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ABSTRACT 
Pulse shapes, arrival times, and interstellar scintillations of the 1.56 ms pulsar are analyzed at frequencies 

from 0.32 to 1.4 GHz using data obtained from 1983 April to 1985 December. The two pulse components 
(main pulse and interpulse) are different in shape, and their separation is weakly frequency dependent, decreas- 
ing from 173?6 to 173?0 of pulse phase between 0.43 and 1.4 GHz. Pulse shapes at the lowest frequencies 
show broadening caused by scattering in the interstellar medium that is consistent with the intensity scintil- 
lations that are also seen. The occurrence of fast scintillations of the pulsar intensity demonstrates that the 
broadening is caused by multipath scattering rather than by angular wandering of a single ray path. 

We test the precision to which the measured pulse phase represents the true rotational phase of the pulsar. 
Intrinsic phase jitter of individual pulses (~15 ¿¿s) causes time of arrival errors in sums of N pulses that scale 
roughly as N~1/2. At low frequencies, the largest time of arrival errors are due to interstellar scintillations. 
Scintillation-induced frequency structure changes on time scales ~ 1 minute, introducing arrival time errors of 
a few microseconds. On time scales of months and longer, the measured pulse phase varies in a wavelength- 
dependent manner. 

The long-term, wavelength-dependent time of arrival variations, if interpreted as dispersion measure 
changes, are ¿DM » 0.003 pc cm-3 over 1000 days. However, it is unclear whether the wavelength dependent 
variations are due solely to DM variations. At two epochs, the variations at three frequencies show the v2 

scaling expected from dispersion measure variations. However, comparison of DMs calculated from 1.4 to 2.4 
GHz data (published by Rawley et al. in 1988) with those calculated from 0.43-1.4 GHz data are inconsistent: 
the first set is systematically larger than the second set of DMs. The bias may indicate that (1) arrival times 
are perturbed by changes in pulse shape with frequency; (2) there are additional contributions from interstellar 
scattering, including angle of arrival effects that contribute ~v2 and ~v4 perturbations to arrival times; (3) 
the volume of interstellar scattering material that is sampled is a function of frequency, owing to the scaling of 
the scattering diameter ocv2-2; and (4) there is nonsimultaneous emission of different frequencies toward Earth 
due to a variation in altitude of emission combined with rotational aberration, reference frame dragging, 
gravitational bending of rays, and magnetic field line distortion. Further exploration of these possibilities will 
require additional measurements at many frequencies between 0.3 and 3 GHz. 

Time series of scintillation parameters are consistent with scattering in the interstellar medium from electron 
density irregularities with a spectrum (wavenumber)_a with a = 3.55 ±0.11. The Kolmogorov spectrum 
(a = 11/3) is consistent with these results. The range of length scales encompassed by the spectrum is at least 
lO^-lO14 cm with the lower limit probably extending down to 109 cm or less. The distribution of scattering 
material along the line of sight appears to be nearly uniform. Refraction from large-scale irregularities in the 
ISM evidently produces angular wandering of the pulsar image that is much less than the diffractive broaden- 
ing of the image. 
Subject headings: interstellar: matter — pulsars — stars: individual (PSR 1937 + 214) 

I. INTRODUCTION 

Of the known pulsars, the millisecond pulsar 1937 + 214 is 
the most rotationally stable (Davis et al. 1985; Rawley et al. 
1987; Rawley, Taylor, and Davis 1988), evidently because its 
small spindown rate induces little dynamical noise in the inter- 
nal torques of the neutron star (Cordes and Downs 1985; 

Alpar, Nandkumar, and Pines 1986). In addition, the narrow 
pulse and short period allow times of arrival (TOAs) to be 
determined more precisely by one or two orders of magnitude 
than TO As of other pulsars. These increases in TOA precision 
and rotational stability allow measurement of propagation 
time variations due to uncertainties in the location of Earth, 
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changes in metric, and plasma propagation effects along the 
line of sight (Cordes and Stinebring 1984; Blandford, Narayan, 
and Romani 1984; Davis et al 1985; Rawley et al 1987; 
Rawley, Taylor, and Davis 1988). 

In this paper, we discuss a combined arrival time, pulse 
shape, and scintillation study based on data obtained at the 
Arecibo Observatory. It is well known that interstellar scat- 
tering can cause time-variable pulse-shape distortion and 
arrival time fluctuations (Armstrong 1984; Blandford, 
Narayan, and Romani 1984; Cordes, Pidwerbetsky, and 
Lovelace 1986, hereafter CPL). However, uncertainties in the 
nature of electron density variations prohibit detailed predic- 
tions of the arrival time fluctuations. One of our aims, there- 
fore, was to use scintillation and timing observations to 
constrain the electron density wavenumber spectrum. As a 
consequence, our choice of observing frequencies was made so 
as to maximize scattering effects and is therefore complemen- 
tary to frequencies used by Rawley et al (1987), who hoped to 
minimize scattering effects by observing at high frequency. 

In § II we summarize the observations and preliminary 
analysis. Short-term (intraday) timing and scintillation varia- 
tions are discussed in § III, where we analyze intrinsic pulse 
phase jitter (probably a pulsar magnetospheric effect), pulse 
shape variations induced by interstellar scintillations, and their 
relationship to time of arrival estimates. Long-term variations 
are presented in § IV. Constraints on the electron density 
wavenumber spectrum are made in § V. Our conclusions are 
summarized in § VI. 

II. OBSERVATIONS 

Observations were made at the Arecibo Observatory from 
1983 April through 1985 December using the 305 m reflector 
and line feed antennas at 0.32, 0.43,0.60, 0.93, and 1.4 GHz. A 
preliminary analysis of the 1983 April data has been reported 
by Cordes and Stinebring (1984), where the data acquisition is 
described and a precise value of the dispersion measure is 
given. Polarization results have been reported by Stinebring 
and Cordes (1983). 

We recorded the predetection signal that is proportional to 
the electric field accepted by the feed antenna and heterodyned 
to zero frequency (“ base band ”) by a series of local oscillators. 
The base band voltage may be considered complex because 
in-phase and quadrature components are needed to fully char- 
acterize it. Complex samples were obtained at the Nyquist rate 
appropriate for the bandwidth imposed on the signal. Band- 
widths of 125 kHz were used at 0.32 and 0.43 GHz, while 250 
kHz filters were used at 0.43,0.60,0.93, and 1.4 GHz. Some 1.4 
GHz data were obtained with 500 kHz bandwidths (using a 
single polarization channel) to study the pulse waveform with 
the highest resolution. Late in 1984, we realized that low-level 
features in the baseline of 0.43 GHz waveforms (cf. Stinebring 
et al 1984) resulted from aliasing of strong scintillation fea- 
tures in the sidelobes of the bandpass filter. To suppress alia- 
sing, we reduced the bandwidth to 125 kHz and sampled at 
twice the Nyquist rate. The Nyquist sample intervals were 1.9, 
3.9, and 7.9 fis when using bandwidths of 500, 250, and 125 
kHz. The true resolution for frequencies below 1 GHz is deter- 
mined by interstellar scattering, which causes pulse broadening 
that scales roughly as t¡ss « 0.61 v_ 4,4 /¿s, where v is the fre- 
quency in GHz (see analysis below). 

Data were usually written to magnetic tape directly, 
although our earlier work (Cordes and Stinebring 1984) 
involved real time dispersion removal. Off-line analysis con- 
caused by interstellar scattering is evident. Waveforms at 0.43 

sisted of (1) formation of pulse waveforms after removal of 
interstellar dispersion distortion and (2) computation of the 
intensity as a function of time and radio frequency (the 
dynamic spectrum), useful for studying interstellar scintil- 
lations. 

Dispersion removal was accomplished using the digital fil- 
tering technique developed by Hankins (1971; see also 
Hankins and Rickett 1975), which corrects the Fourier phases 
of the base-band signal and requires knowledge of the disper- 
sion measure to an accuracy of 0.2% or better (cf. Fig. 1 of 
Cordes and Stinebring 1984). This predetection technique is 
superior to postdetection dispersion removal (e.g., Taylor and 
Huguenin 1971; Boriakoff 1973) for time of arrival studies 
because the dispersion induced phase is corrected across the 
entire bandpass. The resultant arrival times are insensitive to 
the precise frequencies of scintillation-induced intensity 
maxima, which vary on time scales of minutes. 

After dispersion removal, the resultant pulse trains were 
averaged synchronously to form pulse waveforms. These wave- 
forms were subjected to further analysis that included (1) tem- 
plate fitting to obtain arrival times and (2) a shape analysis to 
determine the temporal broadening time. We studied these 
quantities using averages of 240 pulses (the minimum needed 
to get a usable signal to noise ratio) to 2 x 105 pulses (the 
maximum obtained in an observing session) on a given day. 
We also analyzed timing and scintillations over the course of 
the 2.8 yr time span of our entire data set. 

