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Abstract. The dynamics of binary galaxies is considered using a
two-component mass model for spiral galaxies. The mass model
has a “visible”, and an extended “dark” component. The gravita-
tional potential of a binary system, consisting of two such
galaxies, is calculated. The effect of overlapping mass distribu-
tions, in the potential calculation, is fully considered. Orbits of
binary galaxies are also calculated.

Observational predictions are examined by means of simu-
lation of a sample of binary galaxies. The simulation consists of a
Monte Carlo generation of three-dimensional orbits, that are
subsequently projected onto the plane of sky. A qualitative
comparison with recent work by Schweizer is made.

The combined effect of overlapping mass distributions and
merging on binary dynamics is a depletion of high velocity
differences at small projected separations. The main conclusion is
that there may be a considerable difference in derived orbit and
intrinsic galaxy properties between the usual point-mass approx-
imation and the more realistic model presented here.

Key words: galaxies: binary — galaxies: spiral — galaxies: structure
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1. Introduction

Here we develop and discuss a simple model for binary galaxies
which incorporates as a main feature the presence of an extended
dark mass component. The model has a simple analytical descrip-
tion that enables it to be used in a Monte Carlo algorithm for the
distribution of orbital parameters of binaries. This is the first
paper of a series, devoted to a statistical study of binaries, in
which individual galaxies are represented by extended mass
distributions. We begin by investigating the orbits.

The statistical approach to binary galaxy studies has been
widely used since Holmberg’s initial work (Holmberg, 1937; Page,
1952; Turner, 1976; Peterson, 1979; White, 1981; White et al.,
1983; Karachentsev, 1985; van Moorsel, 1987; Schweizer, 1987,
Oosterloo, 1988). However, all of this work relies upon a
Keplerian treatment of binary orbits in which the galaxies are
assumed to be point masses.

Rotation curve studies of individual spiral galaxies indicate
the presence of dark halos (e.g., van Albada and Sancisi, 1986). It
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is worthwhile, then, to improve the treatment of orbits of binary
galaxies using a model in which each galaxy in a pair has a dark
component that is properly taken into account in the pair
potential well.

In addition to the investigation of the force field in binary
systems, in which the individual galaxies are surrounded by dark
halos, we perform Monte Carlo simulations of binary galaxy
orbits, and apply them to an analysis of the recent work by
Schweizer (1987). Schweizer makes use of Monte Carlo simu-
lations, with a point-mass model, in order to find the best fitting
parameters to a well-defined sample of binaries. The results show
that Schweizer’s point-mass model fails to reproduce the predic-
tions made with the more realistic approach adopted here,
namely, the depletion of high velocity differences at the small
separation range, and, that not only orbital eccentricity is import-
ant in the distribution of velocities and separations but also the
shape of the mass distribution in the galaxies.

In Sect. 2 we introduce the model for the galaxy mass
distribution. The mass distributions can overlap in the course of
their motion in the mutual gravitational potential; the “over-
lapping” force field is calculated. Orbits are calculated in Sect. 3.
Section 4 is dedicated to the simulations, and the main results are
discussed in Sect. 5.

2. Truncated dark halo approximation

The two-component mass distribution used here is an attempt to
reproduce the main characteristic of spiral galaxies, that is to say,
the presence of an extended dark mass component in addition to
the stellar mass. The galaxy is rigid, in the sense that the overall
mass distribution does not suffer any kind of deformation during
orbital motion in a binary system. The dark component is
truncated at a given outer radius, beyond which the force is
oc1/r2. Below, we describe the model in some detail.

2.1. Model galaxy

The density distribution of the “visible” component is represented
by a Plummer sphere (polytrope of index 5):

3M  R?

R =, 1
PR~ e M
yielding the cumulative mass distribution:
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M G(R)=(—R—2—+W, ()]

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990A%26A...238...50S

SI

[TOROAGA © 27382 .50

where M is the total mass of visible matter, and R, is the core
radius of the visible component.
The gravitational potential of the distribution given by Eq. 1
is
—-GM

\PG(R)=——_(R2+R3)1/Z .

