 
overdensity of the condensate at redshift z: A(M, z) = 
A0(t/t0)2/3;i.e., A(M, z) « 0.495(0 — sin 0)2/3, if 0 < 0 < 2tc. 

The gas collapse follows the CDM collapse until pressure 
support becomes important. We assume that at this time the 
cloud of radius Rcl » RCdm has formed, regardless of the con- 
tinuing collapse and the subsequent virialization of the dark 
matter. For Rcl « 10 kpc and M ~ 109,5 M0 at z = 2.5, we 
find that required linearly extrapolated overdensity is A ^ 
1.62. Therefore, if Lya absorption lines are due to stably con- 
fined gas in dark “minihalos,” the required structures corre- 
spond to 2.4 G0m peaks where oQm æ 0.68 is the rms density 
fluctuation for isolated 109 5 M0 M-peaks at z = 2.5. The 
comoving number density of candidate objects is nLya » 10“ 2,2 

Mpc“3. 
If Lya clouds are dynamical entities as proposed by BSS, the 

appropriate structures span the mass range 109-1010 M0. The 
distribution of gas in these low-mass condensates cannot be 
easily estimated. The interplay between the pressure-driven 
expansion of the photoionized gas and the gravitational con- 
traction due to the pull of the collapsing CDM is quite compli- 
cated and therefore, the nonlinear evolution of the density in 
the clouds is best studied by numerical simulations. Based on 
the results of numerical simulations presented by BSS, for 
spherically symmetric, isolated clouds with NHl > 1014 cm“2 

at z = 2.5, the peak threshold is vt ä 2.4 (in units of G0m) for 
109-5 Mq in a CDM model with biasing factor of b = 2.6, 
increasing rapidly as mass scale of the density peaks decreases. 
The comoving number density of cloud candidates is, there- 
fore, not too different from that estimated for the previous 
model. 

Having estimated the comoving number density of cloud 
candidates, we can determine the number of Lya lines expected 
to be seen at redshift z = 2.5 along a given line of sight. The 
distribution of the clouds in redshift along a line of sight is 
(Sargent et al 1980) 

f(z)dz = nLyx(z) x (1 + z)3 x (nRçt) x dl. (26) 

The path length-redshift relationship for Q = 1 universe is 

= + z)-5/2dz = 3000/îo Hi + z)~5/2dz Mpc . (27) 

Hence, 

/(25, „ * 0m2K-(^f . <28, 

According to the observations,/obs(2.5) « 60. Therefore, if Lya 
cloud candidates are indeed associated with density peaks in 
near-mean background, then at redshift z = 2.5 the comoving 
number density of Lya cloud candidates in an Q = 1, h0 = 0.5 
CDM model with biasing factor of b = 2.6 is approximately 
three orders of magnitude too small to account for the 
observed number of Lya lines. 

Rescaling the above results for biasing factor of b = 1.7, the 
biasing factor adopted by BSS, we find that threshold density 
for Lya cloud candidates is At æ 1.6 <70m for M ~ 109,5 M0 
condensates. The number density of isolated M-peaks 
satisfying the threshold condition is nLya æ lO“0,8 Mpc“3. 
Even for such an optimistic biasing factor, the number density 
of candidate objects is two orders of magnitude too small. 

The above results are not surprising. Even with the use of a 
Gaussian filter, the comoving number density of peaks at mass 
scale M is npk(v > 1, M) « 4.8ho(M/109 Mq)“1 Mpc'3 (BSS), 
adopting an extremely optimistic peak threshold level. This 
number density includes all peaks of mass scale M of total 
height greater than or equal to the value of the rms fluctuation, 
regardless of their local background environment as well as 
peaks of larger mass scales. At z = 2.5, the number of peaks per 
unit redshift along a line of sight is/(2.5) » 9.6(M/109 Mq)“1 

(Rcl/10 kpc)2, which is marginal at best. The comoving number 
density of Lya cloud candidates, isolated peaks of appropriate 
mass scales, is expected to be even smaller. 

The Lya clouds, if they have their origins in the primordial 
density fluctuations as suggested by Rees (1986) and BSS, can 
be used to probe the amplitude of the power spectrum on 
subgalactic scales. Assuming that the Lya absorption lines are 
due to weakly correlated cosmological distribution of distinct, 
isolated low-mass condensates, the analysis presented in this 
paper suggests that the CDM power spectrum, even with an 
optimistic normalization, does not have sufficient power on 
subgalactic scales to account for the observed structures. 
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