Grand average waveforms are shown in Figure 1. Table 1 
gives waveform parameters, including the widths and separa- 
tion of the main pulse and interpulse. The 1.4 GHz pulse is 
sharpest and the main pulse, the larger of the two components 
separated by ~173° (where pulse phase is measured in 
degrees), shows an additional feature separated by ~8?1 of 
~35 fis from the maximum. This structure is presumably 
related to the double pulse structure seen from many pulsars 
(Rankin 1983; Lyne and Manchester 1988). The main pulse- 
to-interpulse amplitude ratio (~45%) is not strongly 
frequency-dependent, and the separation is weakly frequency- 
dependent. At 0.43 and 0.32 GHz, the asymmetry of the pulses 

TABLE 1 
Waveform Parameters 

Main Pulse Interpulse 
Width Width 

Frequency (FWHM) (FWHM) 
(GHz) (pis) {pis) Separation 

0.32a   Ill 161 173?2 ± 0?3 
(45)b (45) 

0.43   61 68 173.56 + 0.03 
(45) (45) 

0.6 Ia  56 59 172.2 + 0.2 
(43) (44) 

1.40   40d 49 173.01 ± 0.04 
2.38e   43 47 173 + 1 

a Data obtained in a single linear polarization. Waveform data are 
probably biased by the strong polarization of the pulsar signal. 

b Values in parentheses derive from a least-squares fit of a Gaussian 
function convolved with a one-sided exponential, as discussed in text. 

c The separation of main and interpulse was found by fitting a tem- 
plate to the main pulse and interpulse separately for a large number of 
individual waveforms. Errors ( ± 1 standard deviation) on the mean are 
given. 

d Width excludes the secondary main pulse feature that is about 35 /is 
after the maximum (cf. Fig. 1). 

e Results from Stinebring 1983 and Rawley 1986. 
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PULSE PHASE (cycles) 
Fig. 1.—Waveforms at 1.4,0.6,0.43, and 0.32 GHz 

and 1.4 GHz are total intensities, whereas the others represent 
only one sense of linear polarization. The linearly polarized 
waveforms are distorted by time-variable Faraday rotation 
and rotation of the feed antenna as the source is tracked. For 
this reason we concentrate on the 0.43 and 1.4 GHz data in the 
arrival time analysis discussed below. 

Scintillations were studied through the computation of 
dynamic spectra. These were computed from the base-band 
voltage by Fourier transforming raw records, squaring, and 
averaging spectra for 8 s (100 records). Spectra were truncated 
at the edges and fitted with a third-order polynomial to remove 
the bandpass filter shape. For a few subsets of data (such as are 
shown in Fig. 5), we used an alternative analysis that gave 
greater signal-to-noise ratio in the scintillation spectra: we 
computed dynamic spectra after dispersion removal by finding 
the spectrum when the pulse was “ ON ” and differencing and 
normalizing by a similar “OFF” pulse spectrum. Dynamic 
spectra were used to quantify the scintillations at each epoch, 
as discussed below. 

In the following we discuss the observables on both short 
(intraday) and long time scales. 

III. SHORT TIME SCALE INTENSITY AND TIMING VARIATIONS 

a) Time of Arrival Variations 
Arrival times were estimated in standard ways (e.g., Helfand 

et al 1980) by cross-correlating a high signal-to-noise ratio 
waveform from 1.4 GHz with all other waveforms. The lag of 
maximum correlation is combined with the time of the first 
sample in each data record to yield the topocentric arrival 
time. The time tagging of the first sample has a nominal accu- 
racy of 1 fis (discussed further in § IVc). Figure 2 shows exam- 
ples of cross-correlation functions and the fitted parabolas 

TIME BIN (yus) 
Fig. 2.—Results of template fitting to trial waveforms. Cross-correlation 

function between the template and a 1.4 GHz waveform (squares) and a 0.43 
GHz waveform (circles). Filled symbols represent the data; open symbols, a 
fitted parabola. 

used to find the maxima. Formal errors of template fits are 
typically only 0.2 fis, far smaller than the observed time of 
arrival variations on time scales of minutes. The true errors are 
determined by interstellar scintillations and by the sampling of 
the data. 

Figure 3 shows autocorrelation functions of short-term 
TOA variations at 0.43 and 1.4 GHz. The rms TOA variation 
is 2.2 fis at 0.43 GHz and 0.7 fis at 1.4 GHz for the particular 
data sets shown. At 0.43 GHz the TOA variations are corre- 
lated over about 80 s (the approximate lag of zero crossing). 
This time scale is nearly the same as the characteristic time 
scale of interstellar scintillations at this frequency (see the dis- 
cussion below in § lie). By contrast, the 1.4 GHz TOA varia- 
tions are consistent with white noise, as shown by the spike in 
the autocorrelation function that decays to almost zero at a lag 
of one sample. As we discuss in detail in § lie, this difference in 

Fig. 3.—Autocorrelation functions of the times of arrival computed from a 
series of 32 s average waveforms. 
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behavior arises because at 0.43 GHz arrival time perturbations 
are scintillation-dominated, while at 1.4 GHz they are domi- 
nated by radiometer noise and phase jitter intrinsic to the 
pulsar. 

b) Intrinsic Pulse Phase Jitter 
We have used our 1.4 GHz data to estimate the amount by 

which individual pulses move randomly in pulse phase with 
respect to a fiducial phase locked to the rotational phase of the 
pulsar. Jitter is necessarily intrinsic to the pulsar because inter- 
stellar (as well as interplanetary and ionospheric) propagation 
effects occur on much longer time scales. All well-studied 
pulsars show intrinsic phase variations on pulse-to-pulse time 
scales (Taylor and Huguenin 1971; Backer 1973; Helfand, 
Manchester, and Taylor 1975; Downs and Krause-Polstorff 
1986) that are usually assumed to be distinct from the “red” 
timing noise that is manifest on much longer time scales 
(Boynton et al. 1972; Cordes and Helfand 1980; Cordes and 
Downs 1985; Alpar, Nandkumar, and Pines 1986). In some 
cases the short-term phase variations appear as semirepetitive 
drifts (“drifting subpulses”), while in others phase variations 
are statistically independent between contiguous pulse periods. 
The distinction between phase jitter and longer term timing 
noise is as follows : jitter occurs with respect to a well-defined 
fiducial phase that is tied to a point on the neutron star surface. 
Physically, jitter is probably associated with motions of emis- 
sion regions with respect to a magnetic pole. Timing noise, on 
the other hand, represents actual departures in the rotational 
phase from that expected for an object that is smoothly spin- 
ning down. 

We have investigated 1.4 GHz TOA variations during a 
strong scintillation maximum when the signal-to-noise ratio 
was large. We formed a set of 480 pulse waveforms, each of 
which was an average of 240 single pulses. TOAs were found 
for each and for sums of these basic waveforms. We thereby 
obtained TOAs for averages of N pulses with N ranging from 
240 to 7680 pulses. 

Results are shown in Figure 4, where the rms TOA is plotted 
as a function of N for the main pulse (MP) and interpulse (IP) 
components separately. For both components, the rms TOA 
decreases roughly as AT-1/2 for N < 1000, as would be 
expected for errors due to additive system noise and intrinsic 
pulse jitter. For larger N, the rms TOA for the main pulse 
flattens, while that for the interpulse continues to decrease. 
This difference may signify a real difference in the fluctuation 
properties of the two pulse components. Alternatively, it may 
arise from binning effects in TOA estimation that depend on 
the signal to noise ratio, such as those suggested by Rawley 
(1986). These binning effects arise (J. Taylor, private 
communication) from the template-fitting procedure when the 
TOA precision becomes much smaller than one sample inter- 
val. In this regime, the precision ceases to decline as N gets 
larger and the signal-to-noise ratio gets larger. Clearly, for a 
given N, this regime happens to the main pulse before the 
interpulse. In any case, our data set is too short to probe the 
large N behavior of the rms TOA in more detail. Our main 
concern here is to extrapolate to iV = 1 from the small N por- 
tions of the curves in Figure 4, which satisfy the understand- 
able N~1/2 scaling. 

We model variations in TOA for an iV-pulse average as 
a sum of two terms, one involving the signal-to-noise 
ratio (tsnr(N), and the other representing intrinsic pulse phase 

N (periods) 
Fig. 4.—Root mean square time of arrival computed from averages of 

different numbers of pulses. Curves are shown separately for the main pulse 
(filled circles) and interpulse (open circles). Solid lines show variations ociV-1/2 

expected from a combination of random noise and random pulse jitter. 

jitter a/N): 

o(N) = OÍ(N) + <t|nr(N)]1/2 . (1) 

Because the second term in the TOA variance is signal-to- 
noise-dependent, it is possible to separate the two contribu- 
tions if we assume that jitter is intensity-independent. This 
assumption may not be warranted since, for example, Krishna- 
mohan and Downs (1983) found that short-term pulse phase 
variations are correlated with intensity for the Vela pulsar. 
However, it is not known if other pulsars behave in the same 
way, and, for our analysis, we seek only a crude estimate of the 
jitter amplitude. 

To estimate oy, we assume that it is the same for both the 
mainpulse and interpulse. This assumption appears reason- 
able, since longer period pulsars show phase jitter that is 
roughly some fixed fraction of the integrated pulse width; <7SNR 

depends on the signal to noise ratio as (Downs and Reichley 
1983) 

tfSNR oc [SNR(jV)v4v] “1 . 

By estimating rms TOAs Gmp(N), aip{N) and signal-to-noise 
ratios SNRmp(iV) and SNRip(AT) as a function of N, we may 
solve for the rms jitter as 

°2ÁN) = 
r2a2

mp(N) - aUN) 
- 1 

(2) 

where r = SNRmp/SNRip = 2.25 ± 0.05 is the ratio of SNRs 
found using all the 1984 and 1985 data. By using the numbers 
in Figure 4 for V = 240 and extrapolating to iV = 1, we find 
that <7j(l) = 15 + 10 ¿¿s. The phase jitter may be compared to 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

34
9.