3)

One does not need to truncate the Plummer sphere. This
distribution extends to infinity but it is highly centrally concen-
trated: 94% of the total mass is contained within R;=5 x R,,
which we identify with the de Vaucouleurs’ radius of the galaxy
(R3s).

For the purposes we have in mind, i.e., a study of the orbital
motions of galaxies in a binary system, it is not necessary to go
into more detail concerning the model of the visible galaxy, such
as, the consideration of a more realistic disk-like mass distribu-
tion. What we wish to reproduce is the general trend of the visible
mass profile, that is, a central mass concentration, and a declining
density as one moves to the outer regions of the visible body. The
choice of a more sophisticated mass model to represent the visible
component is only important when considering pair interactions
on galactic scales, as it happens to occur in a close encounter
(Barnes, 1988; Borne, 1988, and references therein). In a statistical
study of binary galaxies, the fine features obtained with such a
detailed modelling are irrelevant, because we are interested in the
distribution of binary properties on all scales, but not particularly
on galactic ones. On the contrary, those are to be excluded
because they belong to the domain of merging processes. In such a
domain we cannot speak anymore about a binary system as a
well-defined entity. Furthermore, the evaluation of the visible
mass using the circular velocity at a given radius is at most 25%
higher if one assumes spherical symmetry instead of a more
realistic disk-like mass distribution (van Moorsel, 1982b). This
factor can be fully included in the statistical analysis.

The dark component is modeled by an approximate iso-
thermal sphere, with a core (Kent, 1987). The density distribution
is given by:

2

ag
2nG(R?+a?)’
pu(R)=0, R>Ry,

pr(R)= R<Ry, (4a)

(4b)

where g is the velocity dispersion in the halo, and a its core radius.
This distribution leads to a flat rotation curve, at large radii, with

an asymptotic rotational velocity of \/ 20.
The halo is truncated at some outer radius, R u> Which is a free
parameter of the model defining the distribution of dark matter.
We can now write the expression for the mass as a function of
radius in the halo:

26%a (R R
My(R)= ——arctan— |, R<Ry, (5a)
G \a a
20%a (Ry Ry
My(R)= ——arctan— |, R>Ry. (5b)
a a

The gravitational potential produced by the truncated halo is
given by:

—20%a[R R R [Ri+a?
\PH(R)= R ;—arctan;ﬁ-;ln m s RSRH,

(62)
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—2¢%a (Ry Ry
Yu(R)= R T—arctanj , R>Ry.

(6b)

In Fig. 1 we show a plot of the rotation curve of the halo-
galaxy (HG) model. The dashed lines represent the rotation
curves of the two separate mass components.

The model galaxy, with its two components, has five para-
meters: M, R,, g, a, and Ry. They must be chosen in such a way
that the resulting rotation curve is approximately flat. For the
purpose of this paper only the combined potential is important.
Thus, without loss of generality, we can choose the contribution
of the disk such that it dominates in the inner region. In analysis
of rotation curves this is called the maximum-disk approximation;
the flatness of the rotation curve is then attributed to the disk-halo
conspiracy (see, e.g., van Albada and Sancisi, 1986). This approach
reduces the number of truely free parameters of the mass model to
two: the velocity of the flat part of the rotation curve, V,, and the
cut-off radius of the halo, R,. Because, observationally, the shape
of the rotation curve in the inner region is closely related to V,
(Rubin et al., 1985), the two disk parameters M and R, are fixed by
the choice of V.. In turn, ¥, and R, determine the halo parameters
o and a.

The galaxy shown in Fig. 1, represented by its rotation curve,
has M=10, R,=0.2, 6=2.1, a=0.6, and Ry =4.0. The implied
dark mass is 6.2 units. The mass unit is 101! M o> thelength unit is
10 kpc, and the time unit is 108 yr. In these units G=4.497, and
velocities are given in units of 97.8 kms™!.

The model is used below for an investigation of the radial
force field in a binary system consisting of two equal galaxies. The
mass distributions of the galaxies overlap as their centers get
closer than 2 x R.

2.2. Calculation of the overlapping potential

Given the galaxy model, the next step towards orbits of binary
galaxies is the calculation of the mutual gravitational potential of
two such galaxies. When r > Ry, + Ry, the binary potential is the
usual Keplerian one. For r <Ry, + Ry,, the Poisson equation
must be solved, by means of a numerical integration, inside the
two overlapping spherical mass distributions.
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Fig. 1. Rotation curve of model galaxy. The plateau rotational velocity is
290kms™!, and the ratio My,,,/M,,, inside R,s (=5xR,) is 0.8. The
dashed lines represent the rotation curves for the dark and visible
components of the model. The dark halo is truncated at Ry. From this
radius outwards, the rotation curve has a Keplerian decline

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990A%26A...238...50S

SI

FT9O0ACA © ~738C ~. 50

52

Figure 2 illustrates two infinitesimal elements of such an
integration. The galaxies, HG, and HG,, are separated by r. The
element dM,, in HG,, on the right, “feels”, only partly, the
gravitational field of the total HG: this is because mass outside
ry, in HG, does not exert any force upon dM,. On the other
hand, the element on the left feels the gravitational force of the
whole of HG,. To calculate the force and the potential energy, a
double integration has to be performed in the variables r, and 0,,
the polar angle (the calculation is axially symmetric about the line
joining the two galaxies). The coordinates r, and 6, are expressed
in terms of the integration variables and r (that is kept constant in
each integration run).

The only net force component lies in the direction of r. By
integration:

j j GM,(r, )sz(rz, 0) oo

F(r)= - s 0y, U]
where M; =My, +Mg;, i=1, 2, given by Egs. 2 and 5.
The potential energy, U(r), is obtained from

Rpa ['n
U(r)=J j dM;(ra, 0,) ¥ (ry), @)
0 0

where ¥, =¥y, + ¥, given by Egs. 3 and 6.

It is worth mentioning that the overlapping potential of two
rigid mass distributions, both represented as superpositions of
polytropic distributions, was extensively studied by Alladin
(1965) in his investigation of the dynamics of colliding galaxies.
The polytropic distributions have integral indices ranging from 0
through 5. Alladin derived numerically the overlapping correc-
tion factors over the point-mass potential. The HG model has a
mass distribution expressed as the superposition of a polytrope
(the Plummer model) and a modified isothermal sphere. There-
fore, we cannot use Alladin’s results. Moreover, it would be hard
to find the right combination of polytropes that, when super-
posed, could give rise to a rotation curve similar to the one
derived using the HG model (Fig. 1), which is very convenient in
the present study of binary spiral galaxies.

Figure 3 shows the result of the integration in Eq. 7 (curve
HG-HG), and the force profile of an approximate dark halo

=T Ml

Fig. 2. Two galaxies HG, and HG,, separated by r. For clarity, the
visible component is not drawn. The mass element dM,(r,), on the right,
“feels” only the gravitational attraction from the mass inside r,, which is
equal to M, (r,); the mass element on the left feels the entire HG,. The
double integrations shown in Egs.(7) and (8) are performed in the
variables r, (from 0 to Ry,), and 6, (from O to =), while r is kept fixed

model, in which the HG mass model is truncated at the binary
separation r, and no account is made for the effect of overlapping
mass. This means that one galaxy is extended, with radius equal
to the binary separation, and the other is a point-mass with the
same mass. The galaxies appear less massive as they approach
each other.

The two halo-galaxies adopted to produce the curve in Fig. 3
are equal, and have the same parameters as the galaxy re-
presented in Fig. 1.

The behaviour of the approximated dark halo model, when
compared to the HG-HG model is not surprising: it over-
estimates the force, when the overlapping mass in HG-HG is
small, and underestimates the force, when the overlapping in HG-
HG is large.