 .
24

5C
 

MILLISECOND PULSAR 1937 + 214 249 No. 1, 1990 

FREQUENCY (MHz) STOA (¿is) 
Fig. 5.—Comparison of interstellar scintillations and short-term time of arrival variations. Left panel : Dynamic spectra at 430 MHz. The gray scale is linear, with 

the blackest corresponding to higher intensity and white corresponding to intensities less than 50% of the maximum. Right panel : Deviation from the mean of the 
time of arrival determined from 32 s average waveforms. 

the widths (FWHM) of about 40 fis and 45 fis for both the 
main pulse and interpulse, respectively (Table 1). 

c) Interstellar Scintillations and Temporal Broadening 
In this section we demonstrate that the precision of arrival 

times at 0.43 GHz is limited by the frequency structure in the 
pulsar signal imposed by multipath propagation through the 
ISM. The notation we use is as follows: in quantifying scintil- 
lations, Avd and Aid denote the scintillation frequency and time 
scales. These are the characteristic bandwidth and time over 
which the intensity is correlated, owing to diffractive scattering. 
The quantity Td is the pulse-broadening time which satisfies the 
“ uncertainty ” relation, 2nTd Avd æ 1. 

Figure 5 shows interstellar scintillations in the form of 
dynamic spectra along with arrival times determined from 
averages of 2400 pulses for the same data at 0.43 GHz. The 
gray scale plot of the scintillations shows the usual bands of 
constructive and destructive interference that arise from multi- 
path propagation. The bands have characteristic widths in 
time and frequency that are the scintillation or diffraction 
bandwidth Avd and time scale Aid. The appearance of scintil- 
lation frequency structure is direct proof that diffractive multi- 
path scattering occurs. 

The arrival times in Figure 5 vary by about + 5 fis, about 20 
times larger than the formal errors expected in the template- 
fitting process described above. The frequency structure in the 
pulsar signal introduced by interstellar scintillations can cause 
TOA errors by two distinct effects: (1) a change ôv in the 
effective center frequency of the signal, resulting in a TOA 

change ôt oc DM<5v; and (2) a change in the net pulse shape 
caused by the detailed shapes of the intensity maxima that are 
instantaneously in the receiver bandpass. The first effect is 
eliminated by proper removal of dispersion delays across the 
receiver bandpass, as we have done in this paper. The second 
effect causes the ±5 fis TOA variations seen in Figure 5. To the 
eye there is no obvious relation between the TOA variations 
and the scintillation variations in the figure. This is because the 
TOA variations are associated with the widths (in frequency) of 
scintillation features in the spectrum. The second effect can be 
minimized only by making observations that include as many 
scintillation maxima as possible before calculation of arrival 
times. In principle, the TOAs could be corrected by using the 
information contained in the spectra. We have made initial 
attempts at this, but the signal-to-noise ratio in our data 
appears inadequate for achieving significant improvement. 

The notable feature of the scintillations in Figure 5 is that 
the number of bright features (Niss) in the two-dimensional 
(time and frequency) frame is small. For a receiver bandwidth 
Av and integration time T, the number of such features is 

(3) 

where C ^ 0-1-0.2 is an empirically determined coefficient. (In 
the limit of large Av/Avd and T/Atd this is the same as eq. [7] in 
Cordes 1986). 

TOA fluctuations arise because the net observed pulse shape 
is the convolution of the intrinsic pulse shape with a function 
that depends on the characteristic bandwidth of the scintil- 
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5 lations (see Appendix). As is well known (e.g., Rickett 1977), in 
^ the limit of an ensemble average, the observed pulse shape is 

: the convolution of the intrinsic pulse shape with a one-sided 
a exponential function if scintillations result from scattering by a 
S thin screen. The 1/e broadening time is Td = (27rAvd)_1. Thicker 
Si media yield exponential like functions with a finite rise time 

(e.g., Williamson 1972, 1975). For finite averages over Niss 
independent scintillation fluctuations, however, the effective 
scattering function is random and approximates the 
exponential-like form only to within a fractional error 
~ JVi“1/2. jhis scattering function will change on a time scale of 
about the scintillation time scale. The arrival times in Figure 5, 
determined from frequency-time integrations of 250 kHz x 32 
s, have Niss « few so the arrival times would be expected to 
vary by Ni7s

1/2Td « 5-15 /¿s. The arrival times vary by about 
±5 fis and are correlated over about 80-100 s, which is the 
scintillation time scale. 

Figure 6 is a sequence of individual waveforms (32 s 
averages) in which changes in pulse shape and shifts of the 
pulse centroid are obvious. These show directly that the shape 
varies because of scintillations. We point out that intrinsic 
shape variations (due to summing a finite number of pulses), 
such as those that account for the phase jitter analyzed in § lia, 
cannot account for the shape variations so long as the 0.43 
GHz phase jitter is approximately the same as the 1.4 GHz 
jitter. Similarity of intrinsic phase jitter at the two frequencies 
seems likely, as studies of other pulsars show that intrinsic 
shape variations are not strongly frequency-dependent. 

We also studied pulse shape variations directly by fitting 
various functions to the observed waveforms to obtain scat- 
tering broadening times and constrain the intrinsic widths of 

Pulse Phase (/is ) 

Fig. 6.—Sequence of 32 s average (2400 pulses) waveforms at 0.43 GHz, 
showing shape variations caused by interstellar scintillations. 

Fig. 7.—Histogram of the scattering broadening time, xd, for the main 
pulse (solid) and interpulse (dashed). 

the main pulse and interpulse components. For the fits, we 
used a Gaussian function exp ( — t2/2W2) convolved with a 
one-sided exponential exp ( — t¡Td)U(t), U being the unit step 
function. The fit therefore has four free parameters, the ampli- 
tude and mean position of the Gaussian and the two width 
parameters, W and rd. We assume that the intrinsic pulse 
shape (the Gaussian) is time-invariant but that the scattering 
broadening time zd varies on a host of time scales. 

At 430 MHz, we first made least-squares fits to determine 
the best value of the intrinsic width W, by minimizing x2 using 
all 1984 data. The widths are Wmp = 19Í? jus and Wip = 19í¿ 
fis for the main pulse and interpulse, respectively. Subsequent 
fits used a fixed value, W = 19 fis, for both the main pulse and 
interpulse. The average broadening times are t^mp) = 25 ± 2 
fis and Td(ip) = 30 ±2 fis using all 1984 and 1985 data. Figure 
7 shows a histogram of the decay times. The bias between main 
pulse and interpulse is marginally significant and may be due 
to a difference in the true intrinsic shapes for these two com- 
ponents. This is borne out from a fit (for amplitude and phase) 
of the interpulse to the main pulse: the interpulse at 0.43 GHz 
is slightly broader than the main pulse. 

IV. LONG-TERM VARIATIONS 

In this section we discuss scintillation and timing variations 
that occur on day to year time scales. The results here are 
predominantly empirical. In § V we interpret the results in 
terms of propagation effects in the interstellar medium. 

a) Scintillations 
Interstellar scintillations, such as those evident in the 

dynamic spectra of Figure 5, may be quantified through a 
two-dimensional correlation analysis. In Figure 8 we show 
two-dimensional autocorrelation functions (ACFs) of dynamic 
spectra obtained at two epochs. Slices along the lag axes are 
used to determine the scintillation bandwidth Avd (The 
HWHM of the cut at zero time lag) and the scintillation time 
scale Atd (the half-width at c"1 of the cut at zero frequency lag). 
The orientation of an elliptical Gaussian function fitted to the 
ACF gives the drift rate dv/dt of constructive interference 
maxima. 

The drift rate is clearly different over the interval of 7 
months separating the two data sets. Drifts are due to chro- 
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FREQUENCY LAG (KHZ) FREQUENCY LfiG (KHZ) 
Fig. 8.—^Two-dimensional autocorrelation functions of dynamic spectra with slices along the two axes. The characteristic widths in frequency (Av^) and time (Atd) 

are shown, (a) An epoch when there was significant drift of scintillation features (1984.3 = MJD 5795); (b) an epoch when there was no drift (1984.8 = MID 6005). 

matic aberration of the ray paths and signify that there are 
variations in electron density in the ISM on scales much larger 
than those that cause diffraction (Shishov 1974; Hewish 1980; 
CPL; Romani, Narayan, and Blandford 1986). The other scin- 
tillation parameters Av^ and Atd also vary with epoch. Figure 9 
shows the main pulse at two epochs, where the temporal 
broadening time Td is clearly different. 

The two-dimensional ACF analysis was performed on much 
of our 0.43 GHz data. The results are shown in Figures 10a- 
10c, where we plot the three scintillation parameters Avd, 
Atd and dv/dt against modified Julian date (Julian date 
— 24,40,000.5). Error bars on the points are +1 standard devi- 
ation, where the standard deviation is estimated from several 
fits made at each epoch and are larger than the standard errors 
of the least-squares fits. For dates after MJD 6249, an effective 
scintillation bandwidth is plotted (open circles) that is derived 
from the temporal broadening time of the waveform using the 
relation 2nAvdxd = 1. All quantities vary by amounts larger 
than their errors on a time scale of about 200 days. 

Table 2 lists scintillation parameters at 0.43 GHz averaged 
over all our available data. The quoted standard deviations are 
of the individual measurements (as opposed to of the mean), 
since we think that these reflect the amount by which the scin- 
tillation parameters vary from refractive effects (as discussed 
further in § V.) Parameters at 0.32 GHz are also given from a 
few fits to relatively poor data. We also show results at 1.4 
GHz provided by L. Rawley (private communication) and 
which are summarized in his Ph.D. thesis (Rawley 1986). Recall 
that our own data had insufficient bandwidth to allow a scintil- 
lation analysis at this frequency. Rawley provided scintillation 
band widths (Avd) and times (Aid) for 54 epochs from late 1984 
to the end of 1986. The standard deviations in Table 2 for the 
1.4 GHz data are of the mean scintillation bandwidth and time 

(i.e., the standard deviations of individual measurements 
divided by the square root of the number of measurements). At 
1.4 GHz, variations in the scintillation parameters appear to be 
due to uncorrelated estimation errors rather than to refractive 
scintillations, as verified by a test for whiteness on the 1.4 GHz 
scintillation parameters. 