3. Orbits in the overlapping potential

We calculate orbits having the apocenter as the starting point.
For a given relative velocity at apocenter, we do not know a priori
what the orbital eccentricity will be. One needs to calculate at
least half an orbit, and then with the resulting pericentric
separation calculate the eccentricity from

e=rapo_ rper ) (9)

rapo + rper

For this reason it is useful to define a parameter that measures the
magnitude of the relative velocity at apocenter (V(r,,,)) with
respect to the apocentric circular velocity (V;.c(r,p,)). Wecall it o,
defined as:

V
o= (Fapo) ] (10)
Vcirc(rapo)
In a Keplerian orbit, a is related to the eccentricity, e, by:
e—1+a2=0. (11)
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Fig. 3. Radial profile of the binary force field for the truncated dark halo
model (HG-HG) as compared to an alternative simplified dark halo
model, in which the mass is proportional to the separation, and neglects
effects due to overlapping mass distributions
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For a pure logarithmic potential a similar relationship between «
and ¢ can be derived:

| (1—e>+ 2, 0
n{—— —_— =0.
14e) (1= ”

The latter case is useful to represent the orbital eccenticity of a
point-mass moving in the gravitational field of an extended mass
distribution of the type M(r)ocr, a mass law very similar to the
HG mass model.

For a given set of model galaxy parameters (M, R, o, a, and
Ry) the gravitational force and potential energy, for a binary
system, is obtained through a numerical integration of Egs. 7 and
8. For the orbit calculation we have used the time-centered “leap-
frog” method. The conservation of energy was better than 0.1%.

The orbits were calculated using two different models, that
differ only in the halo size, i.e., in the total mass. For one of the
models the truncation radius of the halo is Rj; =4.0 (total mass of
the system is 14.4), and for the other R, =8.0 (total mass is 29.8).
For the same initial conditions, the more massive model leads to a
less eccentric orbit.

Figure 4 shows three runs characterized by r,,, of 4, 8 and 12
units, and Ry =4.0. The eccentricities of the model galaxy orbits
were, respectively, 0.55, 0.67 and 0.73, for the values of r,,,
mentioned above. Figure 5 shows orbits for the case Ry; =8.0, and
with the same apocentric separations mentioned above. The
orbital eccentricities in this case were 0.51, 0.55, and 0.62. In all
cases the Keplerian orbit has the same eccentricity of 0.84.

Note that the orbital properties calculated for these specific
models are characteristic for a family of models with the same
values for the ratios R, /R, and r,,,/Ry, and a variable value for
the amplitude of the rotation curve.

The basic limitation of our model is that it comprises a rigid
mass distribution, that suffers no tidal deformations. Another
point refers to dynamical friction, which is nowhere mentioned.
These are, however, only apparent limitations. In fact, deforma-
tions of any kind, tidal disruption, and dynamical friction are
greatly important in a closely interacting system (Barnes, 1988).
When such effects begin to operate the binary properties turn out
to belong to another group of observables, namely, those which
are linked to drastic and destructive events in encounters of
galaxies. Moreover, Barnes (1988) has shown that the spherically
symmetric N-body galaxies of White (1978, 1979) were very
satisfactory in deriving global properties of merging galaxies;
many of White’s results were confirmed by Barnes’ own disk-
bulge-halo galaxy encounters. This goes in favour of our spherical
model, as far as the antecedent phase of the disruptive event in
encounters is concerned, that is precisely the phase we are mainly
interested in.

From the consideration of interactive pairs, one can put
constraints on the initial properties of a simulated pair, i.e., on its
apocentric characteristics (see below). A simulated pair is ex-
cluded from the artificial sample, when it has apocentric proper-
ties such that in the course of the binary orbit a condition for
future merging is eventually achieved. The condition for merging
is represented here by an upper limit for the pericentric separation
of a pair. What we mean is that for binary approaches closer than
this limit separation dynamical friction effects become dominant
and lead to a rapid merging process. Therefore, it is useless
making a detailed treatment of the binary dynamics in that phase.
The potential merger is simply excluded from the simulated

(12)
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Fig. 4. Orbits of model galaxy binaries, with fixed «, equal to 0.4, and
apocentric separations of 4, 8 and 12 units. The dashed ellipses represent
the equivalent point-mass orbit, with the same value of « (e=1—a?
=0.84). Notice that the halo radius (Ry) is 4 units, and the visible
component has a radius of 1 unit
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sample. Of course, a reasonable choice for the merging separation
must be done. The upper limit for the pericentric separation
adopted below, in our simulations, is the value obtained by
Schweizer (1987) from a well-defined observed binary sample,

KEPLERIH&W

Fig. 5. The same as Fig. 4, for R;=8.0

which is consistent with the results of simulations of merging
galaxies performed by White (1978, 1979) and Barnes (1988).
Outside that range of binary separations dynamical friction is
neglected, and only the effects of mass overlapping are taken into
account.