Fig. 9.—The main pulse at 0.43 GHz for two epochs showing a difference 
in scattering decay time: 1984.3 (filled circles) and 1984.9 (open circles). 
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Fig. 10.—Time series of the scintillation parameters (a) Avd, where filled circles denote direct measurement of the scintillation bandwidth, open circles measure- 
ment of the pulse broadening xd and use of Avd = 1/(2711,,); (b) Atd, and (c) dv/dt; {d) the signal-to-noise ratio, where open circles denote use of 125 kHz bandwidth, 
filled circles 250 kHz; and {e) the phase difference A\¡t between the 1.4 GHz and 0.43 GHz arrival time data. The phase differences are with respect to the best-fit 
dispersion measure DM = 71.04224 to our 1983-1985 data. Error bars are +1 <7. 

We also include in Table 2 the scintillation speed, 

104 (DAvd)1/2 

vAid 
km s 1 

(4) 

where the constant (Cordes 1986) applies for distance D in kpc, 
Avd in MHz, v in GHz, and Aid in s. The scintillation speed is 
the magnitude of the weighted vector sum of the pulsar proper 
motion speed, the observatory’s transverse speed, and the 
speed of scattering material along the line of sight. At 0.43 
GHz, the scintillation speed is less than that reported by 
Cordes (1986), because the latter value was based on data from 
a single epoch with lower signal to noise ratio than the data 
considered here. 

TABLE 2 
Scintillation Parameters of 1937 + 214 

v Avd Atd rms dv/dt KISS 
(GHz) (kHz) (s) (kHz s-1) (km s_1) 

0.32  1.4 ±0.5 65 ±20 ... 51 ± 18 
0.43  4.2 ± 0.9a 100 ± 18a 0.021 50 ± 6b 

1.40  923 ± 65c 444 ± 28c ... 42 ± 13b 

a The errors for the 0.43 GHz data are standard deviations of the daily 
values in Fig. 10 which vary, in part, because of refractive variations in 
interstellar propagation. 

b The mean and standard deviation of the scintillation speeds are of the 
daily mean values. 

c Errors for the 1.4 GHz data are standard deviations of the 55 daily 
values supplied by L. Rawley (private communication) divided by (55)1/2, 
since the variations are white noise in character and do not reflect varia- 
tions caused by the interstellar medium. 

The standard deviation of the velocity in Table 2 for 0.43 
MHz was calculated using the 17 epochs separated by more 
than 15 days in order that the daily sampling in 1984 April 
would not bias the result unduly. The velocity standard devi- 
ation therefore reflects contributions from measurement errors, 
interstellar refraction (which modulates the scintillation 
parameters), and Earth’s orbital velocity. There are insufficient 
data to allow a fit to the velocity curve from which one could, 
in principle, obtain the pulsar’s vector proper motion. It is 
notable, however, that the fractional variation (tv/Viss = 13%, 
is less than the individual fractional variations of Avd and Aid. 
This lends support to the view that variations in scintillation 
parameters are predominantly due to refraction, which modu- 
late Avd and Aid by factors that cancel in the expression for the 
velocity (eq. [4]). More discussion on the refractive modulation 
of scintillation parameters may be found in CPL. 

In § V we use the scintillation data to constrain the electron 
density wavenumber spectrum along the line of sight to the 
pulsar. 

b) Flux Density Variations 
Figure lOd displays the waveform signal to noise ratio (SNR) 

at 0.43 GHz, calculated as the ratio of the waveform maximum 
to the rms offpulse noise. The SNRs have been corrected for 
the zenith angle dependence of the antenna gain and system 
temperature and corrected for changes in the receiver system 
that altered the system temperature. Thus the plotted SNR is a 
measure of the pulsar flux density (in arbitrary units). The 
plotted errors ( ± 1 standard deviation) are empirical errors 
calculated from several SNR measurements obtained at each 
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epoch. As with the scintillation parameters, the SNR varies 
with a characteristic time scale of about 200 days. 

Recent work (Rickett, Coles, and Bourgois 1984; Romani, 
Narayan, and Blandford 1986; CPL) suggests that at least 
some long-term pulsar intensity variations are caused by 
refractive scintillations in the ISM. Moreover, there is limited 
evidence that all long term intensity variations from pulsars 
result from interstellar refraction. Stinebring and Condon 
(1990) recently observed a sample of pulsars every day for 40 
days at three frequencies. Low dispersion measure (DM) 
pulsars showed the expected refractive variations over the 40 
days while high-dispersion objects, for which the refractive 
time scale is well in excess of 40 days, indeed showed essentially 
no intensity variations. 

From the time series shown in Figure 10, we obtain a modu- 
lation index for the SNR of 

^snr Ari0/ mSNR = ——— = 40% . SNR SNR 

Since some of this fluctuation is undoubtedly due to estimation 
errors, we interpret the modulation index to be an upper 
bound on refractive intensity variations over our data interval 
We predict a refraction time scale Air æ (lr/ld)Atd ä 1 yr at 0.43 
GHz (where lr d are length scales associated with refraction and 
diffraction ; see below) so our data span should display a good 
fraction of the total expected refractive fluctuation. Nonethe- 
less, further study is warranted. 

c) Arrival Time Analysis 
Arrival times were obtained through conventional template 

fitting techniques (cf. § II) and knowledge of the time at which 
sampling commenced on a given day. As discussed by Davis et 
al. (1985), the observatory’s rubidium standard is synchronized 
with the Loran C time transfer service to an accuracy of order 
1 fis. Our nominal arrival times have been corrected for varia- 
tions between Loran C and the observatory clock prior to 1984 
October. Beginning in 1984 October the offset between the 
National Bureau of Standard’s estimate of UTC (transferred to 
the Arecibo Observatory with the Global Positioning System 
[GPS]) and the observatory clock has been used to correct the 
arrival times. Use of the GPS for pulsar timing studies is dis- 
cussed by Rawley (1986) and Rawley, Taylor, and Davis (1988). 
Before fitting the arrival time data, they were corrected for the 
shift induced by scattering in the interstellar medium. As dis- 
cussed in Cordes and Stinebring (1984), we estimate this shift 
to be 60% of the 1/e scattering broadening time. The net cor- 
rection that was subtracted from all arrival times was then 

At(v) = 0.366V- fiS (5) 

for radio frequencies v in GHz. In principle, this correction 
should be time-dependent because we have shown that the 
scattering broadening time varies. We have not done so in the 
timing results reported below because our conclusions would 
be largely unaffected. We will defer to another paper the results 
of applying a time-dependent correction. 

The arrival times were fitted using the program TEMPO, 
courtesy of J. H. Taylor and J. M. Weisberg, and using the 
PEP planetary ephemeris from MIT. We fitted arrival times 
(referred to the solar system barycenter) using a phase model 

v) = ^0 +/o¿ + 2/0^ + “j^r/o v (6) 

where the tilde denotes that phase units are in cycles ;/0 and/0 
are the spin frequency and its first derivative at the time origin; 
<5DM is the change in dispersion measure over that assumed; 
and DC = 2.41 x 10-16 pc cm-3 Hz-1 is the dispersion con- 
stant for the observation frequency v in Hz. We used a fixed 
value DM = 71.0440 pc cm-3 (Cordes and Stinebring 1984) to 
reference the arrival times to infinite frequency. In translating 
to the solar system barycenter, the right ascension and decli- 
nation were assumed equal to those published by Rawley 
(1986), and the proper motion was assumed to be zero. 

The fit to all 0.43 and 1.4 GHz data from 1983 through 1985 
yields a best-fit dispersion measure DM = 71.04224 + 0.00005 
pc cm-3 ( +1 standard error). In Figure 10 we show the phase 
differences (in temporal units) 

Ail/(t, 0.43 GHz, 1.4 GHz) =/o ^^(i, 1.4 GHz) 

- iA(i, 0.43 GHz)] (7) 

between the 0.43 and 1.4 GHz data, expressed in time units; 
note that these differences are with respect to the best-fit DM. 

Like all other quantities plotted in this figure, the phase 
difference varies smoothly with time. Errors in the mean phase 
difference at each epoch were calculated from the observed 
variations of individual pairs of 0.43 and 1.4 GHz fits and 
errors are dominated by scintillation induced variations in the 
0.43 GHz data (cf. § Ha). 

d) Frequency-dependent TOA Perturbations 
Are the frequency-dependent TOA variations caused solely 

by changes in dispersion measure? In Figure 11 we show 
A\l/(t, v, 1.4 GHz) plotted against v“2 — (1.4 GHz)-2 for the 
two epochs, MJD 5426 (1983.3) and MID 6027 (1984.9). At the 
earlier epoch, data at frequencies 0.32, 0.43, and 1.4 GHz are 
plotted while the second epoch has data at 0.43, 0.61, and 1.4 
GHz. The errors on the data points are ±1 0. Also shown are 
least-squares fits of straight lines that pass through the origin, 
whose slopes are proportional to the dispersion measure per- 
turbations. For the first epoch, the data points are completely 
consistent with the fit, which gives x2/^2 ^0.5 compared to an 
expected value of unity for a fit using 2 pairs of frequencies. In 
our earlier paper (Cordes and Stinebring 1984), we demon- 
strated that the frequency-dependent timing variations were 
consistent with those caused by dispersion for this epoch. At 
the second epoch some 1.6 yr later, the data and fit appear to 
be inconsistent, giving x2 ^ 5, suggesting the presence of addi- 
tional frequency-dependent TOA perturbations. It is possible 
that some or all of this perturbation is really due to the 
refraction-induced modulation of the scattering broadening 
time (Td). In our analysis, we corrected arrival times using a 
best mean value of td, as discussed above, but we did not 
correct for the ~20% variations in Td. These variations would 
introduce ps perturbations in the 0.43 GHz arrival times 
which, if corrected, might reduce x2 to about unity. 

To explore further the frequency dependence of TOA pertur- 
bations, we compare our data with those of Rawley (1986) and 
Rawley, Taylor, and Davis (1988). Expressing our 1.4-0.43 
GHz phase differences as dispersion measure perturbations, 
we obtain the values shown as filled circles in Figure 12. We 
also show a measurement obtained in 1988 November 
(MJD = 7477) obtained by one of us (J. M. C.) and R. Foster. 
Rawley et al. made observations at 2.4 and 1.4 GHz and 
detected frequency-dependent phase variations that they 
expressed as dispersion measure perturbations <5DM æ 0.001 
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Fig. 11.—Residual pulse phase differences plotted against difference in v"2 

for pairs of frequencies. Data from two epochs are shown: 1983.3 = MJD 5423 
(filled circles) and 1984.9 = MJD 6027 (open circles). The solid lines are least- 
squares fits to lines that pass through the origin and whose slopes are pro- 
portional to ¿DM, the dispersion measure perturbation, as shown. The 
perturbations in dispersion measure are with respect to DM = 71.0440. Error 
bars (± 1 c) are shown only where they are larger than the plotted point. 

pc cm-3. We show these in Figure 12 as open circles. It is 
obvious from Figure 12 that, for epochs in common between 
the two data sets (i.e., 1985), the dispersion measure variations 
differ both in their variations and in their mean values. The 

Fig. 12.—Estimates of dispersion measure plotted against time. These esti- 
mates are derived solely from pairs of frequencies and may reflect other contri- 
butions to arrival time differences. Filled circles derive from 0.43 and 1.4 GHz 
phase differences (this paper) and open circles derive from 1.4 and 2.4 GHz 
phase differences (Rawley, Taylor, and Davis 1988). 

bias in mean DM is about 0.0035 pc cm " 3 between the two sets 
of measurements. This could be accounted for if the 0.43-1.4 
GHz phase differences are systematically in error by about 70 
fis, or if the 1.4-2.4 GHz phase differences are in error by about 
5 [is, or if all phase differences are in error. The time variations 
in DM for 1985 are slightly smaller in the low-frequency data 
(0.43-1.4 GHz), but when the 1983 and 1984 data are included, 
the variations are much larger than implied by the extended 
1.4-2.4 GHz data set shown in Rawley et al (1988). If the bias 
between the two sets of data is removed, the 1985 variations in 
DM are similar, and recent data taken at 1.4 and 2.4 GHz 
(J. H. Taylor, private communication) are consistent with the 
1988 November data point in Figure 12. Thus, at least quali- 
tatively, the overall variation in DM appears similar between 
the two data sets. It remains to be seen whether all variations 
are the same. A definitive and quantitative analysis will be 
deferred to another paper. 

At the present time, the source of bias and difference in DM 
variation cannot be determined with certainty. Some plausible 
explanations for the bias and variation in DM can be 
advanced, however. Bias in dispersion measure estimates made 
at low and high frequencies might be due to the following: 

1. A change in pulse shape with frequency, such as the 
decrease with frequency of the separation of main and inter- 
pulse that we have found or changes in amplitude ratio of 
subcomponents of the main pulse, for example. These ampli- 
tude changes are seen in almost all pulsars (e.g., Hankins and 
Rickett 1986) and are probably related to the efficacy of the 
coherent radiation process. Bias due to shape changes is a 
much larger error in the 1.4-2.4 GHz data, since the required 
bias is about 5 /¿s, a small fraction of the 45 /xs pulse width. The 
required bias at low frequency (70 ns) is too large to be 
accounted for by a change in pulse shape. 

2. Frequency-dependent propagation effects other than 
simple changes in dispersion measure. Such effects may be 
related to angle of arrival fluctuations associated with refrac- 
tion in the ISM. We discuss this possibility in § V. 

3. Dispersion measure changes that result when observa- 
tions at different frequencies sample different irregularities in 
the ISM. Different sampling would result from the difference in 
size of the 0.43 and 1.4 GHz interstellar scattering disks, which 
are «3 mas and «0.3 mas, respectively, corresponding to a 
factor of 100 difference in solid angle. 

4. A breakdown in the assumption that all radio frequencies 
are emitted from the same altitude or from the same rotational 
phase of the pulsar. A variation of emission frequency with 
altitude is expected to produce arrival time shifts from some 
combination of aberration and retardation effects (Cordes 
1978; Mátese and Whitmire 1980) and magnetic field line dis- 
tortion (e.g., Shitov 1984). Beaming of radiation toward the 
observer may also be frequency-dependent through refraction 
in the magnetosphere (Melrose 1979; Barnard and Arons 1986) 
or through a combination of a radius to frequency mapping, 
gravitational bending of rays (Cordes 1981), and reference 
frame drag (Kapoor and Datta 1986). 

Similar explanations may account for the variations in dis- 
persion measure once the bias is accounted for. Another possi- 
bility for a difference in variation is if the pulsar spin axis 
undergoes free or forced precession and the pulsar radiation 
beam is frequency dependent. 

In § V we discuss the timing results in greater detail and use 
them to constrain electron density variations in the interstellar 
medium. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

34
9.

 .
24

5C
 

MILLISECOND PULSAR 1937 + 214 255 No. 1, 1990 

V. CONSTRAINTS ON THE INTERSTELLAR ELECTRON DENSITY 
POWER SPECTRUM 

Let Pne(q) be the electron density power spectrum as a func- 
tion of wavenumber q, normalized such that the integral over 
three-dimensional wavenumber volume {(Pq) is the mean 
square electron density. It is conventional to express the spec- 
trum as a power law over a finite wavenumber range that 
depends on the magnitude of q (isotropic statistics) : 

Pnl4) = C„q~x , q0<q<ql . (8) 

The wavenumber cutoffs for the irregularities define an 
“inner” scale l1=2n/q1 and an “outer” scale l0 = 2n/q0. 
There is evidence that the outer scale is many orders of magni- 
tude larger than the inner scale (Lee and Jokipii 1976; Arm- 
strong, Cordes, and Rickett 1981). 

Scintillation and scattering data from pulsars and other 
sources have been used for (1) determining to study the 
Galactic distribution in the level of “turbulence” (Cordes, 
Weisberg, and Boriakoff 1985, hereafter CWB; Alurkar, Slee, 
and Bobra 1986; Spangler, Fey, and Cordes 1987); (2) estimat- 
ing the index a from the scaling with frequency of the scintil- 
lation parameters and from the shapes of visibility functions 
under various assumptions about the wavenumber cutoffs 
(CWB; Goodman and Narayan 1985, 1989; Wilkinson, 
Spencer, and Nelson 1988; Gwinn, Moran, and Reid 1988; 
Spangler and Cordes 1988); and (3) estimating the upper wave- 
number cutoff, qt, assuming that it is comparable to inverse 
length scales relevant to the optics, such as the reciprocal of the 
Fresnel scale (Coles et al. 1987). 

a) Distribution of Scattering Material along the Line of Sight 
The level of scattering (averaged over the line of sight) 

may be estimated as (cf. eq. [6] of CWB) 

C¡ = 6Aa VaD - a/2Av¿"(a - 2)12 ^ 0.002V11/3 

x D '11/6Avf 5/6(m)- 20/3 , (9) 

where Aa is a constant given by equation (A 10) of CWB and 
the expression after the approximate equality is applicable to 
the case where a = 11/3 (the “Kolmogorov” value); v is in 
units of GHz; Avd in MHz; and distance D in kpc. The level of 
scattering toward PSR 1937 + 214 is modest, despite its attrib- 
uted distance (Heiles et al. 1983) of 5 kpc: C3 ^ 10~3-5 m“20/3, 
a value that is among the smallest seen from pulsars. Values of 
C2 range up to 104 times larger than that seen from 1937 + 214, 
with the largest values associated with clumps of strong turbu- 
lence (Dennison et al. 1984; CWB). It seems probable, then, 
that the scattering material is nearly homogeneously distrib- 
uted along the line of sight to 1937 + 214. This is consistent 
with a comparison between the measured angular diameter 
(C. R. Gwinn et al. 1990, in preparation) and the angular dia- 
meter predicted from the pulse broadening xd and assuming a 
homogeneous distribution. 

b) Relevant Length Scales 
In the following we refer to several length scales that can be 

inferred from the pulse broadening time Td of PSR 1937 + 214. 
Assuming that scattering material fills the line of sight uni- 
formly, the scattering diameter is 

^16 In 2cTd\
1/2 

D 
(10) 

Equation (10) is general in relating the net differential time 
delay to the observed angular broadening; it does not depend 

on any particular form for the wavenumber spectrum of the 
medium. The diffraction scale is the characteristic size of inten- 
sity maxima that are swept across the line of sight to produce 
fast intensity variations : 

ld « (21n2)1/2(—^ ) , (11) 
\nUFWHM/ 

and is 21/2 smaller than the 1/e half-width of the visibility 
function. 