4. Monte Carlo simulation of binary galaxies

Monte Carlo simulation of orbits of binary galaxies is a useful
tool when we want to analyse an observed binary sample, and this
method has been used by many workers in the field (e.g., Turner,
1976; van Moorsel, 1982a; Schweizer, 1987; Oosterloo, 1988). In
our case, in which analytical solutions to the binary dynamics
cannot be obtained, the Monte Carlo method probably is the best
way of analysing binary galaxy data.

We present here the basic notions of our approach and use it
to discuss the mass-to-light ratios for the sample of binary
galaxies of Schweizer (1987, hereafter LS).

4.1. Description of the simulation procedure

To simulate a sample of binary galaxies, a number of input orbital
parameters has to be specified, that is, the distribution of
separations, and the distribution of orbital eccentricities. Further-
more, a mass model for the galaxies in a pair has to be defined.

Here, we describe our procedure to simulate a sample of
binary galaxies and we apply it to a simple example. The binaries
in the example are characterized by fixed apocentric separation,
by a given orbital eccentricity distribution, and by two alternative
mass models: either a point-mass model, or a halo-galaxy model.

The Monte Carlo algorithm generates 2000 sets of the pro-
jected observables, namely, projected relative line-of-sight velo-
city, and projected separation. All binaries consist of two equal
galaxies with a fixed mass. The resulting orbital velocity is later
scaled with the square root of the mass. The choice of the input
mass for the galaxies is therefore unimportant for the point-mass
model, but for the HG model this is no longer true; see below. We
adopt as the fixed apocentric separation the value of 200 kpc,
which was also used by LS to draw specific conclusions. Our aim
is to comment on those conclusions.

In the model fitting algorithm, LS used five trial eccentricity
distributions, that sweep the whole range of possibilities from
pure circular orbits to nearly pure radial orbits. We concentrate
on one of those, the one which was finally regarded as the most
suitable to represent real binaries, after the analysis, i.e., f(e)=2e
(see LS, Eq. 43(d)). In order to apply it in our simulation, we
transform it in a distribution function of the parameter o.

From the fact that f(e)de= —g(x)da, we get for the point-
mass model:

fle)=2e<=g()=4a(l —a?). 13)

Here we use Eq. 11, which gives the relationship between e and .

For the overlapping potential, Eq. 11 is no longer valid. A
numerical determination of the corresponding function has to be
done in the case of a HG model. In Fig. 6(a), we show these
functions for several models, that differ only in the halo size. The
dashed curves represent the Keplerian (k) and logarithmic poten-
tial (1) cases. We consider in the simulations the same models
that were used in the orbital calculations. They have R;=4.0
(=40kpc), and R,y =8.0 (=80kpc). A third-order polynomial
was fitted to the corresponding functions, and the same procedure
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Fig. 6. a The functions e(x) are shown, as solid curves, for various halo-
galaxy models, which differ only in the halo size. The halo radius ranges
from 40 to 160 kpc. All of these functions correspond to a binary
apocentric separation of 200 kpc. The dashed curves represent the
Keplerian (label k) and logarithmic potential (label 1) cases. b The force
profiles for the same models used in determining the functions e(x). At
small separation (r <20 kpc) all models give about the same force

applied in deriving Eq. 13 was used. In this way, we get the
equivalent a-distributions of the triangular eccentricity distribu-
tion, in the case of the HG-models. It is important to notice that,
in contrast with the Keplerian and pure logarithmic potential
cases, the function e(x) in the overlapping potential case is in
reality a function of the form e =e(a, Ry, 1,,,). This means that the
curves shown in Fig. 6(a) refer only to r,,, =200 kpc. Figure 6(b)
shows the radial force profiles of the various binary models used
in the orbital calculations to derive the curves in Fig. 6(a).

The series of simulations are done with either the distribution
of o given by Eq. 13, in the case of the point-mass model, or with
the numerical a-distributions, determined as described above, in
the case of the HG-models. All of these distributions are equival-
ent to a triangular distribution in e, favouring “moderately high
eccentricity orbits”, as stressed by LS.