Refractive intensity scintillations are associated with scales 
that are much larger than those responsible for the diffraction. 
For a wavenumber spectrum of the form of equation (8) with 
a ä 11/3, the refraction scale is the size of the scattering disk at 
a point midway between Earth and the pulsar (Rickett, Coles, 
and Bourgois 1984): 

K = £>0fwhm/2 • (12) 
For 1937 + 214 at 0.43 GHz, equations (10)-(12) yield 

0FWHM ^ 4.7 mas , 
ld « 1091 cm , 

lr » 1014-3 cm . 

The inner and outer scales of the scattering medium may have 
nothing to do with the “observed” length scales, /d, lr. 
However, observations of various effects can be used to infer 
bounds on the inner and outer scales, as we show below. 

c) Determinations of the Spectral Index a 
Recent work on interstellar scintillations has distinguished 

diffractive from refractive scintillations, which are responsible 
for short-term (~100 s) and long-term (~100 day) intensity 
variations of pulsars, respectively. Our understanding of scin- 
tillation theory is such that, given the power spectrum of the 
electron number density (ne)9 the ensemble average moments of 
intensity variations, time of arrival fluctuations, and scintil- 
lation parameters can readily be calculated. The inverse 
problem of constraining the power spectrum of ne from a finite 
amount of data involves a number of uncertainties, however, 
(CPL; Narayan 1988). 

One uncertainty is that inversion formulae are sometimes 
double-valued. An example is the scaling of scintillation band- 
width Avd with observation frequency. If expressed as 

AvdocvXv, (13) 

the spectral index a may be solved for using equations (50) and 
(56) of CPL (which hold for 11 ld < lr < l0) 

2a 
a — 2 

8 
6 — a 

2 < a < 4 

4 < a < 6 . 
(14) 

The minimum value of xv is 4 for a = 4 and values of a both 
greater than and less than 4 can account for xv > 4. 

A similar scaling holds for the scintillation tims scale. 
Letting Aid oc vXi we find from equations (48) and (55) of CPL 
(with the same restrictions on the inner and outer scales) that 

^ 2 
a — 2 
a — 2 
6 — a 

2 < a < 4 

4 < a < 6 . 
(15) 
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Despite these twofold ambiguities, however, it seems pos- 
sible to distinguish “ steep ” (a > 4) from “ shallow ” (a < 4) 
power laws, because the former are expected to produce much 
stronger refractive effects than the latter. This is true so long as 
l0 > lr. Refraction effects include strong flux variations, modu- 
lations of the scintillation parameters, and time of arrival 
variations. 

d) Scaling of Scintillation Parameters with Frequency 
The scaling of scintillation bandwidth and time scale with 

frequency provide independent estimates of the spectral index 
a of P„e(q). We use the 0.43 and 1.4 GHz data in Table 2, since 
they have been averaged over about 2 yr and the quality is 
much higher than the 0.32 GHz data. The bandwidth scaling is 
xv = 4.58 ± 0.2 which implies spectral indices (labeled with 
“v” to denote use of scintillation bandwidth) av = 3.55 ±0.11 
or av = 4.25 ± 0.08 using the shallow and steep power-law 
expressions, respectively, in equation (14). Similarly, the 0.43 
and 1.4 GHz values for scintillation time scale in Table 2 yield 
from equation (15) xf = 1.27 ± 0.16, which implies spectral 
indices (now labeled with “i”): a, = 3.58 ± 0.2 or <xt = 4.24 
± 0.12. 

The values of a obtained using the independent scintillation 
quantities agree with each other, to well within the errors. The 
0.32 GHz data are completely consistent with these results. 

e) Modulation Indices of Scintillation Parameters 
It appears that additional quantities may be used to resolve 

the twofold ambiguity in determining the spectral index a from 
frequency scaling laws. Pidwerbetsky (1988) evaluated the 
modulation indices (i.e., the standard deviation divided by the 
mean) of scintillation parameters from simulations of wave 
propagation through media with power spectra of the form of 
equation (8). He considered single-phase screens, as in CPL, 
and sequences of 16 screens along the line of sight. He also 
considered power spectra where the upper wavenumber cutoff 
was comparable to the Fresnel wavenumber, qF = 2n/(W)i/29 a 
case that Coles et al. (1987) argue to be relevant to the inter- 
stellar medium. Pidwerbetsky’s simulations indicate that the 
modulation indices of (1) scintillation bandwidth Avd; (2) scin- 
tillation time scale Atd; (3) scintillation velocity and (4) 
flux density are all sensitive to the spectral index, the wave- 
number cutoff, ql9 and the thickness of the medium. In the 
strong scattering regime (in particular, at a frequency that is 
one-sixth of the frequency where the diffractive intensity modu- 
lation index is 50%, as in CPL), a single-phase screen with 
q1> qF produces the minimum modulation indices for all four 
quantities for fixed a. For a = 11/3, the Kolmogorov case, all 
modulation indices are about 10%-20% while for a = 4.25 
they are about 40%-50%. Multiple-phase screens along the 
line of sight increase the modulation indices over those for a 
single-phase screen (with the same net scintillation bandwidth) 
for all values of a. A decrease in toward the Fresnel wave- 
number qF also increases the modulation indices. 

It is therefore significant that the fractional standard devi- 
ations of the scintillation time and frequency scales and veloc- 
ity in Table 2 are all less than 20%. These are upper bounds on 
refractive fluctuations in our observed time span, because esti- 
mation errors are included. It might be argued that the varia- 
tions are underestimated in the 0.43 GHz data owing to the 
finite time span. However, the expected refractive time scale 
Atr « 1 yr suggests that the refraction is adequately sampled 
by our data. It would clearly be better to have a longer time 

span of data, but we would consider it fortuitous if the 1984 
and 1985 data were not representative. There are several kinds 
of media that can give large values of modulation index, but 
only the shallow power laws give small values. Therefore, we 
conclude that the wavenumber spectrum is shallow, a < 4, for 
the line of sight to PSR 1937 + 214 and the empirical scalings of 
Avd and Atd with frequency imply a = 3.55 ±0.11, for which 
the Kolmogorov value of 11/3 is completely consistent. 

/) Drift Rates and Refraction Angles 
Drifts of constructive maxima in dynamic spectra are caused 

by electron density irregularities that are larger than the refrac- 
tion scale lr. The drift rate may be expressed, for a single screen, 
as (CPL, eq. [28], with a slight correction): 

dv vV1 

dt 2Dv • 0r ’ 
(16) 

where 0r is the (two-dimensional) refraction angle produced by 
large-scale irregularities and t) is a unit vector pointing in the 
direction of the pulsar proper motion. 

Variations in drift rate, normalized by the diffractive scintil- 
lation parameters, may be used to constrain the extent to 
which the pulsar image wanders as a result of time variable 
refraction. CPL (eq. [60]) define the quantity 

0FWHM 
(17) 

which is the ratio of the rms refraction angle in a single dimen- 
sion to the scattering diameter, 0FWhm- For shallow wavenum- 
ber spectra, this ratio is small (10%-20%), while for steep 
spectra, it can exceed unity. The ratio may also be related to 
variations in drift rate. Using equation (68) of CPL and 
assuming that the standard deviation of dv/dt is approximately 
equal to the reciprocal of the standard deviation of dt/dv, we 
obtain 

/\ V j 
r*4(ln2)^v/i(At/ 

(18) 

At 0.43 GHz, for which the scintillations of 1937 + 214 are 
best analyzed, we estimate r « 15% from Table 2, indicating 
that refractive wandering of the image is expected to be much 
less than diffractive smearing of the pulsar image. For a Kol- 
mogorov spectrum, equation (61) of CPL yields a predicted 
ratio 

fAvd\
1/6 

r = 0.75Í —^ j «11%, 

which is entirely consistent with the observed changes in drift 
rate. It might be argued that the standard deviation of dv/dt is 
underestimated in our 0.43 GHz data owing to the finite time 
span. However, the expected refractive time scale Air « 1 yr 
suggests that the refraction is adequately sampled by our data. 

g) Dispersion Measure and Angle of Arrival Variations 
The interstellar medium perturbs pulse arrival times owing 

to changes in dispersion measure and to angle of arrival varia- 
tions of the pulsar signal. There are three terms in the net 
perturbation which have distinct variations in time and fre- 
quency. 

Dispersion measure variations are directly related to the 
phase perturbation imposed on electromagnetic waves by elec- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

34
9.

 .
24

5C
 

MILLISECOND PULSAR 1937 + 214 257 No. 1, 1990 

Iron density variations along the line of sight. Letting this 
perturbation (in radians) be </>(x) (in a one-dimensional model 
with the relative Earth-pulsar velocity oriented along the 
x-axis), the TOA perturbation (in time units) is 

•A dm = (2nv)-1 <f)(x) (19) 

and has the usual v-2 scaling with frequency (Lovelace 1970; 
Armstrong 1984; Blandford, Narayan, and Romani 1984; 
CPL; Rickett 1988). 

Angle of arrival variations impose two kinds of TOA pertur- 
bation. The first is due to the change in geometrical path 
length. For a thin screen that refracts ray paths through an 
angle 0r(*) = (À/2n)(d(l)/dx), this TOA perturbation is 

* D0?(x)/2c (20) 

for a pulsar at distance D and scales as1 v-4. The second kind 
arises when topocentric arrival times are referred to the solar 
system barycenter using an assumed direction to the pulsar 
(Backer 1986). Angle of arrival variations cause the true direc- 
tion to differ from the assumed direction, thus introducing a 
perturbation similar to that caused by proper motion of the 
pulsar (e.g., Manchester, Taylor, and Van 1974) but which 
scales with frequency as v~2. The “iss proper motion” term 
has the form 

_(1_AU) . 
*Aisspm ^ ^assumed! 

where ñ(t) is a unit vector pointing from the barycenter to the 
apparent direction to the pulsar while fiassumed is the assumed 
direction. The unit vector re points from the barycenter to the 
observatory. It is clear that il/isspm oscillates with a yearly 
period and is amplitude modulated by a randomly varying 
refraction angle 0r(t). 

The net perturbation of arrival times by interstellar effects is 
the sum of three terms that have different time dependences: 
the frequency dependences are such that two vary as v-2 and 
one as v-4 for discrete clouds of ionized plasma. As stated 
before, the scaling laws for a spectrum of irregularities are more 
complex. CPL and Romani, Narayan, and Blandford (1986) 
have estimated the amplitudes of the dispersive and geometric 
terms (eqs. [19] and [20]). Using Table 1 of CPL, an assumed 
distance (Heiles et al 1983) of 5 kpc, and the derived value of 
C2, we can estimate the difference in arrival time perturbations 
at two epochs separated by time t. For easy reference to other 
work, we will use the scaling laws for a Kolmogorov spectrum 
(a = 11/3). The rms deviation of the dispersive variations is 

^dm(^) = 2.9 ps(v50 Tyr)
5/6vG^z 

and grows with increasing t up to a maximum time Tmax = l0/V 
which could be as long 104 yr for an outer scale of 1 pc. 
Geometric path length differences have a maximum rms devi- 
ation 

= 0.44 jus vGr
15 

1 Strictly speaking, the frequency dependence is v-4 only if refraction is 
caused by a “ blob ” of size much larger than the refraction scale lr. For media 
containing a power-law spectrum of irregularities, the frequency dependence is 
different. See, for example, the scaling laws for refraction angle in Tables 1 and 
2 in CPL and Table 1 of Romani, Narayan, and Blandford 1986. The same is 
true for the frequency dependence of any angle of arrival effect. We will use the 
dependences for a discrete “blob” since they characterize the basic physical 
effects. 

that is reached for lags longer than the refraction time scale 
lr/V « 0.2 yr v¿hz

1/15 and varies linearly in t for shorter lags. 
Using these scaling laws, one can show that both the disper- 

sive and geometric perturbations are important at 0.43 GHz 
while only the former is the dominant effect at 1.4 GHz and 
higher frequencies. At 0.43 GHz the dispersive variations are 
predicted to be about 39 ps for the 1000 day span of our 
1983-1985 data, compared to an actual variation (Fig. 10) of 75 
ps. The difference may not be significant given that there are 
very few independent samples of the dispersive variations in 
our data set. Also, we have previously shown that the 
frequency-dependent variations in time of arrival are consis- 
tent with changes in dispersion measure. 

h) The Interstellar Phase Structure Function 
In his dual frequency timing study of PSR 1937 + 214, 

Rawley (1986) detected frequency-dependent variations in 
arrival time that he expressed as changes in dispersion 
measure. Rickett (1988) analyzed Rawley’s data under the 
assumption that they reflected DM variations (plus measure- 
ment errors) and used them to constrain the interstellar phase 
structure function. Here, we apply Rickett’s analysis to our 
own data and compare the result with Rawley’s data. In § IVc 
we demonstrated that there is significant bias between values 
of DM calculated from Rawley’s data (1.4 and 2.4 GHz) and 
our data (0.43 and 1.4 GHz). We tacitly assume that this bias is 
probably due to a slight frequency difference between the 1.4 
and 2.4 GHz pulse shapes. In spite of this bias, it is arguable 
that fluctuations about the mean DMs may be used to probe 
the properties of the interstellar medium. 

The phase structure function (again, for a thin screen 
medium) as a function of spatial lag b is 

£#) = <[<A(* + fc)-4>M]2> (22) 

for the one-dimensional phase model and where angular 
brackets denote an ensemble average. In the following, we 
relate spatial lags b to time lags r by b = Vt, under the 
common assumption that density variations in the medium are 
“ frozen in ” and are simply convected across the line of sight. 
Therefore, we will henceforth use t as the argument to all 
structure functions. 

Assuming that TOA variations at a given frequency are 
solely due to dispersion measure variations, it is simple to 
relate the phase structure function to the structure function of 
the TOA variations. Our observable, however, is the difference 
in phase (expressed in time units) between two frequencies vl 
and v2 at an epoch t: 

vu v2) = ip(t, v2) - ip(t, vj . (23) 

The structure function of Aij/ is 

Vj, v2) s <[AtA(t, v,, v2) - A\j/(t + x, Vi, v2)]2) , (24) 

and it may be related to the phase structure function at an 
arbitrary frequency v by 

v) = v1; v2) - 2<t2(1 - <St,o)] (25) 

where a is the standard deviation of additive measurement 
errors in AiA(i, v2) and the Kronecker delta ^T>0 ensures that 
the bias 2o2 is subtracted only for nonzero lags. Additive mea- 
surement errors are assumed to be statistically independent 
between observations because they are dominated by pulse 
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jitter and radiometer noise (cf. § lllb). Subtraction of the bias is 
an important source of error in our estimates of the phase 
structure function. 

To estimate the TOA structure function we have used 
the sum 

D*(t, vlf v2) = -L X [AiMO- Vi, v2) 
j,k 

- AtMifc, v1; v2)]2 , (26) 

where values of j, k are restricted to t — At < | í, — í J < 
T + At. Similar estimators have been used by Rickett, Coles, 
and Bourgois (1984), Simonetti, Cordes, and Heeschen (1985), 
and Cordes and Downs (1985). The bin sizes At in lag t have 
been chosen so that the number of terms N(t) in the sum for 
each lag is at least 10. This requires, given the irregular sam- 
pling, that the bin sizes vary with lag. The structure function is 
the mean of the summand in equation (26). Errors in the struc- 
ture function estimates have been calculated by finding the 
standard deviation of the summand and dividing by Ndata(T)1,29 
where Ndata(T) is the number of data points contributing to the 
sum, not the number of terms in the sum (cf. Simonetti, Cordes, 
and Heeschen 1985). We therefore assume that data points are 
statistically independent, which is true only under the null 
hypothesis that the data contain only noise and no correlated 
TOA variations. 

In Figure 13 we show the phase structure function that 
results from the assumption that all TOA variations are due to 
DM variations and measurement error. The structure function 
is evaluated at a frequency v = 1.4 GHz, which is the frequency 
that is common to both Rawley’s data and our own and was 

logic T (days) 
Fig. 13.—Estimates of the interstellar phase structure function at 1.4 GHz 

based on time of arrival variations and on the diffractive scintillation time 
scale. Filled circles depict estimates based on the 0.43 and 1.4 GHz arrival time 
variations in Fig. 10 (using data only before MID 7000), while open circles are 
based on the 1.4 and 2.3 GHz data of Rawley (1986). The filled square is the 
diffractive scintillation time scale, corresponding to the scale on which the 
phase structure function is unity. Following Rickett (1988), the solid lines 
represent theoretical scalings of t2 and t5/3 that are expected for wavenumber 
spectra (cf. eq. [8]) with exponents a equal to 4 and 11/3, respectively. 

also used by Rickett in his analysis of Rawley’s data. Filled 
circles represent estimates based on our 0.43 and 1.4 GHz data 
while open circles depict estimates based on Figure 4-2 of 
Rawley (1986). Error bars are ±1 cr. In addition to con- 
straining the structure function for lags of tens to hundreds of 
days, diffractive scintillations may be used to evaluate for a 
time scale equal to the scintillation time scale. The intensity 
autocovariance due to diffractive scintillations may be 
expressed as (Rickett 1977) 

F/(t) = </(i)/(i + t)> = exp [-Z)^(t)] , (27) 

a result that holds in the strong scintillation regime, which is 
defined as (scintillation bandwidth) (observation frequency) 
and is applicable to all data for PSR 1937 + 214. According to 
equation (27) the 1/e scintillation time scale is by definition the 
scale on which the phase structure function is unity. Therefore, 
we have plotted the 1.4 GHz scintillation time scale (cf. Table 
2) in Figure 13 as a square symbol. 

The interpretation of Figure 13 is difficult. Most points fall 
between the two theoretical curves D^t) oc t2 and t5/3, scaling 
laws that apply for electron density wavenumber spectra (cf. 
eq. [8]) with a = 4 and a = 11/3, respectively, and under the 
condition that Ft^0 1 Frih (where F is the relative, trans- 
verse Earth-pulsar speed). For lags in common to Rawley’s and 
our own data set, estimates of the structure function agree. The 
agreement would suggest that arrival time variations do, in 
fact, scale as v-2 as has been assumed in equation (19). 
However, our own data provide estimates for larger lags which 
suggest that the variations at lower frequencies diverge from 
those measured at high frequencies. This may imply the pre- 
sence of TOA variations that vary more strongly with fre- 
quency than the v2 dependence. 

Another difficulty in interpreting the structure functions 
solely in terms of DM variations is the fact that at the small 
lags (e.g., 10-100 days), the structure function scales with t 
much more slowly than even t5/3, suggesting either that the 
bias in the structure functions has been underestimated or that 
additional contributions to TOA variations are present. These 
additional TOA variations may arise from other propagation- 
induced variations, such as the angle of arrival effects discussed 
above, or from effects intrinsic to the pulsar that depend on 
frequency. 