When investigating the possibility of merging in the observed
sample, LS put forward two conditions that should be obeyed by
potential mergers. These conditions were

rmin < 07p
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and

1
Orbital period SE Hubble time.

Here r,;, is the value of the pericentric separation and p is the
median value of the sum of the radii of the galaxies for a pair, as
derived from LS’s observed sample (which gave p=38 kpc). LS
used these criteria to estimate the effect of mergers, as part of an
attempt to understand the selection biasses operating on the
observed distribution of separations. The constraints imposed by
mergers on the properties of the simulated pairs were, however,
not explicitly taken into account by LS. Now, for the above
mentioned apocentric separation the orbital period is always
smaller than 1/2 Hubble time. This means that all pairs with orbits
with ., <27 kpc will have merged.

The simulation of one binary is done with the following steps:
(a) a value of a is obtained from the proper distribution, according
to the mass model being used; (b) V(r,p,) =& X Veiro(Fapo) is calcu-
lated; (c) if we want to restrict the separation of the galaxies in the
binary system, the “merging test” is done using the conservation
laws of energy and angular momentum. This test verifies if the
pair will have a pericentric separation (r,) smaller than 27 kpc. If
this is true, the algorithm begins again at (a). Otherwise, it goes to
the next step. If no restriction is to be considered, the test is not
done, and the next step follows; (d) A half-orbit is calculated, i.e.,
the binary path from apocenter to pericenter. Due to the charac-
teristics of the force field, this orbit segment is fully representative
of the time evolution of the system; (e) the half-orbit is rotated by
a random angle, in the orbital plane. This simple procedure
mimics the evolution of the binary over a long time scale. (f) An
orbital inclination i is obtained according to F(i)ocsin i, i.e., the
normal to the orbital plane is distributed at random in space.
(g9) Projected separation in the plane of sky, and line-of-sight
velocity difference are calculated, at a random time instant within
the orbit half-period, as well as other relevant quantities, such as
orbital eccentricity, orbital period, etc.

This sequence is the same regardless of the mass model
adopted. Of course, for the point-mass model it would not be
necessary to perform a numerical orbital calculation because the
analytic solution for the problem is known. For the sake of
uniformity, we adopt, for both the point-mass and the HG model,
a numerical approach.

The Monte Carlo simulations done here, for the sake of
illustration of our method, incorporate a feature that, although
simple by itself, is of fundamental importance, and has been
absent in many of relevant previous studies of binary galaxies. We
talk about step (c), in the basic recipe for performing the
generation of an artificial pair.

That step, called the “merging test”, is a procedure which
mimics the effect of merging, and excludes from the simulated
sample all possible mergers. Though, here, it is still a very soft
criterium against mergers (see White, 1978, 1979, and, Aarseth
and Fall 1980, where hard criteria are derived from N-body
simulations of merging galaxies), such preoccupation is com-
pletely disregarded in the simulations done by Turner (1976) and
Schweizer (1987). As far as we can judge, this very decisive point
was by its first time adopted by van Moorsel (1982a, 1987) in his
careful and detailed study of a binary sample; the same procedure
was later used also by Oosterloo (1988) in his study of angular
momentum in binary galaxies.
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In fact, the softness of our merging test is only true, if galaxies
have an extended dark component. We state the condition for
merging as-a rejection of any trial, if the binary spatial separation
would get smaller than approximately the sum of the visible radii
of binary members, at some position in the orbit.

4.2. Simulations

Figure 7 presents the results of the simulations described above.
They are displayed in the same frame of coordinates used by LS,
with the only difference that we adopt here another system of
units: the projected separations are given in units of 10 kpc,
and the normalized projected velocity difference in units of
3.09x10"*kms™ ! x Mg'2 For a 1x 10'' M, binary system,

with merging

without merging
2.0 T T T T

T T T T

PM

PM

DV/[MASS**0.5)

RP(X 10 KPC)

Fig. 7. Monte Carlo simulations of binary galaxies with fixed apocentric
separation r,,,=200 kpc. In the top panels galaxies are point masses,
middle panels represent halo-galaxy binaries, with halos truncated at
Ry =40kpc (4.0 units), and the bottom ones are HG-binaries, with
Ry =80 kpc (8.0 units). The left panels represent binaries that were not
restricted by the merging test. The right panels show binaries which have
suffered the merging test, and can not approach more than 27 kpc (LS’s
“merging” radius). It is clear that strict point-mass galaxies can have very
high velocity differences at small separations. This does not happen with
the other cases: even the HG-binary model with the smaller halo, not
subjected to the merging test, shows a deficiency in that region of the
diagram. The unit of the vertical axis is 3.09 x 10™* kms ™' x M 5'/2. The
top left diagram can be directly compared with diagram (d) in Fig. 17 of
LS

this means that one unit of projected velocity difference corres-
ponds to 97.8 kms 1.

The top panels refer to point-mass binaries, the middle panels
to HG-binaries, with R; =4.0 units, and the bottom ones to HG-
binaries, with R;; =8.0 units. To the binaries in each of the three
left panels the “merging” restriction was not applied, and those on
the right panels were affected by the merging test described above.
The top left panel is analogous to the simulation shown in LS’s
Fig. 17(d).

The main effect of the use of orbits for extended masses on the
distribution of the points in the velocity-separation diagram in
Fig. 7 is the depopulation of the region of large velocity differ-
ences at small projected separations. The introduction of merging
criteria depopulates -this region even further. The effect of the
latter would be more pronounced in the case of smaller apocen-
tric separations, because in that case more high eccentric orbits
would be forbidden. In Fig. 7 the merging criteria introduce a cut-
off in the eccentricity distribution, at a value of e,,,, =0.76, in all
simulations with “mergers”. This value corresponds to orbits that
have the minimum allowed pericentric separation, i.e., 27 kpc.

When we increase the galaxy mass, both point-mass diagrams
do not change at all (the vertical axis has velocity differences
normalized by the square root of the total binary mass). This is
not quite true, however, with the HG-models. Increasing the
mass, here, by increasing the halo size modifies the force profiles
(see Fig. 6(b)). As we can see, in Fig. 7, the two different HG-
model binaries, with different total masses, have small but
noticeable differences in the distribution of points in the dia-
grams. The more massive binaries have comparatively smaller
maximum velocity differences.

In conclusion: the largest discrepancies between the various
simulations in Fig. 7 show up in the small separation range. It is
in this range that both the merging criteria and the overlapping
corrections for the potential are important. When one looks to
the large separation range all simulations are remarkably similar.
Because of this, the high velocity difference values at small pro-
Jjected separations in an observed sample should be considered with
care.

5. Discussion: mass-to-light ratio in Schweizer’s sample

LS concluded that binary galaxies can be represented fairly well
by point masses moving in somewhat high eccentric orbits, that is,
with a frequency distribution function of eccentricities given by
f(e)oce. One of the clues for this conclusion was the fact that LS
obtained high velocity differences, at small separations, in simu-
lations that were characterized by a distribution of that kind, a
feature that is also present in the observed sample. Figure 8 shows
the observed data used by LS. The observed velocity differences
are normalized to equal-luminosity binaries (L,,,=10'' L, ,
H,=50kms™!/Mpc), and are given in the units used here, ie.,
97.8 kms™!. The results presented in Sect. 4 show that, in addi-
tion to the orbital eccentricity, the shape of the mass distribution
in the galaxies and merging have a pronounced effect on the
population of the high velocity difference-small projected separ-
ation region.

LS argues also that the great concentration of points in the
region of both small velocity difference and small projected
separation could be accounted for by binary orbits of high
eccentricity, and with small apocentric separation. Of course that
would be an easy way of populating that area, if merging
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processes are not effective. We suggest, in the light of the
simulations presented above, that this is not the case, and, as a
consequence, the only way of getting those points is with binaries
in orbits that have low eccentricities and relatively small apocen-
tric separations. It is obvious that circling speeds at small binary
separations are large, but projection effects make it possible to
populate the whole range of velocities below the relative velocity
at r,,,, and of separations below r,,,. For an illustration, see, for
example, LS’s Fig. 17(a), that shows a simulation of pure circular
orbit binaries with fixed apocentric distance.