In conclusion, the frequency dependence of the TOA varia- 
tions is at best poorly constrained. At the least, however, we 
may conclude that long-term TOA variations are present in 
the data and they are roughly consistent with those expected 
from the same sort of electron density wavenumber spectrum 
that accounts for diffractive scintillations on time scales that 
are four to five orders of magnitude shorter. There seems to be 
no evidence in our data or Rawley’s data for the large TOA 
variations that are expected for steep power laws with a > 4 
(e.g., Goodman and Narayan 1985). 

i) The Electron Density Wavenumber Spectrum 
The results of this section are summarized in Figure 14, 

where we show bounds on the wavenumber spectrum that 
derive from our determination of the spectral index 
a = 3.55 ± 0.11, the scintillation bandwidth Avd, the diffraction 
and refraction scales ld and /r, and use of equation (9). This 
spectrum is similar to that proposed by Armstrong, Cordes, 
and Rickett (1981), who synthesized data on many pulsars to 
show that the high-wavenumber portion of the spectrum 
(sampled by scintillation phenomena) extrapolates well to low- 
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Fig. 14.—Schematic spectrum showing constraints on the electron density 
wavenumber spectrum along the line of sight to 1937-1-214. The plotted lines 
extend to wavenumbers corresponding to length scales between 1014 and 109 

cm and could extend much further to both larger and smaller wavenumbers. 
(a) The spectrum using a = 3.55 and the nominal distance of 5 kpc in eq. (9); (b) 
the spectrum for a = 3.66 and a distance of 2 kpc. This lower distance is 
consistent with the dispersion measure and a mean electron density of 0.028 
cm" 3 ; and (c) the spectrum for a = 3.44 and the nominal distance of 5 kpc. 

wavenumber components implied by ionized regions of parsec 
size. Figure 14 applies to a single line of sight and is based on 
more precise measurements than was the spectrum of Arm- 
strong et al. The spectrum appears to cover three, or, more 
likely, at least five orders of magnitude in wavenumber. 

The spectrum may be integrated over wavenumber to yield 
the rms electron density for the scattering and refracting 
medium. Integrating equation (8) subject to the outer scale 
being much larger than the inner scale (/0 /J, we find 

<n2
ey 

4nc2
n n0y

3 

a — 3 \2nJ 

Since we have found that a æ 3.55, l0 > 1014 cm, and ^ 
10" 3 m~20/3, the rms electron density is 

/ I \ 0.5 5 

This rms density is about 1% of the mean (line-of-sight 
averaged) electron density found toward pulsars, ne & 0.03 

cm 3 (e.g., Weisberg, Rankin, and Boriakoff 1980). An outer 
scale of 0.1 pc would bring the rms equal to the mean. 

VI. SUMMARY AND CONCLUSIONS 

In this paper we have shown the following : 
1. The narrow pulse and small period of PSR 1937 + 214 

yield arrival times that are much more precise than those of 
most other pulsars. 

2. Arrival time precision for 1937 + 214 is limited at low 
frequencies by distortions of the pulse shape imposed by inter- 
stellar scintillations. On short time scales (minutes), these dis- 
tortions are caused by nonconvergent changes in frequency 
structure across the receiver bandwidth. On time scales of 
months or longer, pulse shape distortions are caused by vari- 
able refraction in the interstellar medium. 

3. Arrival times at all radio frequencies are affected by varia- 
tions in dispersion measure ÔDM æ 0.003 pc cm-3 over 1000 
days and, possibly, additional variations related to variations 
in angle of arrival. 

4. Uncertainties in how the pulse shape varies with fre- 
quency influence estimates of dispersion measures. Shape 
variations and the precision to which DM-induced timing per- 
turbations can be removed from arrival times will have a large 
influence on the implied precision of PSR 1937 + 214 as a 
clock. 

5. The interstellar scintillations and pulse broadening of 
1937 + 214 strongly constrain the spatial power spectrum of 
electron density variations in the interstellar medium. From 
the scaling of measured (diffractive scintillation) parameters 
with frequency and from the time variations of the parameters, 
we deduce that the power spectrum is consistent with the form 
(wavenumber)_a, where a æ 3.55+ 0.11. The diffraction 
pattern has a length scale at 0.43 GHz ld » Atd ^iss ä 109 cm. 
Irregularities in the interstellar medium cover a broad range, 
with some of them smaller than the Fresnel scale lF & (ÀD/ 
2)1/2 æ IO11-9 cm and some smaller than the diffraction scale ld. 
The frequency-drifting phenomenon, due to refraction from 
structures larger than those that dominate the diffraction, 
implies the presence of irregularities at least as large as the 
refraction scale (cf. § V/), lR ä ll/ld « 1014*3 cm (13 AU). Thus 
the wavenumber spectrum appears to cover at least ljld « 5 
decades in scale size. 
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Rawley, Steve Spangler, Joe Taylor, and Joel Weisberg for 
useful conversations and Lloyd Rawley for use of his unpub- 
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grant 85-20530 to Cornell University, by the Alfred P. Sloan 
Foundation, and by the National Astronomy and Ionosphere 
Center at Cornell University, which operates the Arecibo 
Observatory under contract with the National Science Foun- 
dation. 

APPENDIX 

PULSE BROADENING AND SCINTILLATION BANDWIDTH MEASUREMENTS 

Temporal broadening of pulses and scintillation frequency structure are different aspects of the same phenomenon, namely path 
length differences caused by scattering in the interstellar medium. The broadening time xd and scintillation bandwidth Avd satisfy an 
uncertainty relation 2nTdkvd = ^ l (Backer 1974; Slee, Dulk, and Otrupcek 1982) and since Avd oc v4 4 (CWB), it is easiest to 
measure id at low frequencies where it is larger than the intrinsic pulse width and Avd at high frequencies, where it is easily resolved 
with available spectrometers. 
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Temporal broadening estimation involves a minimum of data analysis: deconvolution of an assumed intrinsic pulse shape from 
the measured one. Estimating the intrinsic pulse shape provides the largest source of error, as we found in § IIIc. By contrast, 
scintillation bandwidth measurements involve a large amount of data processing, but they are generally insensitive to the intrinsic 
pulse shape. This may be seen as follows. 

After passing through the antenna and receiver system, the pulsar signal conforms to the amplitude modulated noise model 
(Rickett 1975), in which the complex, narrow-band (scalar) electric field after mixing to base band (see text) is 

ep(t) = [«(¿Mi) + n(tïi * b(t), (Al) 

where the asterisk denotes convolution and b(t) is the Fourier transform of the receiver frequency response; n(t) and m(t) are complex 
Gaussian random processes, the former associated with additive sky and receiver noise, the latter with the emission process in the 
pulsar. Accordingly, they are statistically independent. Each is correlated only over a time equal to the reciprocal receiver 
bandwidth, or 4-8 /¿s for data described in this paper. The real quantity a(t) models individual pulse features and is therefore 
correlated over much longer times than are n or m. 

Modifications of the signal by propagation through the ISM are not included in equation (Al). Dispersion rotates phases of the 
Fourier components of €p and can be removed by correcting the phases, as we have done with our data (see main text). Scattering is 
modeled by multiplying the Fourier transform of a(t)m(t) by a complex quantity s(v), the squared magnitude of which is the 
instantaneous spectral modulation (over the receiver bandpass) of the pulsar signal caused by multipath scattering. In the time 
domain, scattering appears as a convolution by a complex function, s(t). Upon taking the squared magnitude of the modified signal 
and taking an ensemble average (assumed equivalent to averaging over an infinite number of pulses), one obtains for the average 
pulse shape 

I(t) = N(t) + A(t) * S(t) * B(t), (A2) 

where N(t) = < | n(t) |2>, A(t) = <a(i)2>, S(t) = <s(i)2>, and B(t) = <h(i)2> and we let < | m(t) |2> = 1. The pulse-broadening function 
S(t) is the Fourier transform of the autocorrelation function of s(v) (e.g., Rickett 1977). In practice B(t) is a pulselike function much 
narrower than A(t\ so equation (A2) expresses the well-known result that the scattering acts as a linear filter that broadens the 
intrinsic pulse shape according to the broadening function S(t). 

For the regime where the integration time is less than the characteristic scintillation time, but includes a large number of pulses, 
equation (A2) still holds, except that S(t) then does not represent an ensemble average of the scintillations. Rather, it is the 
“ instantaneous ” pulse-broadening function determined by the autocorrelation of the particular realization of frequency structure in 
the receiver bandpass. For bandwidths not much larger than the scintillation bandwidth, the instantaneous broadening function can 
deviate significantly from its average, thus inducing shape variations of I(t). Shape variations, in turn, result in errors in estimates of 
time of arrival. 

Frequency structure in the spectrum is usually studied after integrating over a large number of pulses. The ensemble average of 
the squared magnitude of the Fourier transform may be written as 

/(v) = S(v)[iV(v) + constant x S(v)] . (A3) 

The constant in equation (A3) involves an integral over frequency of the ensemble average of | a(v) |2. For single realizations of data, 
frequency structure associated with the intrinsic pulse shape would appear as 100% modulations in a spectrum formed using the 
squared magnitude of a single Fourier transform of data (Rickett 1975; Cordes and Hankins 1979), even if the data interval is many 
pulse periods. In practice, we Fourier transform the complex signal ep, take the squared magnitude, and incoherently average over a 
time T that is many pulse periods but is smaller than the scintillation time Atd « 100 s at 430 MHz, over which the quantity s(t) and, 
hence, S(v) may be assumed constant. This averaging time is sufficient to wash out contributions to the frequency structure from the 
intrinsic pulse shape. In our data analysis, we have summed over 100 blocks of data to form each spectrum, so intrinsic fluctuations 
diminish to only 10% in the spectrum and 1% in the autocorrelation analysis. 

From equation (A3), it is easy to see that calibration of the spectrum, i.e., division by the known receiver bandpass shape B(v) and 
subtraction of system noise iV(v), yields the scintillation spectrum <5(v)>. Statistical analysis of the scintillation spectrum, as 
described in the text, yields the characteristic scintillation bandwidth at each epoch. 
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