One cannot draw any firm conclusion from a comparison
between the simulations shown in Fig. 7, and the observed data.
The observations are contaminated by a number of selection
effects, and by the presence of unbound (“optical”) pairs, that
must be taken into account in the comparison. Moreover, the
simulations refer to binaries with fixed apocentric distance, which
is certainly not true for the binaries in the observed sample. A
qualitative result can be obtained, though, by trying to match a
given observed binary shown in Fig. 8 with the simulated points.
For the sake of illustration, one can take the observed binary with
velocity difference equal to about 5.4 units and projected separ-
ation of 20 kpc (see point indicated by arrow in Fig. 8), and
require that it lies close to the upper envelope of the points in the
various panels of Fig.7. (This is LS’s pair no. 4, which was
assigned a probability of 0.88 of being bound). By equating the
observed value of AV'/ \/L to the value of AV/ \/M in the models,
a value of M/L is obtained. The models without merging fit the
observation with M/L values of approximately 7, 11, and 22, the
lowest value being found for the point-mass model. The respect-
ive values for the models with merging are considerably larger,
namely, 22, 34, and 39.

The evidence obtained here indicates that the combined effect
of extended masses and merging processes can introduce funda-
mental changes in LS’s result, probably giving a quite different
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Fig. 8. Schweizer’s (1987) observed sample of 48 binary galaxies. The
filled circles represent pairs in which at least one of the galaxies is a spiral
(there are 31 pairs with only spirals, and 11 with just one spiral galaxy).
Then open circles represent pairs that have no spiral galaxies. The vertical
axis has velocity differences normalized to an equal total luminosity of
10'! L, . The unit is 3.09 x 10~ *kms~' x L, 4/?. A similar diagram is
shown in LS’s Fig. 5, where the velocity difference values must be divided
by 97.8 kms ™! to be consistent with the units we use here. The fiducial
point adopted in the discussion is indicated by an arrow
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conclusion with respect to the orbital characteristics of the
binaries. This fact would at the same time modify sensibly the
derived mass-to-light ratio.

6. Conclusion

The model adopted for the dark halo has been extensively and
successfully used by Kent (1987) in his modelling of the dark
matter distribution in spiral galaxies. A modified version of the
same model has been also adopted in other investigations (e.g.,
Begeman, 1987; van Albada and Sancisi, 1986; van Albada et al.,
1985; Bahcall and Casertano, 1985). The unique characteristic of
our approach is the truncation of the halo outer radius. The idea,
of course, is to determine the radius of the dark halo through the
analysis of a binary galaxy sample. If the halo radius is small
(20-30 kpc in radius) the result is consistent with the point-mass
approximation. On the other hand, if real galaxies have extended
and large dark halos (as implied by observed “flat” rotation
curves of spiral galaxies), our study predicts unambiguous fea-
tures in the distribution of binary galaxy properties. It is not
surprising that the difference between the small-halo HG model
and the PM model is not large. Particularly, the PM model, with
merging, is indistinguishable from the HG model with halo radius
equal to the merging radius (27 kpc, see Sect. 4.1). In turn, it is
interesting to notice the clearly detectable differences between the
PM (or small-halo HG) model and the large-halo HG model. The
main conclusion is that the HG model can introduce fundamental
changes in LS’s result, if spiral galaxies have extended and large
dark halos as inferred from observed rotation curves.

A more conclusive answer to questions posed by double
galaxy systems is most likely to be obtained with the more
complete mass model for binary galaxies presented here. Finding
the best model which fits to an observed sample means untangling
the effects of orbital eccentricity and halo size (i.e., galaxy total
mass). This was already recognized by Turner (1976). If this
achievement was difficult in earlier investigations, it proves
possible now, with a better model for binary galaxies, and an
improved binary catalogue, with highly accurate data (see T. S.
van Albada and D. S. L. Soares, in Soares, 1989).

A detailed statistical study, taking care of selection effects in
the determination of the binary catalogue in use, will lead to
answers to important questions: what is the size of galactic dark
halos?, and, what is the orbital eccentricity distribution in binary
galaxies? An investigation of the first of these questions has been
done in Soares (1989).
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